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We study the finite temperature behavior of the CPT-even pure-photon sector of the standard model
extension, which is defined by the standard Maxwell Lagrangian plus the term ðkFÞμναβFμνFαβ. The
Hamiltonian analysis is performed, from which the degrees of freedom and constraints of the theory are
derived. We have explicitly calculated the partition function for an arbitrary configuration of the ðkFÞμναβ
coefficients, to second order, and we have used it to obtain the thermodynamic properties of the modified
photon sector. We find the correction to the frequency dependence in Planck’s radiation law, and we
identify that the total energy density is adjusted, relative to the standard scenario, by a global
proportionality constant containing the Lorentz-violating contributions. Nevertheless, the equation of
state is not affected by these modifications.
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I. INTRODUCTION

One of the cornerstones of quantum field theories and
general relativity is Lorentz invariance, which is assumed to
be an exact symmetry. There is a lot of remarkably strong
experimental support for this idea [1], with no violation
detected. Nevertheless, certain quantum-gravity theories
possess mechanisms that can lead to Lorentz violation [2],
in which effects arising from modifications of space-time
are expected to appear at distances of the order of the
Planck length. This has attracted considerable attention in
recent years both from the experimental and theoretical
perspectives, given that, in principle, this would allow a
better understanding about the space-time structure. The
standard model extension (SME) performed by Kostelecky
et al. [3] is a framework where Lorentz violation is
motivated via spontaneous symmetry breaking (SSB), in
which nondynamical tensor fields are now added to general
relativity and the standard model and whose fixed direc-
tions induce the corresponding symmetry breaking in a
given reference frame. These tensor fields are assumed to
arise from nonzero vacuum expectation values of some
basic fields belonging to a more fundamental model, such
as string theory [4]. Considering the SME as a framework
motivated from a SSB, the Goldstone theorem ensures that
massless particles will emerge [5]. Bjorken proposed that
the photon can be a Goldstone mode associated with the
SSB of Lorentz invariance [6]. However, since the pure-
photon sector of the SME is Uð1Þ gauge invariant, all
particles are massless, and an alternative interpretation of
the Goldstone theorem is required [7]. In fact, in the
spontaneously broken space-time symmetries case, the
counting of massless modes has to be done carefully [8],

and it may happen that one to six Goldstone modes appear,
each corresponding to one of the six Lorentz generators.
The properties of Goldstone modes are, in general, model
dependent and the knowledge of the fundamental theory is
required to do a complete description. In the case of the
SME some general conclusions about Goldstone modes
have been obtained in [9].
The pure-photon sector of the SME includes the

usual Maxwell term plus the presence of the CPT-odd
term [1

2
ðkAFÞκϵκλμνAλFμν], sometimes called the Carroll-

Field-Jackiw term [10], and the CPT-even term
− 1

4
ðkFÞμναβFμνFαβ. Both terms have been extensively

studied in the literature [11], and experimental constraints
exist for them [12]. The search for new effects arising from
these Lorentz violating terms, and an improvement of the
bounds for the magnitude of these coefficients constitute
two of the main lines of study. The study of the cosmic
microwave background (CMB) offers an opportunity to test
the pure-photon sector of the SME at finite temperature
[13], since the propagation of light would be affected,
in the form of nonstandard dispersion relations, polariza-
tion, birefringence properties, among other effects
[3,11,12,14]. As it may be expected, thermodynamic
properties and the spectral distribution can be modified
as well. In Ref. [15], the partition function in the functional
integral formalism was calculated in order to study the
finite temperature behavior of the Carroll-Field-Jackiw
term, for the case of a purely spacelike background. In
Ref. [16] the study was extend to the CPT-even term for
particular configurations of the coefficients ðkFÞμναβ, to
simplify the calculations. In both cases, Lorentz violation
corrections to the black-body radiation and anisotropy in
the angular distribution for the energy density were found.
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It remains unclear, however, if there is no information loss
from the consideration of only a few particular configura-
tions. The goal of this paper is to study the finite temper-
ature properties of the CPT-even pure-photon sector of the
SME in the most general case, following a scheme similar
to that employed in [15,16]. The outline of this work is as
follows. In Sec. II the CPT-even pure-photon sector of the
SME Lagrangian is introduced and some properties are
reviewed. Following Dirac’s scheme for constrained sys-
tems, the Hamiltonian analysis is performed, and the
canonical quantization is carried out. In Sec. III the
partition function is evaluated in the functional formalism
and some thermodynamical properties are derived, a sub-
stantial improvement over the previous calculations is
reported considering an arbitrary configuration for the
ðkFÞμναβ coefficients. We compare the result with a classical
thermodynamic approach. Our summary and conclusions
are contained in Sec. IV.

