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Bubble-wall Casimir interaction in fermionic environments
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We consider the Casimir interaction mediated by massless fermions, between a spherical defect and a flat
potential barrier, assuming hard (bag-type) boundary conditions at both the barrier and the surface of the
sphere. The computation of the quantum interaction energy is carried out using the multiple scattering
approach adapted here to the setup in question. We find an exact integral formula for the energy, from
which we extract both the large- and short-distance asymptotic behavior. At large distance the fermionic
contribution is found to scale as L3, in contrast to that of electromagnetic vacuum fluctuations that,
assuming perfectly conducting boundaries, scale as L™*. At short distance, we compute the leading and
subleading contribution to the vacuum energy. The leading one coincides with what it is expected from the
proximity force approximation, while the subleading term gives, contrary to the electromagnetic case, a

positive correction to the proximity force result.
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I. INTRODUCTION

In 1948 Casimir predicted that two flat and perfectly
conducting plates would modify the vacuum fluctuations of
the electromagnetic field and induce an observable force
between them [1]. This setup was difficult to unambigu-
ously test experimentally at the time [2], and the first
conclusive observation came many years later, in fact, for
the different configuration of a sphere near a plate [3]. It
took some more time to conclusively observe the Casimir
force between two plates, which was, eventually, achieved
a few years later [4] (see Ref. [5] for a review).

Much of the work that followed Casimir’s conclusion
focused on the electromagnetic vacuum fluctuations and
different geometries (see Refs. [5]). However, the parallel
plates setup was just one specific example of the more
generic deformations in the quantum vacuum that bounda-
ries can produce, irrespective of the nature of the quantum
fields. The key feature is the presence of massless (or
quasimassless) quanta that induce long-ranged correlations,
suggesting that quantum vacuum effects may be relevant in
fermionic environments. The analog of the electromagnetic
Casimir effect should, in fact, occur in condensed matter
systems, like in quantum liquids [6], or when long-range
correlations exist due to Goldstone modes of a broken
continuous symmetry, as in superfluids [7,8].

One particularly exciting example is associated with the
presence of defects in quantum Fermi liquids, and with the
possibility that high-precision experimental manipulation
of ultracold atomic systems [9], where defects can be
controlled in a variety of ways, may offer novel tests of
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quantum vacuum energy effects and, for instance, provide
new constraints on hypothetical submicron interactions.
Other physical setups relevant to the fermion Casimir effect
include, for instance, carbon nanotubes [10,11], graphene
[12,13], nuclear structures [14], and neutron star crusts [15]
(see Ref. [16] for a longer list of examples and references).

The simplest setups analyzed have, so far, ignored the
structure of the defects and focused on one-dimensional
boson and Fermi systems with defects treated as delta
functions in the adiabatic approximation (see, for example,
Refs. [10,16,17]). In Refs. [16], it was found that, for a
generic (interacting or noninteracting) fermionic back-
ground, the Casimir force between the impurities oscillates
as a function of the separation. The similar problem of
calculating the Casimir interaction between two scatterers
immersed in a one-dimensional massless fermionic back-
ground has also been analyzed in Ref. [10], using a force
operator approach, with the defects modeled by two delta-
function potentials. A similar oscillatory behavior has been
found too, however, as a function of relative polarization of
the two scatterers, while the dependence on the distance
turned out to be monotonic (for fixed polarizations).

A fuller understanding of the Casimir effect mediated by
fermions should include the structure of the defect and
extend to higher dimensionality. This class of problems has
been analyzed, for instance, in Refs. [18], where the
properties of systems containing one or more fermionic
bubbles (almost spherical defects immersed in a homog-
enous fermionic environment) have been discussed. The
Casimir energy of a system composed of two, three, and
four spheres in a fermionic background has been analyzed

© 2015 American Physical Society
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in Ref. [18] in the semiclassical approximation and led to
the suggestion that in many-body Casimir interactions, the
two-body ones dominate at small separation.

In the present work, we wish to consider the related
problem of computing the Casimir interaction between a
defect and a potential barrier encapsulating a massless
fermionic system. Following Ref. [18], we model the defect
as a spherical bubble, and both the bubble and the barrier as
hard walls. The geometry of the system is that of a sphere of
radius R, centered at the origin, close to a plate of surface
area H x H located at z = L, at a distance d from the
sphere. Since we are considering the case of a defect whose
size i1s much smaller than the surface area of the wall, we
shall assume that R < H.

