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A quark model with running coupling and running strange quark mass, which is thermodynamically
self-consistent at both high and lower densities, is presented and applied to study properties of strange
quark matter and structure of compact stars. An additional term to the thermodynamic potential density is
determined by meeting the fundamental differential equation of thermodynamics. It plays an important role
in comparatively lower density and ignorable at extremely high density, acting as a chemical-potential
dependent bag constant. In this thermodynamically enhanced perturbative QCD model, strange quark
matter still has the possibility of being absolutely stable, while the pure quark star has a sharp surface with a
maximum mass as large as about 2 times the solar mass and a maximum radius of about 11 kilometers.
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I. INTRODUCTION

In recent decades, strange quark matter (SQM) has been
one of the most interesting and significant topics in nuclear
physics [1]. Early in the 1970s, the possible existence of
a deconfined phase was proposed and studied [2–5].
Especially in 1984, it was speculated, based on elementary
symmetry considerations, that SQM might be absolutely
stable and thus have important consequences [6]. Soon
after this it was shown in the MIT bag model that SQM is
absolutely stable for a reasonable range of QCD-related
parameters [7]. Since then many papers have been done on
the properties and applications [8–22].
It is widely believed that quantum chromodynamics

(QCD) is the fundamental theory of strong interactions,
and in principle, one could do a detailed and comprehen-
sive study on SQM by solving the motion equations of
quarks and gluons. Unfortunately, however, QCD is, in
fact, intractable in the nonperturbative regime presently.
In particular at finite baryon chemical potential, there is a
notorious sign problem where the lattice Monte Carlo
simulation is inaccessible [23]. Therefore, effective phe-
nomenological models play crucial roles to extract and
figure out the properties of strongly interacting matter.
In past years, a number of models have been applied with
interesting results, such as the Nambu-Jona-Lasinio model
[24,25], the global color symmetry model [26], the quasi-
particle model [27–33], the mass-density-dependent model

[34–39], the equivparticle model [40,41], the quark-cluster
model [42], and so on.
Thermodynamic consistency is a fundamental require-

ment of phenomenological models [38]. In many important
cases, an additional term to the thermodynamic potential
density is necessary to maintain thermodynamic consis-
tency. In an important version of the quasiparticle model,
for example, the additional term is needed in both the zero
[43] and finite temperature [44] cases. In the equivparticle
model with confinement by the density dependence of
quark masses, an additional term also appears in the
thermodynamic potential density to have full thermody-
namic consistency [40,41].
Because of asymptotic freedom, the perturbative calcu-

lation of QCD is reliable at very high densities. The
thermodynamic potential density of cold quark matter
was calculated for massless quarks in Refs. [45–47].
These results were applied to study quark stars to the first
order in QCD coupling in Refs. [48,49], to the second order
in [50], with finite-mass effect of strange quarks considered
in Refs. [51–53].
The validity of a perturbative theory requires a small

coupling with which the perturbative series is obtained.
Different from quantum electrodynamics (QED), however,
the QCD coupling is running, i.e., it is not that small when
the density is not extremely high. In this case, one will meet
thermodynamic problem when one naively extends the
applicable range of density [54].
One way to solve this problem is to add an additional

term to the thermodynamic potential density, similar to
that of the popular quasiparticle model [55–58] and the
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equivparticle model [40,41]. This way of extending the
applicable range of the perturbative calculation was shown
to be reasonable for the one-flavor case [54]. It has also
been shown, for the massless two-flavor case, that the
renormalization subtraction point should be taken as a
function of the summation of the biquadratic chemical
potentials while the additional term not only keeps the
thermodynamics self-consistent, but also produces reason-
able results [59]. In the present paper, we extend this
thermodynamically enhanced perturbative QCD (EPQ)
model to the actual SQM with massless up (u) and down
(d) quarks plus massive strange (s) quarks. It is found that
the additional term takes an important role at lower
densities, acting as a chemical-potential dependent bag
constant. The equation of state (EOS) of SQM becomes
stiffer, and accordingly the maximum mass of strange stars
is as large as 2 times the solar mass.
The paper is organized as follows. In Sec. II, we give the

conventional perturbative treatment and demonstrate the
thermodynamic inconsistency in its naive extension to
lower densities. Then in Sec. III, we determine a chemi-
cal-potential dependent baglike coupling constant which
makes the thermodynamic treatment self-consistent. After
that we study, respectively, the properties of SQM and the
structure of compact stars with the new EPQ model in
Secs. IV and V. Finally Sec. VI is a short summary.

