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We compute dilepton production from the deconfined phase of the quark-gluon plasma using
leading-order (3þ 1)-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations
employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-
space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The
momentum-space anisotropy is also taken into account in the computation of the dilepton production rate,
allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final
results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse
momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive
to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may
be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon
plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.
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I. INTRODUCTION

The degree to which the quark and gluon distributions of
the partons comprising the quark-gluon plasma (QGP)
generated in relativistic heavy-ion collisions aremomentum-
space isotropic in the local rest frame (LRF) is currently an
open question. There have been a number of theoretical
studies that have attempted to address this question using
both perturbative QCD and the AdS=CFT framework
(see Ref. [1] for a recent review). Ideally, however, one
would like to have an experimental observable that could
provide constraints on the degree of isotropy during the early
stages of the QGP’s lifetime and perhaps, in addition, the
subsequent approach towards isotropy.
In principle, electromagnetic emissions are the ideal

observable for studying the early-time dynamics of the
QGP since they are weakly coupled to the plasma (α ≪ αs).
In addition, due to the fact that the QGP is initially hot
and then cools, high-energy (E≳ 2 GeV) production is
dominated by early times when the system is in the QGP
phase, while low-energy (E≲ 2 GeV) production receives
significant contributions from late-time emissions when
the system returns to the hadronic phase. This simple
picture is complicated by the fact that there is a temperature
distribution in the QGP, with the edges of the system
being best described using hadronic degrees of freedom;
however, since these regions are rather dilute and small in
relative volume, the total radiation from this region is small
compared to that produced from the central region. The two
primary electromagnetic observables studied in heavy-ion

collisions are real photons and dileptons produced via
decay of virtual photons.
In this paper we focus on dilepton production from the

deconfined phase of the QGP’s lifetime. The study of
dilepton production from the QGP has a long history; see
e.g. Refs. [2–17]. For recent reviews, see also Refs. [18,19].
Herein we focus on the effect of LRF momentum-space
anisotropies on dilepton production. This work is an
extension of previous studies performed in Refs. [20,21]
to include a realistic bulk evolution using the framework of
anisotropic hydrodynamics [22–41]. For a recent review of
the motivation for and methods used to obtain the aniso-
tropic hydrodynamics equations and solve them numeri-
cally, we refer the reader to Ref. [42].
Herein, we make use of the anisotropic hydrodynamics

equations obtained from the zeroth and first moments of the
Boltzmann equation with the collisional kernel treated in
the relaxation-time approximation and describe the (3þ 1)-
dimensional evolution of the QGP using these equations.
The resulting dynamical equations describe the full spa-
tiotemporal evolution of the transverse temperature Λ
and spheroidal momentum-space anisotropy parameter ξ
[43,44]. The (3þ 1)-dimensional framework allows both
Λ, ξ, and the associated flow velocities to depend arbitrarily
on the transverse coordinates, spatial rapidity, and longi-
tudinal proper time; however, herein we restrict ourselves
to smooth Glauber-like initial conditions.
The study presented herein is similar in spirit to prior

studies of dilepton production using viscous hydrodynam-
ics [15,16]. In these works, however, the authors employed
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the standard viscous hydrodynamic linearization around an
isotropic thermal background. Our work goes beyond these
studies by linearizing around anisotropic background and,
as a result, we are able to better describe early-time dilepton
production and dilepton production near the transverse
and longitudinal edges of the QGP. In addition, high-
momentum dilepton production is treated in a more reliable
manner since the anisotropic one-particle distribution
function used to compute the dilepton rates is positive
definite at all points in momentum space. We demonstrate
that high-energy dilepton production is extremely sensitive
to the assumed level of initial momentum-space anisotropy
of the quark-gluon plasma. As a result, it may be possible to
experimentally constrain the early-time momentum-space
anisotropy of the quark-gluon plasma generated in relativ-
istic heavy-ion collisions using high-energy dilepton yields.
The structure of our paper is as follows. In Sec. II, we

review the calculation of the leading-order dilepton pro-
duction rate in an anisotropic QGP. In Sec. III we describe
how one calculates the dilepton spectra including the effect
of transverse and longitudinal expansion. In Sec. IV we
present the setup for the anisotropic hydrodynamics evo-
lution, the resulting (3þ 1)-dimensional dynamical equa-
tions, the equation of state employed, and the initial
conditions used. In Sec. V we present our final numerical
results for the dilepton yields as a function of invariant
mass, transverse momentum, and pair rapidity using fixed
initial conditions and fixed final multiplicity. We present
our conclusions and an outlook for the future in Sec. VI. We
collect information about particle production from (3þ 1)-
dimensional anisotropic hydrodynamics and compare this
with Israel-Stewart viscous hydrodynamics in Appendix A.

II. DILEPTON RATE IN ANISOTROPIC PLASMA

We begin by reviewing the derivation of the dilepton
emission rate for an anisotropic plasma starting from
relativistic kinetic theory. We follow the methodology
presented originally in Ref. [21]. The resulting formulas
will be subsequently used in Sec. III to calculate the
differential dilepton spectra using an anisotropic hydro-
dynamics framework.
The dilepton emission rate is defined as the number of

dilepton pairs produced per eight-dimensional phase-space
volume

dRlþl−

d4P
≡ dNlþl−

d4Xd4P
; ð1Þ

where Xμ ¼ ðt;xÞ and Pμ ¼ ðE;pÞ are the four-position
and four-momentum, respectively. Based on relativistic
kinetic theory,1 at leading order in the electromagnetic
coupling, Oðα2Þ, the dilepton emission rate follows from

dRlþl−

d4P
¼

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3 fqðp1Þfq̄ðp2Þ

× vqq̄σl
þl−
qq̄ δð4ÞðPμ − pμ

1 − pμ
2Þ; ð2Þ

where fqðq̄Þ is the phase-space distribution function of
quarks (antiquarks),2 vqq̄ is the relative velocity between the
quark and the antiquark

vqq̄ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 · p2 −m2

q

q
2Ep1

2Ep2

; ð3Þ

and σl
þl−
qq̄ is the total cross section for the leading-order

quark-antiquark annihilation process, qþ q̄→ γ� → lþþ l−,

σl
þl−
qq̄ ¼ 4π

3

α2

M2

�
1þ 2m2

l

M2

��
1 −

4m2
l

M2

�
1=2

: ð4Þ

Henceforth, we will consider only high-energy dilepton
pairs with invariant energies much greater than the lepton
masses, M ≫ ml. Therefore, we will ignore lepton mass
corrections appearing in Eq. (4) and simply take ml ¼ 0.
Ultrarelativistic heavy-ion collisions are special in the