Despite the simplicity of the setup, the problem of
studying the Casimir interaction between a sphere and a
wall is not straightforward and has been subject of many
analyses that have focused on the scalar and electromag-
netic quantum vacuum fluctuations [19-27]. While the
leading term in this interaction at short distance can be
obtained easily using the proximity force approximation
[28], going beyond is difficult.

The increasing precision at which Casimir force mea-
surements can be performed called for more accurate
computations and for efficient ways to go beyond the
proximity force approximation. An especially advanta-
geous one is based on the multiple scattering approach
and has offered a systematic way to compute the Casimir
energy between two compact objects of arbitrary shape
[19-27]. Results have covered a variety of cases, mainly for
the scalar and electromagnetic fields (see, for instance,
Refs. [22-26,29] or Ref. [27] for reviews). The beauty of
the multiple scattering approach is that it is physically
transparent, since the interaction energy is expressed in
terms of a multiple scattering expansion (waves that scatter
back and forth between the two objects that are interacting).
It is also of straightforward numerical implementation,
and it allows for a systematic way to extract subleading
corrections to proximity force results.

For the sphere-plate configurations, the multiple scatter-
ing approach has been adopted to obtain the scalar Casimir
energy beyond the proximity force approximation has been
worked out in Refs. [30,31]. Results can be summarized in
the formula EXY/EXY, ~ 1+ 6*Yd/R, where X and Y
represent the boundary conditions imposed at the plate
[X = Dirichlet (D), Neumann (N), Robin (R)] and at the
sphere (Y = D, N, R), respectively, and Exy, = pXYR/d>.
The numerical coefficients are pPP/NR = _73 /1440,
pNP/PR — 773 /11520, 6PP/NP =1/3, PR =1/3 4
80(3a —2)/(72?), and "R = 1/3 +20(3a —2)/7* (a is
the Robin parameter). For the electromagnetic field, the
Casimir energy beyond the proximity force approximation
has been computed in Refs. [31,32] for perfectly con-
ducting boundary conditions, leading to E"Mx
—-m*R/(720d*)(1 + (1/3 = 20/#%)d/R).
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II. FERMION TGTG FORMULA

While the multiple scattering approach has been sys-
tematized for the electromagnetic and scalar Casimir effect,
only limited attention has been paid to the fermionic case.
The possibility of high-precision Casimir effect experi-
ments in fermionic environments (for instance, in ultracold
atomic systems [9]), provides a natural motivation to carry
out more precise computations, beyond proximity force
results.

As shown in Refs. [21-24], the multiple scattering
approach allows us to express the Casimir energy in terms
of transition matrices (associated to the interacting bodies)
and the propagators, thus offering a precise computational
prescription, and, in the following, we adapt this approach
to our case. The formal expression for the fermion Casimir
energy takes the usual form

where N = T!'G'?T?>G?! and ¢ is the imaginary frequency.
The matrices T/, i = 1,2 are the transition matrices
associated to the boundaries (the sphere and the wall in
our case) and G represent the translation matrices.
Formally, aside from the change in the overall sign, in
the expression above (also called the TGTG formula after
the work of [21]), the nature of the quantum fields is
encoded in the matrices inside the determinant. The
matrices T’ are related to the scattering matrix of object
i and can be computed by matching the boundary
conditions imposed on object i. The translation matrices
G relate the basis of wave functions of object i to the basis
of wave functions of object j. Expression (1) is valid
at a formal level and deriving an explicit expression reduces
to calculating the above matrices and taking the determi-
nant. Here we will follow the procedure outlined in
Ref. [27], where a prescription to compute the matrices
T' and G" using the mode-summation approach has been
developed.

The fermions in our computation are massless spin-1/2
fermionic fields y satisfying the Dirac equation,
iy*V,w =0, where V, =09, +T,, and I', is the spin
connection. On the boundaries of the sphere
(B = sphere) and the wall (B = wall), we impose
(1 + iy*n,)y|p = 0, with n, being the unit outward normal
vector.

