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Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge
dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term,
absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge
invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely,
we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the
Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it
is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that
the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the
renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence
of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters,
although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order
calculations based on gauge independence and determine how powerful they are.
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I. INTRODUCTION

The Ward-Takahashi [1,2] and Slavnov-Taylor [3,4]
identities are relations among the correlation functions of
quantum field theory, and follow from gauge and global
symmetries. They are usually studied in theories that are
manifestly nonanomalous, that is to say admit a manifestly
gauge invariant regularization technique, for example QED
and nonchiral Yang-Mills theories. Chiral gauge theories,
such as the standard model, are potentially anomalous,
because they do not admit a manifestly gauge invariant
regularization technique. The Adler-Bardeen (AB) theorem
[5–7] is the main tool that can establish whether a
potentially anomalous theory is in the end truly anomalous
or nonanomalous. It ensures that, if the gauge anomalies are
trivial at one loop, they can be cancelled to all orders.
The potentially anomalous theories that are actually free

of gauge anomalies thanks to the Adler-Bardeen theorem
will be called AB nonanomalous. In this paper, we study the
Ward identities of the AB nonanomalous general gauge
theories, including the nonrenormalizable ones, and clarify
the relation between gauge invariance and gauge independ-
ence. Our investigation upgrades the ones available in the
literature in several respects.
Gauge invariance and gauge independence are two

different concepts, to the extent that a functional can be
gauge invariant and gauge dependent at the same time. For
example, the renormalized action of non-Abelian Yang-
Mills theory contains a term propotional to ZA

R
Fa
μνFaμν,

where Fa
μν is the field strength and ZA is the wave function

renormalization constant of the gauge field. This expression

is gauge invariant, but not gauge independent, because ZA
may depend on the gauge-fixing parameters.
Yet, the two concepts are related to each other, and

crucial to prove perturbative unitarity. Gauge invariance is
necessary, because its violation makes unphysical degrees
of freedom, such as the longitudinal photons, propagate. On
the other hand, gauge independence is important, because it
allows us to switch back and forth between gauges that
exhibit perturbative unitarity, but do not have good power-
counting behaviors (such as the Coulomb gauge), and
gauges that have good power-counting behaviors, but do
not exhibit unitarity (such as the Lorenz gauge). The
Lorenz gauges are very convenient to make calculations
and prove theorems to all orders. They make renormaliz-
ability manifest, when the theory is power-counting renor-
malizable. When the theory is nonrenormalizable, they
make the locality of counterterms manifest. However, the
Lorenz gauges hide unitarity, because they introduce
unphysical, propagating degrees of freedom, such as the
longitudinal components of the gauge fields and the
Fadeev-Popov ghosts. This is where gauge independence
plays a key role, because it ensures that every physical
quantity can be equivalently defined by using the Coulomb
gauge, where the propagators have no unphysical poles and
perturbative unitarity is manifest. The equivalence of the
two gauges allows us to loosely say that “the unphysical
degrees of freedom of the Lorenz gauges compensate one
another and drop out of the physical quantities.”
Thus, in quantum field theory we need both gauge

invariance and gauge independence. If a theory is AB
nonanomalous, it is by definition gauge invariant. It is not
obvious that the Adler-Bardeen theorem also ensures that
the physical quantities are ultimately gauge independent.*damiano.anselmi@df.unipi.it
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Is it so, or do we need extra assumptions to ensure that the
physics does not depend on the gauge fixing? Among other
things, in this paper we answer this question by proving
that gauge invariance always implies gauge independence.
In our approach, the Ward identities of AB nonanom-

alous general gauge theories are corrected by a term that is
absent in manifestly nonanomalous theories. The correc-
tion is evanescent at the bare level but can generate finite
corrections at the renormalized level, by simplifying
some divergences. One of the main consequences is that
the beta functions of the couplings can depend on the
parameters introduced by means of the gauge-fixing.
However, the physical quantities are protected, and remain
gauge independent.
We study how the renormalized Γ functional ΓR depends

on the parameters introduced by the canonical transforma-
tions of fields and sources. Canonical transformations
encode field redefinitions and changes of the gauge fixing,
both of which are expected to have no effect on the physical
quantities. When we speak of “gauge dependence” we refer
to the dependence on all types of parameters introduced by
a canonical transformation, including those associated with
field redefinitions.
We work out how a canonical transformation on the

(bare) action S affects the renormalized Γ functional ΓR.
After the transformation, the theory must be renormalized
anew. We show that in this process of re-renormalization,
it is always possible to redefine the subtraction scheme,
by fine-tuning the finite local counterterms, so that the
transformed theory is also AB nonanomalous. Moreover,
the gauge dependence of the transformed ΓR is encoded
into a canonical transformation, up to evanescent
corrections.
This result allows us to prove that the physical quantities

are gauge independent. However, quantities that are useful
for intermediate purposes, such as the beta functions of
the couplings, are normally gauge dependent. Their gauge
dependence can be absorbed inside finite redefinitions of
the couplings.
In manifestly nonanomalous theories we are, to a large

extent, free to use a preferred subtraction scheme, such
as the minimal one, both before and after the canonical
transformation. The physical quantities and the beta func-
tions of the couplings are unaffected by the transformation
(see for example [8]). In AB nonanomalous theories,
instead, we can use a preferred subtraction scheme neither
before, nor after, the transformation. Before the trans-
formation, we need to choose a specific class of subtraction
schemes to take advantage of the Adler-Bardeen theorem
and cancel the gauge anomalies to all orders. After the
transformation, we need to choose (another) specific class
of subtraction schemes, to enforce the cancellation of
gauge anomalies again. In this process, some gauge-fixing
parameters move out of the gauge-fixing sector into another
unphysical sector, the one encoded by the choice of the

subtraction scheme. The result is that the beta functions are
gauge dependent, in general. Nevertheless, we can make
their gauge dependences disappear, if we specify the new
subtraction scheme even further.
Both gauge invariance and gauge independence can be

used to make powerful checks of high-order calculations.
As said, a consequence of our investigation is that in AB
nonanomalous theories, including the standard model, the
beta functions of the couplings are not completely gauge
independent. We show that, in spite of this, sufficiently
powerful checks of high-order calculations are still avail-
able. The reason is that the gauge dependence cannot be
arbitrary, because it cannot affect the physical quantities.
To keep track of gauge invariance through renormaliza-

tion, we use the Batalin-Vilkovisky (BV) formalism [9].
The gauge invariant regularization techniques commonly
used for manifestly nonanomalous theories are also con-
venient to treat AB nonanomalous theories, because they
minimize the number of terms that are potentially anoma-
lous. In this paper we use the dimensional regularization
[10], or any regularization technique that underlies the
dimensional one, such as the chiral dimensional (CD)
regularization of Ref. [11] and the (chiral)dimensional/
higher-derivative regularization of Refs. [6,7,11,12],
obtained by merging the (chiral) dimensional one with
the covariant higher-derivative regularization of Ref. [13].
We recall that the CD regularization is particularly con-
venient for studying nonrenormalizable theories, to avoid
certain ambiguities that show up when we extract the
divergent parts of the BV antiparentheses ðX; YÞ of two
functionals X and Y, as well as other nuisances that the
ordinary dimensional regularization is responsible for.
We also take the chance to revisit some known issues

under our perspective.
Before presenting our results in more detail, we com-

ment on the existing literature on related subjects, and
explain the upgrades we make. Most studies of gauge
dependence have been focused on renormalizable theories
[14], or nonrenormalizable, but nonchiral, theories [15,16],
where the problem is much simpler (see Appendix E).
We want to develop an approach that also applies to
nonrenormalizable chiral theories, to include the standard
model coupled to quantum gravity. In our opinion, it is not
necessary to wait for the ultimate theory of quantum gravity
to prove general statements about it. The other investi-
gations of gauge dependence we are aware of use the
so-called algebraic approach to renormalization [17]. The
main feature of the algebraic approach is that it does not
make use of an explicit regularization technique. Instead, it
relies on tools such as the “quantum action principle” [18].
We think that it is important to develop more standard

approaches to the problem of gauge dependence, like the
one of the present paper, which uses the dimensional
regularization or modified versions of it. For example,
anomalies have taught us that working without an explicit
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regularization may not be completely safe. Another ad-
vantage of using an explicit regularization is that we can
identify convenient subtraction schemes, where simplifi-
cations occur and several properties are easier to deal with,
to all orders in the perturbative expansion. Examples are
those provided by Refs. [6,7], where it was shown that in
suitable subtraction schemes the gauge anomalies auto-
matically vanish from two loops onwards, if they cancel out
at one loop. By construction, it is not possible to identify
special subtraction schemes in regularization-independent
approaches.
Now we state the main results of our investigation. We

study canonical transformations that are continuously
connected with the identity. Their generating functionals
have the form

FðΦ; K0; θÞ ¼
Z

ΦαK0
α þOðθÞ; ð1:1Þ

where θ denotes the “gauge parameters,” which are
associated with both changes of field variables and changes
of the gauge fixing. In the first part of our analysis, we
prove the main theorem, which states that if the theory is
AB nonanomalous at θ ¼ 0, after making the canonical
transformation (1.1) it is always possible to re-renormalize
the divergences and re-fine-tune the finite local counter-
terms, continuously in θ, so that the equations

ðABTÞ ðΓRθ;ΓRθÞ ¼ OðεÞ; ð1:2Þ

ðGDEÞ ∂ΓRθ

∂θ − ðΓRθ; h ~QRθiÞ ¼ OðεÞ ð1:3Þ

hold for arbitrary θ, where ΓRθ is the renormalized Γ
functional of the transformed theory and ~QRθ is a suitable
renormalized local functional. The right-hand sides of both
equations are (generically nonlocal) functionals that vanish
when the continued spacetime dimension D ¼ d − ε tends
to the physical spacetime dimension d. We denote such
functionals by OðεÞ and call them “evanescent.”
Equation (1.2) ensures that the theory is AB nonanom-

alous for arbitrary values of the gauge parameters. Thus, it
encodes gauge invariance. Formula (1.3) is the equation of
gauge dependence, and follows from the generalized Ward
identities. The equations (GDE) can be integrated to show
that the entire gauge dependence of ΓRθ can be absorbed
inside a (convergent, but generically nonlocal) canonical
transformation, up to OðεÞ. The results encoded in for-
mulas (ABT) and (GDE) are so general that they do not
require any particular assumption (see Sec. III).
We also derive the equations of gauge dependence at

the level of the renormalized action and show that RG
invariance is preserved by the canonical transformation.
A simple, but important application of the theorem is

to power-counting renormalizable chiral gauge theories

gauge-fixed by means of a nonrenormalizable gauge fixing.
We show that the theory remains renormalizable in a
nonmanifest form, because the parameters of negative
dimensions introduced by the gauge fixing do not
propagate into the physical sector. Another application
of the theorem is a crucial step in the proof of the
Adler-Bardeen theorem for nonrenormalizable theories [7].
In some situations, we can prove formula (ABT) for

arbitrary values of a certain gauge parameter θ within a
given class of subtraction schemes. Then, it is not necessary
to re-renormalize the divergences and the re-fine-tune the
finite local counterterms. Under the assumption that the
theory satisfies a certain cohomological property, which
is a generalized version of the well-known Kluberg-Stern–
Zuber conjecture [19], we can derive an more specific
version of equations (GDE), which reads

ðGDE2Þ ∂ΓRθ

∂θ − ðΓRθ; hHRθiÞ −
X
i

ρi
∂ΓRθ

∂λi ¼ OðεÞ;

ð1:4Þ
where λi are the independent parameters of the classical
action, ρi are constants that depend on λi and the other
parameters of the theory and HRθ is a renormalized local
functional.
We can write (1.4) in the form (1.3) by suitably

“evolving the parameters λ in the θ direction.” Such
redefinitions encode how the beta functions of the cou-
plings depend on θ.
So far, the Adler-Bardeen theorem has been proved in a

variety of cases. The original proof given by Adler and
Bardeen [5] was designed to work in QED. Most gener-
alizations to renormalizable non-Abelian gauge theories
used arguments based on the renormalization group
[20–23], which work well unless the first coefficients of
the beta functions satisfy peculiar conditions [23]
(for example, they should not vanish). Then there exist
algebraic/geometric derivations [24] based on the Wess-
Zumino consistency conditions [25] and the quantization
of the Wess-Zumino-Witten action. Another method to
prove the Adler-Bardeen theorem in renormalizable theo-
ries is obtained by extending the coupling constants to
spacetime-dependent fields [26]. A proof that covers all
power-counting renormalizable gauge theories was given in
Ref. [6]. It was obtained by elaborating on a previous proof
[12] given for quantum field theories that violate Lorentz
symmetry at high energies (in particular, Lorentz violating
extensions of the standard model) and are renormalizable
by weighted power counting [27]. Recently, the proof of [6]
was further extended in Ref. [7], to include a large class of
nonrenormalizable theories, such as the standard model
coupled to quantum gravity. We emphasize that a by-
product of our investigation is that the standard model,
coupled to quantum gravity or not, is perturbatively unitary,
and so are most of its extensions.
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The paper is organized as follows. In Sec. II we compare
the Ward identities of chiral and nonchiral gauge theories,
and illustrate the crucial new term that appears when the
theory is potentially anomalous. In Sec. III we prove the
main theorem of this paper, by deriving and integrating
the equations of gauge dependence in AB nonanomalous
theories. We show that every canonical transformation
on the classical action is mapped into a canonical trans-
formation on the renormalized Γ functional, provided
that the finite local counterterms are appropriately
re-fine-tuned. We also integrate the equations of gauge
dependence. In Sec. IV we derive the equations of gauge
dependence of the renormalized action. In Sec. V we prove
that the canonical transformation preserves RG invariance
and discuss two applications of the main theorem.
In Sec. VI we study the gauge dependence of the beta
functions in detail. In Sec. VII we explain how to switch off
the ghosts, the antighosts, the Lagrange multipliers for the
gauge fixing, and the sources for the symmetry trans-
formations, and get to the physical quantities, collected into
a “physical” Γ functional Γph. We derive the (nonlocal)
gauge symmetry of Γph, and prove that it closes off shell.
Finally, we prove that Γph is gauge independent, up to field
redefinitions, and perturbatively unitary. In Sec. VIII we
investigate the checks of high-order calculations provided
by gauge independence and estimate how powerful they
are. Section IX contains our conclusions. In the appendixes
we prove some properties used in the paper, recall earlier
results and collect some reference formulas for the standard
model coupled to quantum gravity. Moreover, we revisit
the gauge dependence of manifestly nonanomalous theories
in the light of the new results.

II. GENERALIZED WARD IDENTITIES

In this section we fix some notation, recall the main
properties of the Batalin-Vilkovisky formalism for general
gauge theories [9] and derive the generalized Ward
identities.
LetD ¼ d − ε denote the continued, complex dimension

of spacetime, and d the physical spacetime dimension. The
D-dimensional spacetime manifold RD is split into the
product Rd ×R−ε of the ordinary d-dimensional spacetime
Rd times a residual ð−εÞ-dimensional evanescent space,
R−ε. The spacetime indices μ; ν;… of vectors and tensors
are split into the bar indices μ̄; ν̄;…, which take the values
of 0; 1;…; d − 1, and the formal hat indices μ̂; ν̂;…, which
denote the R−ε components. For example, the momenta pμ

are split into the pairs pμ̄, pμ̂, also written as p̄μ, p̂μ, and the
coordinates xμ are split into x̄μ, x̂μ. The formal flat-space
metric ημν is split into the usual d × d flat-space metric
ημ̄ ν̄ ¼ diagð1;−1;…;−1Þ and the formal evanescent met-
ric ημ̂ ν̂ ¼ −δμ̂ ν̂. The off-diagonal components ημ̄ ν̂ vanish.
The evanescent components are contracted among them-
selves by means of the metric ημ̂ ν̂, so for example

p̂2 ¼ pμ̂ημ̂ ν̂pν̂. Full SOð1; D − 1Þ invariance is lost in
most expressions, replaced by SOð1; d − 1Þ × SOð−εÞ
invariance.
We recall that in the CD regularization the fields Φ

have strictly d-dimensional components. The metric tensor
gμν is block-diagonal: the diagonal blocks are gμ̄ ν̄ðxÞ
and ημ̂ ν̂, while gμ̄ ν̂ ¼ 0. Moreover, the γ matrices are
strictly d dimensional, and satisfy the usual Dirac algebra
fγā; γb̄g ¼ 2ηā b̄, where the indices ā; b̄;… refer to the
Lorentz group. If d ¼ 2k is even, the d-dimensional
generalization of γ5 is defined as

~γ ¼ −ikþ1γ0γ1 � � � γ2k−1;

and satisfies ~γ† ¼ ~γ, ~γ2 ¼ 1. The left and right projectors
PL ¼ ð1 − ~γÞ=2, PR ¼ ð1þ ~γÞ=2 are defined as usual.
The tensor εā1���ād and the charge-conjugation matrix C
also coincide with the usual ones.
The set of fields Φα ¼ fϕi; C; C̄; Bg contains the

classical fields ϕ, the Fadeev-Popov ghosts C, the anti-
ghosts C̄ and the Lagrange multipliers B for the gauge
fixing. An external source Kα with opposite statistics is
associated with each Φα, and coupled to the Φα trans-
formations RαðΦÞ. If X and Y are functionals of Φ and K,
their antiparentheses are defined as

ðX; YÞ≡
Z �

δrX
δΦα

δlY
δKα

−
δrX
δKα

δlY
δΦα

�
; ð2:1Þ

where the integral is over spacetime points associated with
repeated indices and the subscripts l and r in δl and δr
denote the left and right functional derivatives, respectively.
The action S should solve themaster equation ðS; SÞ ¼ 0

inD dimensions, with the “boundary condition” SðΦ; KÞ ¼
ScðϕÞ at C ¼ C̄ ¼ B ¼ K ¼ 0, where ScðϕÞ is the classical
action.
If the gauge algebra closes off shell, there exists a choice

of field/source variables such that the nongauge-fixed
solution S̄dðΦ; KÞ of the master equation has the form

