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We study the finite temperature behavior of the CPT-even pure-photon sector of the standard model
extension, which is defined by the standard Maxwell Lagrangian plus the term (kF)Wa/,F””F"f". The
Hamiltonian analysis is performed, from which the degrees of freedom and constraints of the theory are

derived. We have explicitly calculated the partition function for an arbitrary configuration of the (k)

uvap

coefficients, to second order, and we have used it to obtain the thermodynamic properties of the modified
photon sector. We find the correction to the frequency dependence in Planck’s radiation law, and we
identify that the total energy density is adjusted, relative to the standard scenario, by a global
proportionality constant containing the Lorentz-violating contributions. Nevertheless, the equation of

state is not affected by these modifications.
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I. INTRODUCTION

One of the cornerstones of quantum field theories and
general relativity is Lorentz invariance, which is assumed to
be an exact symmetry. There is a lot of remarkably strong
experimental support for this idea [1], with no violation
detected. Nevertheless, certain quantum-gravity theories
possess mechanisms that can lead to Lorentz violation [2],
in which effects arising from modifications of space-time
are expected to appear at distances of the order of the
Planck length. This has attracted considerable attention in
recent years both from the experimental and theoretical
perspectives, given that, in principle, this would allow a
better understanding about the space-time structure. The
standard model extension (SME) performed by Kostelecky
et al. [3] is a framework where Lorentz violation is
motivated via spontaneous symmetry breaking (SSB), in
which nondynamical tensor fields are now added to general
relativity and the standard model and whose fixed direc-
tions induce the corresponding symmetry breaking in a
given reference frame. These tensor fields are assumed to
arise from nonzero vacuum expectation values of some
basic fields belonging to a more fundamental model, such
as string theory [4]. Considering the SME as a framework
motivated from a SSB, the Goldstone theorem ensures that
massless particles will emerge [5]. Bjorken proposed that
the photon can be a Goldstone mode associated with the
SSB of Lorentz invariance [6]. However, since the pure-
photon sector of the SME is U(1) gauge invariant, all
particles are massless, and an alternative interpretation of
the Goldstone theorem is required [7]. In fact, in the
spontaneously broken space-time symmetries case, the
counting of massless modes has to be done carefully [8],
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and it may happen that one to six Goldstone modes appear,
each corresponding to one of the six Lorentz generators.
The properties of Goldstone modes are, in general, model
dependent and the knowledge of the fundamental theory is
required to do a complete description. In the case of the
SME some general conclusions about Goldstone modes
have been obtained in [9].

The pure-photon sector of the SME includes the
usual Maxwell term plus the presence of the CPT-odd
term [§ (kap)€, A*F*], sometimes called the Carroll-
Field-Jackiw term [10], and the CPT-even term
— 3 (k) uapF* F*. Both terms have been extensively
studied in the literature [11], and experimental constraints
exist for them [12]. The search for new effects arising from
these Lorentz violating terms, and an improvement of the
bounds for the magnitude of these coefficients constitute
two of the main lines of study. The study of the cosmic
microwave background (CMB) offers an opportunity to test
the pure-photon sector of the SME at finite temperature
[13], since the propagation of light would be affected,
in the form of nonstandard dispersion relations, polariza-
tion, birefringence properties, among other effects
[3,11,12,14]. As it may be expected, thermodynamic
properties and the spectral distribution can be modified
as well. In Ref. [15], the partition function in the functional
integral formalism was calculated in order to study the
finite temperature behavior of the Carroll-Field-Jackiw
term, for the case of a purely spacelike background. In
Ref. [16] the study was extend to the CPT-even term for
particular configurations of the coefficients (kr),,q4, t0
simplify the calculations. In both cases, Lorentz violation
corrections to the black-body radiation and anisotropy in
the angular distribution for the energy density were found.
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It remains unclear, however, if there is no information loss
from the consideration of only a few particular configura-
tions. The goal of this paper is to study the finite temper-
ature properties of the CPT-even pure-photon sector of the
SME in the most general case, following a scheme similar
to that employed in [15,16]. The outline of this work is as
follows. In Sec. II the CPT-even pure-photon sector of the
SME Lagrangian is introduced and some properties are
reviewed. Following Dirac’s scheme for constrained sys-
tems, the Hamiltonian analysis is performed, and the
canonical quantization is carried out. In Sec. III the
partition function is evaluated in the functional formalism
and some thermodynamical properties are derived, a sub-
stantial improvement over the previous calculations is
reported considering an arbitrary configuration for the
(kF) uap coefficients. We compare the result with a classical
thermodynamic approach. Our summary and conclusions
are contained in Sec. IV.