II. THE MODEL

We focus on the pure-photon sector, and particularly on
the CPT-even violating terms within the minimal SME.
The Lagrangian density is given by

L ¼ −
1

4
FμνFμν −

1

4
ðkFÞμναβFμνFαβ; ð1Þ

where the first term corresponds to the standard
electrodynamics, being Fμν ¼ ∂μAν − ∂νAμ the electro-
magnetic stress tensor. The second term introduces
Lorentz-CPT symmetry breakdown, which is controlled
by the nondynamical spacetime-constant and dimension-
less quantities ðkFÞμναβ; these coefficients have the
symmetries of the Riemann tensor and a vanishing
double trace, which imply a total of 19 independent
components. The tensor ðkFÞμναβ is alternatively parame-
trized in terms of four 3 × 3 matrices [11], κDE; κHB; κDB;
κHE, defined by

ðκDEÞjk ¼ −2ðkFÞ0j0k;

ðκHBÞjk ¼
1

2
ϵjpqϵklmðkFÞpqlm;

ðκDBÞjk ¼ −ðκHEÞkj ¼ ϵkpqðkFÞ0jpq: ð2Þ

The matrices κDE and κHB contain together 11 independent
components, while κDB and κHE possess together 8 com-
ponents, which encompass the 19 independent elements of
the tensor ðkFÞμναβ. An alternative parametrization, which
allows easier experimental constraints, consists of writing
ðkFÞμναβ in terms of four traceless matrices and one trace
element [11],

ð~κoþÞjk¼
1

2
ðκDBþκHEÞjk; ð~κo−Þjk¼

1

2
ðκDB−κHEÞjk; ð3Þ

ð~κeþÞjk ¼
1

2
ðκDE þ κHBÞjk;

ð~κe−Þjk ¼
1

2
ðκDE − κHBÞjk −

1

3
δjkTrðκDEÞ;

~κtr ¼
1

3
TrðκDEÞ: ð4Þ

All parity-even coefficients are contained in ~κeþ; ~κe−, and
~κtr, while all parity-odd coefficients are contained in ~κoþ
and ~κo−. The matrix ~κoþ is antisymmetric while the
remaining matrices are symmetric. In Sec. III we will
use this second parametrization to express our main results.
As we previously mentioned, the ðkFÞμναβ coefficients

can be motivated by spontaneous breaking of Lorentz
symmetry [4], avoiding the issues of incompatibility in
general relativity present when an explicit Lorentz sym-
metry violation is introduced [17]. The transformation
Aμ → Aμ þ ∂μΛ leaves the Lagrangian (1) invariant, and
therefore, the gauge symmetry Uð1Þ is preserved as in the
Maxwell theory. We use the convention, Greek indices
μ; ν ¼ 0; 1; 2; 3, Latin indices i; j ¼ 1; 2; 3 and the metric
ημν ¼ ð1;−1;−1;−1Þ. The Euler-Lagrange equations aris-
ing from the Lagrangian (1) correspond to

∂νFμν þ ðkFÞμναβ∂νFαβ ¼ 0: ð5Þ

The remaining Maxwell equations

∂μ
~Fμν ≡ 1

2
ϵμναβ∂μFαβ ¼ 0; ð6Þ

continue to hold as a consequence of defining Fμν through
the potential Aμ. As we previously stated, the propagation
of light is modified due the presence of the ðkFÞμναβ
coefficients, in this case the dispersion relation for the
Lagrangian (1) is given by [11]

p0
� ¼ ð1þρ�σÞj~pj; ρ¼−

1

2
~kα

α; σ2¼ 1

2
ð~kαβÞ2−ρ2;

ð7Þ

to lowest order in ðkFÞμναβ, with

~kαβ ¼ ðkFÞαμβνp̂μp̂ν; p̂μ ¼ pμ

j~pj : ð8Þ

Let us now consider the analysis of constraints à la Dirac
[18], and the canonical quantization of the model. This will
allow us to determine the number of degrees of freedom
and establish some differences between the standard
electrodynamics and the CPT-even pure-photon sector
of the SME. The canonically conjugated momenta are
given by
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πi ≡ ∂L
∂ _Ai

¼ Fi0 þ ðkFÞi0αβFαβ

¼ Fj0ðδij þ 2ðkFÞi0j0Þ þ ðkFÞi0lmFlm

¼ Mi
jFj0 þ Ni; ð9Þ

where we have defined Mi
j ≡ δij þ 2ðkFÞi0j0 and

Ni ≡ ðkFÞi0lmFlm. The canonical momentum associated
to A0 is null, π0 ¼ 0, as it is in standard electrodynamics.
Approximating all quantities to first order in the Lorentz-
violating coefficients, we find that the matrix Mi

j has the
inverse Bi

j ≡ ðM−1Þij ¼ δij − 2ðkFÞi0j0, which allows us
to rewrite (9) as Fk0 ¼ Bk

iπ
i − Nk. Using the above it is

straightforward to obtain the canonical Hamiltonian density

Hc ¼ −
1

2
Bi

jπ
jπi þ

1

4
FijFij − ðkFÞ0ilmπiFlm

þ 1

4
ðkFÞijlmFijFlm − A0∂kπk; ð10Þ

where we have carried out one integration by parts and
omitted boundary terms. The nonzero Poisson brackets
(PB) are given by

fAμðx; tÞ; πνðy; tÞgP ¼ δμ
νδ3ðx − yÞ: ð11Þ

In what follows we will assume that all PB are calculated
at equal times and we omit the label t. We employ Dirac’s
method to construct the canonical theory due to the fact that
the primary constraint