S̄dðΦ; KÞ ¼ ScðϕÞ þ SK; SKðΦ; KÞ ¼ −
Z

RαðΦÞKα:

ð2:2Þ

In this case, ðS̄d; S̄dÞ ¼ 0 splits into the two identities

Z
RiðϕÞ δlScðϕÞ

δϕi ¼ 0;
Z

RβðΦÞ δlR
αðΦÞ

δΦβ ¼ 0;

which express the gauge invariance of the classical action
and the closure of the algebra, respectively. The gauge-
fixed solution SdðΦ; KÞ of the master equation reads
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SdðΦ; KÞ ¼ ScðϕÞ þ ðSK;ΨÞ þ SK ¼ S̄d þ ðSK;ΨÞ;
ð2:3Þ

where ΨðΦÞ is the gauge fermion, that is to say a local
functional of ghost number −1 that encodes the gauge
fixing. Reference formulas for Sc, SK and Ψ in the case of
the standard model coupled to quantum gravity can be
found in Appendix D. Typically, Ψ has the form

ΨðΦÞ ¼
Z

C̄

�
Gðϕ; ξÞ þ 1

2
Pðϕ; ξ0; ∂ÞB

�
; ð2:4Þ

whereGðϕ; ξÞ is the gauge-fixing function, P is an operator
that may contain derivatives acting on B, and ξ, ξ0 are
gauge-fixing parameters. For example, GðϕÞ ¼ ∂μAμ for
the Lorenz gauge in Yang-Mills theories. Clearly, Sd also
solves the master equation ðSd; SdÞ ¼ 0 in D dimensions.
If the gauge algebra does not close off shell, S̄dðΦ; KÞ is

not linear in K and Sd is obtained from S̄d by applying the
canonical transformation generated by

FðΦ; K0Þ ¼
Z

ΦαK0
α þΨðΦÞ: ð2:5Þ

In manifestly nonanomalous theories we can solve
ðS; SÞ ¼ 0 in D dimensions at the regularized level.
Typically, the solution coincides with (2.3). In potentially
anomalous theories, instead, we cannot achieve this goal.
There, the functional SdðΦ; KÞ does solve ðSd; SdÞ ¼ 0 in
D dimensions, but it is not well regularized. The most
common reason is the presence of chiral fermions. We can
deform Sd into a well-regularized action

SðΦ; KÞ ¼ Sd þ Sev ð2:6Þ
by adding an evanescent part Sev that collects suitable
regularizing terms [11]. The deformed action S does not
solve ðS; SÞ ¼ 0 in D dimensions. Instead, it solves the
deformed master equation

ðS; SÞ ¼ OðεÞ; ð2:7Þ
where the right-hand side denotes terms that vanish
for D → d.
Given a generic action SðΦ; KÞ, the generating func-

tionals Z andW of the (connected) correlation functions are
defined by the formulas

ZðJ; KÞ ¼
Z

½dΦ� exp
�
iSðΦ; KÞ þ i

Z
ΦαJα

�

¼ exp iWðJ; KÞ; ð2:8Þ

and the generating functional ΓðΦ;KÞ¼WðJ;KÞ−R
ΦαJα

of the one-particle irreducible diagrams is the Legendre
transform of WðJ; KÞ with respect to J. The anomaly
functional is defined as

A ¼ ðΓ;ΓÞ ¼ hðS; SÞi ð2:9Þ

and collects the set of one-particle irreducible correlation
functions that contain one insertion of ðS; SÞ, where h� � �i
denotes the average defined by S at arbitrary J. The last
equality of (2.9) can be proved by making the change of
variables

Φα → Φα þϖðS;ΦαÞ ¼ Φα −ϖ
δrS
δKα

; ð2:10Þ

in the functional integral (2.8), where ϖ is a constant
anticommuting parameter. For the detailed proof, see
for example the appendixes of Refs. [6,8]. See also
Appendix A.
Let us explain the meaning of formula (2.9). The

functional ðS; SÞ represents the symmetry violation, so it
is basically the integral of the divergence of the gauge
current Jμ multiplied by the ghosts:

ðS; SÞ ∼ 2

Z
dDxCðxÞ∂μJμðxÞ;

where the sign “∼”means that the right-hand side is written
up to terms proportional to the field equations and other
terms that we can neglect in the present discussion. As said,
formula (2.9) collects the one-particle irreducible diagrams
that contain one insertion of ðS; SÞ and arbitrary external Φ
andK legs. The key diagram of this type in four dimensions
is the one-loop triangle diagram that is responsible for the
well-known ABJ anomaly [28], which arises by consider-
ing one ðS; SÞ insertion and two external gauge field legs.
Amputating those legs, we get

1

2
hðS; SÞJμðxÞJνðyÞi ≈

Z
dDzCðzÞh∂ρJρðzÞJμðxÞJνðyÞi:

ð2:11Þ
The sign “≈” comes from the leg amputation and the fact
that we have taken the ghosts out of the average, because
this is the only way to get nontrivial contributions to
anomalies at one loop. See Ref. [11] for the calculation of
the one-loop triangle anomaly in chiral Yang-Mills theories
with formula (2.9) and the CD regularization technique.
The Adler-Bardeen theorem is the statement that if the

gauge anomalies are trivial at one loop, there exists a class
of subtraction schemes where they vanish to all orders, that
is to say

AR ¼ ðΓR;ΓRÞ ¼ hðSR; SRÞi ¼ OðεÞ; ð2:12Þ

SR and ΓR being the renormalized action and the renor-
malized Γ functional, respectively. The right-hand side of
(2.12) vanishes for D → d, which ensures that the renor-
malized Γ functional is gauge invariant in the physical
limit. The AB nonanomalous theories are those that admit
subtraction schemes where (2.12) holds.
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While the AB identity (2.12) ensures gauge invariance, it
does not say much about gauge independence, which is a
different statement, namely the property that a certain class
of correlation functions (that we call “physical”) do not
depend on the gauge fixing.
One way to study the gauge independence is through

Ward identities. We begin by recalling how those identities
work in manifestly nonanomalous theories, where the
master equation ðS; SÞ ¼ 0 is satisfied exactly at the
regularized level. Let ϒðΦÞ denote a K-independent, but
otherwise completely arbitrary, product of elementary and
local composite fields at distinct points. By making the
change of field variables (2.10) in the functional integralZ

½dΦ�ϒeiS;

we find
Z

½dΦ�ðS;ϒÞeiS ¼ 0: ð2:13Þ

We omit details of the derivation, because the proof of this
formula is a particular case of the more general proof given
below. We just stress that it is crucial to use the master
equation ðS; SÞ ¼ 0, which implies that S is invariant under
the field redefinition (2.10).
Equation (2.13) is the usual Ward identity. For example,

if we take ϒ ¼ C̄ðxÞ∂μAμðyÞ and ϒ ¼ C̄ðxÞψ̄ðyÞψðzÞ in

QED, we can derive the well-known formula ZeZ
1=2
A ¼ 1

that relates the renormalization constants Ze and ZA of the
electric charge and the gauge field [29].
In this paper, the average h� � �i denotes the sum of

connected diagrams. For example, if X and Y are local
functionals, we have hXYi ¼ hXYinc − hXihYi, where
hXYinc includes disconnected diagrams. The subscript 0
in h� � �i0 means that the correlation functions are evaluated
at J ¼ 0. An equivalent form of the identity (2.13) is

hðS;ϒÞi0 ¼ 0: ð2:14Þ

If we repeat the argument leading to (2.13) without
assuming ðS; SÞ ¼ 0, we get the generalized Ward identity
that we consider in this paper, which reads

hðS;ϒÞi0 þ
i
2
hðS; SÞϒi0 ¼ 0: ð2:15Þ

The extra term on the left-hand side of this formula is going
to appear in many other contexts and is responsible for the
new effects anticipated in the Introduction.
To prove (2.15), express ϒ as the product

Q
iXi of

K-independent elementary and local composite fields Xi.
Then, consider the functional integral

Z
½dΦ�eiSþ

P
i
Xiσi ; ð2:16Þ

where σi are arbitrary constants. Under the field redefini-
tion (2.10), the action S and the functionals Xi transform as
follows:

S → S −ϖ

Z
δrS
δKα

δlS
δΦα ¼ Sþϖ

2
ðS; SÞ;

Xi → Xi −ϖ

Z
δrS
δKα

δlXi

δΦα ¼ Xi þϖðS; XiÞ:

In the last step we have used the assumption that Xi
depends only on the fields Φ. When we make the change of
variables (2.10) inside (2.16) and divide by (2.16), we get

R ½dΦ�ðPjϖðS; XjÞσj þ i
2
ϖðS; SÞÞeiSþ

P
i
Xiσi

R ½dΦ�eiSþPk
Xkσk

¼ 0:

The left-hand side of this formula is a sum of connected
diagrams. Differentiating it once to the right with respect to
each σ1;…; σn and setting σi ¼ 0 at the end, we project
onto the diagrams that have one external σi leg for each i.
So doing, we get precisely formula (2.15).
When the local functionals Xi of the product ϒ ¼ Q

iXi
depend on both Φ and K, and the sources J are not set to
zero, the generalized Ward identities can be worked out
from formula (2.9), by deforming the action S into
SþP

iXiσi, where σi are constants, and taking the first
order in all σis.
In particular, if ϒ is equal to a local functional X, it is

easy to show that when the action S is deformed into
Sþ Xσ, where σ is a constant, the Γ functional deforms
into Γþ hXiσ þOðσ2Þ, while the average hYi of a local
functional Y deforms into hYi þ ihYXiΓσ þOðσ2Þ, where
hQiAiiΓ denotes the set of one-particle irreducible dia-
grams that contain one Ai insertion for each i, Ai being
local functionals (details are given in Appendix A).
Expanding ðΓ;ΓÞ ¼ hðS; SÞi in powers of σ and taking
the first order of the expansion, we obtain the identity [8]

hðS; XÞi þ i
2
hðS; SÞXiΓ ¼ ðΓ; hXiÞ. ð2:17Þ

Both sides of (2.17) are viewed as functionals of Φ and K
(rather than functionals of J and K). Note that, in
particular, hXi ¼ hXiΓ.
Repeating the derivation forϒ ¼ XY, where X and Y are

both local functionals, we get the identity

hðS; XYÞiΓ þ
i
2
hðS; SÞXYiΓ

¼ ðΓ; hXYiΓÞ − ið−1ÞεXðhXi; hYiÞ þ ið−1ÞεXhðX; YÞi;
ð2:18Þ

where εX denotes the statistics of the functional X (which is
0 if X is bosonic, 1 if it is fermionic). Whenϒ is the product
of more local functionals, we can proceed similarly.
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An important application of the generalized Ward
identities is the derivation of the equations of gauge
dependence, which tell us how the generating functional
Γ depends on the gauge parameters. We first recall such
equations in manifestly nonanomalous theories and then
switch to AB nonanomalous theories.
In manifestly nonanomalous theories ðS; SÞ ¼ 0 in D

dimensions and Sev ¼ 0, S ¼ Sd. The functional Γ satisfies
the equation

∂Γ
∂ξ ¼

�∂S
∂ξ

�
¼ hðS;ΨξÞi ¼ ðΓ; hΨξiÞ; ð2:19Þ

where ξ is any gauge-fixing parameter and Ψξ ¼ ∂Ψ=∂ξ is
the ξ-derivative of the gauge fermionΨ. The first equality is
obvious. The second equality follows from formula (2.3).
Indeed, recalling that the parameters ξ are contained only
in Ψ, we have ∂S=∂ξ ¼ ðSK;ΨξÞ ¼ ðS;ΨξÞ. The third
equality follows from formula (2.17).
More generally, if θ denotes any gauge parameter,

introduced by a canonical transformation generated by
(1.1), we find

∂Γ
∂θ ¼

�∂S
∂θ

�
¼ hðS; ~QθÞi ¼ ðΓ; h ~QθiÞ; ð2:20Þ

where ~Qθ is the derivative FðΦ; K0; θÞ with respect to θ,
reexpressed as a functional of Φ and K.
Equations (2.19) can be renormalized and integrated (see

[8] and Appendix C). The result is that the ξ dependence
can be absorbed into a canonical transformation on Γ.
Therefore, the contributions due to the right-hand side of
(2.19), which are in general nonvanishing, do not affect
the physical quantities, for example the S-matrix elements.
See Sec. VII C for details.
In AB nonanomalous theories the equations of gauge

dependence are corrected by an extra term, which corre-
sponds to the extra term of (2.15). Formula (2.20) turns
into [8]

∂Γ
∂θ ¼

�∂S
∂θ

�
¼ hðS; ~QθÞi ¼ ðΓ; h ~QθiÞ −

i
2
hðS; SÞ ~QθiΓ:

ð2:21Þ
Assuming that the primes denote the θ-independent
quantities, the second equality of (2.21) follows from
formula (A6) recalled in Appendix A, since ∂S0=∂θ ¼ 0.
The last equality of (2.21) follows from formula (2.17).
The identities (2.15), (2.17), (2.18) and (2.21) are so

general that they also hold in truly anomalous theories.
However, their most interesting applications are to AB non-
anomalous theories, which are the main focus of this paper.
In the next sections we are going to renormalize the

equations (2.21) and integrate their renormalized versions.
The nontrivial part of this task is to work out the effects of

the last term of formula (2.21). The result is that the θ
dependence can be absorbed into a canonical transforma-
tion on the renormalized Γ functional ΓR, provided that the
finite local counterterms are appropriately fine-tuned.
We stress again that gauge invariance, which is

expressed by formula (2.12), does not imply gauge inde-
pendence in an obvious way. However, in this paper
we prove that ultimately it does. Gauge independence
allows us to prove the perturbative unitarity of the theory
(see Sec. VII D).
Before concluding this section, we make some remarks

to emphasize the role played by the evanescent terms OðεÞ
in our discussion. With respect to the limit D → d we
can distinguish divergent, nonevanescent and evanescent
terms. A contribution is called “nonevanescent” if it has a
regular limit forD → d and coincides with the value of that
limit. In the (ordinary, as well as chiral) dimensional
regularization the evanescences can be of two types: formal
or analytic. Analytically evanescent terms are those that
factorize at least one ε, such as εFμ̄ ν̄Fμ̄ ν̄, εψ̄Lie

μ̄
āγ

āDμ̄ψL,
etc., where ψL is a left-handed fermion. Formally evan-
escent terms are those that formally disappear when
D → d, although they do not factorize powers of ε, such

as ψT
L∂̂2ψL. The divergences are poles in ε, and can

multiply either nonevanescent terms or formally evanescent
terms. In the latter case they are called divergent evan-

escences. An example is ψT
L∂̂2ψL=ε. It is convenient to

subtract away the divergent evanescences like any other
divergences.
In most derivations it is necessary to extract the divergent

parts of functionals and antiparentheses of functionals. We
have to take some precautions to ensure that this operation
can safely cross the antiparentheses, so that for example
ðS; XÞdiv ¼ ðS; XdivÞ. The first thing to do is define the
classical action (2.6) so that it does not contain analytically
evanescent terms, but only nonevanescent and formally
evanescent terms, multiplied by ε-independent coefficients.
In this way, S does not contain dangerous ε factors that
could simplify the divergences of X inside ðS; XÞ. For the
same reason, it is convenient to use the chiral dimensional
regularization of [11], instead of the ordinary dimensional
regularization. In particular, we must use the CD regulari-
zation when the theory in not power-counting renormaliz-
able. So doing, we avoid a number of ambiguities that
would complicate our operations. For details on this
subject, see Refs. [6,11].