II. THE CONVENTIONAL PERTURBATION
MODEL AND INCONSISTENCY OF

ITS NAIVE EXTRAPOLATION

Let us start our paper from the perturbative expansion of
the thermodynamic potential density of cold quark matter
with two-flavor massless light quarks plus one massive
strange quark. According to Eqs. (1) and (2) in
Refs. [51,52], we have the perturbative contribution to
the thermodynamic potential density as

Ωpt ¼ Ωu þΩd þ Ωs; ð1Þ
where, to the first order, the contributions from massless up
and down quarks are respectively

Ωu ¼ −
μ4u
4π2

ð1 − 2αÞ and Ωd ¼ −
μ4d
4π2

ð1 − 2αÞ; ð2Þ
and that from the massive strange quarks is [51,53]

Ωs ¼
−1
4π2

�
μsνs

�
μ2s −

5

2
m2

s

�
þ 3

2
m4

s ach
μs
ms

�

þ α

2π2

�
3

�
μsνs −m2

s ach
μs
ms

�
2

− 2ν4s

þm2
s

�
6 ln

u
ms

þ 4

��
μsνs −m2

s ach
μs
ms

��
: ð3Þ

Here μu, μd, and μs are the chemical potentials of up, down,
and strange quarks respectively, u is the renormalization

subtraction point, α ≡ αs=π ¼ g2=ð4π2Þ is the running
coupling, and achx ≡ lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p
Þ is the inverse

hyperbolic cosine function. Because the mass of u and d
quarks is much smaller than that of s quarks, we consider
only the mass effect of strange quarks. For simplicity, we
have used the notation νs ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2s −m2

s

p
, which can be

regarded as the fermion momentum of s quarks. Because
the electron does not participate in the strong interactions,
its contribution to the thermodynamic potential is then

Ωe ¼ −
μ4e

12π2
: ð4Þ

The number densities of u and d quarks and electrons
are, respectively

nu ¼
μ3u
π2

ð1 − 2αÞ; nd ¼
μ3d
π2

ð1 − 2αÞ; ne ¼
μ3e
3π2

;

ð5Þ

while the density of s quarks is

ns ¼
ν3s
π2

−
2α

π2
νs

�
μsνs þ 2m2

s − 3m2
s ln

μs þ νs
u

�
: ð6Þ

Here we should keep in mind that all terms with order in
the coupling higher than unity have been discarded because
we assume the perturbative expression is merely valid to
leading order.
The thermodynamic potential density of the whole

system composed of u, d, s quarks and electrons, given
by the sum of Eqs. (2) to (4), depends explicitly on the
chemical potentials μu, μd, μs, μe, and implicitly on the
renormalization subtraction u via the coupling αðuÞ and
the quark mass msðuÞ.
The running coupling αðuÞ and the running mass msðuÞ

of strange quarks are determined by the following renorm-
alization group (RG) equations:

dα
d ln u2

¼ −
XN−1

j¼0

βiα
iþ2 ≡ βðαÞ; ð7Þ

d lnms

d ln u2
¼ −

XN−1

i¼0

γiα
iþ1 ≡ γðαÞ; ð8Þ

where N is the loop number, while the beta and gamma
functions, βðαÞ and γðαÞ, are presently known to four-loop
level, given by the corresponding beta and gamma coef-
ficients, i.e., βi and γi. The original ones were given in the
minimum subtraction scheme or its modified version (MS).
The coupling and masses given with these βi and γi are,
in principle, not continuous at heavy quark thresholds.
In order to give a continuous coupling and a continuous
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strange quark mass, the beta and gamma coefficients should
be recombined. For the number of colors Nc ¼ 3, these
coefficients are provided in the Appendix. Comparing these
coefficients with the original beta and gamma functions
[60,61], one finds that β0, β1, γ0, and γ1 are not changed and
thus universal [62], while modifications are necessary for
βj≥2 and γj≥2.
The exact solutions of Eqs. (7) and (8) can be obtained

by separation of variables, as shown in the Appendix.
At one-loop level, the running coupling and running quark
mass of strange quarks are, respectively, given by

αðuÞ ¼ 1

β0 lnðu2=Λ2Þ ; ms ¼ m̂sα
γ0=β0 ; ð9Þ

where β0 ¼ 11=4 − Nf=6, γ0 ¼ 1, Λ and m̂s are the QCD
scale parameters respectively for the coupling and strange
quark mass.
With the requirement of continuity at the threshold of

heavy quark masses and the initial condition αsðMZÞ ¼
0.1185 (where MZ ¼ 91.1876 MeV is the mass of Z
bosons) and msð2 GeVÞ ¼ 93.5 MeV [63], one can get
distinct coupling scale ΛNf

and mass scale m̂s;Nf
for a

different effective number of flavors, i.e., Λ3–6 and m̂s;3–6,
respectively corresponding to u in a different range,
i.e., u < mc, mc < u < mb, mb < u < mt, u > mt, where
mc ¼ 1.275 GeV, mb ¼ 4.18 GeV, mt ¼ 173.21 GeV
[63]. The results to four-loop level and for a different
number of flavors are given in Table I. Because we are
considering three flavors to the leading order, in the
following calculations we take Λ ¼ Λ3 ¼ 146 MeV and
m̂s ¼ m̂s;3 ¼ 280 MeV, respectively.
Now we need to choose the relation between the

renormalization point u and the chemical potentials. In
principle, the choice is not unique. In Ref. [51], it is chosen
to be

u ¼ 2

3
ðμu þ μd þ μsÞ: ð10Þ

To maintain weak equilibrium, the chemical potentials
satisfy

μu þ μe ¼ μd ¼ μs: ð11Þ

Furthermore, SQM should be in the state of charge
neutrality, i.e.,

2

3
nu −

1

3
nd −

1

3
ns − ne ¼ 0: ð12Þ

Another condition for the quark system is the baryon
number conservation, reading

nb ¼
1

3
ðnu þ nd þ nsÞ: ð13Þ

For a given baryon number density nb we can solve
Eqs. (11)–(13) to obtain all the relevant chemical potentials.
Then the pressure P and the energy density E are given by