II. THE MODEL

We focus on the pure-photon sector, and particularly on
the CPT-even violating terms within the minimal SME.
The Lagrangian density is given by

1

F, F*

L:—Z uv

Y- i (kF)yua[)’FﬂyFaﬂ’ (1)
where the first term corresponds to the standard
electrodynamics, being F,, = d,A, —0,A, the electro-
magnetic stress tensor. The second term introduces
Lorentz-CPT symmetry breakdown, which is controlled
by the nondynamical spacetime-constant and dimension-
less quantities (kp),,.4; these coefficients have the
symmetries of the Riemann tensor and a vanishing
double trace, which imply a total of 19 independent
components. The tensor (k]:)/u/aﬂ is alternatively parame-
trized in terms of four 3 x 3 matrices [11], kpg, Kyp, Kpp>
Kyg, defined by

(KDE)jk = —2(kF)0jOk7
. 1 .
(kpp)* = Eequeklm(kF)pqlm,
(KDB)jk = _(KHE)kj = €kpq(kF>0qu‘ (2)

The matrices xpr and kyp contain together 11 independent
components, while kpp and kyy possess together 8 com-
ponents, which encompass the 19 independent elements of
the tensor (k),,qs An alternative parametrization, which
allows easier experimental constraints, consists of writing
(k) uep in terms of four traceless matrices and one trace
element [11],

B | ) B o1 )
(Kos )7 :E(KDB +xpp)*, (K, )" :E(KDB —xkue)’*. (3)
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- . 1 .
(R )% = B (kpe + Kup)’*,
B . 1 . 1 .
(Ke—)]k = ) (kpE — KHB)"k - §5JkTr(’<DE>,
N 1
Ky = gTr(KDE)' (4)

All parity-even coefficients are contained in «,,, k._, and
Ky, while all parity-odd coefficients are contained in &,
and k,_. The matrix k,, is antisymmetric while the
remaining matrices are symmetric. In Sec. III we will
use this second parametrization to express our main results.

As we previously mentioned, the (kf),,qs coefficients
can be motivated by spontaneous breaking of Lorentz
symmetry [4], avoiding the issues of incompatibility in
general relativity present when an explicit Lorentz sym-
metry violation is introduced [17]. The transformation
A, — A, + 0, leaves the Lagrangian (1) invariant, and
therefore, the gauge symmetry U(1) is preserved as in the
Maxwell theory. We use the convention, Greek indices
u,v=0,1,2,3, Latin indices i, j = 1,2, 3 and the metric
Nw = (1,=1,=1,—=1). The Euler-Lagrange equations aris-
ing from the Lagrangian (1) correspond to

OF,, + (kF)ﬂmﬂ(?"F”ﬁ =0. (5)

The remaining Maxwell equations

0, " = =" PO,F 5 =0, (6)

1
2
continue to hold as a consequence of defining F** through
the potential A,. As we previously stated, the propagation
of light is modified due the presence of the (kp),,.s

coefficients, in this case the dispersion relation for the
Lagrangian (1) is given by [11]