sense that the matter created in such events is undergoing
rapid expansion along the longitudinal (beam) direction. At
the same time, the transverse expansion is initially rela-
tively quite slow. One can show that this phenomenon
inevitably leads to the presence of large momentum-space
anisotropies in the phase-space distribution of the matter.
The simplest form for the distribution function that can be
used to describe this situation is a generalization of an
isotropic phase-space distribution which is squeezed or
stretched along one direction in momentum space, defined
by n̂, with a parameter −1 < ξ < ∞, which describes the
type and strength of the momentum-space anisotropy. In
this case, the one-particle distribution function for the
quarks and antiquarks may be described at leading order
by the following spheroidal “Romatschke-Strickland”
form [43,44]

fqðq̄Þðp; ξ;ΛÞ≡ fisoqðq̄Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · n̂Þ2

q
;ΛÞ; ð5Þ

where Λ is a transverse-momentum scale and ξ is the
anisotropy parameter introduced above. In the limiting case
where ξ ¼ 0, Eq. (5) reduces to the standard isotropic
distribution function. When ξ ¼ 0, Λ can be identified with
the equilibrium temperature T of the system. Herein, we
will take fisoqðq̄Þ to be a Fermi-Dirac distribution func-

tion fisoqðq̄ÞðE; TÞ ¼ ½expðE=TÞ þ 1�−1.
Using the Dirac delta function in Eq. (2), one can

immediately perform the p2 integration to obtain
1The same result can be obtained using standard finite temper-

ature field theory techniques. 2From now on we assume that fq̄ ¼ fq.
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dRlþl−

d4P
¼ 5α2

72π5

Z
d3p1

Ep1
Ep2

fqðp1;Λ; ξÞfq̄ðp2;Λ; ξÞ

× δðE − Ep1
− Ep2

Þjp2¼P−p1
: ð6Þ

To proceed, we parametrize the remaining three-momenta
using spherical coordinates with the z axis defined by the
direction of anisotropy n̂,

p1 ¼ p1ðsin θp1
cosϕp1

; sin θp1
sinϕp1

; cos θp1
Þ;

P ¼ Pðsin θP cosϕP; sin θP sinϕP; cos θPÞ: ð7Þ

In this way we may rewrite the remaining delta function in
(6) in the form

δðE − Ep1
− Ep2

Þ ¼ 2ðE − p1Þ
ΘðχÞffiffiffi

χ
p

X2
i

δðϕi − ϕp1
Þ;

ð8Þ

where

χ ≡ ð2p1P sin θP sin θp1
Þ2

− ½2p1ðE − P cos θP cos θp1
Þ −M2�2: ð9Þ

The angles ϕi are calculated as the two possible solutions to
the equation

cosðϕi − ϕp1
Þ ¼ 2p1ðE − P cos θP cos θp1

Þ −M2

2p1P sin θP sin θp1

: ð10Þ

After these substitutions, we arrive at our final result for the
dilepton emission rate

dRlþl−

d4P
¼ 5α2

18π5

Z
1

−1
dðcos θp1

Þ
Z

a−

aþ

p1dp1ffiffiffi
χ

p fq
�
p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξcos2θp1

q
;Λ

�

× fq̄
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE − p1Þ2 þ ξðp1 cos θp1
− P cos θPÞ2

q
;Λ

�
; ð11Þ

with

a� ≡ M2

2ðE − P cosðθP � θp1
ÞÞ : ð12Þ

In order to evaluate the dilepton emission rate (11) it is
necessary to perform the remaining two integrations
numerically. In Fig. 1 we show the resulting dilepton
emission rate as a function of transverse momentum (left)
and invariant mass (center), both scaled by Λ, and rapidity
(right) for various values of anisotropy parameter ξ ∈
f−0.9; 0; 10; 100g denoted by brown solid, red dashed,

blue dotted, and green dot-dashed lines, respectively. One
can see that the production rate decreases (increases) due to
increasing (decreasing) ξ. We note, however, that this is
primarily due to the fact that increasing ξ for fixed Λ results
in a lower plasma density. In order to properly assess the
impact of anisotropies on the production, one has to fold
these rates together with a realistic model of the full
spatiotemporal evolution of both ξ and Λ.

III. DILEPTON SPECTRA

Our final goal is to study the impact of space-time-
dependent anisotropies in the system on the dilepton
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FIG. 1 (color online). The dilepton emission rate as a function of transverse momentum (left), invariant mass (center), and rapidity
(right). For the transverse momentum dependence (left) we fixed M=Λ ¼ 3 and y ¼ 0; for the invariant mass dependence (center) we
fixed p⊥=Λ ¼ 3 and y ¼ 0; for rapidity dependence (right) we fixed p⊥=Λ ¼ M=Λ ¼ 3.
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differential spectra. In this way we hope to probe the early
stages of the quark-gluon plasma, where the anisotropies
are expected to be the largest. In order to do this one must
include in Eq. (11) the space-time dependence of Λ and ξ
using some hydrodynamic model and then integrate over
the entire space-time volume (which contains the quark-
gluon plasma phase) and the appropriate momenta/invari-
ant mass cuts for the dilepton pairs. For this purpose, we
parametrize the pair four-momentum in the standard way,

pμ ¼ ðm⊥ cosh y; p⊥ cosϕp; p⊥ sinϕp;m⊥ sinh yÞ; ð13Þ

where m⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2⊥

p
defines the transverse mass and

y≡ 1=2 ln ½ðEþ p∥Þ=ðE − p∥Þ� is the momentum-space
rapidity. Above, we used p⊥, p∥, and ϕp to denote
transverse momentum, longitudinal momentum, and
momentum azimuthal angle, respectively.
One can also use the usual Milne hyperbolic para-

metrization of space-time which is convenient for
describing heavy-ion collisions within the relativistic
hydrodynamics framework

xμ ¼ ðτ cosh ς;x⊥; τ sinh ςÞ: ð14Þ
In Eq. (14), we used τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

and ς≡ tanh−1ðz=tÞ to
denote the longitudinal proper time and the space-time
rapidity, respectively. With these parametrizations, the
differential measures for four-momentum and space-time
are d4P ¼ MdMdyp⊥dp⊥dϕp and d4X ¼ τdτdςd2x⊥,
respectively. This allows us to calculate the invariant mass
and transverse momentum differential spectra using