P ¼ −Ω; ð14Þ

E ¼ Ωþ
X
i

μini; ð15Þ

where i goes over all flavors and electron.
To check thermodynamic consistency of phenomeno-

logical models, a discriminant Δ, as a function of the
baryon number density, was introduced in Ref. [41] as

Δ ¼ P − n2b
d
dnb

�
E
nb

�

¼ Pþ E − nb
dE
dnb

; ð16Þ

where E and P are respectively model-given energy density
and pressure. For any thermodynamically consistent mod-
els, the discriminant vanishes at arbitrary density.
In order to show the inconsistency degree of the above

described pure perturbation model, we show in Fig. 1
the density behavior of the ratio Δ=E as a function of the
density nb. From this figure, one can easily find that the
discriminant ratio decreases monotonically with increasing
density. This is a clear demonstration that the thermody-
namics at higher density is nearly consistent while the
thermodynamic inconsistency becomes more and more
serious with decreasing density.
One might think that this problem can be solved by

adding a pure constant B0 to the energy density (subtracting
from the pressure) and interpreting it as the vacuum energy
density, just like what had been done in the original bag
model. In Fig. 2, we plot the energy per baryon (left axis)
and pressure (right axis) as a function of the density forffiffiffiffiffiffi
B0

4
p ¼ 135 MeV. It is obvious in this case that there exists

TABLE I. The QCD scale parameters ΛNf
and m̂s;Nf

in MeV to four-loop level for the number of flavors Nf from 3 to 6.

Loop number Λ3 Λ4 Λ5 Λ6 ms;3 ms;4 ms;5 ms;6

1 146.2 122.9 90.44 44.03 279.9 303.5 339.5 401.4
2 365.3 309.5 217.9 90.65 248.2 263.8 291.0 341.4
3 342.4 297.1 213.4 89.93 242.5 257.0 283.4 332.4
4 339.1 295.7 212.7 89.67 240.3 254.3 280.4 329.0
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a minimum energy per baryon (marked with a solid
triangle) and zero pressure (the small open circle). As
emphasized in Ref. [38], also directly seen from the first
equality of Eq. (16), these two points should appear exactly
at the same density. However, Fig. 2 clearly shows that they
obviously deviate from each, contradicting the fundamental
thermodynamics. This is understandable from the second
equality of Eq. (16): adding a constant to E and subtracting
it simultaneously from the pressure P does not influence
the value of the discriminant Δ. In fact, if one draws the
density behavior of Δ, one will find that it is totally
overlapped with the case without the constant.
In the following section we will find an additional

term that depends on chemical potentials. The chemical-
potential-dependent term can be neglected at high density
but it takes an important role at lower density, solving the
thermodynamic inconsistency very nicely. The key point is
that the renormalization subtraction u as a function of

the chemical potentials cannot be arbitrarily taken, such
as that in Eq. (10). Instead, we choose it to satisfy an
equation obtained by the requirement of thermodynamic
consistency.

III. EXTRAPOLATION WITH THERMODYNAMIC
CONSISTENCY

The thermodynamic potential density of a cold quark
system from perturbative QCD to order N can be generally
written as

Ωpt
N ¼

XN
i¼0

ωiðμu; μd; μs; ms; ln α; uÞαi; ð17Þ

where α ¼ αs=π ¼ g2=ð4π2Þ is the QCD running coupling,
ms is the running mass of a strange quark. They satisfy the
renormalization group equation given in Eqs. (7) and (8).
The corresponding number density for quark flavor

q ¼ u, d, s can be easily obtained by the normal thermo-
dynamic relation nq ¼ −dΩpt=dμq. Also at the order N, it
gives

nq ¼
XN
k¼0

�
−
∂ωk

∂μq −
∂ωk

∂u
∂u
∂μq þ

2

u
∂u
∂μq

Xk−1
i¼0

fi;k−i−1

�
αk;

ð18Þ

where fi;j (j ¼ k − i − 1) is zero if i < 0 or j < 0,
otherwise it is defined to be

fi;j ¼
�
iωi þ

∂ωi

∂ ln α
�
βj þms

∂ωi

∂ms
γj: ð19Þ

We write the whole thermodynamic potential density of
the system as

Ω ¼ Ωpt
N þΩ0: ð20Þ

Here Ωpt
N is the perturbative contribution, while Ω0 is the

nonperturbative contribution. To determine Ω0, we require
that it makes Ω satisfy the fundamental thermodynamic
equation

dΩ ¼ −SdT −
X
i

nidμi; ð21Þ

where S is the entropy density at temperature T. At zero
temperature the first term vanishes and we have
dΩ ¼ −

P
inidμi. Substituting Eqs. (20), (17), and (18)

into this equality, we immediately obtain

dΩ0 ¼ ∂Ω0

∂μu dμu þ
∂Ω0

∂μd dμd þ
∂Ω0

∂μs dμs; ð22Þ

FIG. 1. The discriminant ratio Δ=E as a function of density.
The solid curve is from the pure purturbation model, while the
near horizontal line is from the EPQ model in the present paper.

