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We show that all algebraic type-O, type-N and type-D and some Kundt-type solutions of topologically
massive gravity are inherited by its holographically well-defined deformation, that is, the recently found
minimal massive gravity. This construction provides a large class of constant scalar curvature solutions to
the theory. We also study the consistency of the field equations both in the source-free and matter-coupled
cases. Since the field equations of MMG do not come from a Lagrangian that depends on the metric and its
derivatives only, it lacks the Bianchi identity valid for all nonsingular metrics. But it turns out that for the
solutions of the equations, the Bianchi identity is satisfied. This is a necessary condition for the consistency
of the classical field equations but not a sufficient one, since the rank-two tensor equations are susceptible
to double divergence. We show that for the source-free case the double divergence of the field equations
vanishes for the solutions. In the matter-coupled case, we show that the double divergences on the left-hand
side and the right-hand side are equal to each other for the solutions of the theory. This construction
completes the proof of the consistency of the field equations.
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I. INTRODUCTION

Recently [1–3] a parity-noninvariant 2þ 1 dimensional-
massive gravity, dubbed minimal massive gravity (MMG),
with a single spin-2 massive degree of freedom was found.
MMG is a nonlinear deformation of topologically massive
gravity (TMG) [4] with the added property that the bulk and
the boundary unitarity conflict of TMG in anti-de Sitter
(AdS) space-time is resolved. Namely, positivity of the
central charges of the two copies of the boundary Virasoro
algebra and the unitarity of bulk gravitons are simulta-
neously achieved in a certain parameter range in MMG,
a desired property which TMG lacks. Hence, MMG can
have a viable, unitary boundary dual conformal field theory
and so is amenable to the AdS/CFT duality. We briefly
recapitulate the discussion below, but for a detailed
account, the reader is referred to the recent activity on
this topic [1,2,5–7]. The matter-free field equation of the
theory is defined as

Eμν ≡ σ̄Gμν þ Λ̄0gμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð1Þ

with dimensionless parameters σ̄ and γ and dimensionful
ones μ and Λ̄0. We use the notation of the original work [1]
where the theory was introduced, except for slight nota-
tional differences such as in the definition of the antisym-
metric tensor below. The Cotton tensor is given in terms of
the Schouten tensor as

Cμν ¼ ημ
αβ∇αSβν; Sμν ¼ Rμν −

1

4
gμνR; ð2Þ

and the new ingredient is the J-tensor defined in terms of
the products of two Schouten tensors as

Jμν ≡ 1

2
ημρσηναβSραSσβ; ð3Þ

where the totally antisymmetric η-tensor reads, in terms
of the Levi-Civita symbol, ηνρσ ≡ ϵνρσ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
with

ϵ012 ¼ 1. In flat backgrounds, the J-tensor does not
contribute to the OðhμνÞ fluctuations about the flat metric
hμν ≡ gμν − ημν; hence, the “free” particle properties of
TMG (that is, the γ ¼ 0 case) is left intact. There is a single
massive spin-2 particle (say, with a þ2 helicity) with a
mass-square M2

g ¼ μ2σ̄. On the other hand, in AdS back-
grounds, which are the relevant backgrounds for hologra-
phy, it is easy to show that the graviton’s mass becomes

M2
g ¼ μ2

�
σ̄ þ γ

2μ2l2

�
2

þ 1

l2
ð4Þ

where l > 0 is the AdS radius defined in terms of the
effective cosmological constant as l2 ¼ − 1

Λ. There are two
possible values for Λ that are determined by the quadratic
equation coming from the field equation (1),

Λ̄0 − σ̄Λþ γ

4μ2
Λ2 ¼ 0: ð5Þ

Up to this point, as far as the bulk excitations are
concerned, the only apparent change in MMG from the
TMG is the replacement σ̄ → σ̄ þ γ

2μ2l2 in the mass for-

mula (4) plus the fact that there are two vacua in MMG
instead of the unique vacuum in TMG. But, once one*btekin@metu.edu.tr
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computes the left and right central charges of the boundary
Virasoro algebra as

cL ¼ 3l
2G3

�
σ̄ þ γ

2μ2l2
−

1

μl

�
;

cR ¼ 3l
2G3

�
σ̄ þ γ

2μ2l2
þ 1

μl

�
ð6Þ

and the energies of bulk excitations

EM ¼ M2
g

4πG3

1

T

Z
d3x

ffiffiffiffiffiffi
−ḡ

p
ϵα

0μhαν∂thMμν;