dNlþl−

MdMdy
¼

Z
pmax⊥

pmin⊥
p⊥dp⊥

Z
2π

0

dϕp

Z
d4X

dRlþl−

d4P
; ð15aÞ

dNlþl−

p⊥dp⊥dy
¼

Z
Mmax

Mmin
MdM

Z
2π

0

dϕp

Z
d4X

dRlþl−

d4P
; ð15bÞ

respectively, where the integration ranges pmin⊥ , pmax⊥ and
Mmin, Mmax will be specified later according to the appro-
priate physical/experimental cuts. The integration over the
space-time volume is performed only in the deconfined
quark-gluon plasma stage. In practice, we only include
contributions from regions that have an effective temperature
that is higher than a critical temperature, i.e. T ≡
R1=4ðξÞΛ > Tc with RðξÞ defined in Eq. (45). In all results
shown herein, we assume Tc ¼ 175 MeV. We will assume
that when the system reaches Tc, all medium emission stops.
We do not take into account the emission from the mixed/
hadronic phase at late times since the kinematic regime we
study (high M and p⊥) is dominated by early-time high-
energy dilepton emission. Due to the large uncertainty
connected with the correct value of critical temperature
existing in the literature we also checked that the results
obtained here are almost completely independent of the
choice of Tc in the range 150–200 MeV.
Equations (15a) and (15b) are evaluated in the center of

mass of the colliding nuclei (LAB) frame while the dilepton
emission rate is calculated in the LRF of the emitting
region. Therefore, before evaluating Eqs. (15a) and (15b)
we have to boost the LAB frame momentum pμ to the LRF
of the fluid cell using p0μ

LRF ¼ Λμ
νpν, where the Lorentz

boost tensor

Λμ
νðuλÞ≡

0
BBBBB@

γ −γvx −γvy −γvz

−γvx 1þ ðγ − 1Þ v2xv2 ðγ − 1Þ vxvyv2 ðγ − 1Þ vxvzv2

−γvy ðγ − 1Þ vxvyv2 1þ ðγ − 1Þ v2yv2 ðγ − 1Þ vyvzv2

−γvz ðγ − 1Þ vxvzv2 ðγ − 1Þ vyvzv2 1þ ðγ − 1Þ v2zv2

1
CCCCCA

ð16Þ

depends on the four-velocity of the fluid element
uμðxλÞ≡ γð1; vx; vy; vzÞ, where γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
and v ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2z þ v2y þ v2z
q

. One can easily check that, as expected,

uμLRF ¼ Λμ
νuν ¼ ð1; 0; 0; 0Þ. Making use of Eq. (11) in

Eqs. (15a) and (15b), we obtain the dilepton spectra
including the effect of a space-time-dependent momentum
anisotropy.

IV. HYDRODYNAMIC EVOLUTION

As mentioned above, in order to make predictions for the
differential dilepton spectra expected to be produced from
the QGP phase, one must integrate over the full space-time

history of the QGP. For this purpose, we use anisotropic
hydrodynamics. Anisotropic hydrodynamics reduces to
second-order viscous hydrodynamics in the limit of small
anisotropy [41], but reproduces the dynamics of the QGP
more reliably when there are large momentum-space
anisotropies.

A. (3þ 1)-dimensional anisotropic hydrodynamics

In this paper, we assume that the system created during
the collision of the heavy ions evolves through a non-
equilibrium state and that the quark and antiquark one-
particle distribution functions are well approximated by
Eq. (5) both at early times and late times. At the same time,
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we assume that, although the system is highly anisotropic it
may still be, to good approximation, described using
hydrodynamiclike degrees of freedom, such as energy
density and pressures.3 In this way, the detailed micro-
scopic description of the system can be replaced by an
effective description which realizes simple physical laws,
such as conservation of energy and momentum. In the
following, we will present the framework of leading-order
anisotropic hydrodynamics [22–26,28,29] which is
designed to describe a potentially highly anisotropic
plasma by assuming that its distribution function is, to
good approximation, expressible in the form given
by Eq. (5).
At leading order, one can derive the equations of motion

of the anisotropic system starting from kinetic theory
assuming that the distribution function of the system is
known. This can be done by taking moments of the
Boltzmann kinetic equation with the collision term treated
in the relaxation-time approximation (RTA)

pμ∂μf ¼ pμuμ
τeq

ðfiso − fÞ; ð17Þ

where τeq is the microscopic relaxation time which can
depend on position and time. Taking the first moment of the
Boltzmann equation results in the energy-momentum con-
servation equation

∂μTμν ¼ 0: ð18Þ

Taking the zeroth moment of the Boltzmann equation
results in the particle production equation

∂μNμ ¼ uμ
Nμ

eq − Nμ

τeq
: ð19Þ

At leading order, the energy-momentum tensor has the
form typical for a spheroidally anisotropic system

Tμν ¼ ðεþ P⊥Þuμuν − P⊥gμν − ðP⊥ − P∥Þzμzν; ð20Þ

and the particle flux is defined in the standard manner

Nμ ¼ n uμ: ð21Þ

In Eqs. (20) and (21) ε, n, P∥, and P⊥ stand for energy
density, particle density, longitudinal pressure, and trans-
verse pressure, respectively. The four-vector zμ is orthogo-
nal to uμ and in the LRF points in the longitudinal direction

(identified with the direction of the anisotropy in the
system, n̂) [28].
Equations (18) and (19) provide a set of five independent

partial differential equations

Duε ¼ −ðεþ P⊥Þθu þ ðP⊥ − P∥ÞuνDzzν; ð22Þ

DzP∥ ¼ ðP⊥ − P∥Þθz þ ðεþ P⊥ÞzνDuuν; ð23Þ

Duu⊥ ¼ −
u⊥

εþ P⊥

�
u⊥ · ∇⊥P⊥

u2⊥

þDuP⊥ þ ðP⊥ − P∥ÞuνDzzν
�
; ð24Þ

Du

�
ux
uy

�
¼ 1

u2yðεþ P⊥Þ
ðux∂y − uy∂xÞP⊥; ð25Þ

and

Duξ

2ð1þ ξÞ −
3DuΛ
Λ

¼ θu þ
1

τeq
½1 −R3=4ðξÞ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
�; ð26Þ

respectively, for five parameters: the four-velocity uμ, the
transverse temperature Λ, and the anisotropy parameter ξ.4

In the above equations, we use a ⊥ subscript to indicate
two-dimensional vectors in the transverse plane, e.g. u⊥ ≡
ðux; uyÞ and ∇⊥ ≡ ð∂x; ∂yÞ. We have also introduced a
compact notation for the convective derivative Du ≡ uμ∂μ,
the longitudinal derivative Dz ≡ zμ∂μ, and the expansion
scalars θu ≡ ∂μuμ and θz ≡ ∂μzμ.
In the most general case, where the matter expands in the

longitudinal and transverse directions without any sym-
metry constraints, one can use the following parametriza-
tion of the LAB frame four-velocity of the fluid uμ and the
spacelike four-vector zμ,

uμ ¼ ðu0 coshϑ;u⊥; u0 sinhϑÞ; ð27Þ

zμ ¼ ðsinhϑ; 0; coshϑÞ; ð28Þ

where we introduced the longitudinal rapidity of the fluid
cell ϑ. Using the four-velocity normalization condition,
uμuμ ¼ 1, one has

u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2⊥

q
;

u⊥ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
: ð29Þ

With the parametrizations (27) and (28), one may calculate
the following quantities appearing in Eqs. (22)–(26),

3This assumption has been tested elsewhere by comparing
the predictions of anisotropic hydrodynamics to exact solutions
of the Boltzmann equation in a variety of special cases
[33,34,40,45–49]. These studies found that anisotropic hydro-
dynamics provides the most accurate description of both the
early- and late-time behavior of QGP dynamics.