III. THE THEOREM OF GAUGE DEPENDENCE

Consider a general gauge theory with action SðΦ; K;ωÞ,
where ω denotes its parameters. Let SR denote the
renormalized action and ΓR the renormalized Γ functional.
Assume that the theory is AB nonanomalous, i.e.
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ðΓR;ΓRÞ ¼ OðεÞ: ð3:1Þ

For the purposes of this section, we do not need to
make other assumptions. The gauge algebra may be
irreducible or reducible, and close off shell or on shell.
The theory may be renormalizable or nonrenormalizable,
perturbatively unitary or not. In particular, it may contain
higher-derivative fields. The action S does not need to
satisfy special cohomological properties. We can also
include local composite fields OIðxÞ, in renormalizable
and nonrenormalizable theories, by coupling them to
external sources LIðxÞ and appropriately extending the
actions Sc, S̄d, Sd and S. In the arguments that follow, the
dependence on such types of external sources is not made
explicit. However, we understand that it may be there,
whenever necessary.
Consider a canonical transformation Φ; K → Φ0; K0 with

generating functional

FðΦ; K0; θÞ ¼
Z

ΦαK0
α þQðΦ; K0; θÞ; ð3:2Þ

where Q ¼ OðθÞ is a local functional. Let Sθ denote the
action obtained by applying (3.2) to S, SRθ the renormal-
ized version of Sθ and ΓRθ the renormalized Γ functional
associated with SRθ. We assume, for simplicity, thatQ does
not contain analytically evanescent contributions.
We work out how ΓR and the identity (3.1) change when

we make the transformation (3.2) on S. To reach Sθ from S,
it is useful to embed the theory into a more general theory,
by considering the extended action

ΣðΦ; K;ω;ℏτÞ≡ SðΦ; K;ωÞ þ
X
i

ℏτiHiðΦ; KÞ; ð3:3Þ

where τi are arbitrary parameters and fHig is a basis of
local functionals of Φ and K. Specifically, the Hi are
integrals of local monomials constructed with the fields, the
sources and their derivatives. They can be restricted by
demanding that they be invariant under the nonanomalous
symmetries of the theory. However, they are not restricted
by gauge invariance, or power counting. To simplify
a number of formulas, we include duplicates of the terms
that are already present in Σ, multiplied by new indepen-
dent parameters ℏτi. The difference Σ − S is made of
OðℏÞ-terms and is also assumed to contain evanescent
terms (including those that are already present in S).
Basically, Σ − S parametrizes the arbitrariness of the
subtraction scheme. We denote the Γ functional calculated
with the action Σ by ΩðΦ; K;ω;ℏτÞ.
Now, we renormalize Σ. We denote its renormalized

action by ΣR and the Γ functional associated with ΣR byΩR.
We can imagine, for a moment, that we replace each
ℏτi with an ordinary parameter ρi of order zero in ℏ. In
that case, the construction of ΣR is straightforward, since

every divergence can be subtracted by means of ρi
redefinitions. At a second stage, we raise the order of
the parameters ρi by restoring ℏτi in their places. The
consistency of this operation is justified by the arguments
that follow.
We organize the renormalization of Σ so that ΣR

coincides with SR when the parameters τi are equal to
suitable finite functions τ�i ðωÞ, which identify the subtrac-
tion scheme where formula (3.1) holds:

ΣRðΦ; K;ω;ℏτ�Þ ¼ SRðΦ; K;ωÞ;
ΩRðΦ; K;ω;ℏτ�Þ ¼ ΓRðΦ; K;ωÞ: ð3:4Þ

At arbitrary τ, the action ΣR can be viewed as an extended
renormalization of S, which includes the most general
subtraction scheme. We say that ΣR is the arbitrary
renormalization of S. When we set τi ¼ τ�i we specialize
the subtraction scheme to the one used for SR, which,
by assumption (3.1), preserves gauge invariance to all
orders.
Since it is consistent to set τi ≡ τ�i , it is also consistent to

set τi ¼ τ�i þ ℏn ~νnþ1i, n ≥ 0, for arbitrary new parameters
~νnþ1i. By this we mean that the renormalization of each
~νnþ1i remains analytic in ℏ. We can better explain this
fact by noting that the renormalizations of the differences
δi ≡ τi − τ�i vanish at δj ¼ 0, so they must be proportional
to δj. Thus, if we replace δi by ℏn ~νnþ1i, n > 1, the
renormalizations of ~νnþ1i remain analytic in ℏ. These
remarks illustrate a trick that we use in the recursive proof
given below. Precisely, at each step we raise the ℏ order of
certain residual parameters by one unit, till we make those
parameters disappear, and show that we can do this while
preserving the analyticity in ℏ.
The definition (3.3) understands that the difference Σ − S

starts from OðℏÞ. Indeed, we do not want to modify the
classical action, but just parametrize the arbitrariness of the
subtraction scheme. The reason why we move to the more
general theory Σ is that if we want to cancel the anomalies
after the canonical transformation, we generically need to
re-fine-tune all sorts of finite, local terms, including the
gauge noninvariant ones.
As said, SθðΦ; K;ω; θÞ denotes the action obtained by

applying (3.2) to SðΦ; K;ωÞ. Let ΣθðΦ; K;ω;ℏτ; θÞ denote
the action obtained by applying (3.2) to Σ. We obviously
have Σθ ¼ Sθ þOðℏÞ. We denote the renormalized version
of Σθ by ΣRθðΦ; K;ω;ℏτ; θÞ. Since ΣRθ ¼ Σθ þOðℏÞ ¼
Sθ þOðℏÞ, ΣRθ can be viewed as the arbitrary renormal-
ization of Sθ. Note that Σθ is not gauge invariant, so its
renormalization is not subject to particular restrictions,
aside from the continuity condition ΣRθðΦ; K;ω;ℏτ; θÞ ¼
ΣRðΦ; K;ω;ℏτÞ þOðθÞ. We denote the Γ functional asso-
ciated with ΣRθ by ΩRθ.
Finally, consider the local functional QðΦ; K0Þ

defined by the canonical transformation (3.2), and
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define QθðΦ; K0Þ ¼ ∂QðΦ; K0Þ=∂θ and ~QθðΦ; KÞ ¼
QθðΦ; K0ðΦ; KÞÞ. Let ~QRθ denote the renormalized version
of ~QθðΦ; KÞ at generic τ.
We prove that
Theorem 1: there exist finite functions τ�0j ðω; θÞ ¼

OðθÞ, such that, defining ~τ�jðω; θÞ ¼ τ�jðωÞ þ τ0�j ðω; θÞ,
the action

SRθðΦ; K;ω; θÞ≡ ΣRθðΦ; K;ω;ℏ~τ�jðω; θÞ; θÞ ð3:5Þ
gives a Γ functional ΓRθ that satisfies the identities

ðΓRθ;ΓRθÞ ¼ OðεÞ; ð3:6Þ
∂ΓRθ

∂θ − ðΓRθ; h ~QRθiÞ ¼ OðεÞ; ð3:7Þ

for arbitrary θ, where ~QRθ denotes the functional ~QRθ
calculated at ℏτi ¼ ℏ~τ�i .
Note that formula (3.5) ensures that SRθ also

satisfies the continuity condition SRθðΦ; K;ω; θÞ ¼
SRðΦ; K;ωÞ þOðθÞ. In fact, all the operations we make
preserve the continuity in θ.
For clarity, it is useful to summarize the definitions

given so far in a table:

A. The equations of gauge dependence

If we apply the identity (A5) of Appendix A to the
renormalized action ΣRθ and the renormalized Γ functional
ΩRθ, with X ¼ ~QRθ, we obtain

∂ΩRθ

∂θ − ðΩRθ; h ~QRθiÞ

¼
�∂ΣRθ

∂θ − ðΣRθ; ~QRθÞ −
i
2
ðΣRθ;ΣRθÞ ~QRθ

�
Γ
: ð3:8Þ

It is convenient to organize this formula in the form

∂ΩRθ

∂θ ¼ ðΩRθ; h ~QRθiÞ þ hYRθiΓ; ð3:9Þ

where

YRθ ≡ −
i
2
ðΣRθ;ΣRθÞ ~QRθ þ

∂ΣRθ

∂θ − ðΣRθ; ~QRθÞ: ð3:10Þ

If the right-hand side of formula (3.9) contained no
hYRθiΓ (which happens, for example, in manifestly non-
anomalous theories) or we knew that hYRθiΓ is for some
reason equal toOðεÞ, the solution of our problem would be
straightforward. Formula (3.9) would turn into
a much simpler equation, which is integrated in Ref. [8]
and in Appendix C. The result would be that the entire θ
dependence of ΩRθ can be absorbed into a convergent
canonical transformation acting on ΩR, up to OðεÞ.
Moreover, there would be no reason to keep τ generic.
More simply, we could just work with τ ¼ τ� from the start.
Then, formula (3.9) would give (3.7). Integrating (3.7) with
the procedure of Appendix C, we would find a convergent
canonical transformation that turns ΓR into ΓRθ, again up
to OðεÞ. That canonical transformation would also turn
formula (3.1) directly into (3.6), since the right-hand side
would remain evanescent.
Unfortunately, hYRθiΓ is there, because the theory we

are considering is potentially anomalous, so we must study
the effects of such an extra term. To achieve this goal,
a few facts need to be noticed.

(i) By construction, ΩRθ and h ~QRθi are convergent.
(ii) The local functional ðΣRθ;ΣRθÞ is already renormal-

ized. Indeed, formula (2.9) tells us that hðΣRθ;ΣRθÞi ¼
ðΩRθ;ΩRθÞ, which is convergent. Since ΣRθ ¼
Sθ þOðℏÞ, we can say that ðΣRθ;ΣRθÞ is the arbitrary
renormalization of ðSθ; SθÞ.

(iii) By points (i) and (ii), all the subdiagrams
of the diagrams that contribute to the average
hðΣRθ;ΣRθÞ ~QRθiΓ are already renormalized, except
those that contain both insertions of ðΣRθ;ΣRθÞ
and ~QRθ.

(iv) The object YRθ is a bit peculiar, because at the tree
level it is equal to

Yθ ≡ −
i
2
ðSθ; SθÞ ~Qθ: ð3:11Þ

The reason why the last two terms of (3.10) do not
contribute at ℏ ¼ 0 is that

∂Sθ
∂θ − ðSθ; ~QθÞ ¼

∂S
∂θ ¼ 0; ð3:12Þ

which follows from formula (A6), if we understand
that the primes denote the fields and the sources
before the transformation, i.e. write S ¼ SðΦ0; K0Þ
and Sθ ¼ SθðΦ; KÞ. We see that Yθ is the product of
two local functionals. We call Yθ a local bifunc-
tional. We extend the definition of local bifunctional
to any expression of the form
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B ¼
X
i

AiBi þ C ð3:13Þ

where Ai, Bi and C are local functionals. An
evanescent local bifunctional is a local bifunctional
(3.13) where C and Ai (or Bi) are evanescent.
Now, ðS; SÞ is an evanescent local functional, by

formula (2.7), and Sθ is obtained from S by means
of a finite canonical transformation, which preserves
the antiparentheses and maps OðεÞ into OðεÞ. Thus,
ðSθ; SθÞ is also evanescent, and YRθ is an evanescent
local bifunctional. Actually,

(v) YRθ is a renormalized evanescent local bifunc-
tional, since formula (3.9) implies that hYRθiΓ is
convergent.

The procedure to renormalize a local bifunctional is
explained in Appendix B. There, it is also shown how to
renormalize an evanescent local bifunctional E in such a
way that hERiΓ ¼ OðεÞ. To describe what happens order by
order in the perturbative expansion, consider for simplicity
an evanescent local bifunctional of the form E ¼ EBþ F
where E and F are evanescent local functionals. Let En and
Bn denote the functionals E and B renormalized up to
and including n loops, and inductively assume that En

satisfies hEni ¼ OðεÞ þOðℏnþ1Þ. Also assume that Fn

is a local functional such that hEniΓ ¼ OðεÞ þOðℏnþ1Þ,
where En ¼ EnBn þ Fn. Then, the Oðℏnþ1Þ contributions
to hEniΓ are the sum of a local divergent part, a local
nonevanescent part and a generically nonlocal evanescent
part. If Bnþ1 is the functional B renormalized up to and
including nþ 1 loops, there exist local functionals Enþ1

and Fnþ1 such that hEnþ1i¼OðεÞþOðℏnþ2Þ and hEnþ1iΓ¼
OðεÞþOðℏnþ2Þ, where Enþ1 ¼ Enþ1Bnþ1 þ Fnþ1. The
subtraction can be iterated in n to obtain hERi ¼ OðεÞ
and hERiΓ ¼ OðεÞ, where ER ¼ E∞ and ER ¼ E∞.
Although YRθ is renormalized, it does not satisfy

hYRθiΓ ¼ OðεÞ, as far as we know. However, we will
obtain hYRθiΓ ¼ OðεÞ by identifying the functions
τ�0j ðω; θÞ and setting τi ¼ τ�i þ τ0�i .
To prove (3.5), (3.6) and (3.7), we proceed by induction.

Let νnj denote free parameters of order ℏn. The first induc-
tive assumption is that
(an) there exist finite functions μnjðω; νnþ1k; θÞ ¼

OðθÞOðℏÞ, such that the action

ΣnðΦ; K;ω; νnþ1j; θÞ≡ ΣRθðΦ; K;ω;ℏτ�j þ μnj þ νnþ1j; θÞ
ð3:14Þ

gives a Γ functional Ωn that satisfies

ðΩn;ΩnÞ ¼ hðΣn;ΣnÞin ¼ OðεÞ þOðℏnþ1Þ; ð3:15Þ

where h� � �in denotes the average calculated with the
action Σn.

Now, define

~Qn ≡ ~QRθðΦ; K;ω;ℏτ�j þ μnj þ νnþ1j; θÞ;

Yn ≡ −
i
2
ðΣn;ΣnÞ ~Qn þ

∂Σn

∂θ − ðΣn; ~QnÞ: ð3:16Þ

Applying formula (A5) to the action Σn and its Γ functional
Ωn, with X ¼ ~Qn, we obtain

∂Ωn

∂θ ¼ ðΩn; h ~QninÞ þ hYninΓ; ð3:17Þ

where h� � �inΓ denotes the one-particle irreducible diagrams
of the average h� � �in. The second inductive assumption
is that
(bn)

hYninΓ ¼ OðεÞ þOðℏnþ1Þ: ð3:18Þ
Statement (a0) is true with μ0j ¼ 0, because Σ0 ¼

Sθ þOðℏÞ and ðSθ; SθÞ is evanescent, so hðΣ0;Σ0Þi0 ¼
OðεÞ þOðℏÞ. Statement (b0) is also true, because
~Q0 ¼ ~Qθ þOðℏÞ, so Y0 ¼ Yθ þOðℏÞ.

B. Inductive proof

Assume that (an) and (bn) hold. Then, the averages
hðΣn;ΣnÞin and hYninΓ are evanescent up to and including
n loops. The arguments of Appendix B ensure that the

ðnþ 1Þ-loop contributions Yðnþ1Þ
n to hYninΓ, which are

convergent by formula (3.17), are the sum of a local

nonevanescent part Yðnþ1Þ
nnonev plus a generically nonlocal

evanescent part. We have

hYninΓ ¼ OðεÞ þ Yðnþ1Þ
nnonev þOðℏnþ2Þ: ð3:19Þ

We can write an explicit expression for Yðnþ1Þ
nnonev. Recall,

from formula (3.3), that the derivatives ∂Σ=∂ðℏτjÞ form a
basis for the local functionals of Φ and K. Obviously, so do
the derivatives ∂Σθ=∂ðℏτjÞ≡Hjθ. Up to higher orders in
ℏ, the derivatives ∂ΣRθ=∂ðℏτjÞ ¼ Hjθ þOðℏÞ are also a
basis, as well as the derivatives ∂Σn=∂νnþ1j. Thus, there

exist finite order-ℏnþ1 functions σðnÞj , which depend ana-
lytically on ω, νnþ1k and θ, such that

Yðnþ1Þ
nnonev ¼

X
j

σðnÞj
∂Σn

∂νnþ1j
þOðℏnþ2Þ: ð3:20Þ

Now, define

Ynþ1 ¼ Yn −
X
j

σðnÞj
∂Σn

∂νnþ1j
: ð3:21Þ

Taking the average of both sides, and using (A3), we get
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hYnþ1inΓ ¼ hYninΓ −
X
j

σðnÞj
∂Ωn

∂νnþ1j
: ð3:22Þ

Using (3.19) and (3.20), we obtain

hYnþ1inΓ ¼ Yðnþ1Þ
nnonev − Yðnþ1Þ

nnonev þOðεÞ þOðℏnþ2Þ
¼ OðεÞ þOðℏnþ2Þ: ð3:23Þ

Using (3.22) inside (3.17), we also find

∂Ωn

∂θ ¼ ðΩn; h ~QninÞ þ
X
j

σðnÞj
∂Ωn

∂νnþ1j
þ hYnþ1inΓ: ð3:24Þ

Define finite functions νnþ1jðω; ν̄nþ1k; θÞ as the solutions
of the evolution equations

∂νnþ1j

∂θ ¼ −σðnÞj ðω; νnþ1k; θÞ; ð3:25Þ

with the initial conditions νnþ1jðω; ν̄nþ1k; 0Þ ¼ ν̄nþ1j.
Clearly, νnþ1j ¼ ν̄nþ1j þOðθÞ. Given a functional
XðΦ; K;ω; νnþ1j; θÞ, define

X̄ðΦ; K;ω; ν̄nþ1j; θÞ ¼ XðΦ; K;ω; νnþ1jðω; ν̄nþ1k; θÞ; θÞ:
ð3:26Þ

Then,

∂X̄
∂θ ¼ ∂X

∂θ −
X
i

σ̄ðnÞj
∂X

∂νnþ1j
; ð3:27Þ

where σ̄ðnÞj are the functions obtained by applying the

redefinitions νnþ1jðω; ν̄nþ1k; θÞ to σðnÞj . Choosing X ¼ Ωn,
we can turn Eq. (3.24) into

∂Ω̄n

∂θ ¼ ðΩ̄n; h ~QninÞ þ hYnþ1inΓ: ð3:28Þ

Applying the redefinitions νnþ1jðω; ν̄nþ1k; θÞ to the
functions μnjðω; νnþ1k; θÞ of assumption (an), and includ-
ing the contributions coming from νnþ1j − ν̄nþ1j, which are
proportional to θ, we can define new OðθÞOðℏÞ functions
μ̄njðω; ν̄nþ1k; θÞ by the formula

μ̄njðω; ν̄nþ1k; θÞ≡ μnjðω; νnþ1kðω; ν̄nþ1l; θÞ; θÞ
þ νnþ1jðω; ν̄nþ1k; θÞ − ν̄nþ1j:

Then, using (3.26) and (3.14), we have

Σ̄nðΦ; K;ω; ν̄nþ1j; θÞ
¼ ΣRθðΦ; K;ω;ℏτ�j þ μ̄nj þ ν̄nþ1j; θÞ:

At this point, the independent parameters are ω, ν̄nþ1j
and θ. The formulas we have written so far hold for every
value of ν̄nþ1j, as long as it is Oðℏnþ1Þ. Now we want to
raise the ℏ order of ν̄nþ1j by one unit. The validity of this
choice will be self-evident. By this we mean that it allows
us to iterate all the arguments of the proof without
difficulties till the very end and preserve the analyticity
in ℏ.
Define

ν̄nþ1j ¼ νnþ2j;

μnþ1jðω; νnþ2k; θÞ ¼ μ̄njðω; ν̄nþ1k; θÞjν̄nþ1k→νnþ2k
: ð3:29Þ

So doing, we obtain the action Σnþ1, given by for-
mula (3.14) with the replacement n → nþ 1:

Σnþ1ðΦ;K;ω;νnþ2j;θÞ¼ΣRθðΦ;K;ω;ℏτ�jþμnþ1jþνnþ2j;θÞ
¼ Σ̄nðΦ;K;ω;νnþ2j;θÞ: ð3:30Þ

Recalling that ΣRθ ¼ ΣR þOðθÞ and μnþ1j ¼ OðθÞOðℏÞ,
formula (3.30) tells us that, at θ ¼ 0,

Σnþ1jθ¼0 ¼ ΣRðΦ; K;ω;ℏτ�j þ νnþ2jÞ
¼ ΣRðΦ; K;ω;ℏτ�jÞ þOðℏnþ2Þ
¼ SRðΦ; K;ωÞ þOðℏnþ2Þ;

where the last equality follows from the first equation of
(3.4). Finally, the second equation of (3.4) and formula (3.1)
give