ϕ1 ¼ π0 ≃ 0; ð12Þ

is present (here the symbol ≃ denotes the weak equality).
The extended Hamiltonian density is defined as

HE ¼ Hc þ λϕ1; ð13Þ

where λ is an arbitrary function. The evolution condition of
the primary constraint (12),

_ϕ1ðxÞ ¼
�
ϕ1ðxÞ;

Z
d3yHEðyÞ

�
P
≃ 0; ð14Þ

leads to Gauss’ law,

ϕ2 ¼ ∂iπ
i ≃ 0: ð15Þ

It is not difficult to prove that (12) and (15) are the
only constraints present in the model, and that they
constitute a first class set (fϕ1;ϕ2g ¼ 0). As in standard
electrodynamics, the model possesses two degrees of
freedom (DOF), following Dirac’s scheme, DOF¼
1
2
½variables in the phase space− second class constrictions−
2×first class constrictions� ¼ 1

2
½8−0−2×2� ¼ 2. If we

write (15) in terms of the field strength using the definition
of the canonical momenta (9), we obtain

∂iπ
i ¼ ∂iFi0 þ ðkFÞi0αβ∂iFαβ ¼ 0: ð16Þ

We recognize the last equation as the Lagrangian equa-
tion (5) for the μ ¼ 0 component; however, in the
Hamiltonian formalism it is a constraint, not an equation
of motion. Gauss’ law (15) is different from its standard
electrodynamics form, this being even more evident
when it is rewritten in terms of the electric and magnetic
fields instead of the canonical momenta ðπi ¼ Fi0þ
ðkFÞi0αβFαβÞ. In order to construct a quantum theory via
canonical quantization (fA;Bg → 1

iℏ ½Â; B̂�), we must
remove the extra degrees of freedom. This means that
we have to impose as many suitable gauge constraints “by
hand” as there are first class constraints; these gauge
constraints have to be admissible and convert the first
class constraints into second class constraints, and then we
can introduce the Dirac brackets to perform the correct
quantization. We choose the Coulomb gauge
(Φ1 ¼ ∂iAi ≃ 0) plus Φ2 ¼ A0 ≃ 0 to fix the gauge. The
Dirac brackets

fAðxÞ; BðyÞgD ¼ fAðxÞ; BðyÞgP
−
Z

d3ud3vfAðxÞ; χiðuÞgPðQ−1Þij

× fχjðvÞ; BðyÞgP; ð17Þ

where χi is one of the constraints (ϕ1;ϕ2;Φ1;Φ2) and
Qijðx; yÞ ¼ fχiðxÞ; χjðyÞgP,

Qijðx;yÞ¼

0
BBB@
0 0 −1 0

0 0 0 ∇2

1 0 0 0

0 −∇2 0 0

1
CCCAδ3ðx−yÞ;

ðQ−1Þijðx;yÞ¼

0
BBBBB@

0 0 δ3ðx−yÞ 0

0 0 0 1
4πjx−yj

−δ3ðx−yÞ 0 0 0

0 − 1
4πjx−yj 0 0

1
CCCCCA
;

ð18Þ

are given by

fAiðx; tÞ; Ajðy; tÞgD ¼ 0;

fπiðx; tÞ; πjðy; tÞgD ¼ 0;

fAiðx; tÞ; πjðy; tÞgD ¼ δi
jδðx − yÞ þ ∂i∂j 1

4πjx − yj
≡ δ3⊥i

jðx − yÞ; ð19Þ
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and they have the same form as in standard electrodynamics
when the canonical momenta are used. However, rewriting
in terms of the electric and magnetic fields, the difference is
manifest,

fAiðx; tÞ;Ajðy; tÞgD¼ 0;

fEiðx; tÞ;Ejðy; tÞgD¼ 2½ðkFÞi0lj∂xl− ðkFÞj0li∂yl�δ3ðx−yÞ;
fAiðx; tÞ;Ejðy; tÞgD¼−δ3⊥i

jðx−yÞþ2ðkFÞj0s0δ3⊥i
sðx−yÞ:

ð20Þ
Once the Dirac brackets have been included, the dynamics
of the theory will be generated by the Hamiltonian (10)
without the term A0∂iπ

i, which is proportional to ϕ2 and
has already been fixed and included in the process of
introducing the Dirac brackets. The canonical quantization
can be carried out using the aforementioned Hamiltonian
(10) and the brackets given by (19). Being Uð1Þ the group
of symmetry of the theory, there are other possibilities to
fix the gauge, as the Lorentz gauge (∂μAμ ¼ 0), which is
manifestly covariant; however, it is not possible to handle
such a gauge with the quantization formalism that we
employ here. This is due to the fact that the Lorentz gauge
involves the time derivative of A0. There are well-known
formalisms which are capable of dealing with such
relativistic constraints, among which are BRST quantiza-
tion [19], the Fadeev-Popov method [20] into the path
integral [21] or within the Hamiltonian formalism, one has
[22]. Nevertheless, these approaches are not within the
scope of the present work.
Rewriting the Hamiltonian (10) in terms of the electric

and magnetic fields we find

H¼ 1

2
ðE2þB2Þ− ðkFÞ0j0kEjEkþ1

4
ðkFÞjklmϵjkpϵlmqBpBq;

ð21Þ

where E2 ¼ EiEi, Bi ¼ − 1
2
ϵijkFjk, and therefore B2 ¼

1
2
FijFij. The same result has been found in [3] following

a different line of thought, where it was shown that if
ðkFÞμναβ is small, the last quantity (21) is nonnegative. This
is due to the fact that the Hamiltonian (21) can be viewed as
the bilinear form xTMx with xT ≡ ðE;BÞ. It can be readily
shown that, upon diagonalization, the matrix M has entries
1
2
−OðkFÞ > 0 for both the electric and magnetic field

contributions.

III. PARTITION FUNCTION
AND THERMODYNAMICS

We derive now some of the thermodynamic properties of
the Lagrangian (1). Our main goal is to obtain the finite
temperature energy density of the electromagnetic field.
Following the quantum field theory scheme, we calculate
the partition function. In the previous section we adopted

the Coulomb gauge; hereafter we will switch to a covariant
gauge. The simplest way to obtain the partition function is
trough the Faddeev-Popov method [20], which is equiv-
alent to the introduction of constraints as done in Sec. II;
both methods allow us to work with the effective degrees of
freedom. Choosing the Lorentz gauge we can write the
partition function as

Z¼
Z

½dAμ�detð−∂2Þexp
�Z

β

0

dτ
Z

d3xLeff

�
; ð22Þ

where detð−∂2Þ is the Faddeev-Popov determinant and we
have switched to an imaginary time variable τ ¼ it. The
effective Lagrangian is given by

Leff ¼−
1

4
FμνFμν−

1

4
ðkFÞμναβFμνFαβ−

1

2ρ
ð∂μAμÞ2: ð23Þ

It is worth emphasizing that the calculations that are done in
this section, where we start from the functional integral
defined in terms of the Lagrangian, are independent of
those in the previous section. The Lagrangian in Eq. (1)
defines our model to all orders, and therefore Eq. (22)
together with (23) give the partition function of the full
CPT-even photon sector of the standard model extension to
all orders in a fixed gauge. We mention this given that,
unlike Sec. II where calculations are performed to first
order in Lorentz-violating coefficients, here we will include
second order corrections in kF. As we will show, the first
order contribution is characterized by just one of the five
sectors of the model (the scalar ~κtr) according to the
parametrization shown in (3) and (4), and it is therefore
interesting to investigate if such discrimination is preserved
at higher orders.
Upon substitution of the finite temperature replacements

t → −iτ, A0 → iAτ and ðkFÞ0μνα → iðkFÞτμνα [similar con-
vention to other indices in ðkFÞμναβ], the effective
Lagrangian can be written in Euclidean notation, with
μ; ν;α; β ¼ τ; 1; 2; 3,

Leff ¼
1

2
Aν

�
δμν∂2 −

�
1 −

1

ρ

�
∂μ∂ν þ 2ðkFÞβναμ∂β∂α

�
Aμ

ðρ → 1Þ

¼ 1

2
Aν½δμν∂2 þ 2ðkFÞβναμ∂β∂α�Aμ

¼ 1

2
ATDA: ð24Þ

In the first line we have chosen the Feynman gauge (ρ ¼ 1)
and Dμν ¼ δμν∂2 þ 2ðkFÞβναμ∂β∂α. The field admits a
Fourier expansion:
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Aμðτ;xÞ ¼
ffiffiffiffi
β

V

r X
n;p

eiðωnτþx·pÞ ~Aμðn;pÞ; ð25Þ

whereωn ¼ 2πn
β are the Matsubara frequencies, and the field

Aμðτ;xÞ satisfies the constraints of periodicity Aμðβ;xÞ ¼
Aμð0;xÞ for all x. The normalization in (25) is chosen so
that each Fourier amplitude is dimensionless. If we use a
ghost field C to write

detð−∂2Þ¼
Z

½dC̄�½dC�exp
�Z

dτ
Z

d3xð∂μC̄Þð∂μCÞ
�
;