4Note that the four-velocity satisfies uμuμ ¼ 1 and hence it
contains only 3 independent degrees of freedom.
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Du ¼ u⊥ · ∇⊥ þ u0L̂1; ð30Þ

θu ¼ ∇⊥ · u⊥ þ L̂1u0 þ u0L̂2ϑ; ð31Þ

Dz ¼ L̂2; ð32Þ

θz ¼ L̂1ϑ; ð33Þ

uνDzzν ¼ u0L̂2ϑ; ð34Þ

zνDuuν ¼ −u0ðu⊥ · ∇⊥ þ u0L̂1Þϑ; ð35Þ

where the two linear differential operators L̂1 and L̂2 are
given by

L̂1 ¼ coshðς − ϑÞ∂τ − sinhðς − ϑÞ ∂ς

τ
; ð36Þ

−L̂2 ¼ sinhðς − ϑÞ∂τ − coshðς − ϑÞ ∂ς

τ
: ð37Þ

We also use the relation between the relaxation time τeq and
the shear viscosity to entropy density ratio η̄≡ η=s [22],5

τeq ¼
5η̄

2T
: ð38Þ

B. Anisotropic equation of state

Herein, we consider a system that consists of massless
particles described by the anisotropic distribution function
(5). Using standard kinetic theory definitions

Nμ ≡
Z

d3Ppμf; ð39Þ

Tμν ≡
Z

d3Ppμpνf; ð40Þ

where d3P≡ d3p=½ð2πÞ3p0�, and the tensor decomposi-
tions specified in Eqs. (20) and (21), one can calculate the
thermodynamic properties of the system

nðΛ; ξÞ ¼ nisoðΛÞffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p ; ð41Þ

εðΛ; ξÞ ¼ RðξÞεisoðΛÞ; ð42Þ

P⊥ðΛ; ξÞ ¼ R⊥ðξÞPisoðΛÞ; ð43Þ

P∥ðΛ; ξÞ ¼ R∥ðξÞPisoðΛÞ; ð44Þ

where niso, εiso, and Piso are the isotropic particle density,
energy density, and pressure, respectively, and

RðξÞ≡ 1

2

�
1

1þ ξ
þ tan−1

ffiffiffi
ξ

p
ffiffiffi
ξ

p
�
; ð45Þ

R⊥ðξÞ≡ 3

2ξ

�
1þ ðξ2 − 1ÞRðξÞ

ξþ 1

�
; ð46Þ

R∥ðξÞ≡ 3

ξ

�ðξþ 1ÞRðξÞ − 1

ξþ 1

�
: ð47Þ

Herein, we assume the simple case of a conformal fluid,
i.e. εiso ¼ 3Piso. As a result, Eqs. (41)–(44) describe the
equation of state of an anisotropic system of classical
massless particles with vanishing chemical potential.

C. Initial conditions

In order to solve the set of partial differential equa-
tions (22)–(26) in general [non-boost-invariant (3þ 1)-
dimensional evolution], one has to make a reasonable
assumption about the initial conditions at the initial longi-
tudinal proper time for the hydrodynamic evolution, τ ¼ τ0;
i.e. one has to define five three-dimensional profiles:
Λðτ0;x⊥; ςÞ, ξðτ0;x⊥; ςÞ, uxðτ0;x⊥; ςÞ, uyðτ0;x⊥; ςÞ,
and ϑðτ0;x⊥; ςÞ.
During a heavy-ion collision, due to inelastic interactions

the participating nucleons deposit some energy in the
space-time volume of the fireball. In this work, we assume
that the distribution of deposited energy is well described
by the optical Glauber model.6 Herein, we assume that the
initial energy density is proportional to the scaled initial
density of the sources. Therefore, the transverse momentum
scale is given by

Λðτ0;x⊥; ςÞ ¼ ε−1iso

�
ε0
ρðb;x⊥; ςÞ
ρð0; 0; 0Þ

�
; ð48Þ

where the proportionality constant ε0 is chosen in such a
way as to reproduce the total number of charged particles
measured in the experiment, and ε−1iso denotes the inverse
εisoðΛÞ function.7
The density of sources is constructed using the following

mixed model

5We note that the factor of 2 in the denominator of Eq. (38) is
needed if one uses the spheroidal form (5) together with the
zeroth and first moments of the Boltzmann equation.

6Although it is quite interesting, for this first study we do not
take into account initial fluctuations in the position of the
nucleons or nucleonic substructure. We postpone theMonte Carlo
event-by-event analysis to a future work.

7In principle, one could use the full expression for the energy
density given by Eq. (42) in Eq. (48); however, since we use an
initial anisotropy profile that is homogeneous in space, this would
merely result in the overall multiplicative factor which can be
absorbed by rescaling ε0.

RADOSLAW RYBLEWSKI AND MICHAEL STRICKLAND PHYSICAL REVIEW D 92, 025026 (2015)

025026-6



ρðb;x⊥; ςÞ≡ ½ð1 − κÞðρþWNðb;x⊥Þ þ ρ−WNðb;x⊥ÞÞ
þ 2κρBCðb;x⊥Þ�fðς − ςSðb;x⊥ÞÞ; ð49Þ

where ρ�WN is the density of wounded nucleons from the
left-/right-moving nuclei and ρBC is the density of binary
collisions, both of which are obtained using the optical
limit of the Glauber model