ðΩnþ1;Ωnþ1Þjθ¼0 ¼ ðΓR;ΓRÞ þOðℏnþ2Þ
¼ OðεÞ þOðℏnþ2Þ: ð3:31Þ

This is a check that the new action Σnþ1 is AB non-
anomalous at θ ¼ 0, up to OðεÞ and Oðℏnþ2Þ. Now we
show that Σnþ1 satisfies the same property for every θ.
Using formula (3.28), we get

∂Ωnþ1

∂θ ¼ ðΩnþ1; h ~Qnþ1inþ1Þ þ hYnþ1inþ1Γ; ð3:32Þ

where the functionals ~Qnþ1 and Ynþ1 are obtained from ~Qn
and Ynþ1 by applying the redefinitions νnþ1jðω; ν̄nþ1k; θÞ
and (3.29). Using (3.26), (3.27) and (3.21), it is easy to see
that formulas (3.16) hold with n → nþ 1.
Moreover, formula (3.23) ensures that

hYnþ1inþ1Γ ¼ OðεÞ þOðℏnþ2Þ;
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that is to say formulas (3.17) and (3.18) hold with
n → nþ 1.
Taking the antiparentheses of (3.32) withΩnþ1 and using

the Jacobi identity, we also find

∂
∂θ ðΩnþ1;Ωnþ1Þ ¼ ððΩnþ1;Ωnþ1Þ; h ~Qnþ1inþ1Þ

þ 2ðΩnþ1; hYnþ1inþ1ΓÞ: ð3:33Þ

The last term of the right-hand side is OðεÞ þOðℏnþ2Þ. In
Appendix C we show how to integrate Eq. (3.33) and prove
that the θ dependence of ðΩnþ1;Ωnþ1Þ is encoded into a
canonical transformation, up to OðεÞ and Oðℏnþ2Þ.
By formula (3.31), the value of ðΩnþ1;Ωnþ1Þ at θ ¼ 0 is
also of such orders. Moreover, the canonical transfor-
mation is convergent, because it is uniquely determined
by h ~Qnþ1inþ1, which is convergent. Therefore, we find

ðΩnþ1;Ωnþ1Þ ¼ OðεÞ þOðℏnþ2Þ

for arbitrary θ, which is formula (3.15) with n → nþ 1.
As promised, the action Σnþ1 is AB nonanomalous for
arbitrary θ, up to OðεÞ and Oðℏnþ2Þ. We have thus proved
statements (anþ1) and (bnþ1).
Finally, formulas (3.6) and (3.7) follow by taking n to

infinity, with ν∞j ¼ 0 and ℏτ�0j ðω; θÞ ¼ μ∞jðω; 0; θÞ.
Indeed, because of (3.14), if we define SRθ according to
(3.5), we have Σ∞¼ SRθ, soΩ∞ ¼ΓRθ. Then, formula (3.15)
becomes (3.6) at n ¼ ∞. By (3.18), formula (3.17) turns into
(3.7) at n ¼ ∞, with ~QRθ ¼ ~Q∞.

C. Integrating the equations of gauge dependence

Equation (3.7) can be integrated with the method of
Appendix C (see also [8]). There, it is shown that we
can consistently ignore the terms OðεÞ appearing on the
right-hand side, in the sense that the solution we find by
ignoring those terms is correct up toOðεÞ. The basic reason
is that the equations involve only convergent functionals.
Alternatively, we can just remove the cutoff by taking the
physical limit ε → 0 in (3.7) and then work in the physical
dimension d. The result is that every θ dependence of ΓRθ
can be absorbed into a convergent canonical transforma-
tion, up to OðεÞ.
More precisely, the theorem of Appendix C ensures that

there exists a canonical transformation Φ; K → Φ0; K0 such
that the Γ functional Γ0

R defined by

Γ0
RðΦ0; K0;ωÞ ¼ ΓRθðΦðΦ0; K0;ω; θÞ; KðΦ0; K0;ω; θÞ;ω; θÞ

ð3:34Þ

is θ independent, up to OðεÞ. Setting θ ¼ 0, we find
Γ0
R ¼ ΓR, since

Γ0
RðΦ0; K0;ωÞ ¼ ΓRθðΦ0; K0;ω; 0Þ ¼ ΓRðΦ0; K0;ωÞ:

Finally, inverting the transformations, we get

ΓRθðΦ; K;ω; θÞ ¼ ΓRðΦ0ðΦ; K;ω; θÞ; K0ðΦ; K;ω; θÞ;ωÞ:
ð3:35Þ

As promised, the dependence of ΓRθ on the gauge
parameter θ can be fully absorbed inside a canonical
transformation.
We recall that the canonical transformations we are

talking about, which are convergent, nonlocal and act on
the renormalized Γ functional, originate from a local
canonical transformation of the form (3.2) that acts on
the tree-level action. The connection between the two is a
procedure of re-renormalization and a re-fine-tuning of the
finite local counterterms. We call such canonical trans-
formations on ΓR special. Clearly, the composition of
special canonical transformations is a special canonical
transformation. If we repeat the argument of this subsection
for any other gauge parameter θ that satisfies (3.7), taking
one at a time, we can prove that the entire dependence of
the Γ functional on the gauge parameters can be absorbed
into a special canonical transformation.
In Sec. VII C the equations of gauge dependence are

used to prove that the physical quantities are gauge
independent.

IV. GAUGE DEPENDENCE OF THE
RENORMALIZED ACTION

In this section we study the counterparts of Eqs. (3.6)
and (3.7) at the level of the renormalized action. Using
the identity (2.9), formula (3.6) gives ðΓRθ;ΓRθÞ ¼
hðSRθ; SRθÞi ¼ OðεÞ, which implies that ðSRθ; SRθÞ is a
“truly evanescent” local functional, i.e. a local functional
such that its average is evanescent. We use the symbol E to
denote such type of functionals. Thus, we have the
formula

ðSRθ; SRθÞ ¼ E; ð4:1Þ

where hEi ¼ OðεÞ. Equation (4.1) expresses the cancella-
tion of the gauge anomalies to all orders at the level of the
renormalized action.
Next, if we apply formulas (A3) and (A4) to (3.7), we

obtain

�∂SRθ
∂θ − ðSRθ; ~QRθÞ

�
−
i
2
hðSRθ; SRθÞ ~QRθiΓ ¼ OðεÞ:

ð4:2Þ

By formula (4.1), ðSRθ; SRθÞ is a renormalized local func-
tional such that its average is evanescent. In Appendix B we
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prove that there exists an OðℏÞ local functional FR, such
that the local bifunctional YR≡−ði=2ÞðSRθ;SRθÞ ~QRθþFR
is renormalized and the average hYRiΓ is evanescent to all
orders. We denote such FR by the symbolic expression
ðSRθ; SRθ; ~QRθÞ. Thus, formula (4.2) gives

�∂SRθ
∂θ − ðSRθ; ~QRθÞ − ðSRθ; SRθ; ~QRθÞ

�
¼ OðεÞ:

In turn, this equation implies

∂SRθ
∂θ ¼ ðSRθ; ~QRθÞ þ ðSRθ; SRθ; ~QRθÞ þ E: ð4:3Þ

Formula (4.3) is the equation of gauge dependence for the
renormalized action SRθ. Note that ðSRθ; SRθ; ~QRθÞ encodes
the re-fine-tuning of the finite local counterterms.
Equation (4.3) can be integrated with the method

explained in Appendix C. Although the term
ðSRθ; SRθ; ~QRθÞ depends on SRθ, a recursive procedure
allows us to treat it as a known functional at every step.

V. RG INVARIANCE AND OTHER APPLICATIONS

In this section we give a few applications of the theorem
proved in Sec. III. The first application is the proof that RG
invariance is preserved by the canonical transformation.
The second application is the proof that renormalizable
chiral gauge theories gauge-fixed by means of a non-
renormalizable gauge fixing remain renormalizable,
although in a nonmanifest way. The third application is
a step of the proof of the Adler-Bardeen theorem in
nonrenormalizable theories [7].
RG invariance is expressed by the Callan-Symanzik

equation (which is derived at the end of this section)

μ
∂ΓR

∂μ þ β̂i
∂ΓR

∂ωi
− ðΓR; hURiÞ ¼ OðεÞ; ð5:1Þ

where β̂i are the ωi beta functions (at ε ≠ 0) and UR is a
local functional. At the level of the renormalized action SR,
the Callan-Symanzik equation reads

μ
∂SR
∂μ þ β̂i

∂SR
∂ωi

− ðSR;URÞ − ðSR; SR;URÞ ¼ E: ð5:2Þ

Let ~ΓR denote the renormalized Γ functional where
the parameters ωi are written in terms of their running
versions ~ωiðμÞ and μ, where ~ωi are the solutions of
μd ~ωi=dμ ¼ −β̂ið ~ωÞ with initial conditions ωi. We have

~ΓRðΦ; K; ~ω; μÞ ¼ ΓRðΦ; K;ω; μÞ:

Let ~UR denote the functional hURi reparametrized in a
similar way. Then the Callan-Symanzik equation becomes

μ
~∂ ~ΓR

~∂μ − ð ~ΓR; ~URÞ ¼ OðεÞ;

where ~∂ denotes the derivative at fixed ~λ. The new equation
has the same form as (3.7), so it is solved by making a
canonical transformation. From formula (3.34), we learn
that there exists a canonical transformation that takes us to
new fields and sources ~Φ, ~K and a reference value of μ,
which we denote by μ̄ and leave implicit, such that

~ΓRðΦ; K; ~ω; μÞ ¼ Γ̄Rð ~ΦðΦ; K; ~ω; μÞ; ~KðΦ; K; ~ω; μÞ; ~ωÞ;

for a certain other functional Γ̄R.
Now, if we make the canonical transformation (3.2) on

the tree-level action, we get, by formula (3.35),

~ΓRθðΦ; K; ~ω; μ; θÞ
¼ ~ΓRðΦ0ðΦ; K; ~ω; μ; θÞ; K0ðΦ; K; ~ω; μ; θÞ; ~ω; μÞ
¼ Γ̄Rð ~ΦðΦ0; K0; ~ω; μÞ; ~KðΦ0; K0; ~ω; μÞ; ~ωÞ:

Going back to the parameters ω, we also have

ΓRθðΦ; K;ω; μ; θÞ
≡ ~ΓRθðΦ; K; ~ω; μ; θÞ
¼ Γ̄RðΦ̄0ðΦ; K;ω; μ; θÞ; K̄0ðΦ; K;ω; μ; θÞ; ~ωðω; μÞÞ;

having defined ~ΦðΦ0;K0; ~ω;μÞ¼ Φ̄0ðΦ;K;ω;μ;θÞ and sim-
ilarly for ~K. Differentiating with respect to ln μ, and recalling
that our canonical transformations are special, we get

μ
∂ΓRθ

∂μ þ β̂i
∂ΓRθ

∂ωi
− ðΓRθ; hURθiÞ ¼ OðεÞ; ð5:3Þ

for some new local functional URθ. Formula (5.3) is the
transformed RG equation. Note that the beta functions do
not depend on θ in this approach.
Another application that we mention is to power-

counting renormalizable chiral gauge theories gauge-fixed
by means of a nonrenormalizable gauge fixing. If a
renormalizable theory is nonchiral, it is rather straightfor-
ward to prove that it remains renormalizable when a
nonrenormalizable gauge fixing is used. When the theory
is chiral, on the other hand, the matter is more complicated.
In principle, the simplifications between divergences and
evanescences can make the parameters of negative dimen-
sions, introduced by the gauge fixing, propagate into the
physical sector and turn the theory into a truly non-
renormalizable one. The theorem of Sec. III, combined
with RG invariance, ensures that this cannot happen.
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Consider for example the standard model in flat space
and gauge fix a non-Abelian gauge symmetry by means of
a gauge-fixing function such as

ḠaðϕÞ ¼ ∂μAa
μ þ κAb

μAa
νFbμν:

Since the constant κ has dimension −2 in units of mass,
power counting alone is not sufficient to classify the
counterterms in a convenient way at κ ≠ 0. However, the
change of gauge fixing that turns GaðϕÞ ¼ ∂μAa

μ into
ḠaðϕÞ is a canonical transformation, so we can apply
the theorem of Sec. III. Formula (3.3) teaches us that
infinitely many terms Hi of arbitrary dimensions are
switched on, including the gauge noninvariant ones.
Nevertheless, the theorem ensures that once we have done
that, it is possible to express the coefficients of all of those
terms as functions of the other parameters of the theory, and
fine-tune those functions to enforce again the cancellation
of gauge anomalies to all orders. Moreover, the argument
given above ensures that RG invariance is preserved. We
conclude that no new independent parameters are necessary
to subtract the divergences and cancel the gauge anomalies
in a RG invariant way: the physical couplings are still
finitely many. Thus, when a power-counting renormaliz-
able chiral gauge theory, such as the standard model in flat
space, is gauge-fixed by means of a nonrenormalizable
gauge fixing, it remains a renormalizable theory, although
its renormalizability is not manifest anymore. A similar
conclusion holds when the theory is renormalizable by
weighted power counting [27] or any other criterion.
The third application we mention is the proof of the

Adler-Bardeen theorem in nonrenormalizable theories,
recently obtained in Ref. [7] by upgrading the arguments
of [6]. It applies to the theories whose gauge symmetries are
general covariance, local Lorentz symmetry and Abelian
and non-Abelian Yang-Mills symmetries, and satisfy a
variant of the Kluberg-Stern–Zuber conjecture. Quantum
gravity coupled to the standard model satisfies all the
assumptions and so is free of gauge anomalies to all orders.
In the approach of [7], the CD regularization is combined
with a higher-derivative regularization. If the scale Λ
associated with the higher-derivative terms is kept fixed,
we obtain a super-renormalizable higher-derivative (HD)
theory, which satisfies the Adler-Bardeen theorem by
simple power-counting arguments. When the scale Λ is
sent to infinity, the Λ divergences are renormalized induc-
tively. At each step, the theorem of Sec. III allows us to
resubtract the divergences in ε and re-fine-tune the finite
local terms, in order to enforce the cancellation of gauge
anomalies to all orders at Λ fixed. In the end, thanks to this,
the cancellation of gauge anomalies survives the renorm-
alization of both types of divergences. Moreover, the
approach of Ref. [7] identifies a special subtraction scheme
where the cancellation of gauge anomalies is manifest from
two loops onwards, within any given truncation. We stress

that it is not possible to achieve a similar goal by means of
regularization-independent methods.
The Callan-Symanzik equation (5.1) can be proved from

the results of Ref. [7] as follows, under the assumptions
specified there. At Λ fixed the HD theory is renormalized
by redefinitions of parameters, while the trivially anoma-
lous terms are canceled by adding a finite local functional
−χ=2 to the action. The renormalized action coincides with
its bare version apart from χ itself, which satisfies
χ ¼ μ−εχB, where χB is RG invariant. Then, the HD theory
satisfies formulas (5.1) and (5.2) with UR ¼ 0, the right-
hand side of (5.2) being equal εχ=2. The average hχi is
convergent in the HD theory (since its divergences, which
would start from two loops, are excluded by the arguments
of [7]), so the product εhχi=2 is truly evanescent at Λ fixed.
At a second stage, the renormalization is completed by
removing the Λ divergences. This is done by means of
special canonical transformations and redefinitions of
parameters. In this section we have proved that those
operations preserve the Callan-Symanzik equation,
although they can affect the beta functions and the func-
tionalUR. In the end, we obtain equations of the forms (5.1)
and (5.2).