ð26Þ

then we can calculate the partition function in frequency-
momentum space as

ln Z ¼ Tr ln½β2ðω2
n þ p2Þ� − 1

2
ln½DetðDÞ�; ð27Þ

where now

D ¼ β2

0
BBBBB@

ω2
n þ p2 þ Λττ Λτx Λτy Λτz

Λτx ω2
n þ p2 þ Λxx Λxy Λxz

Λτy Λxy ω2
n þ p2 þ Λyy Λyz

Λτz Λxz Λyz ω2
n þ p2 þ Λzz

1
CCCCCA
; ð28Þ

and Λμν ¼ 2ðkFÞμανβpαpβ, (pτ ≡ ωn). Calculation of the
determinant to second order in kF gives

detðDÞ¼
Y
n;p

β8½ðω2
nþp2Þ4�

×

�
1þTrð ~ΛÞþ1

2
ðTrð ~ΛÞÞ2−1

2
Trð ~Λ2Þ

�
; ð29Þ

where we have defined ~Λμν ¼ 2ðkFÞμανβpαpβ=ðω2
n þ p2Þ

and the relation

Detð1þMÞ ¼ 1þ TrðMÞ þ 1

2
ðTrðMÞÞ2

−
1

2
TrðM2Þ þOðM3Þ; ð30Þ

has been employed. Therefore, the total partition function
becomes

ln Z¼ −
X
n;p

ln½β2ðω2
n þp2Þ�

−
1

2

X
n;p

ln

�
1þTrð ~ΛÞþ 1

2
ðTrð ~ΛÞÞ2 − 1

2
Trð ~Λ2Þþ � � �

�

≡ ln Z0 þ ln ZLV: ð31Þ

We recognize the first term as the usual result for the
Maxwell theory, which corresponds to massless bosons
with two spin degrees of freedom in thermal equilibrium; in
other words, black-body radiation. All modifications to the
standard case due to Lorentz violation come from to the
second term in (31), which we can evaluate as follows

ln ZLV ¼ −
1

2

X
n;p

ln

�
1þ Trð ~ΛÞ þ 1

2
ðTrð ~ΛÞÞ2 − 1

2
Trð ~Λ2Þ

�

≈ −
1

2

X
n;p

�
Trð ~ΛÞ − 1

2
Trð ~Λ2Þ

�

≡ −
X
n;p

ðZ̄LV1
þ Z̄LV2

Þ: ð32Þ

Here we have defined Z̄LV1
and Z̄LV2

as the Lorentz
violation contributions to first and second order, respec-
tively. We begin calculating the first order contributions as
follows:

−
X
n;p

Z̄LV1
¼ −

1

2

X
n;p

Trð ~ΛÞ

¼ −
X
n;p

ðkFÞαμανpμpν

ðω2
n þ p2Þ

�
p0 ¼ ωn ¼

2πn
β

�

¼ −
X
n;p

1

ðω2
n þ p2Þ ½ðkFÞατατω

2
n þ 2ðkFÞαiατωnpi

þ ðkFÞαiαjpipj�

¼ −
X
n;p

1

ðω2
n þ p2Þ ½ðkFÞατατω

2
n þ ðkFÞαiαjpipj�:

ð33Þ

where in the third line we employed the sumP∞
n¼−∞

n
n2þa2 ¼ 0. Adding and subtracting the term

ðkFÞατατp2 inside the brackets in (33), we arrive to the
equivalent expression
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−
X
n;p

Z̄LV1

¼−
X
n;p

�
ðkFÞατατþ

−ðkFÞατατp2þðkFÞαiαjp̂ip̂jp2

ðω2
nþp2Þ

�
; ð34Þ

with p̂i ¼ pi=j~pj. Making use of the identity

X∞
n¼−∞

1

ω2
nþp2

¼ β

2p
coth

�
βp
2

�
¼ β

2p

�
1þ 2

eβp−1

�
; ð35Þ

we find that the contribution due to Lorentz violation to
first order can be written as

−
X
n;p

Z̄LV1
¼−V

Z
d3p
ð2πÞ3 ½−ðkFÞατατ

þðkFÞαiαjp̂ip̂j�p2

�
β

2p

��
1þ 2

eβp−1

�
; ð36Þ

where a temperature-independent divergent term has been
dropped; it is well known that any quantity in finite
temperature theory is defined after subtraction by its T ¼
0 counterpart, and so T-independent parts of the partition
function, infinite or finite, are of no importance [23].
Taking the standard spherical coordinate system and
jpj ¼ ω, Eq. (36) becomes