EL ¼ −
cL
6πl

1

T

Z
d3x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hανL ∂thLμν;

ER ¼ −
cR
6πl

1

T

Z
d3x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hανR ∂thRμν; ð7Þ

one realizes that the boundary unitarity constraints cL > 0,
cR > 0 and the bulk unitarity constraints M2

g ≥ − 1
l2, E ≥ 0

are compatible for a parameter region for nonzero γ.
Remarkably, the J-tensor does its job: While keeping the
bulk theory intact, it makes the boundary conformal theory
unitarity, opening up the possibility to find a dual CFT to
the bulk gravity. That is certainly one way to define
quantum gravity, and it would be quite interesting to find
the corresponding dual CFT of the MMG theory. All this is
quite attractive but the J-tensor has a slightly embarrassing
defect: Its covariant divergence does not vanish for generic
smooth metrics; instead, one has

∇μJμν ¼ ηνρσSρτCστ; ð8Þ

which means the MMG field equations do not obey the
Bianchi identity and therefore cannot be obtained from an
action with the metric being the only variable. [It can of
course be derived from action(s) with auxiliary variables
[1,8].] But the state of affairs is not that bleak, as the
covariant divergence vanishes for metrics that are solutions
to the full MMG equations. Therefore, one has an “on-shell
Bianchi identity.” This is good news but it actually makes it
quite nontrivial to couple the theory to conserved energy-
momentum tensors. This was achieved in [2] in an
intricate way.
In the current work, we consider two aspects of the

MMG theory: the first being the consistency of both
the vacuum and matter-coupled MMG equations and the
second being the systematic construction of new solutions
to the vacuum field equations that are inherited from the
TMG theory. It will be clear below what we mean by the
consistency of the field equations. As for the solutions,
there have been several works on exact solutions of this
theory in [1,2,6,9,10], but our work is different in the sense
that we upgrade all the algebraic types O;N;D and some
Kundt-type solutions of TMG to be the solutions of MMG

with simple modifications of the parameters. Our con-
struction is inspired by several works [11–13] that used the
solutions of TMG in finding the solutions of new massive
gravity [14], a parity symmetric massive spin-2 theory, and
in finding the solutions of all fðRicciÞ theories [15].

II. CONSISTENCY OF FIELD EQUATIONS
OF MMG

First, let us consider the source-free case; as mentioned
above, consistency of the field equations requires that the
first divergence vanishes,

∇μEμν ¼ 0; on shell ð9Þ

as was already noted in [1], and it was worked out in there
that it is on-shell valid: Namely, Eq. (8) vanishes for the
solutions. At the risk of being pedantic, let us note that,
only after one takes the covariant divergence of the
J-tensor, one should insert the field equations; otherwise,
on-shell vanishing of the covariant divergence of the field
equations would be a trivial statement for any theory since
it would boil down to taking the derivative of zero. This
statement also gives us a hint that on-shell vanishing of the
first covariant derivative is necessary but not sufficient for
the consistency of the field equations: Since one has a rank-
two tensor, one must show that the double divergence also
vanishes on shell. Namely, one should show the following:

∇ν∇μEμν ¼ 0; on shell; ð10Þ

which reduces to showing that the double divergence of the
J-tensor vanishes on shell. Let us show that this is indeed
the case here. From (8), one has

∇ν∇μJμν ¼ CστCστ þ ηνρσSρτ∇νCστ: ð11Þ

We can compute the square of the Cotton tensor as

CμνCμν ¼ −∇σSρν∇σSρν þ∇ρSσν∇σSρν

¼ −∇σðSρν∇σSρνÞ þ Sμν□Sμν þ∇ρSσν∇σSρν:

ð12Þ

On the other hand, one can write the second term in (11) as

ηνρσSρτ∇νCστ ¼ −Sβτ□Sβτ þ Sατ∇ν∇αSντ: ð13Þ

These expressions reduce the double divergence of the J-
tensor to an expressionwhich is not zero for arbitrarymetrics:

∇ν∇μJμν ¼ −
1

2
□ðSρνSρνÞ þ∇ρðSσν∇σSρνÞ: ð14Þ

Nowwe need to use the field equations to show the vanishing
of this expression. For this purpose, let us expand the compact
form (3) to get
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Jμν ¼ −SρμSρν þ
1

2
gμνSρσSρσ þ

1

4
SμνR −

1

32
gμνR2: ð15Þ

Using this form in (1), one arrives at

∇ρðSσν∇σSρνÞ ¼
1

2
□ðSρνSρνÞ; on shell: ð16Þ

Hence the double divergence of the MMG field equations
vanishes for solutions of the theory as required for the
consistency of these equations.
Let us now consider the consistency of matter-coupled

MMG equations [2] along the above discussion. (In this
part, we use the definition of the J-tensor that differs in a
minus sign from the rest of our paper, but it is consistent
with the convention of [2]). Because of the nonzero
divergence of the J-tensor, as noted above, coupling
matter to MMG becomes quite a nontrivial issue. Given
a covariantly conserved energy-momentum tensor
∇μTμν ¼ 0, the field equations become

1

μ
Cμν þ

γ

μ2
Jμν þ ηGμν ¼ ΘμνðTÞ; ð17Þ

where the source term reads

ΘμνðTÞ ¼ b
γ
Tμν þ b2

γμ
ημρσ∇ρT̂

ν
σ −

b2

μ2
ημρσηνλkSρλT̂σk

þ b4

2γμ2
ημρσηνλkT̂ρλT̂σk; ð18Þ

where b≡ γ=ð1þ γηÞ and Tμν ¼ −ρ̄gμν þ θμν and with
T̂μν ¼ Tμν − 1

2
gμνT, and ρ̄ is related to the bare cosmo-

logical constant of the theory. For the consistency of the
matter-coupled MMG, one should require the covariant
divergences on the left-hand side and the right-hand side to
be equal to each other when the field equations are used,
which was worked out to be the case in [2]. Once again, this
is necessary but not sufficient, and one should also check
the double divergence, which we calculate here. The first
divergence of (17) yields

∇μΘμνðTÞ ¼ γ

μ2
∇μJμν ¼

γ

μ
ηνρσSλρΘσλðTÞ; ð19Þ

where the field equation was used in the second equality
with the fact that products of the form ðηSSSÞν vanish. One
can also explicitly compute this divergence from the
definition of the source (18) and get the same result.
Next, we compute the double divergence. From (19) one
obtains

∇ν∇μΘμνðTÞ ¼ γ

μ
ηνρσSλρ∇νΘσλðTÞ þ

γ

μ
ΘσλðTÞCσλ; ð20Þ

in which we already made use of the field equations. Now
this result should match the direct computation of the
double divergence obtained from the definition of the
source (18):

∇ν∇μΘμν ¼ b2

γμ
ημρσ∇ν∇μ∇ρT̂σ

ν −
b2

μ2
ημρσηνλk∇ν∇μðSρλT̂σkÞ þ

b4

2γμ2
ημρσηνλk∇ν∇μðT̂ρλT̂σkÞ: ð21Þ

For the first term one can use the equality ημρσ∇μ∇ρT̂σ
ν ¼ 1

2
ημρσ½∇μ;∇ρ�T̂σ

ν ¼ ηνρσSλρT̂σλ, and for the last term one can use
ημρσηνλk∇ν∇μT̂ρλT̂σk ¼ 2ημρσηνλk∇νðT̂ρλ∇μT̂σkÞ. Manipulation of this expression leads to the appearance of the Cotton
tensor, and one can use the field equations to get