VI. GAUGE DEPENDENCE
OF THE BETA FUNCTIONS

Often, we can prove that a theory is AB nonanomalous in
a family of gauges, parametrized by certain gauge-fixing
parameters ξ. In various common situations we can achieve
this goal by applying the results of Ref. [6], where the
Adler-Bardeen theorem was proved for arbitrary values of
the gauge-fixing parameter ξ of the Lorenz gauge, in
power-counting renormalizable gauge theories that have
unitary free-field limits. More generally, if the theory is
coupled to quantum gravity, we can apply the results of [7].
Then, when we study the dependence of the correlation
functions on ξ, we can proceed more straightforwardly than
in Sec. III, since we already know that ðΓR;ΓRÞ ¼ OðεÞ for
arbitrary ξ. It is worth recalling that in Sec. III we had to
derive this result from just knowing that ðΓR;ΓRÞ wasOðεÞ
for ξ equal to some initial value ξ�.
In this section we study the equations of gauge depend-

ence in theories that are AB nonanomalous for arbitrary
values of some gauge parameter θ and satisfy some
additional assumptions. Those assumptions are not very
restrictive, since they are fulfilled quite commonly. When θ
varies, we do not need to readjust the subtraction scheme by
fine-tuning the finite local counterterms. Then, however,
the beta functions of the couplings are in general gauge
dependent. Their gauge dependence can be removed by
redefining the couplings themselves.
We begin by listing the assumptions we need.
(I) We assume that the gauge algebra is irreducible and

closes off shell. This assumption is satisfied by the theories
whose gauge symmetries are general covariance, local
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Lorentz symmetry and Abelian and non-Abelian Yang-
Mills symmetries, such as the standard model coupled to
quantum gravity. It allows us to make a number of
simplifications. For example, we can choose the fields Φ
and the sourcesK so that the gauge-fixed tree-level solution
Sd of the D-dimensional master equation ðSd; SdÞ ¼ 0 is
linear in K and has the very simple structure (2.3).
We have already remarked that in various cases, for

example when the theory is chiral or parity violating, the
action Sd, embedded in D dimensions using the standard
rules of the dimensional regularization technique, is in
general not well regularized, due to the key role played by
the d-dimensional analogue ~γ of the matrix γ5, or the tensor
εā1���ād . Using the chiral dimensional regularization, a well-
regularized classical action SðΦ; KÞ is obtained by adding a
number of evanescent corrections Sev to Sd [11], as shown
in formula (2.6). We denote the parameters contained in Sev
by ηI. For convenience, we assume that Sev depends
linearly on the parameters η, and vanishes for η ¼ 0.
Let fGiðϕÞg denote a basis of local gauge invariant

functionals of the classical fields ϕ. Expand the classical
action as

ScðϕÞ ¼
X
i

λiGiðϕÞ; ð6:1Þ

where λi are independent parameters. We call the constants
λi “physical parameters,” since they contain or are related to
the gauge coupling constants, the masses, the Yukawa
couplings, etc. In our notation some parameters λi may be
actually redundant. Nevertheless, to simplify some deriva-
tions we prefer to keep an independent λi for every Gi. For
example, it is often useful to restrict Sc by dropping the
terms that are proportional to the Sc field equations,
because those terms can be renormalized by means of
canonical transformations, rather than λi redefinitions. We
do not implement this restriction right now, to make some
arguments of the derivations that follow more transparent.
We can always remove that class of redundant terms at the
end by means of a convergent canonical transformation, by
applying either the procedure of Sec. III, which is more
general, or the one of this section, which holds under
specific assumptions. Both procedures preserve the can-
cellation of gauge anomalies and the equations of gauge
dependence.
In total, we have physical parameters λ, gauge-fixing

parameters ξ, contained in Ψ, and regularizing parameters
η. The classical action is written as SðΦ; K; λ; ξ; ηÞ.
The action Sc may contain accidental symmetries, which

are the global symmetries unrelated to the gauge trans-
formations. Some accidental symmetries are dynamically
lost, because they are anomalous, others are nonanomalous.
Let Gnas denote the group of nonanomalous accidental
symmetries, or the identity group, depending on whether
the gauge group containsUð1Þ factors or not. By definition,

the set fGiðϕÞg includes the invariants that explicitly
break the anomalous accidental symmetries, but excludes

the invariants, denoted by G
̬

iðϕÞ, that explicitly break
Gnas. Then the actions Sc and Sd do not contain the

invariants G
̬

i, so we define extended actions S
̬

c and S
̬

d ¼
S
̬

c þ ðSK;ΨÞ þ SK that do include them, multiplied by

independent parameters λ
̬

i. Both choices of including and

excluding the invariants G
̬

i, are consistent, from the point of
view of renormalization.
We say that the action Sd satisfies the Kluberg-Stern–

Zuber assumption [19], if every nonevanescent local func-
tional X of ghost number zero that solves the equation
ðSd; XÞ ¼ 0 has the form

X ¼
X
i

aiGi þ ðSd; YÞ;

where ai are constants depending on the parameters of the
theory, and Y is a local functional of ghost number −1.
We say that the action Sd is cohomologically complete if

its extension S
̬

d satisfies the extended Kluberg-Stern–Zuber
assumption, that is to say every nonevanescent local fun-

ctional X of ghost number zero that solves ðS
̬

d; XÞ ¼ 0 has
the form

X ¼
X
i

aiGi þ
X
i

biG
̬

i þ ðS
̬

d; YÞ; ð6:2Þ

where bi are other constants, and Y is a local functional.
(II) We assume that the action Sd of (2.3) is cohomo-

logically complete and the group Gnas is compact.
The Kluberg-Stern–Zuber assumption is satisfied when

the Yang-Mills gauge group is semisimple and the action Sd
satisfies generic properties [30]. It is not satisfied when the
gauge group has Uð1Þ factors and accidental symmetries
are present. In particular, it is not satisfied by the standard
model. However, it can be proved, using the Ward identities
that hold in the Lorenz gauge, that the standard model is
cohomologically complete [6]. So are the Lorentz violating
extensions of the standard model of Refs. [12,31], which
are renormalizable by weighted power counting [27].
Starting from the cohomological theorems proved in
Ref. [30], it can be proved that the standard model coupled
to quantum gravity is also cohomologically complete [7],
and so are most of its extensions.
The condition ðSd; XÞ ¼ 0 is the one typically satisfied

by the counterterms. In this section we show that the
contributions of the extra term contained in the generalized
Ward identity (2.15) satisfy the same condition. Thus,
assumption (II) will give us control on the effects of the
new term.
We can imagine that θ is one of the parameters ξ, or

another parameter introduced by a field redefinition. We
keep it distinct from the other parameters λ; ξ; η contained
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in the action S and assume that SðΦ; K; λ; ξ; ηÞ denotes the
action at some specific value θ� of θ. With no loss of
generality, we take θ� ¼ 0. By definition of gauge param-
eter, when we vary θ, we make a canonical transformation
generated by a functional of the form (3.2) on the action S,
and this operation gives the action Sθ. As before, let SRθ
denote the renormalized action and ΓRθ the Γ functional
associated with it.
(III) We assume that the theory is AB nonanomalous for

arbitrary values of some gauge parameter θ. Precisely, we
assume that there exists a class of subtraction schemes
where the renormalized Γ functional ΓRθ satisfies the
identity

ðΓRθ;ΓRθÞ ¼ OðεÞ; ð6:3Þ

where θ takes values in some continuous range that
includes θ ¼ 0. From now on we understand that we work
in that class of subtraction schemes.
Assumption (III) has been proved, for common families

of gauge conditions, in the power-counting renormalizable
gauge theories that have unitary free-field limits [6], in the
Lorentz violating extensions of the standard model that are
renormalizable by weighted power counting [12,31], in the
standard model coupled to quantum gravity and a large
class of other nonrenormalizable theories [7].
We prove that there exist finite functions ρj of λ, ξ, η and

θ, which start from OðℏÞ, and a renormalized local func-
tional HRθðΦ; KÞ ¼ ~QθðΦ; KÞ þOðℏÞ, where ~QθðΦ; KÞ ¼
QθðΦ; K0ðΦ; KÞÞ and Qθ ¼ ∂Q=∂θ, such that ΓRθ satisfies
the equation

∂ΓRθ

∂θ ¼
X
j

ρj
∂ΓRθ

∂λj þ ðΓRθ; hHRθiÞ þOðεÞ: ð6:4Þ

The first term on the right-hand side of (6.4) can be
absorbed by means of finite redefinitions of the parameters
λ (which correspond to the re-fine-tuning of the previous
section). The second term is the one that can be absorbed
into a canonical transformation.
In the rest of this section we derive the equations of

gauge dependence (6.4) under the assumptions listed
above, and integrate them. Before beginning the derivation,
a few preliminary remarks are in order. If we differentiate
(6.3) with respect to any parameter ζ, we find

�
ΓRθ;

∂ΓRθ

∂ζ
�

¼ OðεÞ: ð6:5Þ

Now we take the antiparentheses of both sides of for-
mula (3.7) or (6.4) with ΓRθ, and use (6.5) for ζ ¼ θ and
ζ ¼ λj, the Jacobi identity satisfied by the antiparentheses
and formula (6.3) again. At the end, we find a consistent
relation of the form OðεÞ ¼ OðεÞ. Thus, we can view

formulas (3.7) and (6.4) as the solutions to the condition
(6.5) for ζ ¼ θ.
To explain this issue more clearly, let us define an

operator δΓ that acts on a (generically nonlocal) functional
Y by taking its antiparentheses with ΓRθ∶ δΓY ¼ ðΓRθ; YÞ.
Formula (6.3) ensures that δΓ is nilpotent up to OðεÞ,
because the Jacobi identity gives

δ2ΓY ¼ ðΓRθ; ðΓRθ; YÞÞ ¼
1

2
ððΓRθ;ΓRθÞ; YÞ ¼ OðεÞ: ð6:6Þ

Therefore, it is meaningful to study the cohomology of δΓ.
Consider the problem δΓY ¼ 0, of which the ε → 0 limit of
(6.5) is an example. It is a nonlocal upgrade of the more
standard cohomological problem ðSd; XÞ ¼ 0, where X is
local. Formula (6.5) tells us that ∂ΓRθ=∂θ is closed, in the
sense of the δΓ cohomology, up toOðεÞ. On the other hand,
formula (6.4) ensures that there exist finite linear combi-
nations of ∂ΓRθ=∂ζ that are δΓ-exact, up to OðεÞ.
However, nonlocal cohomological problems are difficult

to solve and must be treated with care, because if we do not
specify which nonlocalities are allowed and which are not,
any closed functional can in principle be exact. In other
words, we cannot derive (6.4) immediately from (6.5),
which is why gauge dependence deserves a separate
investigation.

A. The equations of gauge dependence

We apply formula (A5) of Appendix A to the renor-
malized action SRθ and the renormalized Γ functional ΓRθ,
with X ¼ ~QRθ, where ~QRθ denotes the renormalized
version of the functional ~QθðΦ; KÞ. We obtain

∂ΓRθ

∂θ ¼ ðΓRθ; h ~QRθiÞ þ hURθiΓ; ð6:7Þ

where

URθ ¼ −
i
2
ðSRθ; SRθÞ ~QRθ þ

∂SRθ
∂θ − ðSRθ; ~QRθÞ: ð6:8Þ

Taking the antiparentheses of both sides of (6.7) with ΓRθ
and using (6.5) and (6.6), we obtain

ðΓRθ; hURθiΓÞ ¼ OðεÞ: ð6:9Þ

Differently from (6.5), this nonlocal cohomological prob-
lem can be reduced to a local one, and solved. The reason is
that URθ is originated by an evanescent local bifunctional.
We prove that there exist finite functions ρj ¼ OðℏÞ of λ, ξ,
η and θ, and a renormalized local functional WRθ ¼ OðℏÞ,
such that
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hURθiΓ ¼
X
j

ρj
∂ΓRθ

∂λj þ ðΓRθ; hWRθiÞ þOðεÞ: ð6:10Þ

We proceed by induction. Assume that there exist finite
functions ρnj ¼ OðℏÞ of λ, ξ, η and θ, and a renormalized
local functional Wn ¼ OðℏÞ, such that the partially sub-
tracted functional

Un ≡URθ −
X
j

ρnj
∂SRθ
∂λj − ðSRθ;WnÞ −

i
2
ðSRθ; SRθÞWn;

ð6:11Þ

satisfies

hUniΓ ¼ OðεÞ þOðℏnþ1Þ: ð6:12Þ

This assumption is clearly satisfied at the zeroth order,
where ρ0j ¼ 0 and W0 ¼ 0, because by formula (3.12) we
have URθ ¼ Yθ þOðℏÞ, where Yθ is evanescent and given
by (3.11).
Using formulas (A3) and (A4), we obtain the average

hUniΓ ¼ hURθiΓ −
X
j

ρnj
∂ΓRθ

∂λj − ðΓRθ; hWniÞ; ð6:13Þ

which is clearly convergent. Consider the ðnþ 1Þ-loop
contributions Uðnþ1Þ

n to hUniΓ. They are convergent,
because so is the right-hand side of (6.13). Moreover,
the inductive assumption (6.12) states that the average
hUniΓ is evanescent up to and including n loops, while
(6.3) ensures that hðSRθ; SRθÞi ¼ ðΓRθ;ΓRθÞ is evanescent
to all orders. The arguments of Appendix B ensure that the

functional Uðnþ1Þ
n is the sum of a local nonevanescent part

Uðnþ1Þ
nnonev plus a generically nonlocal evanescent part:

hUniΓ ¼ Uðnþ1Þ
nnonev þOðεÞ þOðℏnþ2Þ: ð6:14Þ

Thus, using (6.13) and (6.14), we have

hURθiΓ ¼
X
j

ρnj
∂ΓRθ

∂λj þ ðΓRθ; hWniÞ þUðnþ1Þ
nnonev

þOðεÞ þOðℏnþ2Þ: ð6:15Þ
Inserting this expression inside (6.9) and using (6.5), (6.6)
and (6.3), we obtain

ðΓRθ; U
ðnþ1Þ
nnonevÞ ¼ OðεÞ þOðℏnþ2Þ:

Taking the ðnþ 1Þ-loop nonevanescent contributions to
this formula, we find

ðSdθ; Uðnþ1Þ
nnonevÞ ¼ 0; ð6:16Þ

where Sdθ is the action obtained by applying the canonical
transformation (3.2) to Sd. In deriving the result (6.16), it is
important to recall that the tree-level action (2.6) and the
canonical transformation (3.2) do not contain analytically
evanescent terms. In turn, Sθ and Sdθ satisfy the same
property, and Sdθ is the full nonevanescent part of Sθ.
Applying the inverse of the transformation (3.2) to

equation (6.16) and letting ~Uðnþ1Þ
nnonev denote the functional

obtained from Uðnþ1Þ
nnonev, we get

ðSd; ~Uðnþ1Þ
nnonevÞ ¼ 0: ð6:17Þ

At this point, we apply assumption (II). Let us imagine
that instead of working with the classical action Sc wework

with its extension S
̬

c, which includes the invariants G
̬

i that
break the nonanomalous accidental symmetries belonging

to the group Gnas. Similarly, we extend Sd to S
̬

d, Sev to S
̬

ev

and S ¼ Sd þ Sev to S
̬
. Every extended functional reduces

to the nonextended one when we set λ
̬
¼ η

̬ ¼ 0, where λ
̬

and η
̬
are the extra parameters of S

̬

c and S
̬

ev, respectively. If
we repeat the operations that lead to (6.17), we obtain an

extended, nonevanescent local functional U
̬ ðnþ1Þ
nnonev that

satisfies ðS
̬

d; U
̬ ðnþ1Þ
nnonevÞ ¼ 0. By assumption (II), the action

S
̬

d satisfies the extended Kluberg-Stern–Zuber assumption.

Therefore, there exist finite order-ℏnþ1 constants σ
̬ ðnþ1Þ
i ,

τ
̬ ðnþ1Þ
i , depending on the parameters, and a finite non-

evanescent local functional V
̬ ðnþ1Þ
θ of order ℏnþ1 such that

U
̬ ðnþ1Þ
nnonev ¼

X
i

σ
̬ ðnþ1Þ
i Gi þ

X
i

τ
̬ ðnþ1Þ
i G

̬

i þ ðS
̬

d; V
̬ ðnþ1Þ
θ Þ:

If we set λ
̬
¼ η

̬ ¼ 0 in this equation, we obtain

~Uðnþ1Þ
nnonev ¼

X
i

σ̄ðnþ1Þ
i Gi þ

X
i

τ̄ðnþ1Þ
i G

̬

i þ ðSd; V̄ðnþ1Þ
θ Þ;

ð6:18Þ

where σ̄ðnþ1Þ
i , τ̄ðnþ1Þ

i and V̄ðnþ1Þ
θ are equal to σ

̬ ðnþ1Þ
i , τ

̬ ðnþ1Þ
i

and V
̬ ðnþ1Þ
θ at λ

̬
¼ η

̬ ¼ 0. However, ~Uðnþ1Þ
nnonev and Sd are

invariant under Gnas, while the functionals G
̬

i are not. If we
average on Gnas (which we can do, since Gnas is assumed to

be compact), the G
̬

i disappear or give linear combinations

of the invariants Gi, and V̄ðnþ1Þ
θ turns into some ~Vðnþ1Þ

θ . We
obtain1

1If the terms proportional to the Sc field equations are dropped
from Sc, the average on Gnas may generate them back. In the case
of general covariance, local Lorentz symmetry and Yang-Mills
symmetries, the average of G

̬

i may also affect ~Vðnþ1Þ
θ , besides the

coefficients σðnþ1Þ
i , but the final result is still of the form (6.19).
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~Uðnþ1Þ
nnonev ¼

X
j

σðnþ1Þ
j

∂Sd
∂λj þ ðSd; ~Vðnþ1Þ

θ Þ; ð6:19Þ

for some new constants σðnþ1Þ
j . We have used

Gi ¼ ∂Sd=∂λj. At this point, we apply the canonical
transformation (3.2) again, and note that, by
formula (A6) the difference between the transformed
∂Sd=∂λj and ∂Sdθ=∂λj is equal to ðSdθ; XθÞ for some local
functional Xθ. In the end, we get

Uðnþ1Þ
nnonev ¼

X
j

σðnþ1Þ
j

∂Sdθ
∂λj þ ðSdθ; Vðnþ1Þ

θ Þ ð6:20Þ

for some new local functional Vðnþ1Þ
θ of order ℏnþ1. Now,

define

Unþ1 ¼ URθ −
X
j

ρnþ1j
∂SRθ
∂λj − ðSRθ;Wnþ1Þ

−
i
2
ðSRθ; SRθÞWnþ1;

ρnþ1j ¼ ρnj þ σðnþ1Þ
j ; Wnþ1 ¼ Wn þ Vðnþ1Þ

Rθ ;

where Vðnþ1Þ
Rθ are the renormalized versions of the func-

tionals Vðnþ1Þ
θ . Using (6.11), we also have

Unþ1 ¼ Un −
X
j

σðnþ1Þ
j

∂SRθ
∂λj − ðSRθ; Vðnþ1Þ

Rθ Þ

−
i
2
ðSRθ; SRθÞVðnþ1Þ

Rθ : ð6:21Þ

Recall that S ¼ Sd þ Sev, which implies Sθ ¼ Sdθ þOðεÞ
and SRθ ¼ Sdθ þOðεÞ þOðℏÞ. Taking the average of both
sides of (6.21), and using (A3), (A4), (6.20) and then
(6.14), we find

hUnþ1iΓ ¼ hUniΓ −Uðnþ1Þ
nnonev þOðεÞ þOðℏnþ2Þ

¼ OðεÞ þOðℏnþ2Þ;

which extends the inductive assumption (6.12) to the order
nþ 1. Formula (6.10) follows from formula (6.15) for
n ¼ ∞, with ρj ¼ ρ∞j and WRθ ¼ W∞ ¼ OðℏÞ.
Finally, using (6.10) inside (6.7), we get

∂ΓRθ

∂θ ¼
X
j

ρj
∂ΓRθ

∂λj þ ðΓRθ; h ~QRθ þWRθiÞ þOðεÞ:

This formula is equivalent to (6.4) with the identification
HRθ ¼ ~QRθ þWRθ. Observe that HRθ is another renormal-
ized version of the functional ~QθðΦ; KÞ, and just differs
from ~QRθ by a choice of subtraction scheme.