- 1"’(1
Pl =(1+p=+0)|pl, p==5ka", 62=§(kaﬁ)2—p2,

to lowest order in (k ), With

]}(l/} = (kF)aﬂﬂyﬁ,uﬁw ]Aj” = pT” (8)
P

Let us now consider the analysis of constraints a la Dirac

[18], and the canonical quantization of the model. This will

allow us to determine the number of degrees of freedom

and establish some differences between the standard

electrodynamics and the CPT-even pure-photon sector

of the SME. The canonically conjugated momenta are
given by
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OL : .
R FzO + k IOaﬂF{l

o = P () Ey

= FIO& ;4 2(kp)jo) + (kp) " F

= M ;F° 4 N, (9)

where we have defined M';=6;+2(kp)*;, and
Ni = (kp)™mF,,. The canonical momentum associated
to Ay is null, z° = 0, as it is in standard electrodynamics.
Approximating all quantities to first order in the Lorentz-
violating coefficients, we find that the matrix M’ j has the
inverse B'; = (M~')'; = 8'; = 2(kp)" j, which allows us
to rewrite (9) as FX' = B*,z' — N*. Using the above it is
straightforward to obtain the canonical Hamiltonian density

| 1 . .
Hc = _EBljﬂjﬂ-i + ZFI-J-FU - (kF)Ollmﬂ'iFlm
1 .
‘I’Z(k}:)l]lmFijFlm —Aoakﬂ'k, (10)

where we have carried out one integration by parts and
omitted boundary terms. The nonzero Poisson brackets
(PB) are given by

{A(x.0).7(y.0)}p = 6,8 (x —y). (11)

In what follows we will assume that all PB are calculated
at equal times and we omit the label #. We employ Dirac’s
method to construct the canonical theory due to the fact that
the primary constraint

¢ =7°=0, (12)

is present (here the symbol = denotes the weak equality).
The extended Hamiltonian density is defined as

HE:Hc+ﬂ¢l’ (13)

where A is an arbitrary function. The evolution condition of
the primary constraint (12),

i = {0, [ st | =0 (a)

P

leads to Gauss’ law,
¢2 = aiﬂ'i = 0 (15)

It is not difficult to prove that (12) and (15) are the
only constraints present in the model, and that they
constitute a first class set ({¢,$,} = 0). As in standard
electrodynamics, the model possesses two degrees of
freedom (DOF), following Dirac’s scheme, DOF =
% [variables in the phase space — second class constrictions—

2 x first class constrictions] =1 [8 —0—-2x2] =2. If we
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write (15) in terms of the field strength using the definition
of the canonical momenta (9), we obtain

Ol = O;F° + (k)P ,F 5 = 0. (16)

We recognize the last equation as the Lagrangian equa-
tion (5) for the p =0 component; however, in the
Hamiltonian formalism it is a constraint, not an equation
of motion. Gauss’ law (15) is different from its standard
electrodynamics form, this being even more evident
when it is rewritten in terms of the electric and magnetic
fields instead of the canonical momenta (7' = F+
(kp)®* F ). In order to construct a quantum theory via
canonical quantization ({A,B} - L[A,B]), we must
remove the extra degrees of freedom. This means that
we have to impose as many suitable gauge constraints “by
hand” as there are first class constraints; these gauge
constraints have to be admissible and convert the first
class constraints into second class constraints, and then we
can introduce the Dirac brackets to perform the correct
quantization. We choose the Coulomb gauge
(@, = 9;,A" =0) plus &, = Ay =0 to fix the gauge. The
Dirac brackets

{A(). BO)}p = {AX). BY)}»
- / Pudv{A(x).z(w)}p(Q)
% {1,(). B¥)}p. (17)

where y; is one of the constraints (¢, ¢,, ®;, P,) and

0Y(x.y) = {xi(x).x;(¥)} p-

0 0 -1 0
oty =0 0 T sy
I(x,y)= X—Y);
V=11 0 0 o Y
0-V2 0 0
0 0 &(kx-y) 0
0 0 0 o
~1ii(x,y) = z|x=y| ’
@VEY| sl 0 0 o
1
0 — Tyl 0 0
(18)
are given by
{Ai(x.1).A(y.1)}p =0,
{mi(x.1). 72 (y.0)}p =0,
A J =5/ - o ——
{ Z(X’t)’ﬂ (y7t>}D 51 5(X y)+aza 4-71'|X—y|
=5/(x~y), (19)
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and they have the same form as in standard electrodynamics
when the canonical momenta are used. However, rewriting
in terms of the electric and magnetic fields, the difference is
manifest,