∇ν∇μΘμν ¼ b2

γμ
ηνρσSρλ∇νT̂σλ þ

b2

γμ
ηνρσT̂σλ∇νSρλ þ

γ

μ
CσλΘσλ −

b
μ
CσλTσλ þ

γb2

μ3
Cσλησ

νρηλ
μkSμνT̂kρ

−
b4

2μ3
Cσλησ

νρηλ
μkT̂μνT̂kρ −

b2

μ2
ημλkηνρσSρλ∇ν∇μT̂σk −

b2

μ2
ημρσηνλk∇νðT̂σk∇μSρλÞ

þ b4

γμ2
ημρσηνλk∇νðT̂ρλ∇μT̂σkÞ: ð22Þ

This equation can be written in terms of the source term by adding and subtracting terms to get

∇ν∇μΘμν ¼ γ

μ
CσλΘσλ þ

γ

μ
ηνρσSρλ∇νΘσλ þ∇ν

�
γb2

μ3
ηλμkηνρσησ

αβSμαT̂kβSρλ −
b4

2μ3
ηλμkηνρσησ

αβT̂μαT̂kβSρλ

þ b4

γμ2
ηλkνημρσT̂ρλ∇μT̂σk −

b
μ
ηνρσT̂σλSρλ þ

b2

γμ
ηνρσSρλT̂σλ −

b2

μ2
ημλkηνρσT̂σk∇μSρλ

�
: ð23Þ

EXACT SOLUTIONS AND THE CONSISTENCY OF 3D … PHYSICAL REVIEW D 92, 025033 (2015)

025033-3



The first line is what we want; therefore, the other parts should vanish. To show that they add up to zero, we have to use the
field equation one more time. But first let us note that

ηλμkηνρσησ
αβSμαT̂kβSρλ ¼ −

1

2
ηλμkηνρσησ

αβSμαSkβT̂ρλ ¼ ηνρσT̂ρλJσλ: ð24Þ

Then one has

∇ν∇μΘμν ¼ γ

μ
CσλΘσλ þ γ

μ
ηνρσSρλΘσλ

þ∇ν

�
b2

μ
ηνρσT̂ρ

λ

�
γ

μ2
Jσλ þ

1

μ
Cσλ

�
−

b4

2μ3
ηνρσηλμkησ

αβT̂βkT̂μαSρλ þ
b4

γμ2
ημρσηλkνT̂ρλ∇μT̂σk

−
b2

γμ
ηνρσT̂ρλSσλ þ

b
μ
ηνρσT̂ρλSσλ

�
: ð25Þ

Using the following relations one can show that the terms in the square brackets yield zero,

ηνρσηλμkησ
αβT̂βk

�
T̂ρλSμα þ

1

2
T̂μαSρλ

�
¼ 0; ηρμσ∇μT̂σk ¼ ηk

μσ∇μT̂σ
ρ: ð26Þ

This shows that the double divergences on the left-hand
side and the right-hand side of the field equations are equal
to each other on shell; hence, the equations are consistent.

III. EXACT SOLUTIONS OF MMG

In three dimensions, classification of space-times can be
done either by using the Cotton tensor (Cμ

ν) (analogous
to the four-dimensional Petrov classification) or using
the traceless-Ricci tensor ( ~Rμ

ν) (analogous to the four-
dimensional Segre classification). For MMG, it is more
convenient to use the Segre classification, but eventually
for the solutions we consider, these two classifications will
be equivalent. For Segre-Petrov classification, one needs
the following curvature invariants (in addition to the scalar
curvature R),

I1 ≡ ~Rμ
ν
~Rν
μ; I2 ≡ ~Rμ

ν
~Rν
ρ
~Rρ
μ: ð27Þ

For types O;N; III one has I1 ¼ I2 ¼ 0, and for types D
and II, one has I31 ¼ 6I22. To search for solutions of MMG,
let us rewrite the source-free field equations as a trace part,

I1 −
1

24
R2 þ μ2

γ
σ̄R −

6μ2

γ
Λ̄0 ¼ 0; ð28Þ

and a traceless part,

1

μ
Cμν þ σ̄ ~Rμν þ

γ

μ2
~Jμν ¼ 0; ð29Þ

where the traceless part of the J-tensor is given as

~Jμν ¼ ~Rμρ
~Rρ
ν −

1

3
gμνI1 −

1

12
R ~Rμν: ð30Þ

We also need the TMG equations written in this form since
the solutions of TMG will be upgraded to the solutions of
MMG. The trace part of TMG equations simply says that
R ¼ 6Λ, while the traceless part reads