B. Integrating the new equations and RG invariance

Now we integrate the equations (6.4). We can easily
absorb away the first term on the right-hand side by making
finite redefinitions λðλ0; θÞ of the parameters λ. We choose
functions λiðλ0; ξ; η; θÞ that solve the evolution equations

∂λi
∂θ ¼ −ρiðλ; ξ; η; θÞ; ð6:22Þ

with the initial conditions λiðλ0; ξ; η; 0Þ ¼ λ0i. Using for-
mulas (6.4) and (3.27), we obtain

∂Γ̄Rθ

∂θ ¼ ðΓ̄Rθ; hHRθiÞ þOðεÞ; ð6:23Þ

where Γ̄Rθ is related to ΓRθ according to the definition
λðλ0; ξ; η; θÞ [see (3.26) and the arguments given right after
that formula].
Observe that Eq. (6.23) is equivalent to formula (3.7) of

Sec. III. This means the redefinitions λiðλ0; ξ; η; θÞ perform
the re-fine-tuning of finite local counterterms (automati-
cally incorporated in the approach of Sec. III) that was
missing so far in the approach of the present section. As in
Sec. III C, Eq. (6.23) can be integrated with the method of
Appendix C. We find that there exists a canonical trans-
formation Φ; K → Φ0; K0 such that the Γ functional Γ0

R
defined by

Γ0
RðΦ0; K0; λ0; ξ; ηÞ ¼ ΓRθðΦðΦ0; K0; λ0; ξ; η; θÞ; KðΦ0; K0; λ0; ξ; η; θÞ; λðλ0; ξ; η; θÞ; ξ; η; θÞ ð6:24Þ

is θ independent, up to OðεÞ. Since θ ¼ 0 gives Γ0
R ¼ ΓR, we also have

Γ0
RðΦ0; K0; λ0; ξ; ηÞ ¼ ΓRθðΦ0; K0; λ0; ξ; η; 0Þ ¼ ΓRðΦ0; K0; λ0; ξ; ηÞ:

Inverting the transformations, we obtain the formula

ΓRθðΦ; K; λ; ξ; η; θÞ ¼ ΓRðΦ0ðΦ; K; λ; ξ; η; θÞ; K0ðΦ; K; λ; ξ; η; θÞ; λ0ðλ; ξ; η; θÞ; ξ; ηÞ; ð6:25Þ
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which shows that the dependence of ΓRθ on the gauge
parameter θ can be fully absorbed inside a finite redefini-
tion of the parameters λ and a canonical transformation.
According to formulas (6.24) and (6.25), the beta

functions β0λ0 of the parameters λ0 (in the framework where
the fields and the sources have primes) are θ independent.
That means, however, that the beta functions βλ of the
couplings λ do depend on θ. However, their θ dependence
is not arbitrary, because it disappears by making the
redefinitions λðλ0; ξ; η; θÞ.
We can repeat the argument for any other gauge

parameter θ for which formula (6.3) is known to hold,
taking one at a time. Since the composition of special
canonical transformations and redefinitions of parameters
is a special canonical transformation combined with a
redefinition of parameters, we reach the conclusion that the
entire dependence on the gauge parameters can be absorbed
into such operations, which do not affect the physical
quantities (see Sec. VII C).
We can also repeat the arguments of Sec. V and prove

that RG invariance is preserved. The difference is that now
instead of (5.3) we get a transformed Callan-Symanzik
equation that contains θ-dependent beta functions.

VII. GAUGE INDEPENDENCE AND UNITARITY

In general gauge theories we need to introduce extra
fields, such as the Fedeev-Popov ghosts C, the antighosts C̄
and the Lagrange multipliers B, and choose gauge-fixing
conditions to make the functional integral perturbatively
well defined. In addition, to implement the renormalization
of divergences to all orders, study the gauge dependence
and prove the Adler-Bardeen theorem, it is also convenient
to introduce the sources K and use the Batalin-Vilkovisky
formalism. The extra fields and the sources must be
switched off at some point. In this section we explain
how to define the physical quantities and show that they are

gauge independent, under the sole assumption that the
theory is AB nonanomalous, as in Sec. III. We work with
convergent functionals, so we can set ε ¼ 0. We denote the
ε → 0 limits of ΓR and the other functionals involved in our
arguments by the same symbols used so far, since no
confusion is expected to arise.
First, we need to “un-gauge-fix” the theory, by switching

off C̄, B and their sources KC̄, KB. This operation is regular
inside the Γ functionals, once Feynman diagrams have been
evaluated, but not inside the actions S and SR, in the sense
that if we un-gauge-fix the action, Feynman diagrams
obviously become ill defined. For this reason, some gauge
dependence survives the un-gauge-fixing procedure.
Besides un-gauge-fixing, we must switch off the sources
K. The combined switch-off procedure allows us to define a
physical Γ functional, identify its gauge symmetries, check
that they close on shell, and prove that no gauge depend-
ence affects the physical quantities.
Since the gauge fixing is introduced by means of a

canonical transformation, such as (2.5), when we vary the
gauge-fixing parameters θ ¼ ξ we make a canonical trans-
formation. Therefore, Eqs. (3.7) and (6.4) can be used to
study the dependence of the physical quantities on the
parameters ξ.
The information gathered so far is encoded in the key

formulas

ðΓRθ;ΓRθÞ ¼ 0; ð7:1Þ

∂ΓRθ

∂θ −
X
j

ρj
∂ΓRθ

∂λj − ðΓRθ; hHRθiÞ ¼ 0; ð7:2Þ

and is sufficient to achieve the goals of this section. We
work on the ε → 0 limit of (6.4), rather than the one of
(3.7), because everything we say starting from the former
can be easily generalized to the other case.

A. Quantum gauge algebra

Formula (7.1) gives

0 ¼ −
Z

δrΓRθ

δKα

δlΓRθ

δΦα ¼ −
Z �

δrSRθ
δKα

�
δlΓRθ

δΦα ¼
Z

hðSRθ;ΦαÞi δlΓRθ

δΦα ; ð7:3Þ

and tells us that ΓRθ is invariant under the infinitesimal
(nonlocal) transformations

Φα → Φα þ δΦα; δΦα ≡ϖhðSRθ;ΦαÞi ¼ −ϖ
δrΓRθ

δKα
:

Here and below ϖ, ϖ0, etc., denote constant anti-
commuting parameters. Write Φα ¼ fϕi; Ca; C̄a; Bag and

Kα ¼ fKi
ϕ; K

a
C; K

a
C̄; K

a
Bg, to separate the classical fields ϕi

and their sources Ki
ϕ from the extra fields and their sources.

Observe that S is independent of KB and contains KC̄
only through the term −

R
BaKa

C̄. This is also true after the
canonical transformation (3.2), if we assume, for simplicity,
that the functional QðΦ; K0Þ appearing in (3.2) is indepen-
dent of KC̄ and KB. Then Sθ also satisfies ðSθ; C̄Þ ¼ B and
ðSθ; BÞ ¼ 0. Moreover, the sources KC̄ and KB cannot
contribute to any nontrivial one-particle irreducible
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diagrams. Thus, after renormalization we still have
ðSRθ; C̄Þ ¼ B and ðSRθ; BÞ ¼ 0, i.e. δC̄a ¼ ϖBa and
δBa ¼ 0.
Define

Γ̂RðϕÞ≡ ΓRθðΦ; KÞjC̄¼B¼K¼0; δ̂Φα ¼ δΦαjC̄¼B¼K¼0:

Observe that Γ̂RðϕÞ is independent of the ghosts C, because
it has ghost number zero and after suppressing C̄ and K no
fields and/or sources of negative ghost numbers survive.
For the same reason, δ̂ϕi, which has ghost number equal to
one, is linear in C. Clearly, δ̂C̄ ¼ δ̂B ¼ 0. Thus, when C̄, B
and K are switched off, formula (7.3) turns into

0 ¼
Z

δ̂ϕi δlΓ̂RðϕÞ
δϕi : ð7:4Þ

The terms proportional to δlΓRθ=δC do not contribute to
(7.4) because Γ̂RðϕÞ is C independent. The terms propor-
tional to δlΓRθ=δC̄ and δlΓRθ=δB disappear, because they
multiply δ̂ C̄ and δ̂B, respectively.
We call Γ̂RðϕÞ the “physical” Γ functional. The trans-

formations δ̂ϕi encode the gauge symmetry of Γ̂R. Indeed,
recall that δ̂ϕi is linear in C and of course ϖ. Replacing
each ghost C with ϖ0Λ, where ΛðxÞ is a function having
statistics opposite to the one of C, and dropping the
products ϖϖ0 after moving them to the left, we can define
a symmetry transformation δΛϕ

i by the formula

ϖϖ0δΛϕi ¼ δ̂ϕijC→ϖ0Λ

and prove, using Eq. (7.4), that Γ̂RðϕÞ is invariant under this
symmetry:

δΛΓ̂RðϕÞ ¼
Z

δΛϕ
i δlΓ̂RðϕÞ

δϕi ¼ 0:

We call δΛϕi the quantum gauge transformations. To the
lowest order in ℏ they coincide with the starting gauge
transformations, but at higher orders they are in general
nonlocal functionals. We call the algebra of the trans-
formations δΛ quantum gauge algebra.

B. Closure of the quantum gauge algebra

Now we study the closure of the quantum gauge algebra.
If we differentiate (7.1) with respect to K, we obtain

ðΓRθ; δΦαÞ ¼ 0:

Consider this equation in the case δΦα → δϕi, then switch
off C̄ and B, and set K ¼ 0 at the end. Recalling that δC̄ ¼
ϖB and δB ¼ 0, and observing that δϕi does not depend on
KC̄ and KB, we obtain

Z
δ̂0ϕj δlðδ̂ϕiÞ

δϕj þ
Z

δ̂0Ca δlðδ̂ϕiÞ
δCa

¼
Z

δrðδϕiϖ0Þ
δKj

ϕ

����
C̄¼B¼K¼0

δlΓ̂RðϕÞ
δϕj ; ð7:5Þ

having multiplied to the left by ϖ0 and having defined
δ̂0Φα ¼ δ̂Φαjϖ→ϖ0 . The right-hand side of (7.5) is propor-
tional to the ϕj “Γ field equations,” which means that
closure is achieved on shell. The left-hand side of (7.5) can
be handled as follows. Since δ̂ϕi and δ̂Ca are linearly and
quadratically proportional to the ghosts, respectively, we
can write them in the form

δ̂ϕi ¼ ϖ

Z
CāTi

āðϕÞ; δ̂Ca ¼ −
1

2

Z
Cb̄ϖCc̄Ta

b̄ c̄
ðϕÞ;

where Ti
ā and Ta

b̄ c̄
are nonlocal functionals. Here the bar

indices include the spacetime points where the correspond-
ing fields are located and the summation over repeated bar
indices understands the integration over those spacetime
points. Now, take formula (7.5) and replace Ca with
ϖ00Λa þϖ000Σa, Λa and Σa being functions of the coor-
dinates. The left-hand side of (7.5) is turned into
ϖϖ0ϖ00ϖ000 times

Z
δΛϕ

jδlðδΣϕiÞ
δϕj −

Z
δΣϕ

jδlðδΛϕiÞ
δϕj −

Z
ΛāΣb̄Tc̄

āb̄
ðϕÞTi

c̄ðϕÞ:

Finally, the whole formula (7.5) is equivalent

½δΛ; δΣ�ϕi ¼ δ½Λ;Σ�ϕi þ
Z

vijðϕ;Λ;ΣÞ δlΓ̂RðϕÞ
δϕj ; ð7:6Þ

where

½Λ;Σ�a ¼
Z

Λb̄Σc̄Ta
b̄ c̄
ðϕÞ

and vijðϕ;Λ;ΣÞ are suitable functions. Formula (7.6)
expresses the on-shell closure of the quantum gauge
algebra.
The field transformations and the closure relations

become clearer if we switch to a more explicit notation,
where they read

δΛϕ
iðxÞ ¼

Z
ddyΛaðyÞTi

a½ϕ�ðx; yÞ;

½Λ;Σ�aðxÞ ¼
Z

ddyddzΛbðyÞΣcðzÞTa
bc½ϕ�ðx; y; zÞ;

Ti
a½ϕ� and Ta

bc½ϕ� being (nonlocal) functionals that depend
on two and three spacetime points, respectively.
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C. Gauge dependence of the physical Γ functional

The last goal is to study the gauge dependence of Γ̂RðϕÞ.
Observe that the functional hHRθi that appears in for-
mula (7.2) has ghost number equal to−1. Therefore, it must
be proportional to the antighosts C̄ and/or some sources K.
This fact implies that the derivatives δlhHRθi=δϕi and
δlhHRθi=δCa are zero at C̄ ¼ K ¼ 0. Moreover, hHRθi
does not depend on KC̄ and KB, if the functional QðΦ; K0Þ
of (3.2) satisfies the same property, as we are assuming
here. Setting C̄ ¼ B ¼ K ¼ 0 in (7.2) we obtain

∂Γ̂RðϕÞ
∂θ ¼

X
j

ρj
∂Γ̂RðϕÞ
∂λj þ

Z
uiðϕÞ δlΓ̂RðϕÞ

δϕi ; ð7:7Þ

where

uiðϕÞ ¼ δrhHRθi
δKi

ϕ

����
C̄¼B¼K¼0

:

Formula (7.7) is the equation of gauge dependence satisfied
by the physical functional Γ̂RðϕÞ. We can integrate it with
the procedure described in Sec. VI B. The first term on the
right-hand side of (7.7) can be absorbed into redefinitions
of the parameters λ, while the second term can be absorbed
into a change of field variables. We can do this for each
gauge parameter θ, taking one at a time. We obtain that
there exists redefinitions λðλ0; θÞ and a change of field
variables ϕðϕ0; λ0; θÞ such that the transformed physical
functional

Γ̂0
Rðϕ0; λ0Þ ¼ Γ̂Rðϕðϕ0; λ0; θÞ; λðλ0; θÞ; θÞ

is θ independent. Setting θ ¼ 0 we get Γ̂0
Rðϕ0; λ0Þ ¼

Γ̂Rðϕ0; λ0; 0Þ, which in the end allows us to write

Γ̂Rðϕ; λ; θÞ ¼ Γ̂Rðϕ0ðϕ; λ; θÞ; λ0ðλ; θÞ; 0Þ:

Since the entire gauge dependence is encoded into
changes of field variables and redefinitions of parameters,
it cannot affect the physical quantities contained in Γ̂RðϕÞ.

D. Unitarity

In this subsection we prove (perturbative) unitarity, to
emphasize why gauge independence is so crucial. For
definiteness, we illustrate our arguments in Yang-Mills
theories, but everything we say can be applied to quantum
gravity, as well as any general gauge theory. We recall that
perturbative unitarity is the statement that the identity
SS† ¼ 1 holds diagrammatically, order by order in the
perturbative expansion [32]. A necessary condition is that
the free-field theory we perturb around propagates only
physical degrees of freedom. A necessary and sufficient
condition is that when the identity SS† ¼ 1 is written as a

cutting equation no unphysical degrees of freedom con-
tribute to the cut propagators.
There exists no gauge-fixing conditions where both

unitarity and the locality of counterterms are manifest. If
we want manifest unitarity, propagators must have only
physical poles. This happens when we choose gauge-fixing
functions of the Coulomb type, such as GðϕÞ ¼ ∂iAi,
where i; j;… are space indices, inside the gauge fermion
ΨðΦÞ of (2.4). However, the locality of counterterms is not
manifest in that gauge, since the Coulomb propagators
contain denominators whose dominant terms (those that
determine their ultraviolet behavior) do not depend on the
energy (or do not depend on it in the correct way). Then,
when we differentiate a Feynman diagram with respect to
the energies of its external legs, the overall degree of
divergence is not guaranteed to decrease, so we cannot
prove the locality of counterterms in this way. Besides
having a bad power-counting behavior at high energies, the
propagators of the Coulomb gauge generate spurious
divergences that are difficult to handle.
To have a good power-counting behavior we need to

equip the propagators with extra poles, some of which are
unphysical. This is achieved for example by choosing the
Lorenz gauge-fixing function GðϕÞ ¼ ∂μAμ in (2.4). The
Fadeev-Popov ghosts then also have poles. The locality of
counterterms is manifest, but unitarity is not.
The extra poles must cancel somehow, but their mutual

compensation is not evident. The best way to prove this
compensation is to use the gauge independence of the
physical amplitudes, which allows us to switch back and
forth between gauge-fixing conditions of the Lorentz type
and gauge-fixing conditions of the Coulomb type. The
former make the locality of counterterms manifest and hide
unitarity, while the latter make unitarity manifest and hide
the locality of counterterms.
For example, choose the gauge fermion

ΨðΦÞ ¼
Z

C̄a

�
ζ∂0Aa

0 − ∂iAa
i þ

ξ

2
Ba

�
; ð7:8Þ

which contains two gauge-fixing parameters, ξ and ζ. This
functional interpolates between the Lorenz gauge (ζ ¼ 1)
and the Coulomb gauge (ζ ¼ 0). After integrating B out,
the propagators of the gauge fields are

hA0ðkÞA0ð−kÞi0 ¼ −
iξ2

PðkÞ ðξE
2 − k̄2Þ;

hAiðkÞA0ð−kÞi0 ¼
iξ2

PðkÞ ðζ − ξÞEki;

hAiðkÞAjð−kÞi0 ¼
i

E2 − k̄2

�
δij −

kikj
k̄2

�

þ iðζ2E2 − ξ2k̄2Þ ξkikj

k̄2PðkÞ ; ð7:9Þ
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where k̄2 ¼ kiki and

PðkÞ ¼ ξðζE2 − ξk̄2Þ2 − k̄2ð1 − ξÞðζ2E2 − ξ2k̄2Þ;

while the ghost propagator is

hCðkÞC̄ð−kÞi ¼ i
ζE2 − k̄2

: ð7:10Þ

We see that the propagators are well behaved, from the
point of view of power counting, whenever ζ ≠ 0. They are
not well behaved for ζ ¼ 0, which is the Coulomb limit.
The parameter ζ is a sort of cutoff that regulates the
spurious divergences of the Coulomb gauge. Moreover, at
ζ ¼ 0 PðkÞ is equal to ξ2ðk̄2Þ2 and only the physical poles
survive. Instead, unphysical poles are present whenever
ζ ≠ 0.
In the previous sections we have proved that the physical

quantities are gauge independent. In particular, they are
independent of ξ and ζ. Thus, they are also unitary, and
obey the locality of counterterms. We see that they are
unitary by taking ζ ¼ 0. We see that they obey the locality
of counterterms by taking ζ ≠ 0.
In the case of the standard model in flat space, we can

easily generalize the proof of the Adler-Bardeen theorem
given in Ref. [6] to the family of gauge fermions (7.8),
because they are all renormalizable. Then, the remarks of
this subsection allow us to infer that the standard model in
flat space is perturbatively unitary.
In Ref. [7] a more general proof of the Adler-Bardeen

theorem was given. It holds in a large class of non-
renormalizable theories, which includes the standard model
coupled to quantum gravity. Combining the results of [7]
with those of Sec. III, we can extend the validity of the
Adler-Bardeen theorem to the most general local gauge
fermions. In particular, using an analogue of (7.8), to switch
between the Lorenz and Coulomb gauges of diffeomor-
phisms and Yang-Mills symmetries, we infer that the
standard model coupled to quantum gravity is unitary as
a perturbative quantum field theory. So are its extensions,
as long as they satisfy the assumptions we have made.
We stress again that gauge independence is crucial to reach

these conclusions, since the Adler-Bardeen theorem per se
ensures gauge invariance, but not gauge independence.