In order to match the boundary conditions and find the
transition matrices, one needs to express the solutions in
terms of a spherical and plane wave basis, respectively
for the sphere and the plate. Explicit forms are known for
spherical waves (see Ref. [33]):
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where each mode is characterized by the quantum
numbers (j,m), with j=1/2,3/2,5/2,... and m =
—j,—j+1,...,j—1,j. The superscripts (+) and (—)
indicate, respectively, the positive and negative energy
modes, €2, represent the spherical harmonic spinors
(see Ref. [33]), and k = w/c. For convenience, we have
adopted the notation * = reg(x = out) for regular (out-
going) waves,

ege N _ |7 _ [P0

(@)= 1/ 2_ZJ1+%<Z>’ [z = Z_ZHH%(Z)’ (3)
with C}® = i, et = 7i/*3/2. The plane waves can be
parametrized in terms of the momenta perpendicular to the

plate, kJ_ = (kl,kz),

(£)x 4 (F)* ik x+ikyy—isgn, /K> —k2 zFiwt
Ve a = Akl.a e 2me + ) (4)

where k| = \/k} + k3, sgn, = 1, sgn,, = —1, and
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other, with the coefficients of this transformation defining
the transition matrices. Imposing the boundary conditions,
and solving the resulting equation for the transition
coefficients allows one to find T! and T? (details for
this and all the other calculations are reported in
Appendixes A-F). These are block-diagonal matrices in
(j,m) and k| respectively. The (j,m) block of T! is a
diagonal 2 x 2 matrix of the form

(£)
o (T O
me &)
0 ij
where
7 _ 1;(kR)Fil ;1 (kR) ()
" K ,(kR) * iK1 (kR)’

with ¥ = ik. The k, block of T? is

sin @ e~
9
cos b,

) . cos 0
T =7 ( — sin @, '

where 0, and ¢, are defined so that \/k*> — k%> = kcos 0,
ky = k| cosqy, and ky, = k| singy.

The translation matrices G'> and G'? are defined by the
relations

(7)

Vi 1 (¥ @) wﬁ?{eg<x,w>
(£),reg /s Z ZG/’" ki ),reg ’
k.2 (x',w) ]m,2 (x,w)
+),oul +),oul
.g'm?l (x.0) Hz/ d"k_ o1 (x) qu)l (¥ 0)
+),0u - 2k, jm +),0u ’
" (x.) (2) (@)

where X’ = x — L, L = (0,0, L). The computation can be
performed following the idea introduced in [34] for the
computation of the corresponding translation matrices for
scalar and electromagnetic fields. We find the following
result:

(Jj+ m)P (cos 0;) —Psz(cos 0))e
)
i(j—m+ 1) (cos o) in%z(cos 0)) e~
(J +m)P (cos@k) i(j—m—+ l)P (cosHk)
(10)
P;"_f(cosé’k)e“”k —zP (cos&) i
2
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Combining the above expressions [using some identities for the associated Legendre functions Pj’(z), noticing that the
argument in the determinant is real, and the contribution from the positive energy modes and negative energy modes are the

same], one can obtain the Casimir energy written as

ECHS:—ﬁ/mdélndet(l]—M), (11)
7 Jo

where

(+)
Mjm jm = 5m m' l—ﬂ: (] m) (], m) - ! / dO sinh 66—2KL cosh@
’ w2 (] =+ m)!(] + m)! 0 _T(+) 0
jm

m m 1
(Jj+ m)Pj_;(cosh 0) P "(cosh @)

_1
2
X

. m—1 _ pmty
(j—m+ I)PH% (cosh @) Pj+% (cosh )

leading to an exact (integral) formula for the fermion
Casimir energy between the wall and the sphere.

III. ASYMPTOTIC BEHAVIOR

While (1)—(12) can be used to compute numerically the
fermion Casimir energy in our setup, here we are interested
in the asymptotic behavior at large, and, in particular, at
short distance, both of which can be extracted from the
main integral formula at the price of some lengthy
computations.

First of all, we can compute the Casimir interaction
energy at large separation, i.e., L > R. In this regime,
the dominant contributions are those with j = 1/2 and
m = +1/2, and a straightforward computation gives

hcR>

ECaS = 7TL3

, (13)

leading to an attractive interaction at large distances. It
seems interesting to notice that the fermion Casimir energy,
at large distance, falls off as L3, less rapidly than the
electromagnetic contribution that decays as L™*. Compared
to the scalar contribution, instead, the behavior in the
fermionic case is intermediate between that of a scalar with
Dirichlet boundary conditions and that of a scalar with
Neumann boundary conditions, in which cases the Casimir
energy decays as L~2 and L~*, respectively.

