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We discuss the theoretical foundations for testing nonlinear vacuum electrodynamics with Michelson
interferometry. Apart from some nondegeneracy conditions to be imposed, our discussion applies to all
nonlinear electrodynamical theories of the Plebański class, i.e., to all Lagrangians that depend only on the
two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here
is to use the fact that, according to nonlinear electrodynamics, the phase velocity of light should depend on
the strength and on the direction of an electromagnetic background field. There are two possible
experimental setups for testing this prediction with Michelson interferometry. The first possibility is to
apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the
situation where the field is switched on with the situation where it is switched off. The second possibility is
to place the whole interferometer in a strong electromagnetic field and to rotate it. If an electromagnetic
field is placed in one arm, the interferometer could have the size of a gravitational wave detector, i.e., an
arm length of several hundred meters. If the whole interferometer is placed in an electromagnetic field, one
would have to do the experiment with a tabletop interferometer. As an alternative to a traditional Michelson
interferometer, one could use a pair of optical resonators that are not bigger than a few centimeters. Then
the whole apparatus would be placed in the background field and one would either compare the situation
where the field is switched on with the situation where it is switched off or one would rotate the apparatus
with the field kept switched on. We derive the theoretical foundations for these types of experiments, in the
context of an unspecified nonlinear electrodynamics of the Plebański class, and we discuss their feasibility.
A null result of the experiment would place bounds on the parameters of the theory. We specify the general
results to some particular theories of the Plebański class; in particular, we give numerical estimates for
Born, Born-Infeld, and Heisenberg-Euler theories.
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I. INTRODUCTION

Modifying an earlier idea by Born [1], in 1934 Born and
Infeld [2] suggested a nonlinear modification of vacuum
electrodynamics in order to get rid of the infinite self-
energies of point particles that occur in the standardMaxwell
theory. Their theory can be derived from a Lorentz-invariant
Lagrangian. A few years later, Heisenberg and Euler [3]
derived an effective Lagrangian, again Lorentz-invariant,
from quantum electrodynamics. These are the two best
known examples within the class of all Lorentz-invariant
nonlinear electrodynamical theories. More generally,
Plebański [4] and also Boillat [5] studied the whole class
of nonlinear electrodynamical theories that can be derived
from a Lagrangian depending only on the two Lorentz-
invariant scalars that are quadratic in the field strength.
This class is often referred to as Plebański nonlinear

electrodynamics. For a review of the Born-Infeld theory
we refer, e.g., to Białynicki-Birula [6].
The physical relevance of these nonlinear vacuum electro-

dynamical theories is being widely discussed in the literature.
It is believed that at a certain field strength the Heisenberg-
Euler deviations from standard Maxwell theory should be
observable, and the Born-Infeld theory has gained increasing
attention since it was realized by Tseytlin [7] that the Born-
Infeld Lagrangian can be derived as an effective Lagrangian
from some versions of string theory. Observable effects of
(nonlinear) modifications of the vacuumMaxwell equations
have been discussed for many years, at least since the Ph.D.
thesis of Toll [8]. Up to now, the only effect predicted by such
modified theories that has already been observed is light-by-
light scattering (see [9]); further experiments are under way,
e.g., with the Large Hadron Collider at CERN [10]. There is
also an ongoing experiment [11] aiming at verifying the
birefringence in vacuo as predicted by the Heisenberg-Euler
theory. Also, it might be possible to measure the influence of
background fields on the propagation speed of light in the
laboratory. For the case of the Born-Infeld theory, such
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experiments have been suggested with the help of wave
guides by Ferraro [12] and with homogeneous magnetic
background fields by Dereli and Tucker [13].
In this paper we focus on another method for testing

nonlinear electrodynamics and discuss its theoretical foun-
dations in detail. The basic idea is to measure the influence
of a (strong) background field on the propagation speed of
light with the help of an interferometer. Such an experiment
has been suggested and discussed already in five earlier
papers [14–18]. However, all of them restrict the theoretical
discussion to the Heisenberg-Euler theory or, in the case of
Denisov et al. [15], to the Heisenberg-Euler and the Born-
Infeld theory. What is still missing is a comprehensive
derivation of the relevant equations that cover the whole
Plebański class. The basic idea of the experiment is simple.
In the standard Maxwell vacuum theory, which is linear, the
superposition principle holds, so there is no influence of a
background field on the propagation of light. In the
nonlinear theories, however, the phase velocity of light
depends on the strength of the background field and on the
propagation direction relative to the background field. This
can be tested with a Michelson interferometer: If a strong
background field is switched on and off in one interfer-
ometer arm, or if the whole interferometer is being rotated
in a strong background field, the interference pattern should
change. A null result would place bounds on the possible
deviations from standard Maxwell vacuum theory.
It is the purpose of this paper to develop the theoretical

foundations for this experimental test for an unspecified
nonlinear electrodynamical theory of the Plebański class.
We will then specify to Born, Born-Infeld, and Heisenberg-
Euler theory.
Throughout this paper, we consider Minkowski space

as the underlying space-time model. We work in inertial
coordinates, so the Minkowski metric is ðηikÞ ¼
diagð1; 1; 1;−1Þ. We use Einstein’s summation convention
for Latin indices taking values 1, 2, 3, 4 and for Greek
indices taking values 1, 2, 3. Indices are raised and lowered
with the Minkowski metric. We will use Gaussian cgs units
throughout, because they are most convenient for our
theoretical investigations. In these units, E, B, D, and H
are all measured in the same units,

ffiffiffi
g

p
=ð ffiffiffiffiffiffi

cm
p

sÞ. The reader
can easily convert the results into SI units with the help
of the formulas E ¼ ffiffiffiffiffiffiffiffiffiffi

4πϵ0
p

ESI, B ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
4π=μ0

p
BSI, D ¼ffiffiffiffiffiffiffiffiffiffiffiffi

4π=ϵ0
p

DSI, and H ¼ ffiffiffiffiffiffiffiffiffiffi
4πμ0

p
HSI [19]. For example, for

a field X ¼ 103
ffiffiffi
g

p
=ð ffiffiffiffiffiffi

cm
p

sÞ in Gaussian cgs units, where
X ¼ E, B, D, or H, one gets

ESI ¼ 3 × 107
V
m
; BSI ¼ 100 mT;

DSI ¼ 3 × 10−4
As
m2

; HSI ¼ 8 × 104
A
m
: ð1Þ

The paper is organized as follows. In Sec. II we recall the
basic equations for the propagation of light rays according

to nonlinear electrodynamics. Then in Sec. III the sug-
gested interferometer experiment is described and in
Sec. IV some particular applications are discussed.

II. LIGHT PROPAGATION IN NONLINEAR
ELECTRODYNAMICS

A. The Plebański class of nonlinear
electrodynamical theories

The nonlinear electrodynamical theories which are at the
center of our examination derive from an action

S½Am� ¼
1

4πc

Z
M

�
LðFmnÞ þ

4π

c
jmAm

�
dV4: ð2Þ

Here jm is a given current density, Am is the electromag-
netic potential, Fmn ¼ ∂mAn − ∂nAm is the electromagnetic
field strength and L is the Larangian for the electromag-
netic field. Then the homogeneous group of Maxwell’s
equations is automatically satisfied,

∂ ½aFbc� ¼ 0: ð3Þ

Variation of the action with respect to the potential Am leads
to the inhomogeneous group of Maxwell’s equations,

∂bHab ¼ 4π

c
ja; ð4Þ

where

Hab ¼ −
∂L
∂Fab

ð5Þ

is the electromagnetic excitation. It is the constitutive law
(5) that distinguishes different theories, while the Maxwell
equations (3) and (4) are always the same.
Following Plebański [4], we require that the electromag-

netic Lagrangian L depends on the electromagnetic field
strength only via the Lorentz invariants