1

μ
Cμν þ σ̄ ~Rμν ¼ 0; ð31Þ

to which we shall refer from now on. Let us first consider
all the solutions of MMG that satisfy

~Jμν ¼ 0; ð32Þ

which boils down to all the solutions of TMG that have this
property. So, from (30), one should set

~Rμρ
~Rρ
ν ¼

1

3
gμνI1 þ

1

12
R ~Rμν: ð33Þ

Contracting with one more traceless-Ricci tensor, one
arrives at

I2 ¼
1

12
RI1: ð34Þ

Clearly, Type-O solutions of TMG for which the traceless-
Ricci tensor vanish are all locally Einstein spaces and hence
also solve MMG. This statement might appear somewhat
trivial but it actually has drastic implications. For example,
the BTZ black hole [16], which is a solution to cosmo-
logical Einstein’s theory, survives to be a solution to TMG
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and also survives to be a solution to MMG. The solution is
intact as a metric but its properties, such as its angular
momentum and energy, change for each theory. See [17,18]
for its mass and angular momentum properties in TMG and
see [5] for those properties in MMG.
Next, we consider in a little more detail type-N and type-

D solutions of MMG as inherited from TMG. As these
solutions have been discussed in the literature before in the
context of TMG [11–13,15,19–22], we refer the reader to
these works and especially to [21] where these solutions are
nicely compiled.

A. Type-N solutions of MMG

The traceless-Ricci tensor

~Rμν ¼ Rμν −
1

3
gμνR; ð35Þ

for type-N space-times, can be written as [23]

~Rμν ¼ ρξμξν; ð36Þ

where ρ is a scalar function which will not play a role and
ξμ is a null vector: ξμξμ ¼ 0. For type-N space-times, since
I1 ¼ 0, from (28) one concludes that the Ricci scalar is
constant with two possible values:

R� ¼ 12μ

γ
ðμσ̄ �mÞ; m≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2σ̄2 − γΛ̄0

q
: ð37Þ

Note that them ¼ 0 point is a special point (“merger point”
[2]) where two roots coalesce, and it needs separate
attention, which we note below. The trace-free part of
the J-tensor becomes

~Jμν ¼ −
1

12
R ~Rμν; ð38Þ

reducing the MMG field equations to

1

μ
Cμν þ

�
σ̄ −

γR
12μ2

�
~Rμν ¼ 0; ð39Þ

which is nothing but the field equations of TMG (31) with
the simple replacement of the parameters as

μσ̄ → μσ̄ −
γR
12μ

: ð40Þ

Hence, all type-N solutions of TMG solve MMG once this
replacement is taken into account, together with the values
6Λ ¼ R�. For m ¼ 0, observe that the traceless part of the
MMG equation simply reduces to the vanishing of the
Cotton tensor since R ¼ 12μ2σ̄=γ at this point. So all such
solutions are conformally flat spaces.

Let us give an example of a type-N solution [24] which is
locally equivalent to most type-N solutions of TMG,
including the AdS pp-wave solutions [21]

ds2 ¼ dρ2 þ e2ρ=ldudv

þ ðeð1=lþμσ̄Þρf1ðuÞ þ e2ρ=lf2ðuÞ þ f3ðuÞÞdu2 ð41Þ

with R ¼ −6=l2; this is a solution to TMG for arbitrary
functions fiðuÞ. This solution also solves MMG after the
replacement (40). At the merger point, one can show that
(41) becomes a conformally flat metric but not an Einstein
metric.

B. Type-D solutions

Depending on the timelike or spacelike nature of the
eigenvectors of the traceless-Ricci tensor, type-D solutions
split into two, type-Dt and type-Ds [20], and both types
have the traceless-Ricci tensor

~Rμν ¼ p

�
gμν −

3

a
ξμξν

�
; ð42Þ

where ξμξ
μ ≡ a ¼ �1 and p is a scalar function. If the

following equation is satisfied [20],

∇μξν ¼
μσ̄

3
ημνρξ

ρ; ð43Þ

then the TMG equation is solved with a constant p, as long
as

p ¼ 1

9
μ2σ̄2 þ Λ̄0

σ̄
: ð44Þ

For both type-D cases, one has

~Rμ
ρ ~Rνρ ¼ p2

�
gμν þ

3

a
ξμξν

�
; I1 ¼ 6p2;