VIII. CHECKS OF HIGH-ORDER CALCULATIONS
BASED ON GAUGE INDEPENDENCE

In this section we discuss how to use the results of this
paper to check high-order calculations, under the assump-
tions of Sec. VI. We have proved that
Proposition 1: The beta functions of the physical

parameters λ may depend on the gauge parameters ξ, but
that dependence can always be reabsorbed into finite λ
redefinitions.

This proposition also reminds us that there exists a class
of subtraction schemes where the beta functions are gauge
independent, in agreement with the general theorem proved
in Sec. III. If we are extremely lucky, the framework we
choose to simplify high-order calculations might belong to
that class. In ordinary situations, we may expect to be lucky
only to the lowest orders, which may mean till three or four
loops, or for special choices of the gauge fixing. However,
we may not be able to identify the right framework in
advance. Therefore, contrary to the usual lore, in general
we cannot make checks of high-order calculations based on
the assumption that λ beta functions are completely gauge
independent.
Nevertheless, the beta functions cannot be gauge depen-

dent in an arbitrary way, precisely because their gauge
dependence must disappear in a suitable class of subtrac-
tion schemes. Thanks to this, a criterion to make checks of
high-order calculations, based on gauge independence, still
exists. It amounts to verify that every ξ dependence
contained in the λ beta functions can be cancelled by
means of finite λ redefinitions. In this section we show that
the correct criterion, although less powerful than expected,
is nontrivial and powerful enough.
For definiteness, consider the standard model in flat

space, and let λi collect the φ4 coupling, the squared gauge
couplings, and the squared Yukawa couplings. The most
general λ beta functions have the form

βi ¼
X∞
n¼2

ℏn−1χi1���iniλi1 � � � λin ; ð8:1Þ

where χii1���in are constants and the powers of ℏ are inserted
to emphasize the order of the loop expansion. The most
general perturbative λ redefinitions can be parametrized as

λ0i ¼ λi þ
X∞
n¼2

ℏn−1ϑii1���inλi1 � � � λin ; ð8:2Þ

where ϑii1���in are other constants. We have

β0i ¼
X∞
n¼2

ℏn−1χi1���iniλi1 � � �λin

þ
X∞
n¼2

nℏn−1ϑii1���inλi1 � � �λin−1
X∞
m¼2

ℏm−1χk1���kminλk1 � � �λkm

≡X∞
n¼2

ℏn−1χ0i1���iniλ
0
i1
� � �λ0in : ð8:3Þ

Proposition 1 ensures that the gauge dependence contained
in the beta functions βi can be absorbed inside the
redefinitions (8.2), that is to say there exist constants
ϑii1���in such that the couplings λ0i have gauge independent
beta functions β0i. Using this piece of information, we can
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determine which nontrivial checks of high-order calcula-
tions are available.
The one-loop coefficients χi1i2i cannot be changed,

because they are scheme independent (χ0i1i2i ¼ χi1i2i).
Therefore, they are also gauge independent. Comparing
(8.1) and (8.3), we find that the other coefficients are related
by the formula

χ0i1���ini ¼ χi1���ini þ ðn − 1Þϑijfi1���in−2χin−1ingj
− 2ϑjfi1���in−1χingji þ � � � ; ð8:4Þ

where the dots stand for contributions involving ϑi1���ik with
k < n. We can define an iterative procedure to determine
ϑi1���in by assuming that the constants ϑi1���ik with k < n are
known, and requiring that χ0i1���ini be gauge independent.
Now, if the number of couplings λ is N, the tensors

χi1���ilþ1i have cN;l ≡ NðNþl
lþ1

Þ independent components
[33], while the tensors ϑi1���ilj have cN;l−1 components,
where l is the number of loops. For N ¼ 1 (that is to say a
single coupling λ) and l > 2 it is always possible to absorb
the gauge dependence into λ redefinitions (as long as the
one-loop coefficient χ of the beta function does not vanish),
because c1;l ¼ c1;l−1 ¼ 1. For l ¼ 2 it is not possible,
because the second and third terms on the right-hand side of
formula (8.4) cancel each other. Thus, two nontrivial
checks are available for N ¼ 1, due to the gauge inde-
pendence of the one-loop and two-loop coefficients of the
beta function.
For N > 1 more nontrivial checks of high-order calcu-

lations based on gauge independence are available, because
cN;l > cN;l−1. Proposition 1 implies that the number of ξ-
independent components of the tensors χi1���ilþ1i is obtained
by modding out the redefinitions (8.2). Generically, this
operation leaves

cN;l − cN;l−1 ¼ N

�
N þ l − 1

lþ 1

�

independent checks at l loops. This number is ðlþ NÞ=
ðN − 1Þ times less than the number we would obtain if the
beta functions were completely gauge independent. Indeed,
in that case we would have cN;l independent checks at l
loops, which is equal to the number of constants χi1���ilþ1i.
So far, the beta functions of the standard model have

been calculated to three loops [34] and the results are fully
independent of the gauge-fixing parameters. Presumably,
the convenient gauge-fixing functions and the clever treat-
ments of the matrix γ5 used in Refs. [34] project onto the
class of subtraction schemes where the beta functions are
already gauge independent, at least to the lowest orders.
However, we may expect that this coincidence will stop,
sooner or later. When that happens, we must be aware of the
facts pointed out in this section. Moreover, we stress that in
the proofs of properties to all orders, such as the proof of

the Adler-Bardeen theorem in nonrenormalizable theories
[7], it is often more convenient to use subtraction schemes
that are less practical from the calculational point of view,
but more convenient from the theoretical side. There, it is
also important to keep in mind that the beta functions do
not need to be gauge independent.

IX. CONCLUSIONS

In this paper we have derived generalizedWard identities
for potentially anomalous theories, and used them to study
the problem of gauge independence. The new equations
contain an extra term that is responsible for a number of
interesting effects. We have renormalized the equations of
gauge dependence and integrated them. The result is that
every gauge dependence can be absorbed into a canonical
transformation acting on the renormalized Γ functional,
provided that the finite local counterterms are appropriately
fine-tuned. RG invariance is preserved and, as expected, the
physical quantities are gauge independent. Nevertheless,
the beta functions of the couplings may in general depend
on the gauge choice. Gauge independence is useful to
switch back and forth between gauge conditions that
exhibit perturbative unitarity and gauge conditions that
exhibit a correct power-counting behavior and the locality
of counterterms.
In several cases, the Adler-Bardeen theorem ensures that

the gauge anomalies cancel to all orders, when they are
trivial at one loop. However, it is not sufficient, per se, to
ensure that the physical quantities are independent of the
gauge fixing. In this paper we have proved that, in the end,
gauge invariance does imply the gauge independence of the
physical quantities. Precisely, we have shown that it is
possible to renormalize the theory and fine-tune its finite
local counterterms so that the cancellation of gauge
anomalies ensured by the Adler-Bardeen theorem is pre-
served for arbitrary values of the gauge parameters.
Said differently, assume that the gauge anomalies vanish

for some specific choices of the gauge parameters. Varying
or turning on a gauge parameter is equivalent to making a
canonical transformation. After the canonical transforma-
tion, it is always possible to re-renormalize the theory and
re-fine-tune its finite local counterterms to enforce the
cancellation of gauge anomalies again. Moreover, the
gauge dependence of the renormalized Γ functional is
encoded into a convergent canonical transformation. The
theorem proved in Sec. III is very general, to the extent that
we did not need to make particular assumptions about the
gauge algebra or the properties of the theory under
renormalization. In particular, it holds for renormalizable
and nonrenormalizable, chiral and nonchiral, theories and
for arbitrary composite fields. Once we know that the
cancellation of gauge anomalies holds in the framework we
prefer, we know that it holds in every other framework.
One application of the theorem is to power-counting

renormalizable chiral gauge theories gauge-fixed by means
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of a nonrenormalizable gauge fixing. It allows us to show
that the parameters of negative dimensions introduced by
the gauge fixing do not propagate into the physical
quantities. In other words, the theory remains renormaliz-
able, although in a nonmanifest form. A second application
is a crucial step in the proof of the Adler-Bardeen theorem
for nonrenormalizable theories elaborated in Ref. [7].
It is often possible to prove the cancellation of gauge

anomalies in a family of gauges. In that case, if the
assumptions listed in Sec. VI hold, we do not need a
new fine-tuning to enforce the cancellation of gauge
anomalies after the variation of a gauge parameter. Then,
the gauge dependence of the theory is encoded into a
convergent canonical transformation on the renormalized Γ
functional, combined with a finite redefinition of the
parameters. This fact makes it apparent that in general
the beta functions of the couplings may depend on the
gauge fixing. We expect that high-order calculations of the
beta functions in the standard model will exhibit, sooner or
later, dependences of the type mentioned here.
The gauge dependences of the beta functions can be

eliminated by redefining the couplings in ad hoc ways.
Thanks to this fact, gauge independence can still be used to
make nontrivial checks of the calculations.

APPENDIX A: USEFUL FORMULAS

In this appendix we collect a few identities that are used
in the paper. First, we recall that

ðΓ;ΓÞ ¼ hðS; SÞi; ðA1Þ
where S is any action (renormalized or not), Γ denotes the Γ
functional associated with S and

hXi ¼ 1

ZðJ;KÞ
Z

½dΦ�X exp

�
iSðΦ; KÞ þ i

Z
ΦαJα

�

ðA2Þ
is the average defined by S, X being a local functional.
Formula (A1) can be proved by making the change of field
variables (2.10) in the functional integral (2.8), and recall-
ing that in any dimensional regularization the local per-
turbative changes of field variables have Jacobian
determinants identically equal to one. For details on the
derivation, see the appendixes of Refs. [6,8].
If ζ is any parameter, we also have the formulas

∂Γ
∂ζ ¼

�∂S
∂ζ

�
; ðA3Þ

ðΓ; hXiÞ ¼ hðS; XÞi þ i
2
hðS; SÞXiΓ; ðA4Þ

where X is an arbitrary local functional and hXYiΓ denotes
the set of one-particle irreducible diagrams that have one X

insertion, one Y insertion, and arbitrary Φ and K external
legs, Y being another local functional. Formula (A3)
follows from the definition of Γ as the Legendre transform
ofW. Formula (A4) can be proved by making the change of
field variables (2.10) in the average (A2), and expressing
the final result in terms of Φ and K. For details on this
method, see the appendix of Ref. [8].2

A simpler method to derive formula (A4) is to deform the
action S into Sþ Xσ, where σ is a constant, consider the
deformed version of formula (A1) and take the first order of
its expansion in powers of σ. By (A3), Γ is deformed into
Γþ hXiσ þOðσ2Þ. Instead, the average hYi of a local
functional Y is deformed into hYi þ ihYXiΓσ þOðσ2Þ.
Indeed, the factor eiS appearing in the integrands of
ZðJ; KÞ and ZðJ; KÞhYi [check (2.8) and (A2)] is deformed
into eiSð1þ iXσ þOðσ2ÞÞ. Moreover, the deformed aver-
age, considered as a functional of Φ and K, is still a
collection of one-particle irreducible diagrams. Thus, the
first correction to hYi is precisely ihYXiΓσ. Taking
Y¼ðS;SÞ, we obtain hðS; SÞi → hðS; SÞi þ ihðS; SÞXiΓσ þ
Oðσ2Þ, wherefrom (A4) follows.
If we subtract the equations (A3) and (A4) we also get

∂Γ
∂ζ − ðΓ; hXiÞ ¼

�∂S
∂ζ − ðS; XÞ − i

2
ðS; SÞX

�
Γ
; ðA5Þ

which is the starting point to derive the equations of gauge
dependence.
Another useful identity tells us that [8,16], if Φ; K → Φ0;

K0 is a canonical transformation with generating functional
FðΦ; K0Þ, and YðΦ; KÞ is a functional behaving as a scalar,
i.e. such that Y 0ðΦ0; K0Þ ¼ YðΦ; KÞ, then

∂Y 0

∂ζ ¼ ∂Y
∂ζ − ðY; ~FζÞ; ðA6Þ

where ~FζðΦ; KÞ ¼ FζðΦ; K0ðΦ; KÞÞ and FζðΦ; K0Þ ¼
∂F=∂ζ. The field and source variables that are kept
constant in the ζ derivative of a functional are the natural
field and source variables of that functional (that is to sayΦ0
and K0 for Y 0, Φ and K for Y, Φ and K0 for F).

APPENDIX B: RENORMALIZATION
OF LOCAL BIFUNCTIONALS

In this appendix we show how to renormalize a generic
local bifunctional, and then specialize to evanescent local
bifunctionals. Given a theory with action S, assume that a
local bifunctional F has the form AB, where A and B are
local functionals. Couple A and B to external (constant)
sources hA and hB, by deforming the action S into

2Note that we have switched from the Euclidean notation used
in [8] to the Minkowskian notation used here.
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S̆ ¼ S − ihAA − ihBB. Then, renormalize the extended
action S̆. The renormalized version of S̆ has the form

S̆R ¼ SR − ih̆AAR − ih̆BBR − ih̆Bh̆ACR þOðh̆2AÞ þOðh̆2BÞ;

where AR and BR are the renormalized functionals A and B,
respectively, h̆A, h̆B are the renormalized sources, and CR is
a local functional. Consider the Γ functional Γ̆R associated
with S̆R. Differentiating it from the left-hand side with
respect to h̆B and then h̆A, and later setting h̆A ¼ h̆B ¼ 0,
we find that the renormalized F is equal to
FR ¼ ARBR þ CR.
It is a known fact (see for example [21], chapter 13, or

[6], Sec. 6) that an evanescent local functional E can be
renormalized so that its renormalized version ER satisfies
hERi ¼ OðεÞ. This property extends to evanescent local
bifunctionals in a straightforward way. However, we have
to pay attention to some details.
By writing ∂̂μ ¼ η̂μν∂ν and p̂μ ¼ η̂μνpν everywhere

inside E, we can express each vertex of E in a factorized
form T kδ̂k, where δ̂k denotes the evanescent part, made of
tensors ημ̂ ν̂, possibly ε factors and other structures that stay
outside of the diagrams, while T k is a nonevanescent local
functional and collects all the momenta. We then have
E ¼ P

kT kδ̂k. Instead of considering the average hEi,
consider first the diagrams hT ki that contain one insertion

of T k. Iterating in n ¼ 0; 1;…, let T ðnþ1Þ
kdiv denote the

ðnþ 1Þ-loop divergent part of hT nki, where

T nk ¼ T k −
Xn
p¼1

T ðpÞ
kdiv

are the functionals T k renormalized up to and including n

loops. By the locality of counterterms, each T ðpÞ
kdiv is local.

Then, the functional En ¼
P

kT nkδ̂k is renormalized up to
and including n loops, and satisfies

hEni ¼
X
k

hT nkiδ̂k ¼ OðεÞ þOðℏnþ1Þ; ðB1Þ

because each hT nki is convergent up to Oðℏnþ1Þ. Finally,
the functional ER ≡ E∞ satisfies hERi ¼ OðεÞ.
In the procedure just outlined we have subtracted away

all sorts of contributions T ðpÞ
kdiv, order by order. More

generally, we do not need to subtract those that, once
multiplied by δ̂k, give evanescent results. Indeed, collecting
those evanescent local parts inside a local functional ΔE,
anything we have said so far for E can be repeated for ΔE.
We reach the conclusion that hERi ¼ OðεÞ even if we
“forget” to subtract any evanescent local parts.
Once we have renormalized E so that hERi is evanescent

to all orders, we can apply the same procedure to the
bifunctional Y ¼ EB, where B is an arbitrary local

functional. The outcome is that we can find a OðℏÞ local
functional FR, such that the local bifunctional YR ¼
ERBR þ FR is renormalized and the average hYRiΓ is
evanescent to all orders.
More precisely, we can iterate the renormalization of Y

as follows. Write Y ¼ EB ¼ P
kδ̂kUk, where Uk ¼ T kB.