−
X
n;p

Z̄LV1
¼ −

V
ð2πÞ3

Z
dωdΩ½−ðkFÞατατ þ ðkFÞαiαjp̂ip̂j�

×

�
βω3

2

��
1þ 2

eβω − 1

�
; ð37Þ

where p̂1 ¼ sinðθÞ cosðϕÞ; p̂2 ¼ sinðθÞ sinðϕÞ, and p̂3 ¼
cosðθÞ. Performing the integral over solid angle we find

−
X
n;p

Z̄LV1
¼ −4π

V
ð2πÞ3

�
−ðkFÞατατ þ

1

3
ðkFÞαiαi

�

×
Z

dω

�
βω3

2

��
1þ 2

eβω − 1

�
: ð38Þ

We now make use of the vanishing of the double trace of
ðkFÞμναβ condition, which in Euclidean space implies

ðkFÞμνμν ¼ 2ðkFÞ0i0i þ ðkFÞijij
¼ −2ðkFÞ0i0i þ ðkFÞijij ⟶

−iτ
2ðkFÞτiτi þ ðkFÞijij

¼ 0: ð39Þ

Using the above, (38) becomes

−
X
n;p

Z̄LV1
¼ 16π

3

V
ð2πÞ3 ðkFÞατατ

Z
dω

�
βω3

2

��
1þ 2

eβω−1

�

¼ 2
π2V
45β3

ðkFÞατατ ¼ 3
π2V
45β3

~κtr; ð40Þ

where we have neglected vacuum contributions to perform
the integral. The above implies that the modification to the
energy density due to Lorentz violation to first order will
have the same dependence in the temperature as the
standard theory, U ∼ T4. The second order contribution
can be readily evaluated in a similar way,

−
X
n;p

Z̄LV2
¼ 1

4

X
n;p

Trð ~Λ2Þ

¼
X
n;p

A1

ω4
n

ðω2
n þ p2Þ2 þ A2

p2ω2
n

ðω2
n þ p2Þ2

þ A3

p4

ðω2
n þ p2Þ2 ; ð41Þ

where the momentum-dependent coefficients A1;2;3 are
defined as

A1 ¼ ðkFÞμτντðkFÞμτντ;
A2 ¼ ð2ðkFÞμτντðkFÞμiνj

þ ½ðkFÞμτνi þ ðkFÞμiντ�½ðkFÞμτνj þ ðkFÞμjντ�Þp̂ip̂j;

A3 ¼ ðkFÞμiνjðkFÞμlνmp̂ip̂jp̂lp̂m: ð42Þ

Making use of the identities

X∞
n¼−∞

1

ðω2
nþp2Þ2¼

β2

8p2
csch2

�jpjβ
2

�
þ β

4jpj3
�
1þ 2

eβjpj−1

�
;

ð43Þ

X∞
n¼−∞

ω2
n

ðω2
n þ p2Þ2 ¼ −

β2

8
csch2

�jpjβ
2

�

þ β

4jpj
�
1þ 2

eβjpj − 1

�
; ð44Þ

X∞
n¼−∞

ω4
n

ðω2
n þ p2Þ2 ¼

X
n

�
1 −

2ω2
np2

ðω2
n þ p2Þ2 −

p4

ðω2
n þ p2Þ2

�
;

ð45Þ

we now evaluate the sums over n. Employing the same
spherical coordinate system as in (37) we find
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−
X
n;p

Z̄LV2
¼ V

Z
d3p
ð2πÞ3

�
ðA1 − A2 þ A3Þ

p2β2

8
csch2

�jpjβ
2

�
þ ð−3A1 þ A2 þ A3Þ

jpjβ
4

�
1þ 2

eβjpj − 1

��

¼ V
Z

dΩdω
ð2πÞ3

�
ðA1 − A2 þ A3Þ

ω4β2

8
csch2

�
ωβ

2

�
þ ð−3A1 þ A2 þ A3Þ

ω3β

4

�
1þ 2

eβω − 1

��

¼ V
Z

dω
2π2

�
ð ~A1 − ~A2 þ ~A3Þ

ω4β2

8
csch2

�
ωβ

2

�
þ ð−3 ~A1 þ ~A2 þ ~A3Þ

ω3β

4

�
1þ 2

eβω − 1

��
; ð46Þ

where now the momentum-independent coefficients ~A correspond to

~A1 ¼ A1 ¼
1

4
Trðκ2DEÞ; ð47Þ

~A2 ¼
2

3
ððkFÞμτντðkFÞμiνi þ ðkFÞμτνiðkFÞμτνi þ ðkFÞμτνiðkFÞμiντÞ

¼ 1

6
½Trðκ2DEÞ − TrðκDE · κHBÞ − 3TrðκDB · κHEÞ − TrðκDEÞ2�; ð48Þ

~A3 ¼
1

15
ððkFÞμiνiðkFÞμjνj þ ðkFÞμiνjðkFÞμiνj þ ðkFÞμiνjðkFÞμjνiÞ ð49Þ

¼ 1

30
½TrðκDE · κDEÞ − TrðκDB · κDBÞ − 4TrðκDB · κHEÞ þ

7

2
TrðκHB · κHBÞ þ TrðκDEÞ2�: ð50Þ

The integral over ω can be calculated neglecting vacuum contributions, which arise from the second term in (46) and have
the same form as they do to first order in kF. The result is given by