{Ai(x.1).A(y.0)}p =0,
{Ei(x.1). E/(y.1)}p =2[(kp) ™ 05y — (k)" 0,1] 6 (x =),

{Ai(x.0). B (y.0)}p = =81/ (x —y) +2(kp) " 081, (x =)
(20)

Once the Dirac brackets have been included, the dynamics
of the theory will be generated by the Hamiltonian (10)
without the term Ayd;z’, which is proportional to ¢, and
has already been fixed and included in the process of
introducing the Dirac brackets. The canonical quantization
can be carried out using the aforementioned Hamiltonian
(10) and the brackets given by (19). Being U(1) the group
of symmetry of the theory, there are other possibilities to
fix the gauge, as the Lorentz gauge (9,A* = 0), which is
manifestly covariant; however, it is not possible to handle
such a gauge with the quantization formalism that we
employ here. This is due to the fact that the Lorentz gauge
involves the time derivative of A,. There are well-known
formalisms which are capable of dealing with such
relativistic constraints, among which are BRST quantiza-
tion [19], the Fadeev-Popov method [20] into the path
integral [21] or within the Hamiltonian formalism, one has
[22]. Nevertheless, these approaches are not within the
scope of the present work.

Rewriting the Hamiltonian (10) in terms of the electric
and magnetic fields we find

1 . 1 ) )
H :E([Ez + B2> _ (kF)OJOkE]Ek +Z(kF)Jklm€]kp€lququ7
(21)

where E?> = E,E;, B; = , and therefore B =
1F;;F'. The same result has been found in [3] following
a different line of thought, where it was shown that if
(kF) uuqp 1s small, the last quantity (21) is nonnegative. This
is due to the fact that the Hamiltonian (21) can be viewed as
the bilinear form x” Mx with x” = (E, B). It can be readily
shown that, upon diagonalization, the matrix M has entries
1—0(kg) > 0 for both the electric and magnetic field
contributions.

—Leiikpik

III. PARTITION FUNCTION
AND THERMODYNAMICS

We derive now some of the thermodynamic properties of
the Lagrangian (1). Our main goal is to obtain the finite
temperature energy density of the electromagnetic field.
Following the quantum field theory scheme, we calculate
the partition function. In the previous section we adopted
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the Coulomb gauge; hereafter we will switch to a covariant
gauge. The simplest way to obtain the partition function is
trough the Faddeev-Popov method [20], which is equiv-
alent to the introduction of constraints as done in Sec. II;
both methods allow us to work with the effective degrees of
freedom. Choosing the Lorentz gauge we can write the
partition function as

7 / (dA¥) det(—0%) exp ( A ! e / deLeﬁ), (22)

where det(—0?) is the Faddeev-Popov determinant and we
have switched to an imaginary time variable v = it. The
effective Lagrangian is given by

1 1 1
— v v o 2
Leff - _ZF/wF” _Z(kF)ﬂl/(lﬁFﬂ F ﬁ_zp (aﬂA”) . (23)

It is worth emphasizing that the calculations that are done in
this section, where we start from the functional integral
defined in terms of the Lagrangian, are independent of
those in the previous section. The Lagrangian in Eq. (1)
defines our model to all orders, and therefore Eq. (22)
together with (23) give the partition function of the full
CPT-even photon sector of the standard model extension to
all orders in a fixed gauge. We mention this given that,
unlike Sec. II where calculations are performed to first
order in Lorentz-violating coefficients, here we will include
second order corrections in k. As we will show, the first
order contribution is characterized by just one of the five
sectors of the model (the scalar k,.) according to the
parametrization shown in (3) and (4), and it is therefore
interesting to investigate if such discrimination is preserved
at higher orders.