F ¼ 1

2
FmnFmn and G ¼ −

1

4
Fmn

~Fmn: ð6Þ

Here and in the following, the tilde denotes the Hodge dual,

~Fmn ¼ 1

2
εmnabFab: ð7Þ

As usual, εabcd is the totally antisymmetric Levi-Civita
tensor with ε1234 ¼ −1. Strictly speaking, only F is
invariant under all Lorentz transformations while G
changes sign under a parity transformation. Some authors
restrict themselves to Lagrangians that satisfy the equation
LðF;GÞ ¼ LðF;−GÞ to assure invariance under parity
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transformations. However, for the purpose of this paper
there is no need for this restriction.
The Plebański class contains, of course, the standard

vacuum Maxwell theory which is given by the Lagrangian

LMðF;GÞ ¼ −
1

2
F: ð8Þ

As this theory is well tested for weak fields, many authors
restrict their work to theories where the Lagrangian satisfies
Lþ F=2 → 0 for Fmn → 0. Again, for our mathematical
considerations there is no need for this restriction.
For a theory of the Plebański class the constitutive law

(5) can be written, more specifically, as

Hab ¼ −2LFFab þ LG
~Fab ð9Þ

where

LF ¼ ∂L
∂F ; LG ¼ ∂L

∂G : ð10Þ

Later we will also write

LFF ¼ ∂2L
∂F2

; LGG ¼ ∂2L
∂G2

; LFG ¼ ∂2L
∂F∂G: ð11Þ

Additionally we will use a Hamiltonian formulation of
the Plebański electrodynamics. For the special case of the
Born-Infeld theory, the Hamiltonian formulation can be
found in [2,6] Whereas the Lagrangian depends on the field
strength, the Hamiltonian depends on the excitation. Quite
generally, for any theory based on a Lagrangian LðFmnÞ,
the passage to the Hamiltonian formalism can be performed
whenever the constitutive law (5) can be solved for Fmn.
The Hamiltonian is then given by a covariant Legendre
transformation,

HðHabÞ ¼ −
1

2
HmnFmn − LðFabÞ ð12Þ

where, on the right-hand side, Fab has to be expressed in
terms of Hmn with the help of the constitutive law. For a
theory of the Plebański class (i.e., if the Lagrangian
depends only on F and G), the Hamiltonian is a function
of the two invariants

R ¼ −
1

2
HabHab and S ¼ 1

4
Hab

~Hab: ð13Þ

The relevant equations for the passage from the Lagrangian
to the Hamiltonian description are given in the Appendix.
There we will also give a criterion that guarantees that the
constitutive law (9) can be solved for the field strength, at
least locally.

B. Three-dimensional notation of field equations

In the following we will often use three-vector notation.
The field strength has the three-dimensional representation

Eα ¼ Fα4; Bα ¼ 1

2
εαβγFβγ ¼ − ~Fα4; ð14Þ

where εαβγ is the totally antisymmetric spatial Levi-Civita
tensor, ε123 ¼ 1. With E2 ¼ δμνEμEν, B2 ¼ δμνBμBν, and
E ·B ¼ EμBμ, the invariants (6) read

F ¼ B2 − E2; G ¼ B ·E: ð15Þ

Analogously we write for the excitation

Dα ¼ −Hα4; Hα ¼
1

2
εαβγHβγ ¼ ~Hα4; ð16Þ

which implies that the invariants (13) are given by

R ¼ D2 −H2; S ¼ D ·H: ð17Þ

Then the constitutive law (9) reads

Dα ¼ −2LFEα þ LGBα;

Hα ¼ −2LFBα − LGEα: ð18Þ

C. Phase velocity and characteristic differential
equation for LðF;GÞ theories

The characteristic surfaces determined by a set of partial
differential equations can be defined as the hypersurfaces
along which the solutions may have discontinuities. As an
alternative, the characteristic surfaces can also be defined
with the help of approximate plane waves; in this second
approach, they come about as the high-frequency limit of
the surfaces of constant phase. In view of applications to
electrodynamics, the first approach is discussed, e.g., in
the book by Hehl and Obukhov [20]. The characteristic
surfaces are hypersurfaces ψ ¼ constant, where the gra-
dient of ψ has to satisfy, at each point of space-time, a
fourth-order equation which is known as the dispersion
relation or as the Fresnel equation. If viewed as a partial
differential equation for ψ, this equation is usually called
the characteristic equation or the eikonal equation. Using
this approach, Obukhov and Rubilar [21] have determined
the Fresnel equation (i.e., the characteristic equation) for an
arbitrary LðF;GÞ theory. Earlier, Novello et al. [22] had
found an equivalent result in a different way. Their results
show that, with the exception of a few special cases,
theories of the Plebański class predict birefringence
in vacuo. For background material on birefringence, and
bimetricity, we refer to Visser et al. [23] and, for the
particular case of the Heisenberg-Euler theory, to Dittrich
and Gies [24] and to Shore [25].
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Here we want to briefly sketch how the Fresnel equation
of an arbitray LðF;GÞ theory can be derived with the help
of an approximate-plane-wave ansatz. This is methodically
different from the work of Obukhov and Rubilar [21] and
Novello et al. [22] but it leads to the same result. The
general method goes back to Luneburg and is outlined, e.g.,
for electrodynamics in ordinary media, in the book by
Kline and Kay [26]. For a discussion in a more general
context, which includes the case to be considered here, we
refer to Perlick [27].
We consider a one-parameter family of electromagnetic

fields of the form

F0abðxmÞ ¼ FabðxmÞ

þ Re

�
e−iψðxmÞ=λ

X∞
N¼1

ðλNFab
N ðxmÞÞ

�
; ð19Þ

where Fab is a given background field. λ is a real book-
keeping parameter that is introduced in a way such that the
high-frequency limit corresponds to λ → 0. The summation
sign in (19) is to be understood in the sense of an
asymptotic series and not in the sense of a convergent
series. While the amplitudes Fab

N are in general complex,
the eikonal function ψ is real. It gives the surfaces of
constant phase, ψðxmÞ ¼ ψðxμ; tÞ ¼ constant. In 3-space,
the normal to these surfaces is

nα ¼
∂αψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð∂βψÞð∂βψÞ
q : ð20Þ

The phase velocity vαP can be introduced as the 3-vector that
gives the traveling speed of such a surface in the direction
of its normal,

vαP ¼ −
∂αψ

ð∂βψÞð∂βψÞ
∂ψ
∂t : ð21Þ

Feeding the ansatz (19) into Maxwell’s equations and
comparing equal powers of λ gives a hierarchy of equa-
tions. In the lowest nontrivial order, which is known as the
geometric optics approximation, one gets a first-order
partial differential equation for ψ which is the desired
characteristic equation.
If this program is carried through for an LðF;GÞ theory,

one finds the following result which is in agreement with
Obukhov and Rubilar’s [21]. The characteristic equation
reads

LFfMηijηkl þ NηijFkmFl
m

þ PFimFj
mFknFl

ngpipjpkpl ¼ 0 ð22Þ

where pi ¼ ∂iψ and

M¼L2
F þ 2LFLFGG−

1

2
LFLGGFþðL2

FG −LFFLGGÞG2;