ρ�WNðb;x⊥Þ≡ T

�
x⊥∓b⊥

2

�h
1 − e−σinTðx⊥�b⊥

2 Þ
i
; ð50Þ

ρBCðb;x⊥Þ≡ σinT

�
x⊥ þ b⊥

2

�
T

�
x⊥ −

b⊥
2

�
: ð51Þ

The longitudinal profile is taken to be

fðςÞ≡ exp

�
−
ðς − ΔςÞ2

2σ2ς
Θðjςj − ΔςÞ

�
: ð52Þ

For the LHC case studied here, we use κ ¼ 0.145 for the
mixing factor and an inelastic cross section of σin ¼ 62 mb.
We also restrict ourselves to the minimum-bias studies in
which case b≡ jbj ¼ 9.5 fm. The parameters of the
longitudinal profile (52) were fitted to reproduce the
pseudorapidity distribution of charged particles with
the results being Δς ¼ 2.5 and σς ¼ 1.4. The shift in
rapidity is calculated according to the formula [50]

ςS ≡ 1

2
ln
ρþWN þ ρ−WN þ vPðρþWN − ρ−WNÞ
ρþWN þ ρ−WN − vPðρþWN − ρ−WNÞ

; ð53Þ

where all functions are understood to be evaluated at a
particular value of b and x⊥. The participant velocity is
defined as vP ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ffiffiffi
s

p
=2Þ2 − ðmN=2Þ2

p
=ð ffiffiffi

s
p

=2Þ and mN is
the nucleon mass. In Eqs. (50) and (51) we have made use
of the thickness function

Tðx⊥Þ≡
Z

dzρWSðx⊥; zÞ; ð54Þ

where the nuclear density is given by the Woods-Saxon
profile

ρWSðx⊥; zÞ≡ ρ0

�
1þ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x⊥2 þ z2

p
− R

a

��−1
: ð55Þ

For Pb-Pb collisions, we use ρ0 ¼ 0.17 fm−3 for the
nuclear saturation density, R ¼ 6.48 fm for the nuclear
radius, and a ¼ 0.535 fm for the surface diffuseness of the
nucleus.
In the calculations presented herein, we assumed that

the produced matter has initially no transverse flow, i.e.
uxðτ0;x⊥; ςÞ ¼ uxðτ0;x⊥; ςÞ ¼ 0, while the initial longi-
tudinal flow is of Bjorken form ϑðτ0;x⊥; ςÞ ¼ ς.

For simplicity, the initial anisotropy parameter is assumed
to be homogeneous, ξðτ0;x⊥; ςÞ ¼ ξ0.

8

V. RESULTS

In this section, we present our model predictions for the
minimum-bias eþe− yields resulting from Pb-Pb collisions
at the LHC with

ffiffiffi
s

p ¼ 2.76 TeV beam energy. Before
presenting our results, we first explain the setup and
parameters chosen for our calculations.
Since the differential dilepton rate dRlþl−=d4P given in

Eq. (11) is independent of the assumed space-time model,
we first evaluate it numerically using double-exponential
integration on a uniformly spaced four-dimensional
grid in M=Λ, p⊥=Λ, y, and log10ðξþ 1Þ such that
M=Λ; p⊥=Λ ∈ f0.1; 40g, y ∈ f−6; 6g, and log10ðξþ 1Þ ∈
f−1; 3g.9 The spacing was chosen in such a way that, after
building a four-dimensional interpolating function from the
table, we could assume that it is valid at continuous values
of these four variables. We then evaluated the remaining
integrations over space-time, transverse momentum angle,
and transverse momentum or invariant mass appearing
in Eqs. (15a) and (15b) using Monte Carlo integration. For
the integration over the transverse momentum we have
specified the default cuts as follows: pmin⊥ ¼ 1 GeV and
pmax⊥ ¼ 20 GeV, while for the invariant mass integration
we used Mmin ¼ 1 GeV and Mmax ¼ 20 GeV.

A. Dilepton production with fixed initial conditions

We begin by presenting the minimum-bias dilepton
spectra at midrapidity y ¼ 0 calculated assuming fixed
initial conditions. The initial central temperature was taken
to be T0 ¼ 567 MeV, at a starting time of τ0 ¼ 0.3 fm=c.
For this case, we fixed the initial anisotropy parameter to
ξ0 ¼ 0, which means that the system is initially isotropic in
momentum space. In Fig. 2 we plot the resulting invariant
mass spectra (left) and transverse momentum spectra (right)
of dilepton pairs for various values of η̄. We can see that the
spectra flatten with increasing η̄ and the normalization
increases with increasing η̄. The latter implies that the total
final multiplicity changes with changing η̄. This effect is
more visible in the p⊥ spectra. We note here that the fixed-
initial-condition behavior described above is monotonic in
η̄. The increase in multiplicity with increasing η̄ is related to
dissipative particle production in the QGP, which would
also be reflected in increased final particle multiplicity
across all particle types.

8On general grounds, one can expect that the level of
momentum-space anisotropy is larger in regions that have a
lower effective temperature. As a result, our assumption of a
constant ξ0 is a conservative one.

9Note that the dilepton rate is an even function of y; therefore,
in practice, we may restrict ourselves to positive values of y only.
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B. Dilepton production with fixed final multiplicity

The case presented in Sec. VA is unphysical since the
average final particle multiplicity in a given centrality range
is held fixed when presenting experimental results for the
dilepton spectra. We presented the prior case only to
establish that, for fixed initial temperature, the behavior
seen in the final dilepton spectra is monotonic when η̄ is
increased. In this section, we present the same analysis;
however, now, for each presented case, the initial central
temperature is rescaled in such a way as to keep the final
multiplicity of particles at freeze-out fixed. In practice, we
fix the number using the integral of jμuμ over the freeze-out
hypersurface as described in Appendix A.
Figure 3 presents the invariant mass spectra (left) and

transverse momentum spectra (right) of dilepton pairs at
midrapidity, y ¼ 0. In the left panel, we can clearly see the
effect of the rescaling of the initial temperature for cases
with various η̄; i.e. the spectra do not change significantly
as long as the final multiplicity of particles at freeze-out is

fixed. However, importantly, we observe that the spectra do
not necessarily have a monotonic dependence as η̄ is
increased (see e.g. the left panel of Fig. 2).
The nonmonotonic behavior primarily due to the fact

that particle production within anisotropic hydrodynamics
is not a monotonic function of η̄, as it is for standard viscous
hydrodynamics [28,33,34]. Instead, one observes a maxi-
mum in particle production at a certain value of η̄ which
depends on the assumed initial temperature. The fact that
there must be a maximum can be anticipated by the fact that
particle production should vanish in both the ideal and
free streaming limits.10 As a result, when fixing the initial
temperature to guarantee fixed final multiplicity, the
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FIG. 2 (color online). The invariant mass spectra (left) and transverse momentum spectra (right) of dilepton pairs at midrapidity, y ¼ 0,
for various values of shear viscosity to entropy density ratio 4πη̄ ∈ f0; 0.1; 1; 2; 3; 6; 10g. For all cases the initial temperature is fixed to
T0 ¼ 567 MeV and the system is initially isotropic in momentum space, ξ0 ¼ 0.
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FIG. 3 (color online). Same as Fig. 2, except here, instead of fixing the initial temperature, we keep the final particle multiplicity fixed.