−
X
n;p

Z̄LV2
¼ V

�
ð ~A1 − ~A2 þ ~A3Þ

β2

16π2

�
16π4

15β5

�
þ ð−3 ~A1 þ ~A2 þ ~A3Þ

β

8π2

�
2π4

15β4

��
ð51Þ

¼ K̄

�
π2

45β3

�
V; ð52Þ

where we have defined

K̄ ≡ 3

4
ð ~A1 − 3 ~A2 þ 5 ~A3Þ ¼

1

16
½8TrðκDEÞ2 − 2TrðκDB · κDBÞ þ 10TrðκDB · κHEÞ − TrðκDE · κDEÞ þ 6TrðκDE · κHBÞ

þ 7TrðκHB · κHBÞ�

¼ 1

4
½2Trð~κoþ · ~κoþÞ − 3Trð~κo− · ~κo−Þ − Trð~κoþ · ~κo−Þ þ 3Trð~κeþ · ~κeþÞ

− 4Trð~κeþ · ~κe−Þ − 4ð~κtrÞTrð~κo−Þ þ 18ð~κtrÞ2�: ð53Þ

The partition function of the standard Maxwell theory is well known [24]; neglecting the vacuum contributions it
is given by

ln Z0 ¼ −2V
Z

d3p
ð2πÞ3 lnð1 − e−βωÞ ¼ π2

45β3
V: ð54Þ

From these results we finally obtain the total partition function

ln Z ¼ ln Z0 þ ln ZLV ¼ ð1þ 2ðkFÞατατ þ K̄Þ π2

45β3
V: ð55Þ
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In order to compare this result with the literature we
consider the particular case arising from the isotropic
contribution of the parity-even sector, which corresponds
to the limit Trð~κo−Þ ¼ Trð~κoþÞ ¼ Trð~κeþÞ ¼ Trð~κe−Þ ¼ 0,
~κtr ≠ 0. In this case (55) reduces to

ln Z ¼
�
1þ 3ð~κtrÞ þ

9

2
ð~κtrÞ2

�
π2

45β3
V: ð56Þ

To second order this is the same result reported in [16].
Starting from (40), (46), and (54), the energy density of

the photon field can be calculated from the standard
thermodynamic relations,

u ¼ −
1

V
∂ ln Z
∂β ð57Þ

¼
Z

∞

0

dω
1

π2
ω3

eβω−1
−
2ðkFÞατατ

3π2

Z
∞

0

dω

�
ω3

eβω−1
−

βω4eβω

ðeβω−1Þ2
�

þð ~A1− ~A2þ ~A3Þ
Z

∞

0

dω
16π2

βω4

�
βωcoth

�
βω

2

�
−2

�

×csch2
�
βω

2

�
−ð−3 ~A1þ ~A2þ ~A3Þ

×
Z

∞

0

dω
4π2

�
ω3

eβω−1
−

βω4eβω

ðeβω−1Þ2
�
: ð58Þ

This implies a modification to the Planck distribution,
where now the frequency dependence of the energy density
is given by

uðωÞ¼ 1

π2
ω3

eβω−1
−

1

π2

�
2

3
ðkFÞατατþ

1

4
ð−3 ~A1þ ~A2þ ~A3Þ

�

×

�
ω3

eβω−1
−

βω4eβω

ðeβω−1Þ2
�
þ 1

16π2
ð ~A1− ~A2þ ~A3Þβω4

×

�
βωcoth

�
βω

2

�
−2

�
csch2

�
βω

2

�
; ð59Þ

(see Fig. 1). The total energy density is obtained integrating
the last equation or deriving directly (55)

uðTÞ ¼ ð1þ 2ðkFÞατατ þ K̄Þ π
2

15
T4: ð60Þ

The thermodynamic relations

U ¼ −
∂
∂β ln Z; P ¼ T

∂
∂V ln Z; ð61Þ

together with (55), imply that the equation of state remains
unchanged,

PV ¼ U
3
: ð62Þ

The functional scheme that we used to derive the photon
energy density is not the only prescription available. It is
possible to reproduce the previous results following a
classical thermodynamic scheme, as we now show. Since
this computation is not the main purpose of our study, we
only calculate the energy density to first order in kF. We
follow a similar treatment as [25]. By adopting a thermal
distribution for the photons and dispersion law (7), the
spectral energy density per frequency (and per polarization)
in the semiclassical phase space is given by

uðω�Þdω� ¼ 1

ð2πÞ3
ℏω�

eℏω�=kBT − 1
k2dk dΩ: ð63Þ

From (7), we have ω� ¼ ð1þ δ�Þj~pj, where δ� ¼ ρ� σ.
For the isotropic frequencies, one can immediately sub-
stitute