The more interesting (and computationally more tedious)
limit is that of the Casimir energy at small separation,
d < R, beyond the leading (proximity force) approxima-
tion. In the present case, taking j as the main quantum
number and using the invariance of the matrix M, i,
under the change m — —m (this implies that the next-to-
leading-order term is of order d smaller than the leading
term), a lengthy computation returns

med

(j/=m+1)P, 3(cosh®) (j + m)Prf,l_l%(cosh 0)
I o (12)
m+% _ pmts ’
P, o (cosh ) Pj,_% (cosh )
Tn3hcR 1 20]|d
Eppo = — 24 0). (14
Cas T 288042 < {3 7712} R > (14)

It is easy to check that the leading term above coincides
with the proximity force result, and gives rise to an
attractive interaction, while the subleading term corrects
the proximity force result by a positive amount. Contrary to
what happens at large distance, in this limit the fermion
and electromagnetic (for perfectly conducting boundaries)
contributions are both attractive and scale in the same
way. Interestingly, the correction to the proximity force
result is, for the present setup, positive, in contrast to the
analogous correction for the electromagnetic case with
perfectly conducting boundaries, for which the correction is
negative.

IV. CONCLUSION

The possibility of manipulating defects in condensed
matter fermionic systems has triggered new curiosity in
understanding the analog of the Casimir energy in a
fermionic environment and motivated the present work.
In this paper, we have adapted the multiple scattering
formalism to derive the Casimir interaction energy between
a spherical defect and a wall mediated by massless
fermionic quanta. We have obtained an integral represen-
tation for the quantum vacuum energy that is divergence
free and valid at all distances. From this integral formula,
we have extracted the leading contributions at both large
and short distance. The behavior of the Casimir energy at
large distances scales as L™> and dominates over the
electromagnetic contribution (for perfectly conducting
boundaries), for which the energy scales as L™*. The more
interesting result comes from the short-distance asymptotic
behavior, where the leading-order contribution is found to
coincide with the result obtained from the proximity force
approximation. We have also derived the correction to the
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proximity force approximation, that, in contrast to the
electromagnetic case, turns out to be positive. As a by-
product, we have derived the translation matrices, relating
the plane waves basis to the spherical wave basis, a result
that might be useful in other contexts. While the force is
attractive at both small and large distance for the present
choice of boundary conditions, it is important to ask how
the result changes for different boundary conditions (for
instance, introducing a phase at one of the boundaries), as
well as when thermal effects are switched on. Work in this
direction is in progress.
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APPENDIX A: EXPANSIONS

A generic solution to the Dirac equation y*) can be
expressed as a superposition of the solutions presented in
the main text [formulas (2)—(5)]. In the region between the
sphere and the plane, ) can be represented in two ways.
In terms of the full set of the spherical solutions system (in
spherical coordinates centered at O):

(£),out

jm, v jm,1 (X a)) + bﬁm)Zl//jm)Zom(X’ CO)),

Le,):

S @)+ di s (K @),

Here X’ = x — L, L = Le,. The two representations are related by translation matrices V and W:

T + I I
Vi) = >0 Y (Vv xe) + VERW L (x @),
Jo3 . m=—j L
(E)aeg (g1 ) PEELI2, (g Y22, () e
l//kL (X ’a)) Z Z ( jm, kLlI/‘/m,l (X a)) + jmKk | jm,2 (X’w))’

13

vy

() out 2
l:l/]ml (X 60 H/

ng)zom (x.0) = H’ /

/ kL]m kLl
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kL/m

+),0u +).,21 +).ou
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(i).out
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Using the above expressions, we obtain the following relations

e

jm,1
(+
ajm,2

4

= XX

+
dE(J_.l j=

—

77

Matching the boundary conditions on the sphere gives

m=—j,—j+1,...,j-1,j

)11 (£).12 (£)

Jka_ Vimi, | [ €k
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(£) (£)
(bjm,l) _ __ﬂ_(i)(ajm,l>
+ Jm + ’
b;m?z aﬁ'm?2
while solving the boundary conditions on the plane gives

() (+)

koa ) ) dic,
+ Tk +
CLZ di«ﬁg

These enter the Casimir energy as written in the main text, formula (1):

Ecp = —— / ngTrln £ (ig)),

where
pE (£).12 ().11 (£).12
H2 Jm k| ij,kL _ﬂ_(i) WkL,j’m’ WkL,j’m’
Jm J m’ pE2 )2 kg w2
jm.kL JjmK k,.j'm k,.j'm'

where the following correspondence
T =[Tp), T =[N]. G%=

11 12 11 12
V]m k, ij k| WkL.j/m/ kaj/m'
21
y21 Y22 ’ G" = w2l w22
jmk | jmKk | k,.j/m k,.j/m

APPENDIX B: TRANSITION MATRICES

The first task is now to use the actual boundary conditions,

1s understood.