Upon substitution of the finite temperature replacements
t = —it, Ay — iA, and (kp)%* — i(ky)™* [similar con-
vention to other indices in (kp)*%], the effective
Lagrangian can be written in Euclidean notation, with
wv,a,p=1,1,23,

1 1
Ly = EAu |:5/4u82 - <1 - ;) 8,48,, + 2(kF)ﬂmM8ﬁ8a AM
(p—1)
1
=54, [6,,0% + 2(k) g,y OpOul A,
= %ATDA. (24)

In the first line we have chosen the Feynman gauge (p = 1)
and D,, = 6,,0> + 2(kp) 34,050, The field admits a
Fourier expansion:

Prop
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'B i(w,7+xp) A
A,(7,x) = \/;ZA THXPIA L (n, ), (25)
n.p

where w, = % are the Matsubara frequencies, and the field

A, (7,x) satisfies the constraints of periodicity A,(8,x) =
A,(0,x) for all x. The normalization in (25) is chosen so
that each Fourier amplitude is dimensionless. If we use a
ghost field C to write

PHYSICAL REVIEW D 92, 025034 (2015)

det(—8?) = / [dC)[dC]exp < / dr / d3x(8ﬂC)(3”C)>,

(26)

then we can calculate the partition function in frequency-
momentum space as

In Z = Trin[f* (w3 + p?)] — %ln[Det(D)], (27)

where now
w% + p2 + Arr A-tx Ary Arz
D— ﬂz Arx (1)% + p2 + Axx Axy sz (28)
Ay Ay o, +p*+ A, A, ’
Arz sz Ayz a)%, + p2 + Azz

and Ay, = 2(kg),qpPaPp> (Pr = ®,). Calculation of the
determinant to second order in kp gives

det(D Hﬂ8

x <1 +Tr([\)+%(Tr(A))2—%Tr(A2)>, (29)

where we have defined /N\,w =
and the relation

z(kF)ym//}pap/}/(w% + pZ)

Det(1 -+ M) = 1+ Te(M) + 5 (Tr(m)?

- %Tr(MZ) + O(M?), (30)

has been employed. Therefore, the total partition function
becomes

InZ=-3" (@} +p?)

_é;ln<1 +Tr(1~\) +%(Tr(1§))2 —%Tr([\z) 4. )

Eln Z() +1n ZLV' (31)

We recognize the first term as the usual result for the
Maxwell theory, which corresponds to massless bosons
with two spin degrees of freedom in thermal equilibrium; in
other words, black-body radiation. All modifications to the
standard case due to Lorentz violation come from to the
second term in (31), which we can evaluate as follows

InZy = ——Zln( +Tr(A) + 3 L)y - %Tr(/v))
——Z(Tr - —Tr(AZ))

= —Z Zryv, +Zpy,). (32)

np

Here we have defined Z;,, and Z;,, as the Lorentz
violation contributions to first and second order, respec-
tively. We begin calculating the first order contributions as
follows:

_ 1 ~
_ZZLVI - —EZTI'(A>
n,p np
kF apavPuPv 2zn
— STl (=0, =)
(05 +p7) p

1
= _Zm [(kF)ararw%l + 2(kF)aia-twnpi
n,p n

+ (kp)giaiPiPj]

1
=2 o) (e + (ki)
n,p n

(33)

where in the third line we employed the sum
o n2 > =0. Adding and subtracting the term

(kp) graeP* 1nside the brackets in (33), we arrive to the
equivalent expression
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_ZZLVI

__Z|: k kF)(lran +(kF){ll(l]p p]p :| (34)
F ar(n ( n+p ) ’

pi/|p|. Making use of the identity

- 1 p pp\ P 2
2 Fz,+p2—5“”h(7> —%<”eﬁv—1)’ (35)

n=-—oo

with p; =

we find that the contribution due to Lorentz violation to
first order can be written as