FIG. 2. Density behavior of the energy per baryon in pQCD
with a running coupling in Eq. (10) and a bag constant of
B0 ¼ ð135 MeVÞ4.
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where the partial derivatives are

∂Ω0

∂μu ¼
2

u
∂u
∂μu

XðN;N Þ

k;i

fi;k−i−1αk ≡ G1ðμu; μd; μsÞ; ð23Þ

∂Ω0

∂μd ¼
2

u
∂u
∂μd

XðN;N Þ

k;i

fi;k−i−1αk ≡ G2ðμu; μd; μsÞ; ð24Þ

∂Ω0

∂μs ¼
2

u
∂u
∂μs

XðN;N Þ

k;i

fi;k−i−1αk ≡ G3ðμu; μd; μsÞ: ð25Þ

The double summation in Eqs. (23)–(25) is given by

XðN;N Þ

k;i

≡ XNþN

k¼Nþ1

Xminðk−1;NÞ

i¼maxð0;k−N Þ
: ð26Þ

Therefore, the additional term Ω0 is given by a path
integral as

Ω0 ¼
Z

μ

μ0

ðG1dμu þG2dμd þG3dμsÞ þ B0; ð27Þ

where μ0 ¼ ðμu0; μd0; μs0Þ is a starting point for the path
integral which is fixed to be μu0 ¼ μd0 ¼ μs0 ¼ 313 MeV
in the present calculation, while its moving effect is boiled
down to another constant B0.
As everyone knows, the thermodynamic potential is a

state function. Therefore, Ω0 should be independent of the
path, namely, the integration in Eq. (27) is path indepen-
dent. This requires that the integrands satisfy the Cauchy
conditions

∂G1

∂μd ¼ ∂G2

∂μu ;
∂G2

∂μs ¼ ∂G3

∂μd ;
∂G1

∂μs ¼ ∂G3

∂μu : ð28Þ

It is easy to prove that only two of them are independent.
In the present paper, let us take the first order ofΩpt

N as an
example, i.e., Ωpt

1 , with running coupling α and running
mass ms expanded to first order which are explicitly given
by Eq. (9). In this case, we have

G1 ¼
2

u
∂u
∂μu f1;0α

2; G2 ¼
2

u
∂u
∂μd f1;0α

2;

G3 ¼
2

u
∂u
∂μs f1;0α

2: ð29Þ

With the notation τ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4u þ μ4d þ μ4s

4
p

and the expressions
of ω0 and ω1, i.e.,

ω0 ¼
−1
4π2

�
τ4 þ μsνs

�
μ2s −

5

2
m2

s

�
þ 3

2
m4

s ach
μs
ms

�
;

ω1 ¼
1

2π2

�
τ4 − 2ν4s þ 3

�
μsνs −m2

sach
μs
ms

�
2

þm2
s

�
6 ln

u
ms

þ 4

��
μsνs −m2

sach
μs
ms

��
; ð30Þ

one can derive the explicit expression of f1;0, giving

f1;0 ¼ β0ω1 þ γ0ms
∂ω1

∂ms

¼ 9

8π2
ðμ4u þ μ4d þ μ4s Þ þ

75m4
s

8π2
ach2

�
μs
ms

�

þ m2
s

8π2

�
41μ2s − 50m2

s þ 44μsνs

þ 6 ln
u
ms

�
17μsνs − 25m2

s ach
μs
ms

�

− 2ach
μs
ms

ð38m2
s þ 51μsνsÞ

�
: ð31Þ

Substituting Eq. (29) into the first two Cauchy con-
ditions, we have

∂u
∂μu

∂f1;0
∂μd ¼ ∂u

∂μd
∂f1;0
∂μu ;

∂u
∂μd

∂f1;0
∂μs ¼ ∂u

∂μs
∂f1;0
∂μd : ð32Þ

From Eq. (31), one can get the partial derivatives of f1;0
with respect to μu and μd respectively, i.e.,

∂f1;0
∂μu ¼ 9μ3u

2π2
;

∂f1;0
∂μd ¼ 9μ3d

2π2
: ð33Þ

Using Eq. (33), the first equation in Eq. (32) becomes

μ3u
∂u
∂μd ¼ μ3d

∂u
∂μu : ð34Þ

This equation means that the solution of u is a function of
μs and ρ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ4u þ μ4d
4
p

, i.e., u ¼ uðρ; μsÞ. However, this
function is not necessarily explicit, and can be generally
implicit. So we assume it is determined by the following
implicit equation:

Φðρ; μs; uÞ ¼ 0: ð35Þ

In order to find the form of Φ, we give the partial
derivatives of u with respect to μd and μs, i.e.,