(1 + iy””u)Wlboundary =0,

to derive an explicit expressions for the matrices T, and Ty .
On the exterior of the sphere, using

(1+ iy )y, =0
gives

jmlcreg( (kR):FJj+1(kR))+b (kR))
b CFE (11 (KR) £ (kR)) + b, Com(HY <kR>iH§”<kR>> =0,

Lo (B (kr)FH)

jm,1 J+1

C;eg — i—j-‘ri’ Cout — Elﬁ-z
from which we obtain
T I.(kR)Fil ., (kR I.(kR) + il ., (kR
T® — jm (£).0 _ j(K )Fi j+1(’< ) (#)2 _ j(K ) lj+1(’< )
jm 0 g2 im " K,(kR) £ iK,, (kR)’ im " K,(kR)FiK ;1 (kR)

jm

which gives formula (6) in the main text. At the plane,
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(1-ip )™ =0

using
(£) | (F)reg s (£) | (F)reg s _ c ik, x+ikyy—ikyZ Fiwt
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we get (o; are the Pauli matrices)

(1 N %:F io'3(k10'1k—|— k262)>c(i> _ (1:':%:': iag(klalk+ kzﬁz))D(i)’

from which we can obtain

(&).11 (#),12

_l]_(:t) o TkL Tkl -4 \/kz—ki_l_klo'z—kzdl

R WAL COR= 2 ik k ’
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or explicitly

N
e

ik

j(ky — iky)

T2 l( 1 2 ’
k| + k

5 ik +iky)

TkL—iT.

The above expressions reproduce formula (7) in the main text.

APPENDIX C: TRANSLATION MATRICES
1. Matrix G*!

The much more tedious task is to find the translation matrices G'> and G*', which will be explained in the present section.
In the following we will use

k =k, + ke, +ke,, r = xe, +ye, + ze,,

with k, = ksin 6y cos ¢, ky, = ksin 0y sin ¢y, k, = kcos 0;.
The first step of our procedure consists of defining the following differential operator P;,,,:

B m (2L L (L=m)! (O + PO\ () (O,
Pim = (=1) m< ik Proa)
REE L= m) (0= i0 N\ () (O

Pl,—m_m( ik Pl E .
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One has

Pine™™ = Y10 o)™,

Pomjo(kr) = ilj, (k)Y 1 (0.0).  Ppuh (kr) = ith(" (k)Y (6. ).
. _ |7 (1) LT e
i@ =3 m@. @) =[5 H ().

which allows us to express the mode functions given in formula (2) of the main text as

jtmp
\ 2 Pi-tm—t

=mp.

() _ orpFion—j+i T fo(kr)

Yimi =4 2 — 0 )
] 1/

/557 Pjihm-t

Jj+m+1
+ P m+%

2j+2 1 jt3.
j—m+1
2]+2 PH%.,m—%
j+m+17)
o 2j+2 1 jtgmy
+).* il J M3
o2 = —Cemimici itk
J+m73
J=3m=3
+,/Cm
P] m+2

where f7(kr) is defined in formula (3) of the main text. We may now use the following integral representation

ho(kr) = , 720,

exp i kr / gk / dk ikxx+ik).yii\/k2—k§—k_‘2.z
T ikr 2x kK2 — k2 — k2
X y

and express the spinors y/(i)’om

im1 (X, o) after some calculation as

(Jj+ m)P] (cos 0)

/ P@ (cos 0, e
ij lOut(X Cl)) Coute:Flwt —j+2 . / dk / dk e’ m—— o
+(j—-m—+ 1)P (cos&k)

:FPj+I (cos 0y ) e

X

pikaxtikyy+iy R
2 2 2
ky/k* —ki— ky
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Using the definitions of #; and ¢, given at the beginning of the section, one finds

L
(j+ m)Pj_;(cos 0;)