10The dependence of particle production on the assumed value
of η̄ is discussed in more detail in Appendix A. In that appendix,
we compare particle production as a function of η̄ using both
anisotropic and viscous hydrodynamics.
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required temperature may not be monotonically decreasing
as η̄ is increased.
Note that, although the final multiplicity of particles

created at freeze-out is fixed, the number of dileptons
which are produced in the QGP volume varies with η̄. As a
result, we observe a small but noticeable nonmonotonic
change in the dilepton invariant mass spectra. Similar
arguments also apply to the transverse momentum spectra
shown in the right panel of Fig. 3. For the p⊥ spectra the
effect is smaller. Based on our final results shown in Fig. 3
one can see that for 4πη̄ ∈ ð1; 3Þ, which spans the range of
η̄ extracted from the flow experimental data, the impact of
shear viscosity in the system on the dilepton spectra is
quite small.

C. Effect of initial anisotropy

We now turn to the analysis of the impact of the initial
anisotropy in the system, ξ0, on the dilepton spectra. In
Figs. 4 and 5 we present invariant mass spectra (left panels)
and transverse momentum spectra (right panels) for

dilepton pairs at midrapidity, y ¼ 0, for various initial
anisotropy conditions. The results with ξ0 ¼ −0.9, 0, 10,
and 100 are denoted by brown solid, red dashed, blue
dotted, and green dot-dashed lines, respectively. The values
of ξ0 < 0 (ξ0 > 0) correspond to prolate (oblate) initial
momentum distribution functions. In Fig. 4 we keep the
viscosity fixed to η̄ ¼ 1=ð4πÞ while in Fig. 5 we set
η̄ ¼ 3=ð4πÞ. In each case the initial energy density at the
center ε0 is rescaled to keep the final multiplicity of
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FIG. 4 (color online). The invariant mass spectra (left) and transverse momentum spectra (right) of dilepton pairs at midrapidity, y ¼ 0,
for various initial anisotropy conditions, and 4πη̄ ¼ 1. The results with ξ0 ¼ −0.9, 0, 10, and 100 are denoted by brown solid, red
dashed, blue dotted, and green dot-dashed lines, respectively.
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FIG. 5 (color online). Same as Fig. 4 however here we take 4πη̄ ¼ 3.

TABLE I. Values of the initial central energy density
ε0½GeV=fm3� used in all the figures of this section except for
Figs. 2 and 3.

ξ0

4πη=s −0.9 0 10 100

0.1 � � � 72.11 � � � � � �
1 77.33 64.53 57.88 56.08
3 81.59 60.44 52.91 51.87
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particles at freeze-out fixed. The values of ε0 used in each
case are listed in Table I. From Figs. 4 and 5, one can
clearly see that the transverse momentum spectra are quite
sensitive to the initial momentum anisotropy in the system.
For an initially oblate configuration, they are becoming
flatter. The opposite behavior is observed for an initially
prolate configuration. This effect is particularly significant
for large values of p⊥. This opens the possibility to measure
initial anisotropy of the plasma by looking at large p⊥
dilepton pairs at the LHC. The behavior of the invariant
mass spectra, on the other hand, is more difficult to
understand since, in this case, both oblate and prolate
initial conditions lead to a flattening of the spectra. Note
that a similar effect will occur if one includes the viscous
correction to the distribution function and instead uses
second-order viscous hydrodynamics. For more informa-
tion on the behavior of the distribution functions see
Appendix B.

D. Production at forward rapidities

We close this section by presenting an analysis of
dilepton production at the forward rapidities following
the preliminary study made in Ref. [51]. In Fig. 6 we
present the dilepton modification factor

Φðη̄Þ≡
�
dNeþe−ðη̄Þ

dy

�.�
dNeþe−ðη̄ ¼ 0.1=4πÞ

dy

�
; ð56Þ

for 4πη̄ ∈ f0.1; 1; 3g and fixed value of ξ0 ¼ 0. In this
figure, one sees that increasing the value of η̄ results in a
suppression of particle production. The emission is more
suppressed when we go to more forward rapidities, up to
40% in the most extreme case. In Fig. 7, we present a

complementary study of the dilepton modification factor
[analogous to (56)]

~Φðξ0Þ≡
�
dNeþe−ðξ0Þ

dy

�.�
dNeþe−ðξ0 ¼ 0Þ

dy

�
ð57Þ

for ξ0 ¼ −0.9; 0; 10, and 100 (the notation is the same as in
Sec. V C) and for 4πη̄ ¼ 1 (top panel) and 4πη̄ ¼ 3 (bottom
panel). Similar to Fig. 6, we observe a suppression of the
dilepton production at forward rapidities, which increases
with increasing initial anisotropy parameter ξ0 and the
viscosity in the system. Moreover, we observe the opposite
effect when the distribution is initially prolate. In this case,
we find dilepton enhancement at forward rapidities together
with moderate suppression in midrapidity. These effects
provide the possibility to probe the initial degree of
thermalization of the system by looking at forward rapidity
emission of dilepton pairs. Finally, in Fig. 8, we present
the dilepton enhancement factor ~Φ with different cuts
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FIG. 6 (color online). The rapidity dependence of the dilepton
modification factor Φðη̄Þ for 4πη̄ ∈ f0.1; 1; 3g denoted by red
dashed, blue dotted, and green dashed-dotted lines, respectively.
The initial anisotropy is ξ0 ¼ 0 in this case. In this case
we also use default cuts: pmin⊥ ¼ 1 GeV, pmax⊥ ¼ 20 GeV,
Mmin ¼ 1 GeV, and Mmax ¼ 20 GeV.
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corresponding to 3 GeV < p⊥ < 20 GeV and 3 GeV <
M < 20 GeV. As can be seen from this figure, high-energy
dilepton emissions are more sensitive to the level of
momentum-space anisotropy in the quark-gluon plasma.
Of course, since statistics are more limited, high-energy
dilepton spectra are usually more difficult to measure
accurately.