N ¼ 2LFLFF þ
1

2
LFLGGþðL2

FG−LFFLGGÞF;
P¼LFFLGG−L2

FG: ð23Þ

If M has no zeros, (22) can be factorized as

LFMðaij1 pipjÞðakl2 pkplÞ ¼ 0 ð24Þ

where

aikA ¼ ηik þ σAFimFk
m ð25Þ

for A ¼ 1; 2 and

σ1=2 ¼
N
2M

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

4M2
−

P
M

r
: ð26Þ

In the following we restrict ourselves to Lagrangians such
that M and LF have no zeros. This excludes some
degenerate cases which are hardly of physical interest.
Then the characteristic equation is equivalent to (which is
up to conformal transformations in agreement with the
results of Novello et al. [22])

aikA pipk ¼ 0; A ¼ 1; 2 ð27Þ

and is sometimes called the “light-cone condition” (com-
pare for example [24]). Generalizing a standard terminol-
ogy from electrodynamics in media, aik1 and aik2 are called
the optical metrics of the vacuum in the LðF;GÞ theory. If
the two optical metrics do not coincide, i.e., if σ1 ≠ σ2,
there is birefringence in vacuum. If one considers the next
order in the above-mentioned hierarchy of equations, one
sees that the case A ¼ 1 and the case A ¼ 2 correspond to
two different polarization directions. Note that σ1 and σ2
are always real, because

N2 − 4MP ¼
�
2LFLFF −

1

2
LFLGG − PF

�
2

þ 4ðLFLFG − PGÞ2 ð28Þ

is a sum of two squares, and that σ1 and σ2 depend only on
the two field invariants F and G. In the standard vacuum
Maxwell theory we have σ1 ¼ σ2 ¼ 0, so these two
functions characterize the deviation of our LðF;GÞ theory
from the standard theory at the level of geometric optics.
If the Lagrangian is of the special form LðF;GÞ ¼

LðαF þ βGÞ with some constant factors α and β, one has
P ¼ 0 and therefore σ1 ¼ 0, i.e., one polarization mode
behaves as in the standard Maxwell vacuum theory. This is
true, in particular, if the Lagrangian is independent of G. (It
is also true if the Lagrangian is independent of F but this
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case was excluded by our assumption LF ≠ 0.) Also, it is
interesting to remark that two Lagrangians L and Lþ βG
give the same characteristic equation, i.e. the two cases are
not distinguishable at the level of geometrical optics. Of
course, if one restricts to parity invariant Lagrangians
adding a term of the form βG is forbidden.
For some of our applications it will be desirable to write

the optical metrics in terms of the excitation, rather than in
terms of the field strength. It is then recommendable to start
from a Hamiltonian formulation. It was mentioned already
at the end of Sec. II A that the Plebański class of theories
can be written in terms of a Hamiltonian HðR; SÞ rather
than in terms of a Lagrangian LðF;GÞ. In the Appendix we
derive some replacement rules of how the relevant
Hamiltonian expressions can be found from the
Lagrangian expressions. By applying these replacement
rules, we find that the optical metrics can be rewritten as

aikA ¼ ηik þ σ̂A ~Him ~Hk
m ð29Þ

where

σ̂A ¼ N̂

2M̂
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N̂2

4M̂2
−

P̂

M̂

s
ð30Þ

with the abbreviations

M̂ ¼H2
R þ 2HRHRSS−

1

2
HRHSSRþ ðH2

RS −HRRHSSÞS2;

N̂ ¼ 2HRHRR þ
1

2
HRHSS þ ðH2

RS −HRRHSSÞR;
P̂¼HRRHSS −H2

RS: ð31Þ

In the following it will be convenient to use the three-
vector notation of (14) and (16). We decompose each of the
3-vectors E, B, D, and H into amplitude and direction,

Bðxμ; tÞ ¼ Bðxμ; tÞvðxμ; tÞ;
Eðxμ; tÞ ¼ Eðxμ; tÞwðxμ; tÞ;
Hðxμ; tÞ ¼ Hðxμ; tÞrðxμ; tÞ;
Dðxμ; tÞ ¼ Dðxμ; tÞsðxμ; tÞ; ð32Þ

where jvj ¼ jwj ¼ jrj ¼ jsj ¼ 1. The spatial and temporal
parts of FimFk

mpipk, which enter into (24), can then be
written as

FαmFβ
mpαpβ ¼ B2½p · p − ðv · pÞ2� − E2ðw · pÞ2

F4mFβ
mpβ ¼ BEp · ðw × vÞ

F4mF4
m ¼ E2: ð33Þ

Similarly,

~Ham ~Hβ
mpαpβ ¼ D2½p · p − ðs · pÞ2� −H2ðr · pÞ2

~H4m ~Hβ
mpβ ¼ DHp · ðs × rÞ

~H4m ~H4
m ¼ H2 ð34Þ

which will be used later.

D. Ray velocity and Hamilton equations for the rays

Interpreting QA ¼ aikA pipk as a Hamiltonian, the char-
acteristic partial differential equation aikA ∂iψ∂kψ ¼ 0 can
be viewed as a Hamilton-Jacobi equation. The correspond-
ing set of Hamilton equations, or canonical equations,
determines the bicharacteristic curves or rays. For back-
ground material on the notions of characteristics and
bicharacteristics we refer to Courant and Hilbert [28].
The rays are defined with respect to Q1 and Q2

separately, i.e., they depend on the polarization. The
canonical equations read

dxa

ds
¼ ∂QA

∂pa
;

dpa

ds
¼ −

∂QA

∂xa : ð35Þ

Here s is a parameter along the rays which has no obvious
physical meaning. In the following it will be convenient to
reparametrize the rays by the time coordinate t, cf. [28]. In
order to do this, we have to assume that the rays of the
Hamiltonian QA are causal (i.e., timelike or lightlike) with
respect to the Minkowski background metric. It was shown
by Obukhov and Rubilar [21] that the optical metrics are
always of Lorentzian signature, provided that we exclude
the pathological cases where they degenerate. However, no
convenient criterion on the Lagrangian LðF;GÞ seems to
be known that guarantees causality of the rays with respect
to the background metric. We will investigate this question
in a separate paper; here we just restrict our discussion,
from now on, to Lagrangians where the rays of the optical
metrics are causal with respect to the background
Minkowski metric.
Then it is guaranteed that a44A < 0 and we may write the

optical metrics as

aikA pipk ¼
a44A
c2

ðcp4 þHþ
A Þðcp4 þH−

AÞ ð36Þ

where

H�
A ¼ c

0@aα4A pα

a44A
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aα4A pα

a44A

�
2

−
aαβA pαpβ

a44A

s 1A: ð37Þ

Equation (36) corresponds to splitting the null cone of the
optical metric aikA into a future and a past cone. If we restrict
our work here to future-oriented rays, we can write the
characteristic equation as
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cp4 þHþ
A ¼ 0 ð38Þ

and the canonical equations read

dxα

dt
¼ ∂Hþ

A

∂pα
;

dpα

dt
¼ −

∂Hþ
A

∂xα ; ð39Þ

dx4

dt
¼ c;

dp4

dt
¼ −

∂Hþ
A

∂x4 : ð40Þ

If aikA is known, integration of (39) gives the spatial paths
of the rays. The first equation of (40) says that the new
parameter t coincides with the coordinate time, while the
second equation gives the change of the frequency of light.
The ray velocity can be read from (39),

vαS ≔
dxα

dt
¼ ∂Hþ

A

∂pα
: ð41Þ

The phase velocity (21) can be rewritten in terms of the
Hamiltonian as

vβP ¼ −
cp4

pαpα p
β ¼ Hþ

A

pαpα p
β: ð42Þ

Phase and ray velocity coincide if and only if

Hþ
A

pαpα p
β ¼ ∂Hþ

A

∂pβ
ð43Þ

which is true if and only if Hþ
A is of the form

Hþ
A ¼ fðxμ; ctÞ

ffiffiffiffiffiffiffiffiffiffiffi
pαpα

p
ð44Þ

where f is any function of the space-time coordinates.
Equation (44) is satisfied in the usual vacuum theory of
Maxwell but not in general in other LðF;GÞ theories. Note
that (44) implies

dxα

dt
¼ ∂Hþ

A

∂pα
¼ fðxμ; ctÞpαffiffiffiffiffiffiffiffiffiffi

pβpβ

q ; ð45Þ

i.e., the condition vαS ¼ vαP can hold only if dxα=dt and pα

are parallel.