3
_ZZLVl /(;i )3 [_(kF)a‘raT

2
Feaid () (145 ). (9

where a temperature-independent divergent term has been
dropped; it is well known that any quantity in finite
temperature theory is defined after subtraction by its 7' =
0 counterpart, and so T-independent parts of the partition
function, infinite or finite, are of no importance [23].
Taking the standard spherical coordinate system and
|p| = @, Eq. (36) becomes

_Z LV, = /da)dQ[_(kF)m'a’r + (kF)aiajﬁiﬁj]

v
x (;’) <1 +eﬂw2— 1), (37)

where p; = sin(8) cos(¢), p, = sin(0) sin(¢), and p; =
cos(@). Performing the integral over solid angle we find

~ Vv 1
_ZZLV] = _47[—3 |:_(kF)a"rm' Py (kF)ai(xi:|

S (2x) 3

2

y /m(f) <1 +eﬁ_1) (38)

We now make use of the vanishing of the double trace of
(kf) uqp condition, which in Euclidean space implies

(k) = 2(k)"oi + (kr)7y;

= =2(kp)oioi + (kr)yjij =5 2(K) e + (kE)ijij
_o. (39)

Using the above, (38) becomes
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R por’ 2
_;ZLVI —TW(kF)amr/dw<T> <1+eﬂW_1>

v Vv _
:2@(1{ 3fKtr7 (40)

F)amr =

where we have neglected vacuum contributions to perform
the integral. The above implies that the modification to the
energy density due to Lorentz violation to first order will
have the same dependence in the temperature as the
standard theory, U ~ T*. The second order contribution
can be readily evaluated in a similar way,

_ 1 -
_;ZLVZ = ZZTY(A )
2.2
P w;,
@ R e

n

p4

AP 41
(@i +p?) “1)

where the momentum-dependent coefficients A;,; are
defined as

Al = (kF),uﬂﬂ'(kF)ﬂﬂ/T’
A2 = (2(k ),uwr(kF)ﬂiuj

[(kF)uwi (kF)MiDT] [(kF);n'yj + (kF)yjm'])ﬁiﬁjv
A3 (kF)/lll/j (kF)/dymp pjplpm (42)
Making use of the identities

N 1 p|p 2
—=—-_csch? 1 ,
;,o(w%pz)z 8pCC ( +4|P|3 A

n

Ll 2 2
R T
Wy TP

l; 2
P (14— ), 44
Tap )
© 4

2.2 4

Z zwn22:z<l_ %wnpzz_ 2p 22)7

o (0 +p7) ; (0p +p°)° (0, +P7)
(45)

b (

we now evaluate the sums over n. Employing the same
spherical coordinate system as in (37) we find
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&p 2
—Z v, = / ) {(A A2+A3)p—csch2<#> +( 3A1+A2+Ag)|lz|ﬁ <1+eﬁ|"|—l>}

dQd o’ 2
:V/—w[(A1—A2+A3) CSCh2<2>+( 341+ A + A3) 4ﬂ <1+gﬁﬁ’—l)}

(27)?
dw _ _ ~ 4ﬂ2 3,3 2
_ v/2 d [(A1 “ Ay 4 As) csch2< ) 34+ Ay +45) 2F (1 e 1)} (46)
where now the momentum-independent coefficients A correspond to
A] = A] = —TI‘(KzDE), (47)
~ 2
AZ g ((kF)ﬂTZ/T(kF)ﬂil/i + (kF)ﬂTl/i(kF)ﬂTl/i + (kF)}lTDi(kF)ﬂiIJT)
1
=56 [Tt(kpe) = Tr(kpg - kug) = 3Tr(kpp - kue) = Tr(kpe)?], (48)
~ 1
A3 = E ((kF)ﬂiui<kF)ﬂjvj + (kF)ﬂil/j<kF)uiVj + (kF),uibj(kF)ﬂjyi) (49)
7
=30 [Tr(xpg - kpe) = Tr(kpp - kpp) — 4Tr(kpp - Kpg) + iTr(KHB ~kpp) + Tr(kpg)?]. (50)