R
dΩ → 4π, however we now have an angular

dependence for the frequency, ω� ¼ ω�ðθ;ϕÞ. To first
order in δ� ≪ 1 and using jkj ¼ ω, we find

uðω�Þdω� ¼ 1

ð2πÞ3
�

ℏω3

eℏω=kBT − 1

�
dωdΩ

þ 1

ð2πÞ3
�

ℏω3

eℏω=kBT − 1
−

ℏ2

kBT
ω4eℏω=kBT

ðeℏω=kBT − 1Þ2
�

× δ�dω dΩ: ð64Þ

If we sum over both modes under the assumption that each
one contributes equally, we have that the Lorentz violation
contribution to the energy density is given by

½uðωþÞdωþ�LV þ ½uðω−Þdω−�LV
¼ 1

ð2πÞ3
�

ℏω3

eℏω=kBT − 1
−

ℏ2

kBT
ω4eℏω=kBT

ðeℏω=kBT − 1Þ2
�

× ðδþ þ δ−ÞdωdΩ: ð65Þ

0 2 4 6 8 10

0.05

0.10

0.15

3u

kF
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0.05

0.01

0

FIG. 1. Frequency dependence of the photon energy density for
nonvanishing CPT-even violating terms, to first order in kF.
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Since δþ þ δ− ¼ 2ρ ¼ −~kα
α and

~kα
α ⟶

−iτ ðkFÞατατ − 2iðkFÞjτjipi − ðkFÞαiαjp̂ip̂j; ð66Þ

where α ¼ τ; 1; 2; 3, upon integration of (65) over the solid
angle dΩ we finally have

½uðωÞdω�LV ¼ ½uðωþÞdωþ�LV þ ½uðω−Þdω−�LV
¼ −

4π

ð2πÞ3
�
ðkFÞατατ −

1

3
ðkFÞαiαi

�

×

�
ℏω3

eℏω=kBT − 1
−

ℏ2

kBT
ω4eℏω=kBT

ðeℏω=kBT − 1Þ2
�
dω

¼ −
2

3π2
ððkFÞατατÞ

×

�
ℏω3

eℏω=kBT − 1
−

ℏ2

kBT
ω4eℏω=kBT

ðeℏω=kBT − 1Þ2
�
dω;

ð67Þ

where in the second line we have used the condition of
vanishing double trace in the imaginary time (39). Taking
ℏ ¼ 1 and β ¼ 1=kBT, we find a result in agreement
with (59).

IV. SUMMARY

We have presented in this paper a study of the
Hamiltonian formalism and the canonical quantization,
via the Dirac formalism, of the CPT-even photon sector
of the Lorentz-violating standard model extension. We have
found that the gauge freedom of standard electrodynamics
is not lost in the CPT-even photon sector of the SME.
Additionally, in analogy with the standard electromagnetic
case, this model possesses first class constraints which
restrict the size of phase space; however, the form of these
constraints is different from the standard case when they are
written in terms of the electric and magnetic fields. The
gauge fixing procedure in the CPT-even photon sector of

the SME does not significantly differ from the standard
electrodynamics case.
The partition function was explicitly calculated to first

and second order in the Lorentz-violating parameters of
the CPT-even photon sector of the SME, for an arbitrary
configuration of the coefficients ðkFÞμναβ; we have pre-
sented our results in terms of the defining ðkFÞμναβ
coefficients as well as the two parametrizations (2) and
(3)–(4). Making use of the standard thermodynamic
relations we found corrections to the black-body radiation
law. These include corrections with the same functional
dependence on frequency, as well as corrections with a
different functional dependence. The total temperature-
dependent energy density receives a correction with the
same temperature dependence as the standard case, but we
found that the equation of state has the same form of the
standard electrodynamic theory. This corresponds to a
cosmological thermal history consistent with the standard
scenario. The result was verified employing a classical
thermodynamic scheme. We have obtained that all mod-
ifications arising from Lorentz violation to first order are
proportional to ðkFÞα0α0 coefficients, there is no contribu-
tion to first order from the ðkFÞ0iαβ sector to the partition
function as well as the density energy. We have compared
our general results with a particular case previously
obtained in [16] for the isotropic contribution of the
parity-even sector, which is encoded into the coefficient
ðkFÞi0i0 ≈ ~κtr, finding a complete agreement between both
works. Furthermore, following the scheme employed
here, it is possible to obtain the contributions arising
from the couplings of the distinct sectors of the full
CPT-even photon sector of the SME, as explicitly shown
in Eq. (53).
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