I2 ¼ −6p3:

ð45Þ

Then the two roots of the trace part of the field equation
become

R� ¼ 12μ

γ
ðμσ̄ �MÞ; M≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2σ̄2 − γΛ̄0 þ

γ2p2

μ2

s
:

ð46Þ

The new merger point is given by M ¼ 0, which is
generically satisfied by two possible Λ0’s. On the other
hand, the traceless part of the J-tensor becomes

~Jμν ¼ −
�
pþ R

12

�
~Rμν; ð47Þ
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reducing the MMG equation to the TMG equation as

1

μ
Cμν þ

�
σ̄ −

γ

μ2

�
pþ R

12

��
~Rμν ¼ 0; ð48Þ

which means all type-D solutions of TMG solve MMG
once the following replacement is made:

μσ̄ → μσ̄ −
γ

μ

�
pþ R

12

�
¼ μσ̄ −

γ

μ

�
1

9
μ2σ̄2 þ Λ̄0

σ̄
þ R
12

�
:

ð49Þ
Let us note that at the merger point and for the particular
value of γσ̄ ¼ −9, the traceless part of the MMG equation
becomes the sign-reversed version

1

μ
Cμν − σ̄ ~Rμν ¼ 0; ð50Þ

which in the TMG language refers to a change of helicity
from þ2 to −2, keeping the mass intact.
Let us now give two examples of such solutions. In [21],

almost all type-D solutions in the literature were shown to
be locally equivalent to the timelike squashed AdS3

ds2 ¼ λ2 − 4

2R
ð−λ2ðdτ þ cosh θdϕÞ2 þ dθ2 þ sinh2θdϕ2Þ

ð51Þ
or the spacelike squashed AdS3

ds2 ¼ λ2 − 4

2R
ð−cosh2ρdτ2 þ dρ2 þ λ2ðdzþ sinh ρdτÞ2Þ;

ð52Þ
with the squashing parameter λ, which for TMG reads

λ2 ¼ 8σ̄2μ2

2σ̄2μ2 − 9R
: ð53Þ

For these two solutions of TMG to also solve MMG, the
squashing parameter changes according to the replacement
recipe (49) which we do not depict explicitly as it is clear.
For the sake of completeness, let us note that for (51), one
finds the traceless part of the J-tensor as

~Jμν ¼ −
R
4

ð3λ2 − 4Þ
ðλ2 − 4Þ

~Rμν; ð54Þ

while the square of the Cotton tensor reads

CμνCμν ¼ 12R3λ2ðλ2 − 1Þ2
ðλ2 − 4Þ3 : ð55Þ

For λ ¼ 1 one has the round AdS3 metric and λ ¼ 2
corresponds to the flat space.
Finally, let us note that the following restricted version of

the general Kundt solution of TMG reported in [25],

ds2 ¼ 2dudvþ
�
1

2
R −

1

9
μ2σ̄2

�
v2du2

þ
�
dρþ 2

3
μσ̄vdu

�
2

þ du2; ð56Þ

also solves MMG since the traceless part of the J-tensor
reads

~Jμν ¼ −
1

4

�
Rþ 4

9
μ2σ̄2

�
~Rμν: ð57Þ

IV. CONCLUSIONS

We have studied the consistency of the field equations of
MMG by computing the on-shell vanishing of the double
divergence for both the matter-coupled and the source-free
theories. We have also found a large class of solutions to
MMG equations that are also solutions to the TMG
equations. These solutions have constant scalar curvature
and are of type-O (here, locally Einstein metrics such as the
BTZ black hole), type- N solutions and type-D solutions in
the Segre-Petrov classification. We provided some explicit
metrics that are called squashed AdS3. Since MMG theory
is free of bulk and boundary unitarity conflict, it is a good
testing ground for ideas regarding the holographic descrip-
tion of gravity. So we expect that the large classes of
solutions we have provided will be useful in this context. It
would be interesting to see if there are some solutions with
nonconstant scalar curvature.
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