1 0

Pj +2(c059 )e' 1 0 1
=+ m)PT__f(cos 0;) N s - (cosOp)e | 4 ki=ik,
:I:(j—m—l—l)P._f(cosek) ’ 7 12‘ _
A FY

:FPm+1 (cos By ) e

Recalling that

),0l + +),21  (4),0
Jm 1 m ) = Hz/ / 27[ Wf(L ]m E{l) om( /, w) + Wﬁ(L),ijE(j.Qm(X/, a))>7

and using the explicit expression for the plane waves [formulas (4) and (5) in the main text], we arrive at

()01 _ (j—m)! 1 i (m=Ho P i/ L
o = [ty U P eos eV
(£).21 3 (j—m)! 1 i(m4) g, pMt i/IP—I2 L
Wy =— tnh)eep 0 1o,
k,.jm 2H? (.] ¥ m), X /—-———~k2 = ki e = (COS k)e
Obtaining Wﬁ)jlnf and Wfi)jzrf follows from similar steps, leading to
.3 .
(£).12 17 (.] - m)' 1 i(m—1) ;
Wyt = — Pr(j — 1 0
k. jm 22\ G+ m)k P—kz—kie D2 (j—m+ 1)P" J+h (Cos )
3 - 1
w22 iz [ —m)! eilm+s >‘”*P (cos 0y).

ko TP\ m) R

Combining all the Wf?j'fn gives

(£).11 (£).12
GZI.(i) B (Wlu .Jm WkL-jm
ki.jm 21 4).22
Wiin Wiin
: - .
. 2 [(j=m) 1 . (Jj+ m)P]._% (costy) i(j—m+1)Pj,1,,_i(cost)
2H? \| (j+m) ke /iZ =12 mt} : - ’

Pj_;(cos Oy )e'?x —iPH%,m%(cos 0y)e'

as presented in the main text in formula (10).

2. Matrix G!2

In order to find G'2, we may proceed as follows. First of all, we use the integral representation

. sin(kr 1 [2= m . .
Jo(kr) = k(r )_EA d(pkA do sin O e™ T
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to express the regular spherical solutions as
(Jj+ m)Pj (cos 0,) el
m-+-1 ;
pr 0 i(m+h) o,
(£).reg 1C8 ,Fiwt —J+ (J m), Zﬂ j_% (COS k)e i ik-r
Wini (X,@)=C;"e 2— doy d@k sin 0, 1 e'rr,
gt || (Jj + m)! £(j—m+ 1P 7 (cos ;) el Do
my i(m+1) g,
$PJ *(cos Oy )e'" 2

(j—m+ 1P, ol (cos@k) im=)e

N —m)! [2r —P']n:, (cos 6, )elm e '
llfjmz *(x,0) = C;egejF’"’ti_’ / d(pk/ do, sin 0, : 1 ik
877.'2 (J + m) £+ m)P;.n__f(COS ek)ei(m—%)(pk
2

:I:P;."_t%(cos 0,)elm e
2

We now introduce the following operators

j+m
\/ 2j P j—p—m+}

_ [izm
pE (=)= 2 b
jm,l 2 J — ’
* 2j+2 7) +3—m+h
1
+ H2—;T£ ,Pj-‘r%,—m—%
j—m—+1
12j+2 7) jH—m+
j+m+1
'P(i) B (—1)’"_% J2;i2 ,Pj-F%.—m—%
jm.2 = 2 j+m ’
77 —Lom+)
73]__ —m=}
that satisfy
4 o e:an)t
Pt Wi @)l = (<) T 58
+ +),
,Pﬁ"m)' 2 “I/;m?feg(xv o)|x—o =0,
+),
P§ m1’ Em?zreg(wiﬂx:o =0
1), B e:Fm)t
,Pﬁm 2" Em?Zreg(X’w)lx:O - ( 1) j+21 Ax 5jj’5mm"
Recalling that
(+). _ (£).11 (£), (£).21 (&),
l//ki reg(x ’ a)) - Z Z (ij,kl l//jm,lreg(X a)) + V]m k, ij 21“31(;()(7 CO)),
j=E3 om=—j—jtl...j-1j
Vst o) = > Y (Vi x e) + Vi Ze T (x 0)),
j:%% m=—j,—j+1,....j-1,j