The integral over @ can be calculated neglecting vacuum contributions, which arise from the second term in (46) and have
the same form as they do to first order in k. The result is given by

_ - -~ p (162" . e 27
-5 2y, = v((A1 ~ A, +A3)%ﬂ2 (?;J + (=34, + A, +A3)8L;2 <?”ﬂ4>> (51)
n.p

-k (4’;;) v, (52)

where we have defined

_ 3.
K=—(A; =34, +5A3) = 16 [8Tr(kpg)? — 2Tr(kpp - kpp) + 10Tt (kpp - k) — Tr(kpg - kpg) + 6Tr(kpg - Kyg)

3
4
+ 7Tr(kpp - Kup))
1 - - - - -
- Z [ZTr(’%oJr ’ K0+) - 3TI‘(K0_ *Ko— ) Tl‘( Kot - Ko—) + 3TI‘(K‘€+ ' Ke+)
- 4Tr<’z'e+ : ke—) - 4(’Ztr)Tr(E‘o—) + 18(’?&)2]' (53)

The partition function of the standard Maxwell theory is well known [24]; neglecting the vacuum contributions it
is given by

& ’
In Zy = —2v/ Pon(1—etoy = Z v, (54)
(27) 45p

From these results we finally obtain the total partition function

”2

mZ=InZy+InZy=42(kp)ym + I_()WV

(55)
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In order to compare this result with the literature we
consider the particular case arising from the isotropic
contribution of the parity-even sector, which corresponds
to the limit Tr(x,_) = Tr(x,, ) = Tr(k,, ) = Tr(k,_) =0,
K, # 0. In this case (55) reduces to

- 9 . n?
ln Z = (1 + 3(Ktr) + E(Ktr) > WV (56)

To second order this is the same result reported in [16].

Starting from (40), (46), and (54), the energy density of
the photon field can be calculated from the standard
thermodynamic relations,

_laln Z
VvV op

(57)

0 1 3 2k 0 3 4 ,po
:/ do > w _ ( F)zara‘r do w _ ﬁ([) e

0 el —1 3 0 efo—1 (efr—1)?

- . - © dw P
+ (Al _AZ +A3)A @ﬂa}“ (ﬂCOCOth (7) —2)

(B9 _(C3h Ao
x csch 7 —(—3A1+A2+A3)
o d, 3 4 ,pw

x / e pare - (58)

o 4r*|efr—1 (ef-1)
This implies a modification to the Planck distribution,

where now the frequency dependence of the energy density
is given by

1 o 1 /2 1, ~ - -
M(G)) :;e[)’w—_l_; <§(kF)a‘rar +Z(_3Al +A2 +A3)>

> Part el 1 -~ =~ ~ 4
8 [eﬁ“’—l_(eﬁ“’—l)z] e Ar A2 T As)fo

(o (22) o (2). s

(see Fig. 1). The total energy density is obtained integrating
the last equation or deriving directly (55)

[\S]

u(T) = (14 20k )geee + K) 575 (60)
The thermodynamic relations
0 0
U=-—InZ, P=T—InZ, 61
ap av " (61)

together with (55), imply that the equation of state remains
unchanged,
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FIG. 1. Frequency dependence of the photon energy density for
nonvanishing CPT-even violating terms, to first order in k.

pv=Y. (62)
3

The functional scheme that we used to derive the photon
energy density is not the only prescription available. It is
possible to reproduce the previous results following a
classical thermodynamic scheme, as we now show. Since
this computation is not the main purpose of our study, we
only calculate the energy density to first order in kp. We
follow a similar treatment as [25]. By adopting a thermal
distribution for the photons and dispersion law (7), the
spectral energy density per frequency (and per polarization)

in the semiclassical phase space is given by

1 hwi
(2”)3 ehwi/kBT -1

u(w)dw, = KRdkdQ.  (63)