E. Parallel electric and magnetic fields

We consider now the special case that E and B are
parallel, i.e., that v ¼ w in the notation of (32). This case
covers, of course, in particular the situation that one of the
two field strengths, E or B, is zero. With the aid of the
transformation (A6), described in the Appendix, we will
then discuss, at the end of this section, the case that the
excitations D and H are parallel.

If we specialize (33) to the case v ¼ w and insert the
result into (25), the optical metrics read

aikA pipk ¼ −ð1 − σAE2Þp2
4 þ ð1þ σAB2Þp2

− σAðB2 þ E2Þðw · pÞ2: ð46Þ

Hence, the Hamiltonian Hþ
A from (37) simplifies to

Hþ
A ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σAB2Þ
ð1 − σAE2Þ ðjpj

2 − ðw · pÞ2Þ þ ðw · pÞ2
s

ð47Þ

and the phase velocity (42) reads

vP ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σAB2Þ
ð1 − σAE2Þ

�
1 −

ðw · pÞ2
jpj2

�
þ ðw · pÞ2

jpj2

s
: ð48Þ

If we assume, in addition, that the unit vector of the
background field is homogeneous, ∂αwβ ¼ 0, and that
the amplitudes of the field strengths change only in the
direction of p, gradB ∝ p as well as grad E ∝ p, the
canonical equations (39) reduce to

dxα

dt
¼ c

Hþ
A

�ð1þ σAB2Þ
ð1 − σAE2Þ ðp

α − ðw · pÞwαÞ þ ðw · pÞwα

�
;

dpα

dt
∝ pα: ð49Þ

The last equation implies that the direction of pα is
preserved along the ray.
If additionally the background fields are static, ∂E=∂t ¼

0 and ∂B=∂t ¼ 0, the second equation of (40) reduces to

dp4

dt
¼ 0 ð50Þ

which means that, in this case, the background fields do not
change the frequency of light.
We are now interested in the special case that (44) holds

which guarantees that phase velocity and ray velocity are
equal and that dxα=dt is parallel to pα. As the direction of
pα is preserved, the ray must then be a straight line.
There are two main cases where the Hamiltonian takes

the form of (44). First, if p∥w, we find from (47), (48) and
(49) that Hþ

A ¼ cjpj, vP ¼ c, and dxα=dt ¼ cpα=jpj, i.e., in
this case the background fields have no effect. Second, if
p · w ¼ 0, one gets

Hþ
A ¼ cjpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σAB2

1 − σAE2

s
; ð51Þ

vP ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σAB2

1 − σAE2

s
; ð52Þ
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dxα

dt
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σAB2

1 − σAE2

s
pα

jpj : ð53Þ

This is the case which is most appropriate for the proposed
experiment, because in this case one achieves two goals:
the rays do not deviate from a straight line but the phase
velocity does change in comparison to the Maxwell
standard vacuum theory.
Now we go over to the case that D and H are parallel,

i.e.., that r ¼ s. With the help of (A6) from the Appendix
we find that in this case (47) and (48) have to be replaced
with

Hþ
A ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σ̂AD2Þ
ð1 − σ̂AH2Þ ðjpj

2 − ðs · pÞ2Þ þ ðs · pÞ2;
s

ð54Þ

vP ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σ̂AD2Þ
ð1 − σ̂AH2Þ

�
1 −

ðs · pÞ2
jpj2

�
þ ðs · pÞ2

jpj2

s
: ð55Þ

As above one gets for homogeneous and time-independent
excitations

dxα

dt
¼ c

Hþ
A

�ð1þ σ̂AD2Þ
ð1 − σ̂AH2Þ

× ðpα − ðs · pÞsαÞ þ ðs · pÞsα
�
;

dpα

dt
∝ pα;

dp4

dt
¼ 0: ð56Þ

Again, the case that p is parallel to s leads to vP ¼ c, so this
case is of no interest for us. If, however, p · s ¼ 0, we get

Hþ
A ¼ cjpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂AD2

1 − σ̂AH2

s
; ð57Þ

vP ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂AD2

1 − σ̂AH2

s
; ð58Þ

dxα

dt
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂AD2

1 − σ̂AH2

s
pα

jpj ð59Þ

and there is no deviation of a light ray from a straight line.

III. AN INTERFEROMETRIC EXPERIMENT
FOR TESTING NONLINEAR

ELECTRODYNAMICS

There are two ways in which Michelson interferometry
can be used for testing nonlinear electrodynamics. First, a
strong background field could be applied to the light beam
in one arm of the interferometer. One would compare the

situation where the background field is switched on with
the situation where it is switched off, cf. [14]. Second, one
could place the whole interferometer in a strong back-
ground field. One would then search for changes in the
interference pattern if the interferometer is being rotated.
The first possibility is reasonable if one thinks of a large
interferometer, with an arm length of several meters at least.
The second possibility is reasonable if one thinks of a
tabletop interferometer. As an alternative to using a tradi-
tional Michelson interferometer, one could also use a pair
of optical resonators as they have been used for high-
precision Michelson-Morley experiments in recent years.
As these resonators have a typical size of only a few
centimeters, one would do the experiment with the whole
instrument placed in a background field. With the reso-
nators oriented perpendicularly to each other, one would
then compare the situation where the field is switched on
with the situation where it is switched off, or one would
rotate the whole instrument with keeping the field
switched on.
In the following we first discuss the setup of the

experiment where a traditional Michelson interferometer
is used and the field is placed in one arm. This is the variant
which brings out the basic idea of the experiment most
clearly. Later in this section we discuss the other variants.
Figure 1 shows the interferometer with the background

field in the region denoted BF. The ray leaves the source S
and is divided at the semipermeable mirror SPM. After
reflection at the mirrorsM1 andM2, respectively, both parts
interfere at D. If the background field is switched off, both
parts always travel with the standard vacuum phase velocity
c. If the background field is switched on, the part which

FIG. 1. Experimental setup.
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travels along l2 crosses the region BF with a different phase
velocity, according to nonlinear electrodynamics. This
would lead to a change of the interference pattern.
We consider the background field to be static, with one

of the four fields E, B, D, or H vanishing. Each of these
four cases is covered by the calculations of the preceding
section. We assume that the background field is
perpendicular to the propagation direction of the light.
We have seen that in this situation the ray does not deviate
from a straight line.
Obviously the travel times of the ray along the different

sections are given by

ct1 ¼ l1; ct02 ¼ l02; ct002 ¼ l002; vPtBF ¼ lBF:

ð60Þ

Without background field the phase velocity is equal to c
everywhere, including the region BF. The time delayΔtI of
the two arms is therefore given by

ΔtI ¼ 2ðt1 − t02 − t002 − tBFÞ ¼
2

c
ðl1 − l02 − l002 − lBFÞ:

ð61Þ

With background field the phase velocity in the region BF
is vP which is, in general, different from c. The time delay
ΔtII of the two arms is therefore given by

ΔtII ¼ 2ðt1 − t02 − t002 − tBFÞ

¼ 2

c

�
l1 − l02 − l002 −

c
vP

lBF

�
: ð62Þ

The change of the interference pattern is given by the time
difference

Δt ¼ ΔtII − ΔtI ¼
2lBF
c

�
1 −

c
vP

�
: ð63Þ

This leads to a line shift of

Δ ¼ ωΔt
2π

¼ ωlBF
πc

�
1 −

c
vP

�
: ð64Þ

Here ω denotes the frequency of the light. Note that ω is a
constant because the background field is assumed static.
We evaluate the general result for each of the four cases

E ¼ 0, B ¼ 0, D ¼ 0, andH ¼ 0. Note that in general E ¼
0 is not equivalent to D ¼ 0 and B ¼ 0 is not equivalent
to H ¼ 0.
(a) Magnetostatic field strength ðE ¼ 0Þ