(£).ij

we can use the above relations for the operators ’P( ) to extract the matrix elements V, kL
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+),11 _
VIR =(=1) 7 dme o Pl D (x - L)l

|
(1) U0 G )P cos et PR,

U+ >
Vi == (=17 it Py (x - L)l
=(=1)""*2V/4zi %(} -m+ I)Pﬁ, (cos 0 ) e im=2vw gl /K —KIL
Vi =(-1)7 4n7> w( é“g(x—L ®)lx—0
Vit =—(-1) f+z4mem1>,m2 wffj*;eg(x —L.o)l

i m)!
:(—1)‘””’%\/4_7ri —(J m)'Per’(cosH) —i(m+])er gin/K=kI L

(j+m)l 7
Combining everything we arrive at

(£).11 (£).12
(£).12 k. .jm Vki Jm

Jmk (£)21 ()22
k,.jm kl Jm

1 +1 .
/ j+m)P" *(cosby) —P"" 2(cos O ) e ix
— m+,, /4 ™ =2
o m—1t .yt —ip ’
i(j—m+ 1)P (cos 0y) sz+% (cos @) e
as reported in formula (9) of the main text.

APPENDIX D: MATRIX N

The matrix N can be obtained by combining the translation and transition matrices leading to

1;(kR)Fil ;1 (kR) 0
£y (q)n (j—m)(j —m)! | Kj(kR) £ iK,(kR)
jmjm = (+m)!(j + m)! 0 I;(kR) £ il ;| (kR)

o 1 / A B .
X/ dklkl lﬂém,m < >€21\/k2—k2LL7
0 2% /IF—KE \C D

where
A=(G+m)(j —m+ l)P;" | (cos 0,)P ,+1(cos 0) — ;."+l(cos 0,)P") i (cos 0),
2 p

B=i((j+m)(j +m) T;Z(COS 6x)P W,l I(COS ) + P (COS )P, i 1(005 6)).

C=i((j-m+1( -m+1)P"] ol (cost) (cos@k) + P (cos&k) ,L (cosby)),
ph
D=—(—m+1)(j +mP" ol (cosek) _i(cosO;) + P (cosek) fl (cos@k)
2
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Using the following relation

(j—-m+1)(j —m+ l)P (cos Qk) (cos 0) + P (cos Qk) (cosHk)

=({+m)) +m)P (cosGk) 7,1 l(cos@,{) +P (cosek) g ,(cosek)

we can prove that B = C. Then, noticing that

(A B) (j+ m)Pr."__f(cos 0r) —P;"_?(cos 0y ) e~ (j/-=m+1)P ,+1(cos 0, i(j+ m)P, ](cos 0)
¢ D i(j—m+ l)P (cos 0;) iPTJ:%(cos Oy ) e P;',li, (cosO;)e —iP;.r,l_f(cos 0y ) e’
2 2
WEe can express ij jp I terms of
- (—l)m n dl+m
P} (z):W(zz—l)zm(zz—l)l, m >0,
_— o (=m)_
P(e) = (1) s PG
as
1;(kR)Fil 1 (kR) 0
s G (7 —mn | K.(xkR) £ K, (kR w©
Mjim o =F L0 m (.] m)'(]./ m) ' J< ) J+1( ) . / d0 sinh HE_ZKL cosh@
2 (J+m)(j +m)! 0 _Ij(KR):l:le+1(KR) 0
(j+m)P"F(cosh®)  PE(coshd) \ [ ('~ m+ 1)P’?}‘§(cosh 0) (J +m)P)(cosho)
X 2 Jo2 2
. =m—} =m+L m+% =m-+3% ’
(j—m+ 1)Pj.+;(cosh 0) —PH%Z(cosh 0) Pj,+12(cosh 0) —Pj.,_;(cosh 0)

where we have defined

e ((1) ?)NC) i)

From the above expression, it is straightforward to prove that

+ _ —

Jjmj'm’ T jm,j'm’?
and that
+ _ oyt
Jo—myj —m T T jmsjlm?
from which it follows that
hc 0
Ec,s = ——Re dkTrIn (l] — M+), (Dl)
T 0

from which formulas (11) and (12) in the main text can be obtained straightforwardly.
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APPENDIX E: SMALL SEPARATION ASYMPTOTIC BEHAVIOR