Let Bn denote the functional B renormalized up to and
including n loops. Inductively assume that the n-loop
renormalized Uk have the form Unk ¼ T nkBn þ Cnk, where
Cnk are local functionals. Define Yn ¼

P
kδ̂kUnk ¼

EnBn þ Fn, where Fn ¼
P

kδ̂kCnk. Clearly, hYniΓ ¼
OðεÞ þOðℏnþ1Þ, because each hUnkiΓ is convergent up
to Oðℏnþ1Þ. By the locality of counterterms, the ðnþ 1Þ-
loop contributions Uðnþ1Þ

nk to hUnkiΓ are made of a local

divergent part Uðnþ1Þ
nkdiv , plus a generically nonlocal conver-

gent part. Consequently, the ðnþ 1Þ-loop contributions to
hYniΓ are the sum of a local divergent part, a local
nonevanescent part, plus a generically nonlocal evanescent
part. If we define Unþ1k ¼ T nþ1kBnþ1 þ Cnþ1k, where
Bnþ1 is the functional B renormalized up to and including

nþ1 loops, and Cnþ1k ¼ Cnk−Uðnþ1Þ
nkdiv , we see that hUnþ1kiΓ

is convergent up to Oðℏnþ2Þ, and so hYnþ1iΓ ¼ OðεÞ þ
Oðℏnþ2Þ, where Ynþ1 ¼

P
kδ̂kUnþ1k ¼ Enþ1Bnþ1 þ Fnþ1,

and Fnþ1 ¼
P

kδ̂kCnþ1k. The conclusion also holds if
we “forget” to subtract any evanescent local parts of
Enþ1 and/or Fnþ1. The subtraction can be iterated in n
so that in the end hYRiΓ is evanescent to all orders in ℏ,
where YR ¼ Y∞.

APPENDIX C: INTEGRATING EQUATION (3.33)

In this appendix we integrate the equations (3.33) and
(3.32). First, we recall how to integrate the simpler equation

∂X
∂θ ¼ ðX; VÞ; ðC1Þ

for the functional XðΦ; K; θÞ, given the functional
VðΦ; K; θÞ. Expanding in powers of θ, write

VðΦ; K; θÞ ¼
X∞
n¼0

θnVnðΦ; KÞ:

We want to show that there exists a canonical trans-
formation Φ; K → Φ0; K0, with generating functional

F ðΦ; K0; θÞ ¼
Z

ΦαK0
α þ

X∞
n¼1

θnF nðΦ; K0Þ; ðC2Þ

such that

X0ðΦ0; K0Þ≡ XðΦðΦ0; K0; θÞ; KðΦ0; K0; θÞ; θÞ
is independent of θ.
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We can derive conditions on the unknown functionals
F n by applying formula (A6), which relates the functional
V of (C1) to the canonical transformation F . A sufficient
condition to have ∂X0=∂θ ¼ 0 is V ¼ ~F θ, where
F θ ¼ ∂F=∂θ. In other words,

0 ¼
X∞
n¼0

θn½VnðΦ; KÞ − ðnþ 1ÞF nþ1ðΦ; K0Þ�;

Kα ¼ K0
α þ

X∞
n¼1

θn
δF nðΦ; K0Þ

δΦα :

The first equation can be solved for F nþ1 by working
recursively in n. It is sufficient to express each VkðΦ; KÞ as
a functional of Φ and K0, by using the second equation, and
then set the coefficient of θn to zero. This proves that the
desired canonical transformation (C2) does exist. Clearly,
X0ðΦ0; K0Þ coincides with XðΦ0; K0; 0Þ. Therefore, express-
ing everything by means of fields and sources without
primes, we get

XðΦ; K; θÞ ¼ XðΦ0ðΦ; K; θÞ; K0ðΦ; K; θÞ; 0Þ:

Now, assume that a functional YðΦ; K; θÞ satisfies

∂Y
∂θ ¼ ðY; VÞ þ G; ðC3Þ

where VðΦ; K; θÞ andGðΦ; K; θÞ are two other functionals.
Define a new functional ~G and a mapLθ∶ Z → LθZ, where
Z is a functional, as

~GðΦ; K; θÞ ¼
Z

θ

0

dθ̄GðΦ; K; θ̄Þ;

LθZðΦ; K; θÞ ¼
Z

θ

0

dθ̄ðZθ̄; V θ̄Þ;

where Zθ̄ ¼ ZðΦ; K; θ̄Þ and V θ̄ ¼ VðΦ; K; θ̄Þ. Observe that

∂
∂θLθZ ¼ ðZ; VÞ:

Then, Eq. (C3) turns into equation

∂ ~Y
∂θ ¼ ð ~Y; VÞ; for ~Y ¼ Y −

X∞
n¼0

Ln
θ
~G:

Note that the terms Ln
θ
~G are at least Oðθnþ1Þ. Using the

result found above, the canonical transformation Φ; K →
Φ0; K0 given by formula (C2) is such that the transformed
functional

~Y 0ðΦ0; K0Þ≡ ~YðΦðΦ0; K0; θÞ; KðΦ0; K0; θÞ; θÞ

is θ independent. Finally, ifG ¼ OðunÞ for some expansion
parameter u (which is ε or ℏ, when we apply this theorem in
Sec. III B) and V is regular in u, then the canonical
transformation Φ; K → Φ0; K0 is also regular in u, which
implies

YðΦðΦ0; K0; θÞ; KðΦ0; K0; θÞ; θÞ ¼ ~Y 0ðΦ0; K0Þ þOðunÞ:

Setting θ ¼ 0, we get

YðΦ0; K0; 0Þ ¼ ~Y 0ðΦ0; K0Þ þOðunÞ:

Hence, expressing everything by means of fields and
sources without primes,

YðΦ; K; θÞ ¼ YðΦ0ðΦ; K; θÞ; K0ðΦ; K; θÞ; 0Þ þOðunÞ:

In other words, the functional YðΦ; K; θÞ still evolves by
means of a canonical transformation, but only up toOðunÞ.
In most applications, the functionals V andG of Eq. (C3)

may intrinsically depend on Y. For example, this happens
when Y is some renormalized action (or the Γ functional
associated with it) and V, G are (the averages of) some
renormalized local functionals, calculated with that action.
We can disentangle this difficulty by expanding each
functional in powers of ℏ and proceeding inductively in
this expansion. Writing

Y ¼
X∞
n¼0

ℏnYn; V ¼
X∞
n¼0

ℏnVn; G ¼
X∞
n¼0

ℏnGn;

we obtain the equations

∂Yn

∂θ − ðYn; V0Þ ¼
Xn−1
k¼0

ðYk; Vn−kÞ þGn; ðC4Þ

which have the same form as (C3). The contributions Vk
and Gk to V and G with k ≤ n do not depend on Yn. For
k ¼ 0 this is obvious. For k > 0 it is sufficient to observe
that the vertices Yn of order ℏn of the renormalized action Y
can only contribute to the one-particle irreducible diagrams
associated with V and G that have nþ 1 or more loops.
Indeed, at least one additional loop must be closed to
connect a vertex Yn with the insertions provided by V or G.
When Y is the Γ functional and V, G are averages of local
functionals, we can argue similarly.
Now, assume that we have solved the equations (C4) for

n < n̄, and consider the equations (C4) for n ¼ n̄. The
unknown is Yn̄, while Vk and Gk with k ≤ n̄ are indepen-
dent of it. Thus, Eq. (C4) can be solved with the method
explained above. We conclude that the procedure we have
given to solve the equations (C3) is well defined.
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APPENDIX D: STANDARD MODEL COUPLED
TO QUANTUM GRAVITY

In this appendix we report some reference formulas for
the standard model coupled to quantum gravity. The
classical fields ϕ contain the vielbein eāμ̄, the Yang-Mills
gauge fields Aa

μ̄ and the matter fields, where the indices
a; b;… refer to the Yang-Mills gauge group (within which
we include the Abelian subgroup) and ā; b̄;… refer to the
Lorentz group. The classical action ScðϕÞ is equal to the
sum ScSM þ ΔSc, where

ScSM ¼
Z ffiffiffiffiffi

jgj
p �

−
1

2κ2
ðRþ 2ΛcÞ −

1

4
Fa
μ̄ ν̄F

aμ̄ ν̄ þ Lm

	

and ΔSc collects the invariants generated by renormaliza-
tion as counterterms, multiplied by independent parame-
ters. Here, R is the Ricci curvature, g is the determinant of
the metric tensor, Fa

μ̄ ν̄ is the Yang-Mills field strength, Lm

is the matter Lagrangian coupled to gravity, Λc is the
cosmological constant, and κ2 ¼ 8πG, where G is
Newton’s constant.

The functional SK of formula (2.2) reads

SK ¼
Z

ðCρ̄∂ ρ̄Aa
μ̄ þ Aa

ρ̄∂ μ̄Cρ̄ − ∂ μ̄Ca − gfabcAb
μ̄C

cÞKμ̄a
A þ

Z �
Cρ̄∂ ρ̄Ca þ g

2
fabcCbCc

�
Ka

C

þ
Z

ðCρ̄∂ ρ̄eāμ̄ þ eāρ̄∂ μ̄Cρ̄ þ Cā b̄eμ̄ b̄ÞKμ̄
ā þ

Z
Cρ̄ð∂ ρ̄Cμ̄ÞKC

μ̄ þ
Z

ðCā c̄ηc̄ d̄C
d̄ b̄ þ Cρ̄∂ ρ̄Cā b̄ÞKC

ā b̄

þ
Z �

Cρ̄∂ ρ̄ψ̄L −
i
4
ψ̄Lσ

ā b̄Cā b̄ þ gψ̄LTaCa

�
Kψ þ

Z
Kψ̄

�
Cρ̄∂ ρ̄ψL −

i
4
σā b̄Cā b̄ψL þ gTaCaψL

�

þ
Z

ðCρ̄ð∂ ρ̄φÞ þ gT aCaφÞKφ −
Z

BaKa
C̄ −

Z
Bμ̄K

μ̄
C̄ −

Z
Bā b̄K

ā b̄
C̄ ;

where ψL are left-handed fermions, φ are scalars, while Ta and T a are the anti-Hermitian matrices associated with their
representations. The triplets Ca-C̄a-Ba, Cā b̄-C̄ā b̄-B

ā b̄ and Cμ̄-C̄μ̄-Bμ̄ collect the ghosts, the antighosts and the Lagrange
multipliers of Yang-Mills symmetry, local Lorentz symmetry and diffeomorphisms, respectively. It is easy to check that
ðSK; SKÞ ¼ 0 in arbitrary D dimensions.
Finally, the gauge fermion of formula (2.4) reads

ΨðΦÞ ¼
Z ffiffiffiffiffi

jgj
p

C̄a

�
gμ̄ ν̄∂ μ̄Aa

ν̄ þ
ξ

2
Ba

�
þ
Z

eC̄ā b̄

�
1

κ
eρ̄ āgμ̄ ν̄∂ μ̄∂ ν̄eb̄ρ̄ þ

ξL
2
Bā b̄ þ ξ0L

2
gμ̄ ν̄∂ μ̄∂ ν̄Bā b̄

�

−
Z ffiffiffiffiffi

jgj
p

C̄μ̄

�
1

κ
∂ ν̄gμ̄ ν̄ þ

ξG
κ
gμ̄ ν̄gρ̄ σ̄∂ ν̄gρ̄ σ̄ −

ξ0G
2
gμ̄ ν̄Bν̄

�
;

where ξ, ξL, ξ0L, ξG and ξ0G are gauge-fixing parameters.

APPENDIX E: COMPARISON WITH
MANIFESTLY NONANOMALOUS THEORIES

We have mentioned that an unexpected consequence of
our results is that in AB nonanomalous theories the beta
functions of the couplings can depend on the gauge-fixing
parameters. It is interesting to better understand why this
does not happen in manifestly nonanomalous theories.
We actually begin with nongauge theories, that is to say

theories that have no gauge symmetries. There the action
SðΦ; KÞ does not even depend on the sources K and the
canonical transformations are just arbitrary changes of field
variables.
Denote the classical action by SðϕÞ, the renormalized

action by SRðϕÞ and the renormalized Γ functional by

ΓRðϕÞ. We assume that SR and ΓR are defined by sub-
tracting away the divergences just as they come, in the
minimal subtraction scheme.
Consider a local, perturbative change of field variables

ψ iðϕ; θÞ ¼ ϕi þOðθÞ ðE1Þ

for the classical action S. Let Sθðϕ; θÞ denote the trans-
formed classical action,

Sθðϕ; θÞ ¼ Sðψðϕ; θÞÞ;

which obviously satisfies
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∂Sθ
∂θ ¼

Z
Δϕi δlSθ

δϕi ;

where

Δϕi ¼
Z

δψ j

δθ

δlϕ
i

δψ j : ðE2Þ

Denote the renormalized Sθ by SRθ and the Γ functional
associated with it by ΓRθ.
We want to show that the change of field variables (E1)

on S is mapped onto a renormalized change of field
variables on SR and a nonlocal, convergent change of field
variables on ΓR. This property is encoded into the equations
of gauge dependence, which now read

∂SRθ
∂θ ¼

Z
ΔRϕ

i δlSRθ
δϕi ;

∂ΓRθ

∂θ ¼
Z

hΔϕi
Ri

δlΓRθ

δϕi ;

ðE3Þ

where ΔRϕ
i is the renormalized version of the composite

field (E2). Equations (E3) are just particular cases of
Eq. (C1), and can be integrated with the method explained
in Appendix C. So doing, it is straightforward to prove that
the θ dependences of both SRθ and ΓRθ are encoded into
pure changes of field variables, with no redefinitions of
parameters.
We point out that the first equations of formula (E3) are

highly nonlinear in SRθ, because ΔRϕ
i, being a renormal-

ized composite field, intrinsically depends on SRθ.
Nevertheless, with the inductive procedure explained in
Appendix C we can disentangle this dependence. Similarly,
the equations satisfied by ΓRθ contain the average hΔRϕ

ii
on the right-hand side, which is also determined by SRθ.
The procedure to integrate the equations of ΓRθ is basically
the same as the one for SRθ and is again given in
Appendix C.
Formulas (E3) can be proved by induction, using the

minimal subtraction scheme. Let Sn ¼ Sθ þOðℏÞ × poles
and Δnϕ

i ¼ Δϕi þOðℏÞ × poles denote the action and the
composite field (E2) renormalized up to and including n
loops. Assume that

Rn ≡ ∂Sn
∂θ −

Z
Δnϕ

i δlSn
δϕi ¼ Oðℏnþ1Þ: ðE4Þ

Clearly, this assumption is satisfied for n ¼ 0. Moreover, in
the minimal subtraction scheme Rn is made of pure poles.
Differentiating the Γ functional Γn, associated with Sn,

with respect to θ, we get

∂Γn

∂θ ¼
�∂Sn
∂θ

�
n
¼

Z
dDx

�
Δnϕ

iðxÞ δlSn
δϕiðxÞ

�
n
þ hRnin:

ðE5Þ

Now,

δlSn
δϕiðxÞ exp

�
iSn þ i

Z
ϕjJj

�

¼ −JiðxÞ − i
δl

δϕiðxÞ exp
�
iSn þ i

Z
ϕjJj

�
:

Using this formula inside (E5) we can drop the last term by
integrating by parts, because when the derivative δl=δϕiðxÞ
acts on Δnϕ

iðxÞ it gives zero in dimensional regularization.
Finally, we obtain

∂Γn

∂θ ¼−
Z

hΔnϕ
iinJiþhRnin ¼

Z
hΔnϕ

iin
δlΓn

δϕi þhRnin:

ðE6Þ

Since Sn and Δnϕ
i are renormalized up to and including n

loops, the ðnþ 1Þ-loop divergent parts Γðnþ1Þ
ndiv and Δðnþ1Þ

ndiv ϕi

of Γn and hΔnϕ
iin are local. Moreover, the Oðℏnþ1Þ

divergent part of hRnin coincides with the Oðℏnþ1Þ part
of Rn, because Rn starts from Oðℏnþ1Þ and it is just made
of poles. Thus, taking the Oðℏnþ1Þ divergent parts of
formula (E6) we get

∂Γðnþ1Þ
ndiv

∂θ ¼
Z

Δðnþ1Þ
ndiv ϕi δlSθ

δϕi þ
Z

Δϕi δlΓ
ðnþ1Þ
ndiv

δϕi þ ∂Sn
∂θ

−
Z

Δnϕ
i δlSn
δϕi þOðℏnþ2Þ: ðE7Þ

Subtracting the divergences just as they come, we define

Snþ1 ¼ Sn − Γðnþ1Þ
ndiv ; Δnþ1ϕ

i ¼ Δnϕ
i − Δðnþ1Þ

ndiv ϕi:

Clearly, the Γ functional Γnþ1 associated with Snþ1 is
renormalized up to and including nþ 1 loops. Using (E7),
we find

Rnþ1 ≡ ∂Snþ1

∂θ −
Z

Δnþ1ϕ
i δlSnþ1

δϕi ¼ Oðℏnþ2Þ:

Thus, the inductive assumption (E4) is promoted to the
next order. The equations (E3) follow by taking n ¼ ∞ in
(E4) and (E6).
We see that in theories with no gauge symmetries a

change of field variables on the classical action does not
generate redefinitions of parameters in the renormalized Γ
functional: the parameters θ introduced by the field
redefinition do not propagate into the beta functions of
the couplings. Moreover, we do not need to re-fine-tune the
finite local counterterms.
Another approach to these issues was given in

Refs. [35,36], where the changes of field variables were
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mapped from the classical action to the renormalized action
and the (renormalized) generating functionals Z, W and Γ,
as well as a more general type of Γ functional, called master
functional. That approach also shows that a change of field
variables does not affect the beta functions of the couplings,
in the theories that have no gauge symmetries.
Similar properties hold in manifestly nonanomalous

gauge theories, where the equations

∂SRθ
∂θ ¼ ðSRθ; ~QRθÞ;

∂ΓRθ

∂θ ¼ ðΓRθ; h ~QRθiÞ ðE8Þ

hold and can be integrated [8]. Again, the conclusion is that
a canonical transformation acting on the classical action is
converted into a renormalized canonical transformation

acting on the renormalized action, and a nonlocal, con-
vergent canonical transformation acting on the renormal-
ized Γ functional, with no effect on the beta functions of the
couplings. Equations (E3) can also be obtained by switch-
ing off the sources K in formulas (E8).
What “goes wrong” in AB nonanomalous theories, is

that “small things”, that is to say evanescent termsOðεÞ, are
around all the time, and can generate unexpected finite
corrections by simplifying some divergences. For this
reason, they force us to re-fine-tune the subtraction scheme
at every, even minor, modification of the framework in
which we formulate the theory. Yet, we have shown in the
paper that we can put their effects under control and
preserve the correct physical properties.
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