∂u
∂μd ¼

∂u
∂ρ

∂ρ
∂μd ¼ −

Φρ

Φu

∂ρ
∂μd ;

∂u
∂μs ¼ −

Φμs

Φu
; ð36Þ
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where the notations Φx ≡ ∂Φ=∂x ðx ¼ ρ; u; μsÞ have been
used. Then substituting Eq. (36) to the second equation in
Eq. (32) leads to

8π2

9

∂f1;0
∂μs

∂Φ
∂ρ ¼ 4ρ3

∂Φ
∂μs ; ð37Þ

where ∂f1;0
∂μs can be obtained from Eq. (31), i.e.,

∂f1;0
∂μs ¼ m2

s

2π2ν2s
½νsð22μ2s − 30m2

s Þ þ μsð5m2
s − 14μ2s Þ�

þ 9μ5s
2π2ν2s

−
3m2

s

2π2νs
ð17μ2s − 21m2

s Þ ln
μs þ νs

u
: ð38Þ

For Eq. (37) to be fulfilled, we choose

∂Φ
∂ρ ¼ 4ρ3;

∂Φ
∂μs ¼

8π2

9

∂f1;0
∂μs : ð39Þ

Solving the equalities in Eq. (39), we can find the
solution

Φ ¼ 8π2

9
f1;0 − ϕðuÞ; ð40Þ

where ϕðuÞ is an arbitrary function of u. In fact, integrating
the first equality in Eq. (39), one can get the solution as
Φðρ; μs; uÞ ¼ ρ4 þ φðμs; uÞ, where the integration constant
φ (with respect to the variables μs and u) can be obtained by
substituting into the second equality of Eq. (39) as

φðμs; uÞ ¼
8π2

9

Z ∂f1;0
∂μs dμs − ρ4 − ϕðuÞ;

which gives the solution in Eq. (40) immediately.
For convenience and simplicity, we have chosen the

function ϕðuÞ ¼ Nfðu=CÞ4 with constant C being a model
parameter which can be fixed in a reasonable region by the
common knowledge of modern nuclear physics. So, from
the solution of Eq. (32), one can find that to solve the
problem of inconsistency in thermodynamics, the relation
between the renormalization subtraction point u and
chemical potentials should be obtained by solving the
following equation:

8π2

9
f1;0ðρ; μs; uÞ −

Nf

C4
u4 ¼ 0: ð41Þ

As is well known, the mass effect from strange quarks
can be ignored at very high density. In this case the relation
between the renormalization subtraction point and chemi-
cal potentials can be given in a simple form, i.e.,

u ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ4u þ μ4d þ μ4s

Nf

4

s
; ð42Þ

which can be obtained by taking ms → 0 in Eq. (41).
In order to get the EOS, in general one should numeri-

cally solve Eq. (41). Then substituting Eq. (29) to Eq. (27)
and numerically integrating it, one can get the quantity Ω0
which is essential in fixing the problem of thermodynamic
inconsistency. The partial derivatives of renormalization
subtraction point u with respect to chemical potentials
μqðq ¼ u; d; sÞ in Eq. (29) are

∂u
∂μq ¼

∂f1;0=∂μq
9Nfu3

2π2C4 −
∂f1;0
∂u − ∂f1;0

∂ms

∂ms∂α
∂α
∂u
; ð43Þ

where ∂f1;0=∂μq are already given in Eqs. (33) and (38).
Other relevant derivatives of f1;0 in Eq. (43) are,
respectively

∂f1;0
∂u ¼ 3m2

s

4π2u

�
17μsνs − 25m2

s ach
μs
ms

�
ð44Þ

and

∂f10
∂ms

¼ 75

2π2
m3ach2

�
μs
ms

�
−
�
75

π2
m3

s ln
u
ms

þ ms

4π2νs
ð78μsν2s þ 77m2

sνs þ 24μ3s Þ
�

× ach
μs
ms

−
3msμs
2π2νs

ð13m2
s − 17μ2s Þ

× ln
u
ms

þ ms

4π2ν2s
ð23m2

sμsνs þ 92μ4s þ 100m4
s

− 7μ3sνs − 192m2
sμ

2
s Þ: ð45Þ

The remaining derivatives on the right-hand side of
Eq. (43) are

∂ms

∂α ¼ 4m̂s

9
α−

5
9 and

∂α
∂u ¼ −

9

2

α2

u
: ð46Þ

IV. EOS OF STRANGE QUARK MATTER

As is usually done, we assume SQM to be a mixture of
interacting quarks and free electrons. So the total thermo-
dynamic potential density Ωtot reads

Ωtot ¼ Ωpt −
μ4e

12π2
þ Ω0; ð47Þ

where the first term is the perturbative contribution in
Eq. (17) whose concrete form is given to leading order in
Eqs. (2) and (3). The second term is the contribution from
electrons treated as free particles because they do not
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participate in the strong interactions, and the last term is
given in Eq. (27), determined by thermodynamic consis-
tency requirement to consider the nonperturbative effect.
For a given baryon number density, one can solve