In order to compute the behavior of the Casimir energy at short distance, we first expand the logarithm

he= 1 0
ECas = 76. Z RGA dx Z z Z Z ]om Jjim* M]tm Jom?
s=0 m=

33, Jo=|m| j1=|m| Js=Im|

and let

V1 -12

which allows us to write

heo~ 1 /1 dr /°° /00 /°° /
Ecos =— Re | ——— dll dm dny... dnM; M
cas J'[R;S—i—l o 2VI—22Jo . L - Litny M ien -

Using the following representations

1
. 1\ 1=z z
P'ﬁ_l%(cosh 6) (+m—1)! : 1 U520 2 dipcos2i=1-2k sin pe2itm=3o
-4 KI(j— L= k).
2 k=0 (J —2~ ) -3
1
1322 z
P (coshg) = U m)! S et [ dpcostilHgsintkpetion e,
i3 n Kl(j—1—k)! -
k=0 2 2
. ' j+% z
Pr.nj(cosh 0) = bm)! . 11 etk / " dpeos 1K psin?k pe2im=3)e,
It b3 k=0k!]+§—k)! -z
1
) 1)1 2 1 5
P (cosh ) = GAm+1) _— (j+4-2k)0 / dpcos¥ 1~ psin?t peitntho
J73 kzok!(]+§—k)' -z

we obtain, after some algebra,

i
M timy = =5V m =)+ niy = m)U+ g+ m) L+ niy +m)!
Iy, (@) — i11+n,+1(w) 0
K (@) + iK n: [0 o0
I+ ,( ) I+ ,+1( ) . / d6 sinh @e—2(1+e)wcoshd
Il+n,~(w) + lII+ni+1(w) 0

0 - ;
Kl+n,-+1<w) - 1K1+n,-+1(a’)
1 - 1

Z 204n4ng —2k=2k)0
K+ n+ 5= k) = K (4 iy + 35— K)!

el

qu

RN O

z A B
. : 2 _
dpcos? 212k psin?k g e?ime / dep cos? 2172k g/ sin?K ¢f o2ime’ (C o)

_z
2

X
\TT

2
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1 cos ¢’ it o
A=(l+n+=-—k (I +niy —m+1)e” @) 4 (I +niy +m+ 1)elte)],

B=(t4mt i) (14 m o n) — |
N ) A cos @ cos ¢’

e~ilote) — oilo+d)],

C=e’cospcos@[(I+n—m+ 1)1 +n . —m+1)e” @) — (I +n;+m+ 1)1+ niy +m+1)el@re)],

cos @
/

1
D=1 ; ——K
< ity )cosqo

We then make the following substitutions

T

0+ 0+0, where sinhf, =

1-72

and, with the aid of a symbolic manipulation program, we
expand up to first order in £ keeping in mind that [ ~ 7!,
n;,m ~£‘%, @.¢,0~ \/E For the term involving Bessel
functions, we need to make use of the Debye asymptotic
behaviors

1 (@)

) w) |
IU(VZ) \/%(14—22)7'1 <]+ D + >’

KD@Z)N\/;:%(F@JF...),

where
Z
nz) = V1422 +log————,
1+ V1422
1 t 58
t = N 1) = ——— N El
@O=g— w=g=3  E)
and writing
. _ i (@)
Iy (@) =il 0 (@) 110, (@) ! Lin; (@)
Kipi(@) + K 1(@) K, (@)1 4 iKI’;”i*E(a)))
I+n; o

After integration, we finally arrive at

o 17°heR 14 |L_201d
Cas™ ™ 880d> 3 22| R)

(1 4+ n; —m + 1)e™ @) 4 (I n; +m + 1)ellete)],

APPENDIX F: PROXIMITY FORCE
APPROXIMATION

The Casimir energy density on a pair of parallel plates
separated by a distance d is given by

3 Trnthc
288043

Hence, the proximity force approximation to the Casimir
energy between a sphere and a plate is

E(B,‘lz:l? = // dXdyEyZas(L Y R* —x* — y2)
x?4y?<R?
R
= 271/ drr€El (R+d -V R? = r?).
0

Eby(d) =

Let

R+d-VR* -1
v = .
d

Then

PFA (R+d)/d I
EGR =2nd dv(R +d — dv)E¢, (dv)
1

~21Rd / " dvell (dv)
1

Tm3hcR [ 1
a0 ), U
_ IrhcR
28804%

~

This coincides with the leading-order term we obtain in the
previous section.
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