From (52) we find that

vP ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ1=2B2

q
¼ c

�
1þ σ1=2ð0Þ

B2

2
þ � � �

�
ð65Þ

and hence, by (64),

Δ ¼ ωlBF
πc

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ1=2B2

q �

¼ ωlBFσ1=2ð0ÞB2

2πc
þ � � � ð66Þ

(b) Electrostatic field strength ðB ¼ 0Þ
From (52) we find that

vP ¼ c
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − σ1=2E2
q

¼ c

�
1þ σ1=2ð0Þ

E2

2
þ � � �

�
ð67Þ

and hence, by (64),

Δ ¼ ωlBF
cπ

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ1=2E2

q
Þ

¼ ωlBFσ1=2ð0ÞE2

2πc
þ � � � ð68Þ

(c) Magnetostatic excitation ðD ¼ 0Þ
From (58) we find that

vP ¼ c
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − σ̂1=2H2
q

¼ c

�
1þ σ̂1=2ð0Þ

H2

2
þ � � �

�
ð69Þ

and hence, by (64),

Δ ¼ ωlBF
cπ

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − σ̂1=2H2

q
Þ

¼ ωlBFσ̂1=2ð0ÞH2

2πc
þ � � � ð70Þ

(d) Electrostatic excitation ðH ¼ 0Þ
From (58) we find that

vP ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂1=2D2

q
¼ c

�
1þ σ̂1=2ð0Þ

D2

2
þ � � �

�
ð71Þ
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and hence, by (64),

Δ ¼ ωlBF
cπ

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ̂1=2D2

q �

¼ ωlBFσ̂1=2ð0ÞD2

2πc
þ � � � ð72Þ

If one writes X for E, B, D, or H, one can combine all
results up to first order in the form

vP ¼ c

�
1þ σ1=2

X ð0ÞX
2

2
þ � � �

�
ð73Þ

and

Δ ¼ ωlBFσ1=2
X ð0ÞX2

2πc
þ � � � : ð74Þ

Here σ1=2
X ð0Þ denotes either σ1=2ð0Þ or σ̂1=2ð0Þ, depending

on whether X is a field strength or an excitation. Note that
2πc=ω is the wavelength in the case of a vanishing
background field. According to nonlinear electrodynamics,
the wavelength changes when the ray travels through the
background field BF. This means that, if one substitutes the
angular frequency ω by the wavelength λ ¼ 2πc=ω,

Δ ¼ lBFσ1=2
X ð0ÞX2

λ
þ � � � ; ð75Þ

one has to keep in mind that λ is not the wavelength of the
light when passing through the background field but of the
light when emitted by the source.
The results of this section can also be applied to the case

where the whole interferometer is inside the background
field. Here one does not switch on and off the background
field but rotates the interferometer by 90° so that in the
initial position the first arm is orthogonal to the field and the
second arm is parallel to the field while in the end position
it is vice versa. Then one gets instead of the preceding
formulas the following ones:

Δt ¼ 2ðl1 þ l2Þ
c

�
1 −

c
vp

�
; ð76Þ

Δ ¼ ωðl1 þ l2Þσ1=2X ð0ÞX2

2πc
þ � � � : ð77Þ

This means that one has to replace lBF by l1 þ l2 in all
formulas to go from the fist setup to the second one.
As an alternative to using a traditional Michelson

interferometer with two arms, we will now discuss a setup
with optical resonators as it has been used frequently in

recent years for high-precision Michelson interferometry;
see e.g., [29] and the references therein. Here one uses a
laser which is stabilized to the eigenfrequency νeigen ¼
NvP=ð2LÞ of an optical resonator, where N is the mode
number, vP is the phase velocity of light and L is the length
of the resonator. The quality of a resonator is determined by
its finesse F, typically F ¼ 100 000. In a figurative way, a
resonator may be viewed as equivalent to a traditional
interferometer whose arm length is folded F times.
If vP and L undergo a change, the eigenfrequency of the

resonator and therefore the frequency of the stabilized laser
changes as

δν

ν
¼ δvP

vP
−
δL
L

: ð78Þ

If the resonator is put into a homogeneous and static E, B,
D, or H field, with its axis perpendicular to the field, the
phase velocity of light changes according to

δvP
vP

≈ σ1=2
X ð0ÞX

2

2
: ð79Þ

if we use the approximations of (73). As a direct meas-
urement of δν is not possible, one superimposes to the first
laser a second reference laser stabilized to the eigenfre-
quency νref of a resonator with (ideally) the same physical
characteristics as the first one. Then the difference of the
frequencies Δν ≔ νeigen − νref appears as the carrier fre-
quency of the resulting beat. If the second resonator is
oriented parallel to the background field and thus not
influenced by it, this means that Δν ¼ δν.
For a theoretical discussion of the effect, we assume that

L is not changed if the background field is applied. (Of
course, for a practical realization of the experiment one has
to take into account that the material of the resonator is
influenced, e.g., by magnetostriction, but we ignore this
here.) Then

δν

ν
¼ δvP

vP
≈ σ1=2

X ð0ÞX
2

2
: ð80Þ

In [29], by averaging over many measurements it was
possible to determine δν=νwith an accuracy of 10−17. If we
assume that the same accuracy can be reached in the
experiment proposed here, a measurable effect requires that
X satisfies

δvP
vP

≈ σ1=2
X ð0ÞX

2

2
≈ 10−17: ð81Þ

In the next section we discuss the perspectives of
performing such an experiment as a test of particular
theories of the Plebański class. We compare the setup with
the background field placed in one arm of a big Michelson
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interferometer with the setup using optical resonators. In
the following, we refer to the first one as the “large-scale
experiment” and to the second one as the “small-scale
experiment.”

IV. APPLICATION TO SPECIAL THEORIES
OF THE PLEBAŃSKI CLASS

A. Born-Infeld theory

In the case of the Born-Infeld theory, Lagrangian and
Hamiltonian are given by [2]

LðF;GÞ ¼ −b20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b20
−
G2

b40

s
þ b20; ð82Þ

HðR; SÞ ¼ b20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

b20
−
S2

b40

s
− b20; ð83Þ

where b0 is a new constant of Nature with the dimension of
a field strength. The constitutive law reads

Hab ¼
Fab − G

b2
0

~Fabffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b2
0

− G2

b4
0

q ð84Þ

which can be solved for the field strength,

Fmn ¼
Hmn þ S

b2
0

~Hmnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R

b2
0

− S2

b4
0

q : ð85Þ

The invariants R and S are given in terms of F and G by

R
b20

¼
− F

b2
0

þ 4 G2

b4
0

þ F
b2
0

G2

b4
0

1þ F
b2
0

− G2

b4
0

; ð86Þ

S ¼ −G; ð87Þ

which implies

1þ F
b2
0

− G2

b4
0

1þ G2

b4
0

¼
1þ S2

b4
0

1þ R
b2
0

− S2

b4
0

: ð88Þ

This leads to

LFF ¼ −
2L3

FG
b20

; LFG ¼ 4L3
FG
b40

;

LGG ¼ −
2LF

b20
−
8L3

FG
2

b20
; ð89Þ

HRR ¼ −
2HR

3S
b20

; HRS ¼
4HR

3S
b40

;

HSS ¼ −
2HR

b20
−
8HR

3S2

b20
: ð90Þ

Therefore one gets for the functions σ1=2 and σ̂1=2, which give
the deviation from the standard Maxwell vacuum theory,

σ1 ¼ σ2 ¼ −
1

b20 þ F
¼ −

1

b20
þ � � � ;

σ̂1 ¼ σ̂2 ¼ −
1

b20 þ R
¼ −

1

b20
þ � � � : ð91Þ

It is worth noticing that σ1 ¼ σ2 holds not only in the
Born-Infeld theory and in the standard vacuum Maxwell
theory but also in any other theory whose Lagrangian
differs only by a term linear in G from them. (Such theories,
however, are often excluded because they are not invariant
under parity transformations.)
Additionally one can calculate the phase-velocity and the

line shift for the four static cases:
Cases (a) with E ¼ 0 and (d) with H ¼ 0

Here we discuss the case of a magnetostatic field strength
and the case of an electrostatic excitation together. If we
use the abbreviation Y ¼ B;D, we find

σ1
Y ¼ σ2

Y ¼ −1
b20 þ Y2

; ð92Þ

hence

vS ¼ vP ¼
cffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

b2
0

q ¼ c

�
1 −

Y2

2b20
þ � � �

�
: ð93Þ

The limit Y → 0 yields vS ¼ vP → c as it has to.
By contrast, the limit Y → ∞ yields vS ¼ vP → 0, so one
may say that the background field Y slows down the light
ray. There is no upper bound for Y ¼ B;D.
The line shift is given by

Δ ¼ 2lBF
λ

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Y2

b20

s !