Eqs. (11)–(13) with the help of Eqs. (5) and (6) to obtain
the relevant particle chemical potentials, then all other
quantities can be thermodynamically obtained. But in the
present model, there are still two parameters, B0 and C, to
be determined by stability arguments.
As is well known, the energy per baryon of two-

flavor quark matter should be bigger than 930 MeV
(E=nb > 930 MeV), in order not to contradict standard
nuclear physics. Therefore, the shaded region in Fig. 3 is
forbidden. If the energy per baryon of three flavor quark
matter is less than 930 MeV, the SQM is absolutely stable;
if it is bigger than 930 MeV, but smaller than 939 MeV, the
SQM is metastable; otherwise, the SQM is unstable. These
different regions are indicated in Fig. 3.
To investigate the properties of SQM in the present

EPQ model, we choose three typical sets of parameters
in the absolutely stable region, i.e., ð1=C; ffiffiffiffiffiffi

B0
4
p

=MeVÞ ¼
ð0.5; 135Þ; ð0.4; 140Þ; ð0.8; 125Þ, respectively represented
with capital letters A, B, and C in Fig. 3.
Let us first check the consistency of EPQ model.

Figure 4 shows the density behavior of the energy per
baryon with different parameters. It is obvious that the
minimum energy per baryon for each curve locates exactly
at the density corresponding to zero pressure. This con-
sistency in thermodynamics can be seen in Fig. 1 where the
value of Δ=E for the present model is zero at all densities.
In addition, the three minimum points in this figure

FIG. 3. The parameter range in B1=4
0 vs 1=C plane. The shaded

region is forbidden where two-flavor quark matter is stable. The
energy per baryon of three-flavor quark matter is bigger than
939 MeV in the right upper region marked with “unstable,” less
than 939 MeV but bigger than 930 MeV in the region with
“metastable,” smaller than 930 MeV in the absolutely stable
region where three sets of parameters A, B, and C are indicated by
solid dots.

FIG. 4. Density behavior of the energy per baryon. It is obvious
that the minimum energy (the triangle) for each curve locates
exactly at the density corresponding to zero pressure (the circle).

FIG. 5. The EOS of SQM for the three typical parameter sets.

FIG. 6. Velocity of sound in SQM. The nearly horizontal line is
for the ultrarelativistic case, the three lower cures are from the
present model for the three typical sets of parameters.
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correspond to absolutely stable SQM, as expected. It is also
found that the minimum energy per baryon in fact becomes
bigger with decreasing C and/or increasing B0.
Figure 5 gives the EOS of SQM. The stiffness of EOS

obviously varies with the model parameters C and B0, e.g.,
EOS would become stiffer with bigger C and/or smaller B0.
In the next section we will see that this means a bigger
maximum mass of compact stars (see Fig. 8).
To check the impact of the additional term Ω0, we plot in

Fig. 6 the density behavior of the velocity of sound
calculated by

v ¼
ffiffiffiffiffiffiffiffiffiffi���� dPdE

����
s

: ð48Þ

We have noted that the density behavior of sound velocity
is greatly affected by the stiffness of EOS, and it is
understandable that stiffer EOS corresponds to fast velocity
of sound. At very high density, however, they all approach
to the ultrarelativistic case. In addition, we would like to
point out that the sound velocity is independent of the
parameter B0.

Figure 7 shows the density behavior ofΩ0 and its relative
importance. From this figure one can see that, although Ω0
increases with increasing density, the relative importance
decreases with increasing density. That means Ω0 plays a
relatively important role at lower density while it is
ignorable at high density. In this regard it is similar to a
chemical-potential-dependent bag constant.

V. STRUCTURE OF STRANGE STARS

Neutron stars are the main targets of future observatories
[64–67] and have long been interesting objects of many
theoretical and observational investigations [3,48,49,
68–71]. Because their innermatter is verydense, theybecome
the most promising places to find quark matter [72,73].
In the general case, such a compact object may be a

hybrid star with pure quark core and hadronic crust [8].
Because SQM can be self-bound, i.e., its internal pressure
can be zero at a definite density (see the minima in Fig. 4),
the whole star can be converted to a pure quark star,
for example, as a strong deflagration process during a few
milliseconds [74], or seeded with slets [75] by the self-
annihilating weakly interacting massive particles [76], etc.
In the preceding sections, we have developed an

enhanced version of a perturbative QCD treatment of
the dense quark matter by thermodynamic consistency
requirement. Now we apply it to study the structure of
quark stars. For this purpose we should solve the Tolman-
Oppenheimer-Volkov equation [77]

dP
dr

¼ −
GmE
r2

ð1þ P=EÞð1þ 4πr3P=mÞ
1 − 2Gm=r

; ð49Þ

with the subsidiary condition

dm
dr

¼ 4πr2E; ð50Þ

where G ¼ 6.707 × 10−45 MeV−2 is the gravitational con-
stant, r is the distance from the center of a quark star, and P
and E are the pressure and energy density with their mutual
relation given by EOS. One can refer to Ref. [38] for a
concise process of how to solve this equation.
On application of the equations of state in Fig. 5, we can

get the mass-radius relation in Fig. 8 for the typical
parameter sets indicated in the legend. This figure shows
several features of quark stars. (1) The radius of a quark star
can be in principle very small, i.e., there is no lower bound
to the radius. This is very different from the normal neutron
stars whose radii are normally greater than a critical value.
(2) For a given set of parameters, the star radius first
increases with increasing the star mass, until a maximum
radius is reached. After that, the radius decreases until the
maximum star mass is arrived. (3) The maximum star mass
depends on parameters. It actually increases with increas-
ing C, while it decreases with increasing B0. Especially for

FIG. 7. The density behavior of Ω0 and its relative importance.