VI. CONCLUSIONS

In this paper we computed the dilepton invariant mass
and transverse momentum spectra produced from the
quark-gluon plasma. To accomplish this, we used the
leading-order (3þ 1)-dimensional anisotropic hydrody-
namics equations obtained from the zeroth and first
moments of the Boltzmann equation and assumed a
conformal (ideal) equation of state. The anisotropic hydro-
dynamics equations solved allow for both azimuthal spatial
anisotropy and a realistic rapidity profile. In this paper we
considered a fixed (min-bias) impact parameter. We found
that, when adjusting the initial temperature in order to
enforce fixed final particle multiplicity, both the dilepton
invariant mass and transverse momentum spectra show
only a weak dependence on the assumed value of η=s.
A similar conclusion was found in an earlier work that

used a much more primitive model of the dynamics [21,51].
With the inclusion of the full (3þ 1)-dimensional dynam-
ics using anisotropic hydrodynamics, we are now more
confident that the dilepton spectra only have a weak
dependence on the assumed value of η=s. That being said,
in these previous works the possibility of a finite initial
momentum-space anisotropy ξ0 was not considered. In this
work we found that the high-mass and high-transverse-
momentum dilepton spectra are quite sensitive to the initial
level of momentum-space anisotropy. Additionally, we
demonstrated that the rapidity dependence of dilepton
production is also sensitive to the initial level of

momentum-space anisotropy. These observations offer
some hope that one might be able to experimentally
determine information about early-time momentum-space
anisotropies generated in heavy-ion collisions using dilep-
ton production.
In this work we made a few simplifying assumptions that

will be improved in future works. The first of these is that we
only study min-bias collisions. The magnitude of the effects
seen here could depend on centrality in a nontrivial way
since in central collisions the plasma lifetime is significantly
longer but the level of momentum-space anisotropy devel-
oped dynamically in the center of the fireball will be
reduced. We plan to make a systematic study of the centrality
dependence of our results in a forthcoming paper. Another
crucial assumption was that we used only the leading-order
(Born) rate for dilepton production. It is possible that
inclusion of the next-to-leading-order (NLO) rate could
significantly modify our conclusions. Unfortunately, to the
best of our knowledge such a calculation only exists for an
isotropic quark-gluon plasma [13]. It would be very inter-
esting to see if these calculations could be extended to the
case of an anisotropic quark-gluon plasma.
Finally, we mention a major shortcoming of the work

contained herein, namely that throughout we have assumed
that the system is in chemical equilibrium at all times. This
assumption is implicit in our treatment since we do not
make any attempt to decompose the fluid into its separate
quark and gluon components and we additionally assume
that the number equilibration of our single-component fluid
is governed by the same relaxation-time collision kernel as
we use to describe kinetic equilibration. In order to go
beyond these assumptions, one would need to implement a
multicomponent anisotropic fluid similar to Refs. [30,31]
but going beyond this work to also implement quark/gluon
number changing reactions, e.g. qq̄ ↔ gg and gg ↔ ggg,
using methods similar to Ref. [52]. In this case, one would
need to take into account the nonequilibrium “fugacities” of
the quarks and gluons and their influence on dilepton
production as was done first in Ref. [7]. For dilepton
production, the underpopulation of quarks at early times
after the nuclear impact could cause a measurable sup-
pression of QGP dilepton production since this is domi-
nated by the qq̄ annihilation at leading order.
Looking forward, one should also consider polarized

dilepton emission as suggested in Ref. [53]. The polariza-
tion asymmetry could be quite sensitive to early-time
momentum-space anisotropies and possibly also to the
assumed value of η=s. Finally, we mention that another
ideal observable that should be studied further is the
emission of real photons. This has been studied using
viscous hydrodynamics in Refs. [54–56] and using simple
models of anisotropy evolution in the plasma [57–64]. It is
necessary to extend these studies to include the (3þ 1)-
dimensional evolution of the QGP using anisotropic hydro-
dynamics in order to draw more firm conclusions about the
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effect of momentum-space anisotropies on photon produc-
tion. We also mention that, like dileptons, a difficult, but
necessary, step will be to extend the NLO calculation of
photon production first obtained in Refs. [11,12,14] to an
anisotropic quark-gluon plasma. The difficulty in this
calculation stems from the presence of color plasma
instabilities that render the NLO rate formally infinite. In
practice, these infinities will be regulated due to the
eventual saturation of unstable mode growth, but how to
implement this in practice is an open question.
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APPENDIX A: PARTICLE PRODUCTION IN
VISCOUS AND ANISOTROPIC

HYDRODYNAMICS

One can show that particle production within anisotropic
hydrodynamics is not a monotonically increasing function
of shear viscosity to entropy density, η=s. This behavior is
in agreement with exact solutions of the RTA Boltzmann
equation [28,33,34]. The fact that there must be a maxi-
mum in particle production as a function of η=s can be
anticipated by the fact that particle production should
vanish in both the ideal and free streaming limits. The
behavior found using anisotropic hydrodynamics is quali-
tatively different than all known standard second-order
viscous hydrodynamics approaches, which predict that
particle production increases monotonically as η=s
increases. The nonmonotonicity of particle production
becomes particularly important when enforcing fixed final
multiplicity of particles, since this is typically accom-
plished by rescaling the initial central temperature while
holding other parameters fixed. Such a temperature rescal-
ing can affect dilepton yields, since there is strong
sensitivity of the dilepton spectra to the temperature of
the emitting source.
In order to extract the freeze-out hypersurface, we

parametrize space-time in the following way

t ¼ ðτ0 þ dðζ;ϕ; θÞ sin θ sin ζÞ coshðdðζ;ϕ; θÞ cos θÞ;
x ¼ dðζ;ϕ; θÞ sin θ cos ζ cosϕ;
y ¼ dðζ;ϕ; θÞ sin θ cos ζ sinϕ;
z ¼ ðτ0 þ dðζ;ϕ; θÞ sin θ sin ζÞ sinhðdðζ;ϕ; θÞ cos θÞ:

ðA1Þ

This parametrization leads to simple formulas for the
space-time rapidity ς, longitudinal proper time τ, and the
transverse distance r,

ς ¼ dðζ;ϕ; θÞ cos θ;
τ ¼ τ0 þ dðζ;ϕ; θÞ sin θ sin ζ;
r ¼ dðζ;ϕ; θÞ cos ζ: ðA2Þ

The three angles ζ, ϕ, and θ are restricted to the ranges

0 ≤ ζ ≤ π=2;

0 ≤ ϕ < 2π;

0 ≤ θ ≤ π: ðA3Þ

The quantity dðζ;ϕ; θÞ describes the distance between a
point on the freeze-out hypersurface and the coordinate
system’s origin ðτ ¼ τ0; x ¼ 0; y ¼ 0; ς ¼ 0Þ. The para-
metrization (A1) works quite well for all smooth initial
conditions where the distance d is a function of ζ, ϕ, and θ.
Using the parametrization (A1), one can integrate the
particle number on the freeze-out hypersurface specified
by constant effective temperature TFO in the following way