¼ −
lBF
λ

Y2

b20
þ � � � : ð94Þ

Cases (b) with B ¼ 0 and (c) with D ¼ 0
Here we discuss the case of an electrostatic field strength
and the case of a magnetostatic excitation together. If we
use the abbreviation Z ¼ E;H, we find

σ1
Z ¼ σ2

Z ¼ 1

Z2 − b20
; ð95Þ

hence
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vS ¼ vP ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Z2

b20

s
¼ c

�
1 −

Z2

2b20
þ � � �

�
: ð96Þ

Again, the limit Z → 0 yields vS ¼ vP → c.
In contrast to the case above, this one leads to an upper
bound for Z. This is obvious because for Z → b0 one
gets vS ¼ vP → 0. In analogy to the other cases a
background excitation slows down the light ray. For
background fields Z > b0 one gets an imaginary phase
velocity, so one has to conclude that Z ≤ b0.
The line shift is given by

Δ ¼ 2lBF
λ

0@1 −
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

b2
0

q
1A ¼ −

lBF
λ

Z2

b20
þ � � � : ð97Þ

We may combine the first-order approximations of all
preceding cases into two formulas, one for the velocity and
one for the line shift:

vS ¼ vP ≈ c

�
1 −

X2

2b20

�
and Δ ≈ −

lBF
λ

X2

b20
: ð98Þ

To give an example we calculate the line shift for the large-
scale experiment for some specific values. We assume an
accuracy of about 10−6 line shifts. For lBF ¼ 100 m and
λ ¼ 1000 nm one gets

Δ ¼ −
lBF
λ

X2

b20
≈ −108

X2

b20
: ð99Þ

With these values one sees an effect if

X ≳ 10−7b0: ð100Þ

Born and Infeld conjectured that

b0 ¼
e
r2e

≈ 6 × 1015
ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s

ð101Þ

where e is the electron charge and re is the classical
electron radius. Although this is only of historical interest,
we remark that the corresponding line shift would be

Δ ≈ −
10−22

36
X2

cm s2

g
: ð102Þ

If this were true we would need a field strength or an
excitation of

X ≳ 6 × 108
ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s

ð103Þ

to see an effect. For a magnetic field strength, X ¼ B,
this would correspond to BSI ≳ 6 × 104T in SI units;

see (1). Clearly, this is not achievable in the foreseeable
future.
It is more interesting to see what lower bound on b0 one

could get from an experiment. Let us assume that

X ≈ ×104
ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s

ð104Þ

which corresponds to BSI ¼ 1 T according to (1). This is
not an unrealistic value for a magnetic field to be produced
in a laboratory. Then a null result of our large-scale
experiment would imply, according to (100), that

b0 ≳ 1 × 1010
ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s
: ð105Þ

For the small-scale experiment we suggest a lower field
strength of 300 mT to prevent magnetorestriction. Then we
find from (81) and (91) that

b0 ≳ 7 × 1011
ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s

ð106Þ

which is almost 2 orders of magnitude better than the large-
scale experiment.

B. Born’s theory

Born’s Langrangian [1] differs from the Born-Infeld
Lagrangian by omitting the G2 term,

LðFÞ ¼ −b20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

b20

s
þ b20: ð107Þ

This leads to an electrodynamical theory with
birefringence,

σ1 ¼ 0; σ2 ¼
−1

b20 þ F
: ð108Þ

From the viewpoint of geometrical optics Born’s theory is a
hybrid. One polarization mode behaves according to the
standard vacuum Maxwell theory and the other one
according to the Born-Infeld theory. This means that, if
one filters the σ2 rays out with a polarization filter, then one
sees no difference to Maxwell, and if one filters the σ1 rays
out, then one sees no difference to Born-Infeld. As a
consequence, the results of Sec. IVA are also valid for the
σ2 rays in Born’s theory.

C. Series expansions for electrodynamics
with arbitrary Lagrangian

If we are interested only in first-order deviations from
Maxwell’s theory, we may express the Langrangian in terms
of a series expansion with respect to F=A and G=A up to

TESTING NONLINEAR VACUUM ELECTRODYNAMICS WITH … PHYSICAL REVIEW D 92, 025039 (2015)

025039-11



second order, where A is a constant with the dimension of a
field strength squared. Introducing A is necessary because
only for dimensionless terms is it meaningful to say that they
are small without referring to a particular system of units. In
the Born-Infeld theory, e.g., we choose A ¼ b20.
The series expansion of the Lagrangian reads

L ¼ αþ β
1

F
A
þ β

2

G
A

þ γ
1

�
F
A

�
2

þ γ
2

FG
A2

þ γ
3

�
G
A

�
2

þ � � � : ð109Þ

Note that β
2

and γ
2

are zero if the theory is invariant under

parity transformations. One can assume the validity of the
following bookkeeping system for the smallness of terms,
where ∼ means that terms are of the same order.

(i) α ∼ β
i
∼ γ

i
� � � as well as Fmn ∼ ~Fmn, hence F ∼G.

(ii) F=A and G=A are dimensionless with F=A ∼ G=A.
(iii) From the first order of R ¼ RðF;GÞ and S ¼

SðF;GÞ [cf. (A7) to (A13)] one gets β
i
F=A ∼ AR=β

i
.

With the help of (A7) to (A13)) one can now calculate R
and S as series in F and G. Additionally one can then
calculate the inverted series, i.e., F and G as a series in R
and S. This step allows us then to calculate the Hamiltonian
as a function of R and S. The result of this calculation is

H ¼ −αþ B
1

R

Â
þ B

2

S

Â

þ C
1

�
R

Â

�
2

þ C
2

RS

Â2
þ C

3

�
S

Â

�
2

þ � � � ; ð110Þ

with the following coefficients:

Â−1 ≔
A

β
2

2 þ 4β
1

2
; B

1
≔ −β

1

; B
2
≔ β

2

;

C
1
≔
�
−β

2

4γ
1

þ 2β
1

β
2

3γ
2

− 4β
1

2β
2

2γ
3

þ 8β
1

2β
2

2γ
1

− 8β
1

3β
2

γ
2

− 16β
1

4γ
1

�.�
β
2

2 þ 4β
1

2

�
2

;

C
2
≔
�
−β

2

4γ
2

þ 4β
1

β
2

3γ
3

− 16β
1

β
2

3γ
1

þ 24β
1

2β
2

2γ
2

− 16β
1

3β
2

γ
3

þ 64β
1

3β
2

γ
1

− 16β
1

4γ
2

�.�
β
2

2 þ 4β
1

2

�
2

;

C
3
≔
�
−β

2

4γ
3

− 8β
1

β
2

3γ
2

þ 8β
1

2β
2

2γ
3

− 64β
1

2β
2

2γ
1

þ32β
1

3β
2

γ
2

−16β
1

4γ
3

�.�
β
2

2 þ 4β
1

2

�
2

: ð111Þ

This leads to some additions to the bookkeeping system:
(i) From β

i
F=A ∼ AR=β

i
one gets F=A ∼ R=Â as well

as G=A ∼ S=Â.
(ii) It is easy to see that α ∼ β

i
∼ γ

i
� � � ∼ B

i
∼ C

i
� � � holds.