FIG. 8. The mass-radius relation of quark stars.
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the typical parameters C ¼ 2 and B0 ¼ ð135 MeVÞ4, the
maximum mass is about 2 times the solar mass, consistent
with the recent high-mass observations [69,70].
To understand the existence of a maximum star mass, we

show, in Fig. 9 for the parameter set A, the star mass as a
function of the central density, with the central pressure
also given on the right axis. One can easily find that the star
mass first increases with increasing the central density to a

critical density nmax. After this density, the star mass
decreases with increasing the central density, and the star
itself becomes mechanically unstable. The central pressure
is always an increasing function of the central density.
It approaches to zero if the quark star mass becomes zero.
Please note, the corresponding central density to zero
pressure is nonzero. Instead, it is a definite value corre-
sponding to the surface density of the quark star.
The density of a quark star is not uniformly distributed.

In Fig. 10, we plot the density profiles with different panels
for different parameters. For each parameter set, the upmost
curve corresponds to the star with the maximum mass,
r ¼ 0 corresponds to the central density. At the star surface,
the pressure is zero. This point corresponds to the minimum
energy per baryon in Fig. 4. Therefore, the surface density
of the quark star is not zero, i.e., the star has a sharp surface.
In Table II, we list some characteristic quantities of quark
stars for each parameter set, including the maximum star
mass to the solar massMmax=M⊙, the corresponding radius
RðMmaxÞ, the highest central density nmax, the surface
density n0, and the minimum energy per baryon E0=n0.
It should be noted that the observation of quark stars

having a sharp surface depends very much on the model
assumption. Especially when one does not have a color-
flavor locked phase throughout, the star might have a crust
of ordinary matter supported by electrons extending
beyond the quark surface, or the outer layers of the quark
star might fragment to strangelets, somewhat similar to a
normal neutron star crust. Also, for some parameters, e.g.,
the case C, the surface density is closer to the normal
nuclear saturation density, which might be an indication
of phase transition to nuclear matter. To understand
possible phase transition in a mixed star, it is necessary
to investigate the phase equilibrium condition in the phase
boundary [8,40].

VI. SUMMARY

The perturbative QCD is important to study strongly
interacting matter. However, its naive extension to

FIG. 10. Density profiles for different sets of parameters
indicated in the legends. The solid curve in each panel is for
the highest central density corresponding to the quark star with
maximum mass, while the horizontal represents the surface
density.

FIG. 9. The mass and central pressure of the quark star as
functions of the central density for the typical parameters
1=C ¼ 0.5 (or C ¼ 2) and B1=4

0 ¼ 135 MeV.

TABLE II. Characteristic quantities for the typical parameter
sets ðC−1; B1=4

0 =MeVÞ ¼ ð0.5; 135Þ, (0.4,140), and (0.8,125).
The second through sixth rows give, respectively, the maximum
mass Mmax, the radius corresponding to the maximum mass
RðMmaxÞ, the highest central density at the maximum mass nmax,
the surface density n0 and the corresponding energy per baryon
E0=n0.

ð1=C; B1=4
0 =MeVÞ (0.5,135) (0.4,140) (0.8,125)

Mmax=M⊙ 1.968 1.884 2.013
RðMmaxÞ [km] 11.2 10.6 12.0
nmax [fm−3] 0.941 1.034 0.8250
n0 [fm−3] 0.2177 0.2457 0.1683
E0=n0[MeV] 904.7 915.7 919.8
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comparatively lower density has serious thermodynamic
inconsistency problems due to the running of the QCD
coupling and/or quark masses. We have tried to extend it by
including an additional term in the thermodynamic poten-
tial density. The additional term is determined by the
fundamental differential equation of thermodynamics. It
takes an important role at comparatively lower density,
but ignorable at high density, playing the role of a
chemical-potential-dependent bag constant.
On application of the thermodynamically EPQ model,

we study the properties of SQM and structure of quark
stars. It is found that SQM still has the possibility of being
absolutely stable in the present model, i.e., the minimum
energy per baryon could be less than 930 MeV with zero
internal pressure. This leads to the maximummass of quark
stars as large as 2 times the solar mass. The quark stars in
the present model have several features, such as a sharp
surface, no lower bound for the radius, the maximum mass
of about 2 times the solar mass and a maximum radius of
about 11 kilometers, etc.
Naturally, there are several aspects not included in the

present investigations, e.g., the color superconductivity
[32,78,79], a strong external magnetic field [58,80–82],
etc. Furthermore, only zero temperature has been consid-
ered in the present paper. To investigate the properties of
hot quark matter, such as the quark gluon plasma produced
in high energy heavy ion collisions [83,84], the inclusion of
finite temperature is of crucial importance. Therefore, more
careful studies are necessary in the future.
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APPENDIX: MATCHING-INVARIANT BETA AND
GAMMA FUNCTIONS AND SOLUTIONS OF
THE RENORMALIZATION EQUATIONS