From (7), we have w, = (1 + &.)|p|, where 6. = p + 0.
For the isotropic frequencies, one can immediately sub-
stitute f dQ — 4z, however we now have an angular
dependence for the frequency, w, = w.(0,¢). To first
order in 6, < 1 and using |k| = w, we find

u(wi)do. = (2;)3 (ehw/i}f;_ 1>da)dQ
1 he B2 @tehw/ksT
+ (27)3 (ehw/kBT -1 kB—T (ehw/kBT _ 1)2>
x 8.dw dQ. (64)

If we sum over both modes under the assumption that each
one contributes equally, we have that the Lorentz violation
contribution to the energy density is given by

[u(wy)do. ]y + [u(o_)do_].,

1 A’ A2 w4eha}/kBT
- (2;7)3 (ehw/kBT -1 m<ehw/kBT _ 1)2)
X (64 4 6_)dwdQ. (65)
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Since 8, +6_ = 2p = —k,” and

~oz(l __IT) (kF)amr - 2i(kF)jrjipi - (kF)aiale)if?j’ (66)
where o = 7, 1, 2, 3, upon integration of (65) over the solid
angle dQ we finally have

[u(w)dw]y = [u(w,)do, ]y + [u(w_)do_],y

= —(247”)3 ((kF)m'ar - % (kF)aiai>
P B2 @t eho/ksT
<ehw/kRT 1 kT (eholkaT _ 1)2> do
= 127 (ko)
ha B2 wtehwlksT
X <ehw/kBT 1 kT (eholkaT _ 1)2> dw,

(67)

where in the second line we have used the condition of
vanishing double trace in the imaginary time (39). Taking
Ai=1 and = 1/kgT, we find a result in agreement
with (59).

IV. SUMMARY

We have presented in this paper a study of the
Hamiltonian formalism and the canonical quantization,
via the Dirac formalism, of the CPT-even photon sector
of the Lorentz-violating standard model extension. We have
found that the gauge freedom of standard electrodynamics
is not lost in the CPT-even photon sector of the SME.
Additionally, in analogy with the standard electromagnetic
case, this model possesses first class constraints which
restrict the size of phase space; however, the form of these
constraints is different from the standard case when they are
written in terms of the electric and magnetic fields. The
gauge fixing procedure in the CPT-even photon sector of

PHYSICAL REVIEW D 92, 025034 (2015)

the SME does not significantly differ from the standard
electrodynamics case.

The partition function was explicitly calculated to first
and second order in the Lorentz-violating parameters of
the CPT-even photon sector of the SME, for an arbitrary
configuration of the coefficients (kr),,,4; we have pre-
sented our results in terms of the defining (kp),,.s
coefficients as well as the two parametrizations (2) and
(3)-(4). Making use of the standard thermodynamic
relations we found corrections to the black-body radiation
law. These include corrections with the same functional
dependence on frequency, as well as corrections with a
different functional dependence. The total temperature-
dependent energy density receives a correction with the
same temperature dependence as the standard case, but we
found that the equation of state has the same form of the
standard electrodynamic theory. This corresponds to a
cosmological thermal history consistent with the standard
scenario. The result was verified employing a classical
thermodynamic scheme. We have obtained that all mod-
ifications arising from Lorentz violation to first order are
proportional to (kr),o.0 coefficients, there is no contribu-
tion to first order from the (kp)y;,4 sector to the partition
function as well as the density energy. We have compared
our general results with a particular case previously
obtained in [16] for the isotropic contribution of the
parity-even sector, which is encoded into the coefficient
(kr)0i0 = Ky» finding a complete agreement between both
works. Furthermore, following the scheme employed
here, it is possible to obtain the contributions arising
from the couplings of the distinct sectors of the full
CPT-even photon sector of the SME, as explicitly shown
in Eq. (53).
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