As a result of this bookkeeping system one sees that, if one
can neglect in the Lagrangian terms of a certain order in
F=A and G=A, then one can neglect in the Hamiltonian
terms of the same order in R=Â and S=Â.
For the case of a parity-invariant Lagrangian, LðF;GÞ ¼

LðF;−GÞ, the coefficients of the Hamiltonian become
very simple:

B
1
¼ −β

1

; B
2
¼ −β

2

¼ 0;

C
1
¼ −γ

1

; C
2
¼ −γ

2

¼ 0; C
3
¼ −γ

3

;

Â ¼
4β2

1

A
: ð112Þ

If, in addition, the first-order approximation of the
Lagrangian coincides with the standard Maxwell one (8)—
which is true if β

1

¼ −A=2—one gets

Â ¼ A: ð113Þ
This is, in particular, the case for the theories of Born,
Born-Infeld, and Heisenberg-Euler.
From the Lagrangian (or the Hamiltonian, respectively)

one gets the “deviation coefficients” σ1=2 in the zeroth order
of approximation with respect to F and G (or R and S,
respectively):

σ1=2ð0Þ ¼
2γ
1

Aβ
1

þ
γ
3

2Aβ
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16γ

1

2 þ 4γ
2

2 − 8γ
1

γ
3

þγ
3

2

A2β
1

2

vuuut ;

ð114Þ

σ̂1=2ð0Þ ¼
2C
1

Â B
1

þ
C
3

2Â B
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16C

1

2 þ 4C
2

2 − 8C
1
C
3
þC

3

2

Â2B
1

2

vuuut :

ð115Þ

Obviously the zeroth order approximation of σ1=2 gives
the first-order approximation of the optical metric for the
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deviation from Maxwell’s theory and therefore also of the
phase velocity.
The Born-Infeld theory, e.g., yields σ1ð0Þ ¼ σ2ð0Þ ¼

σ̂1ð0Þ ¼ σ̂2ð0Þ ¼ −1=b20, so one recovers the values calcu-
lated above. Additionally one sees that the approximation

procedure does not destroy the absence of birefrigence in
the given order of approximation.
One gets the results for the four cases described

in Sec. III if one feeds (115) and (114) into (73)
and (74):

Magnetostatic field strength case (E ¼ 0)

vP ¼ cþ c
B2

2

0BB@2γ
1

Aβ
1

þ
γ
3

2Aβ
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16γ

1

2 þ 4γ
2

2 − 8γ
1

γ
3

þγ
3

2

A2β
1

2

vuuut
1CCAþ � � � ð116Þ

Δ ¼ lBFB2

λ

0BB@2γ
1

Aβ
1

þ
γ
3

2Aβ
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16γ

1

2 þ 4γ
2

2 − 8γ
1

γ
3

þγ
3

2

A2β
1

2

vuuut
1CCAþ � � � ð117Þ

Electrostatic field strength case (B ¼ 0)

vP ¼ cþ c
E2

2

0BB@2γ
1

Aβ
1

þ
γ
3

2Aβ
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16γ

1

2 þ 4γ
2

2 − 8γ
1

γ
3

þγ
3

2

A2β
1

2

vuuut
1CCAþ � � � ð118Þ

Δ ¼ lBFE2

λ

0BB@2γ
1

Aβ
1

þ
γ
3

2Aβ
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16γ

1

2 þ 4γ
2

2 − 8γ
1

γ
3

þγ
3

2

A2β
1

2

vuuut
1CCAþ � � � ð119Þ

Magnetostatic excitation case (D ¼ 0)

vP ¼ cþ c
H2

2

0BB@2C
1

Â B
1

þ
C
3

2Â B
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16C

1

2 þ 4C
2

2 − 8C
1
C
3
þC

3

2

Â2B
1

2

vuuut
1CCAþ � � � ð120Þ

Δ ¼ lBFH2

λ

0BB@2C
1

Â B
1

þ
C
3

2Â B
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16C

1

2 þ 4C
2

2 − 8C
1
C
3
þC

3

2

Â2B
1

2

vuuut
1CCAþ � � � ð121Þ

Electrostatic excitation case (H ¼ 0)

vP ¼ cþ c
D2

2

0BB@2C
1

Â B
1

þ
C
3

2Â B
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16C

1

2 þ 4C
2

2 − 8C
1
C
3
þC

3

2

Â2B
1

2

vuuut
1CCAþ � � � ð122Þ

Δ ¼ lBFB2

λ

0BB@2C
1

Â B
1

þ
C
3

2Â B
1

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16C

1

2 þ 4C
2

2 − 8C
1
C
3
þC

3

2

Â2B
1

2

vuuut
1CCAþ � � � ð123Þ
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In principle it is easy to obtain further orders of
approximation, but the resulting terms are expected to be
very small and will not be worked out here.

D. The Heisenberg-Euler theory

Here we give an example for the procedure described in
the preceding section. For small values of the field strength
the Heisenberg-Euler theory can be described by the
following Lagrangian [3,30] which results from a series
expansion with respect to F and G:

L ¼ E2
0

�
−
1

2

F
E2
0

þ Λ

�
F2

E4
0

þ 7
G2

E4
0

��
ð124Þ

where

Λ ¼ ℏc
90πe2

¼ 0.7363; ð125Þ

E0 ¼
m2c4

e3
¼ 6.048 × 1015

ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s
: ð126Þ

Here e is the electron charge,m is the electron mass, c is the
speed of light, and ℏ is Planck’s constant.
So the coefficients in (109) are

α ¼ 0; β
1

¼ −B
1
¼ −

E2
0

2
; β

2

¼ 0;

γ
1

¼ −C
1
¼ ΛE2

0; γ
2

¼ −C
2
¼ 0;

γ
3

¼ −C
3
¼ 7ΛE2

0; ð127Þ

and

Â ¼ A ¼ E2
0: ð128Þ

Hence

σ1ð0Þ ¼ σ̂1ð0Þ ¼ −
14Λ
E2
0

;

σ2ð0Þ ¼ σ̂2ð0Þ ¼ −
8Λ
E2
0

: ð129Þ

For the four possibilities for the background field described
in Sec. III we get, using again the abbreviation
X ¼ E;D; B;H,

vPðσ1Þ ¼ c

�
1 −

7ΛX2

E2
0

�
þ � � �

vPðσ2Þ ¼ c

�
1 −

4ΛX2

E2
0

�
þ � � �

Δðσ1Þ ¼ −
14ΛlBFX2

λE2
0

þ � � �

Δðσ2Þ ¼ −
8ΛlBFX2

λE2
0

þ � � � ð130Þ

Using the same setup as before for the large-scale
experiment, with lBF ¼ 100 m and λ ¼ 1000 nm one gets

Δðσ1Þ ≈ −2 × 10−23X2
cm s2

g
;

Δðσ2Þ ≈ −1 × 10−23X2
cm s2

g
: ð131Þ

Therefore one needs a field strength or an excitation of

X ≳ 3 × 108
ffiffiffi
g

pffiffiffiffiffiffi
cm

p
s

ð132Þ

to see any effect. This is clearly not achievable with present
or near-future instruments.
A similar calculation shows that for the small-scale

experiment a field about 2 orders of magnitude smaller
would be sufficient. However, even in this case one would
need a field of more than 106

ffiffi
g

pffiffiffiffiffi
cm

p
s b¼100 T to see an effect.