A matching-invariant beta function was previously
derived in Ref. [85]. The beta and gamma functions which
give matching-invariant running coupling and running
quark masses in QCD can be similarly obtained. In the
present context, the beta and gamma coefficients are
given by

βi ¼
Xminð1;iÞ

k¼1

βi;kNk
f ; γi ¼

Xi

k¼0

γi;kNk
f ; ðA1Þ

where the color matrix elements, βi;k and γi;k, are inde-
pendent of the number of flavors Nf , and for the number of
colors Nc ¼ 3, their values can be given, to the four-loop
level, as

½βi;k� ¼

2
6664

11=4 −1=6 0 0

51=8 −19=24 0 0

2857
128

− 4549
1152

79
1152

0

114.230 −21.5548 1.01146 23
1152

3
7775 ðA2Þ

and

½γi;k� ¼

2
6664

1 0 0 0

101=24 −5=36 0 0

1249=64 −1.30380 −31=324 0

98.9434 −3.64007 −0.78090 γ3;3

3
7775; ðA3Þ

where γ3;3 ¼ ζ3=36 − 197=5832 ≈ −0.00038868.
In order to have full thermodynamic consistency in the

present model, we need the exact solutions of the renorm-
alization equation (7) at a given loop level. For this purpose,
we can apply the approach of variable separation which
gives

d ln u2 ¼ dα
βðαÞ ≡

�
β
̗
ðαÞ þ β1

β0α
−

1

α2

�
dα
β0

; ðA4Þ

where the acute beta function is defined to be β
̗
ðαÞ ≡

β0=βðαÞ − β1=ðβ0αÞ þ 1=α2. Using the expression of the
beta function, one has

β
̗
ðαÞ ¼

PN−2
i¼0 ðβiþ2 −

β1
β0
βiþ1Þαi − βNαN−2PN−1

i¼0 βiα
i

: ðA5Þ

Integrating both sides of Eq. (A4) gives

ln
u2

Λ2
¼ 1

β0α
þ β1
β20

lnðβ0αÞ þ
1

β20
WN ðαÞ; ðA6Þ

where the function WN ðαÞ is given by WN ðαÞ ¼
β0

R
α
0 β

̗
ðxÞdx. For example, it is not difficult to give

W2ðαÞ ¼ −β1 ln
�
1þ β1

β0
α

�
; ðA7Þ
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W3ðαÞ ¼
2β0β2 − β21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β0β2 − β21

p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β0β2 − β21

p
β1 þ 2β0=α

−
β1
2
ln
�X2

i¼0

βi
β0

αi
�
: ðA8Þ

TheΛ in Eq. (A6) is a QCD scale for the running coupling.
In principle, it is an integration constant. The choice in
Eq. (A6) is to be consistent with the conventional series
expansion. For a chosen u, the correspondingα is obtained by
numerically solving the algebraic equation (A6). At the one-
loop level, the function WN ðαÞ becomes W1ðαÞ ¼
−β1 lnðβ0αÞ. In this case, an explicit solution can be easily
obtained, as given in the first equality of Eq. (9).
To obtain the strange quark mass, we divide Eq. (8) by

Eq. (7), giving

d lnms

dα
¼ γðαÞ

βðαÞ ≡
γ0
β0α

þ IN ðαÞ; ðA9Þ

where the function IN ðαÞ is defined by

IN ðαÞ ≡ γðαÞ
βðαÞ −

γ0
β0α

¼
PN−2

i¼0 ðγiþ1 −
γ0
β0
βiþ1ÞαiPN−1

i¼0 βiα
i

: ðA10Þ

Integrating Eq. (A9) then leads to

ms ¼ m̂sα
γ0=β0 exp

�Z
α

0

IN ðxÞdx
�
; ðA11Þ

where m̂s is a QCD mass scale of strange quarks.
The definite integration in Eq. (A11), i.e.,

R
α
0 IN ðxÞdx ≡

wN ðαÞ, can also be analytically carried out, e.g.,

w2ðαÞ ¼
�
γ1
β1

−
γ0
β0

�
ln

�
1þ β1

β0
α

�
; ðA12Þ

w3ðαÞ ¼
ðγ0β0 − 2 γ1

β1
þ γ2

β2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4β0β2=β21 − 1
p arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β0β2=β21 − 1

p
1þ 2β0=ðβ1αÞ

þ 1

2

�
γ2
β0

−
γ0
β0

�
ln

�X2
i¼0

βi
β0

αi
�
: ðA13Þ

Because I1ðαÞ ¼ 0, w1ðαÞ is also zero. Accordingly,
Eq. (A11) leads to the second equality in Eq. (9) at the
one-loop level.
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