N ¼
Z

dΣμuμnðTFOR−1=4ðξðζ;ϕ; θÞÞ; ξðζ;ϕ; θÞÞ; ðA4Þ

where the form of dΣμ may be obtained with the help of the
formula known from differential geometry

dΣμ ¼ εμαβγ
∂xα
∂ζ

∂xβ
∂ϕ

∂xγ
∂θ dζdϕdθ: ðA5Þ

The tensor εμαβγ is the four-index antisymmetric Levi-
Cività tensor with ε0123 ¼ 1. The quantity dΣμ defines a
four-vector that is perpendicular to the hypersurface at
point xμ ¼ ðt; x; y; zÞ. Its norm is equal to the volume of the
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FIG. 9 (color online). The η=s dependence of the particle
production measure Naniso=Nideal − 1. Black squares and red dots
denote the ð2þ 1Þ-dimensional boost-invariant and ð3þ 1Þ-
dimensional anisotropic hydrodynamics, respectively. We com-
pare them with the results obtained within ð2þ 1Þ-dimensional
boost-invariant viscous hydrodynamics (blue diamonds).
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hypersurface element. The variables ζ, ϕ, and θ introduce a
coordinate system in Minkowski space parametrizing the
positions of points on the freeze-out hypersurface. Their
ordering is chosen in such a way that dΣμ points in the
direction of decreasing temperature.
In Fig. 9, we plot the particle production measure,

Naniso=Nideal − 1 as a function of η̄, where Naniso ðidealÞ
denotes the density of gluons (41) integrated on the
isothermal hypersurface, i.e. surface satisfying Teff ¼
TFO ¼ 150 MeV. In Fig. 9, blue diamonds and black
squares present the calculation for boost-invariant versions
of viscous and anisotropic hydrodynamics models, respec-
tively. The (2þ 1)-dimensional viscous hydrodynamics
results were generated using the code of Luzum and
Romatschke [65]. We also show results for the full
(3þ 1)-dimensional anisotropic code (red dots). We note
that there is some quantitative uncertainty in the presented
results due to the effective-temperature freeze-out prescrip-
tion used. Another possibility for the freeze-out condition
would be to use a constant value of the Knudsen number
[66]. We have not considered this possibility in this work.

APPENDIX B: COMPARISON OF THE
ANISOTROPIC HYDRODYNAMICS

DISTRIBUTION FUNCTION WITH SECOND-
ORDER VISCOUS HYDRODYNAMICS

As mentioned in the body of the paper, as the amount of
initial anisotropy increases, one has to increase the trans-
verse momentum scale in order to keep the final multi-
plicity fixed, which causes the dilepton spectra to become
flatter. However, this behavior is not unique to anisotropic
hydrodynamics. The same thing happens in viscous hydro-
dynamics but the quantitative details are somewhat differ-
ent as we will now explain.
At first one might think that the opposite behavior occurs

in viscous hydrodynamics since, in this case, as one
increases the magnitude of the initial shear in order to
decrease the longitudinal pressure relative to the transverse
pressure, one must lower initial temperature in order to fix
the final multiplicity. However, this lowering of the initial
temperature is not the whole picture. If one includes the
viscous correction to the distribution function, one finds
that the one-particle distribution function becomes flatter in
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FIG. 10 (color online). Distribution function resulting from
ð0þ 1Þ-dimensional viscous hydrodynamics. Here τ ¼ τ0 ¼
0.3 fm=c and 4πη=s ¼ 3. For ξ0 ¼ 0, T0 ¼ 534 MeV and for
ξ0 ¼ 10, T0 ¼ 502 MeV.
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FIG. 11 (color online). Distribution function resulting from
ð0þ 1Þ-dimensional anisotropic hydrodynamics. Here τ ¼ τ0 ¼
0.3 fm=c and 4πη=s ¼ 3. For ξ0 ¼ 0, T0 ¼ 534 MeV and for
ξ0 ¼ 10, T0 ¼ 511 MeV.

DILEPTON PRODUCTION FROM THE QUARK-GLUON … PHYSICAL REVIEW D 92, 025026 (2015)

025026-13



the transverse momentum direction due to the shear
correction. To see this in practice, consider the case
of ð0þ 1Þ-dimensional expansion of a massless (ideal)
fluid/gas. In this case, one has πμν ¼ diagð0;Π=2;
Π=2;−ΠÞ and

f ¼ feq

�
p
T

��
1þ pμπ

μνpν

2ðεþ PÞT2

�

¼ feq

�
p
T

��
1þ 3Π

16εT2
ðp2⊥ − 2p2

∥Þ
�
: ðB1Þ

In order to visualize this, in Fig. 10 we have plotted the
initial one-particle distribution function resulting from
Eq. (B1) for a typical initial condition similar to the ones
used in the manuscript. The left panel of Fig. 10 shows the
case p∥ ¼ 0 as a function of p⊥ and the right panel shows
the case that p⊥ ¼ 0 as a function of p∥. In both panels, the
black line corresponds to ξ0 ¼ 0 (isotropic) and the red
dashed line to ξ0 ¼ 10 (oblate). In order to compare the two
different initial anisotropies, we have adjusted the initial
temperature such that the final particle number given by
τFOnðτFOÞ ∝ τFOT3

FO is held fixed, where TFO ¼ 150 MeV
is the freeze-out temperature and τFO is the corresponding
freeze-out proper time. As can be seen from the left panel of
Fig. 10, the increase in the initial shear necessary to

generate a pressure anisotropy corresponding to ξ0 ¼ 10

results in a flatter p⊥ dependence of the distribution
function. In the right panel of Fig. 10 we see a steeper
p∥ dependence of the distribution function which even-
tually becomes unphysical (negative) at sufficiently
large p∥.
The results obtained from viscous hydrodynamics can be

contrasted with similar results obtained using the spheroi-
dal ansatz (5) for the distribution function (see Fig. 11). As
we can see from Fig. 11, the results are qualitatively
similar; however, there is a more pronounced flattening
of the pT dependence of the distribution function using
anisotropic hydrodynamics. This increased flattening could
result in more sensitivity to the assumed value of ξ0.
However, one should also note in this context that the one-
particle distribution function is always positive definite
using anisotropic hydrodynamics as demonstrated by the
right panel of Fig. 11. Since anisotropic hydrodynamics
goes beyond the leading anisotropy correction included in
Eq. (B1) it is not surprising that the end effect might be
larger flattening of the p⊥ spectra; however, we cannot say
a priori whether or not the anisotropic hydrodynamics
ansatz for the distribution function overestimates the
flattening.
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