V. CONCLUSIONS AND DISCUSSION

Since Born and Infeld created their “new field theory” of
electromagnetism [2], different nonlinear modifications of
vacuum electrodynamics on the basis of a Lagrangian
LðF;GÞ have been discussed, where usually one considers
only those theories that reproduce the standard vacuum
Maxwell theory in sufficiently weak fields. All these new
electrodynamical theories have in common that they predict
that light travels along the null cones of two optical metrics,
one for each polarization state, where at least one of them
differs from the vacuum Maxwell light cone. At the same
time they introduce at least one new dimensionfull constant
of Nature.
While in the standard vacuum Maxwell theory the

superposition principle holds, this is no longer true in
other LðF;GÞ theories. As a consequence, an electromag-
netic background field would have an effect on the
propagation of electromagnetic waves and thus, in particu-
lar, on the phase velocity of light. This is reflected by the
fact that the optical metrics depend on the background field.
The best technique for measuring small changes in the
phase velocity of light with high accuracy is interferometry.
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In this paper we worked out the mathematical details for
using interferometry as a test of LðF;GÞ theories.
In cases where the constants of Nature that enter into the

theory are known, as e.g., in the Heisenberg-Euler theory,
an interferometric experiment could be used for confirming
the theory by verifying the prediction. If instead the
constants of Nature that enter into the theory are not
known, as e.g., in the Born-Infeld theory, a null result of
the experiment would give bounds on these constants. Our
estimates demonstrate that, with realistic (magnetic) fields,
an interferometric experiment could place significant
bounds on the Born-Infeld constant b0.
Unfortunately, in the case of the Heisenberg-Euler theory

our estimates seem to indicate that a confirmation of the
theory is not realizable with electromagnetic fields that can
be achieved in present-day experiments. However, it might
be possible to considerably enhance the sensitivity by using
time-dependent background fields, rather than the static
fields we have considered for our numerical estimates. For
the case of testing the Heisenberg-Euler theory with an
interferometer of the size of a gravitational wave detector,
this possibility was discussed in detail recently by Grote
[18]. The idea is to change the background field periodi-
cally with a frequency ω, e.g., by rotating a permanent
magnet. As long as ω is small in comparison to the
frequency of the laser light used in the interferometer,
our equations could still be used for this situation in the
sense of an adiabatic approximation. If the laser light is
polarized, rotating the background field would lead to a
periodically varying signal according to any theory that
predicts birefringence in vacuo. (Unfortunately, this
excludes the Born-Infeld theory.) By choosing long inte-
gration times—Grote suggests to run the experiment for a
year—one could improve the statistics in such a way that it
might be possible to reach the sensitivity for testing the
Heisenberg-Euler theory. A similar analysis has not been
carried through for the small-scale experiment so far. We
will leave this for other authors, as it goes beyond the scope
of the present paper which was to lay the theoretical
foundations of the experiment in the context of an arbitrary
LðF;GÞ theory.
Finally, we add a remark on pulsed background fields.

Pulsed magnetic fields and also laser pulses (pulsed null
fields) can be produced with considerably higher field
strengths than static or slowly varying fields. For example,
pulsed magnetic fields of ≈100 T have already been
produced in the laboratory. However, these fields persist
only for short times, so the adiabatic approximation would
not be valid which makes the theory considerably more
difficult. Moreover, there are several technical obstacles.
For example, we see major experimental difficulties
towards a realization of the small-scale experiment with
(pulsed) magnetic fields of ≈100 T because of magneto-
striction. Also, for the experiment with a pulsed null field as
a background one would wish to have the pulse traveling in

the same direction as the laser beam in the interferometer, to
make sure that the latter does not deviate from a straight
line. This cannot be done without changing the geometry of
the interferometer, neither for the small-scale nor for the
large-scale experiment. For these reasons, we have
restricted our specific calculations to time-independent
background fields (which includes the case of slowly
varying fields in the sense of an adiabatic approximation).
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APPENDIX: HAMILTONIAN FORMALISM
IN TERMS OF THE EXCITATION

First we give a necessary and sufficient condition for the
constitutive law (9) to be locally solvable for Fab. By the
implicit function theorem, this is true if the Jacobian of
the map from the field-strength 6-vector to the excitation
6-vector is nonzero. After dividing by the factor
ð4L2

F þ L2
GÞ2, which is nonzero unless the Lagrangian is

constant and thus trivial, we find that this condition reads

4L2
F þ L2

G − 4ðF2 þ 4G2ÞLFFLGG þ 4ðF2 þ 4G2ÞL2
FG

þ 8FLFLFF þ 16GLFLFG þ 4FLGGLG − 2FLFLGG

− 8GLFFLG þ 2GLGLGG ≠ 0: ðA1Þ

It is easy to see that this condition is satisfied, for all field
configurations, in the Born theory and also in the Born-
Infeld theory. For the Heisenberg-Euler Lagrangian (124) it
is true as well, where we have to observe that this second-
order theory is valid only as long as the magnitude of the
field strength is small in comparison to E0.
Whenever the constitutive law (5) can be solved for Fmn,

we can pass to a Hamiltonian description by a Legendre
transformation (12). In this appendix we derive some
relevant equations of the Hamiltonian formalism that will
be used in the body of the paper, based on an analogue
formalism that was developed already by Born and Infeld
[2] for their special theory.
From (12) and (5) we find

∂H
∂Hij ¼ −Fij ðA2Þ
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which is the Hamiltonian version of the constitutive law. In
the case of vanishing sources, jm ¼ 0, the Maxwell
equations read

∂nHmn ¼ 0 and ∂ ½aFbc� ¼ 0: ðA3Þ

These two equations can be equivalently rewritten as

∂ ½a ~Hbc� ¼ 0 and ∂n
~Fmn ¼ 0: ðA4Þ

Comparison of (5) and (A3) on one side and (A2) and (A4)
on the other side demonstrates that the source-free theory is
invariant under a duality rotation

Fmn ↪ ~Hmn; L ↪ H: ðA5Þ

In 3-vector notation, Fmn ↪ ~Hmn means Eα ↪ Hα and
Bα ↪ −Dα. Clearly, Fmn ↪ ~Hmn implies

~Fmn ↪ −Hmn; F ↪ R; G ↪ S: ðA6Þ

If we start from the Lagrangian LðFmnÞ and work out all
relevant equations of the theory in terms of the field
strength, we get the relevant equations in terms of the
excitation simply by applying the replacements (A5) and
(A6). Note that this method works only in the case of
vanishing sources, jm ¼ 0, but for any Lagrangian LðFmnÞ
for which the constitutive law (5) can be solved for Fmn.
We now specify to a Lagrangian of the Plebański class.

We recall that in this case the constitutive law reads

Hab ¼ −2LFFab þ LG
~Fab: ðA7Þ

Similarly, (A2) specifies to

Fab ¼ 2HRHab −HS
~Hab: ðA8Þ

Inserting (A7) into (12) yields

HðR; SÞ ¼ 2LFF þ 2LGG − LðF;GÞ ðA9Þ

while inserting (A8) into (12) yields

HðR; SÞ ¼ 2HRRþ 2HSS − LðF;GÞ: ðA10Þ

From these two equations we read that

LFF þ LGG ¼ HRRþHSS: ðA11Þ

Also, from (A7) we find immediately that

R ¼ ð−4L2
F þ L2

GÞ2F − 8LFLGG;

S ¼ ð−4L2
F þ L2

GÞ2Gþ 2LFLGF: ðA12Þ

Similarly, from (A8) we find that

F ¼ ð−4H2
R þH2

SÞ2R − 8HRHSS;

G ¼ ð−4H2
R þH2

SÞ2Sþ 2HRHSR: ðA13Þ

In Sec. IV C the equations (A7) to (A13) are used for
calculating series expansions of the Lagrangian and the
Hamiltonian theory up to second order in F and G. This
enables one to calculate the first post-Maxwellian results of
the discussed experiment for an arbitrary Lagrangian of the
Plebański class.
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