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Motivated by the dark matter and the baryon asymmetry problems, we analyze a complex singlet
extension of the Standard Model with a Z2 symmetry (which provides a dark matter candidate). After a
detailed two-loop calculation of the renormalization group equations for the new scalar sector, we study the
radiative stability of the model up to a high energy scale (with the constraint that the 126 GeV Higgs boson
found at the LHC is in the spectrum) and find it requires the existence of a new scalar state mixing with
the Higgs with a mass larger than 140 GeV. This bound is not very sensitive to the cutoff scale as long as
the latter is larger than 1010 GeV. We then include all experimental and observational constraints/
measurements from collider data, from dark matter direct detection experiments, and from the Planck
satellite and in addition force stability at least up to the grand unified theory scale, to find that the lower
bound is raised to about 170 GeV, while the dark matter particle must be heavier than about 50 GeV.
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I. INTRODUCTION

The recent discovery of theHiggs boson at CERN’s Large
Hadron Collider (LHC) by the ATLAS [1] and CMS [2]
Collaborations and the measurement of some of its proper-
ties (with increasingly greater precision) have proved to be
quite demanding for the so-called beyond the Standard
Model (BSM)models. By the end of the 8 TeV run, it is clear
that no large deviations can occur in the Higgs couplings to
the remaining Standard Model (SM) particles relative to the
ones predicted for the SMHiggs boson. The LHC run 2 will
provide us with evenmore precise data and either will reveal
directly or indirectly the existence of new physics or will
further restrict the parameter space of BSM models.
Furthermore, models with a decoupling limit may just be
indistinguishable from the SM for the attained precision.
Nevertheless, some of the BSM models could still be very
similar to the SM while providing solutions to some of the
outstanding questions of particle physics. Such is the case of
the singlet extension of the scalar sector of the SM, which is
the minimal model for dark matter [3–18]. The model can
simultaneously accommodate electroweak baryogenesis by
allowing a strong first-order phase transition during the era
of Electroweak Symmetry Breaking (EWSB) [19–23], if the
singlet is complex.
A somewhat related question which is often addressed in

BSM models is that of the hierarchy between the Planck
scale, MPl ≃ 1019 GeV, and the electroweak symmetry
breaking scale (the Z boson mass scale MZ ≃ 91 GeV).

There are in fact numerous frameworks ranging through
supersymmetry [24], models with extra dimensions
[25,26], little Higgs models [27], just to name a few which
address such a problem, in which new scalar singlet fields
appear in the spectrum. The study of the physical effects of
coupling a complex scalar singlet to the SM may then be
viewed as a minimal model, for the sector of such frame-
works, which explains dark matter and the matter-
antimatter asymmetry in the Universe.
A more complete answer to some of the questions raised

above may in fact lie at a very high energy scale. A
relatively natural indication for what that scale could be
comes from grand unified theories (GUTs) in which, within
supersymmetric models, the (running) gauge couplings
unify at the GUT scale MGUT ∼ 1016 GeV [28–30]. This
suggests that the gauge structure of the SM may be a
remnant of some larger simple or semisimple symmetry
group (see [31] for a complete review). Typically, grand
unified models fix specific relations among masses and
couplings at the GUT scale; therefore, one expects that
electroweak scale physics carries some of that information,
which may be probed at the LHC [32]. Thus, a detailed
analysis of the renormalization group (RG) is required in
order to evolve the couplings of the theory from the high
scale down to the low scale. Some recent phenomenologi-
cal work in light of the recently discovered Higgs boson
and dark matter can be found in [33–37].
If the scale for new physics is indeed as large as the GUT

or the Planck scales (that is, orders of magnitude beyond
any current or planned collider experiment), we may have
to work with a minimal theory that remains as the relevant
description up to a high energy scale. In fact singlet fields
provide a very natural way to couple the SM to hidden
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sectors if we note that H†H (where H is the SM Higgs
doublet) is one of the (few) singlet operators in the SM
which are of dimension less than four (and hence prone to
coupling to hidden sector operators in a renormalizable
combination). This concept was introduced in [38] and is
known as the Higgs portal.
Whichever the low energy theory may be, it must be

consistent with all known experimental data as well as with
theoretical consistency principles. One such principle is
stability under the renormalization group evolution (RGE),
which will be a focus point in this article. This issue is
already posed in the SM and, with the precise measurement
of the Higgs boson mass mh ≃ 126 GeV, state of the art
calculations indicate that the SM is in a marginally unstable
(or metastable) region of parameter space [39–42]. In [39] it
was concluded that, if the electroweak vacuum is indeed
metastable, its lifetime could be long enough (around
10400 years) to highly suppress the probability of decay.
In this work we will focus solely on the scenario of strict
stability at two loops and will not consider the possibility of
a metastable vacuum.
In fact we will find that the complex singlet extension we

are considering, in addition to providing a dark matter
candidate and improving the baryon asymmetry problem,
can also improve the stability of the SM. This is related to
the presence of a heavier visible scalar state in the spectrum
whose mass (we conclude) must be larger than 140 GeV, a
lower bound which is almost independent of the new
physics scale (as long as it is larger than 1010 GeV).
Finally, although minimal, this complex singlet exten-

sion provides a rich collider phenomenology leading to
some distinctive signatures that can be tested at the LHC
[43–55]. In this article we combine all bounds from collider
experiments, precision electroweak physics, dark matter
direct detection experiments, and cosmological inference of
the relic density, with all theoretical constraints on the
model including our RGE evolution analysis. We perform
dense parameter space scans to identify the regions of the
physical parameters of the model (such as masses and
couplings) which are still allowed and will be tested at the
next run of the LHC. In particular we identify regions
corresponding to scenarios that could provide complete
models (explaining dark matter and the baryon asymmetry)
up to a high scale (such as the GUT or Planck scale). One
important point to stress is that whenever possible we
present our results in terms of observables that could in
principle be measured at colliders, such as the scalar masses
and their couplings to SM particles. Only when it is
necessary to trace back features of the results that are
determined by theoretical conditions, such as vacuum
stability, will we use the parameters of the scalar potential.
The structure of the paper is the following. In Sec. II we

describe the model that we study reviewing its main
properties and setting notation. In Sec. III we present a
detailed analysis of the effective potential where we start by

reviewing the procedure to extract the beta functions. The
remainder of the section is divided into three parts: (i) in
Sec. III Awe provide a proof of some general properties of
the effective potential for a scalar theory at any order; (ii) in
Sec. III B general expressions (which are basis indepen-
dent) for the beta functions of the scalar sector contribu-
tions are derived up to two-loop order for any theory based
on the results in [56]; and (iii) in Sec. III C we define an
error measure to assess the differences between the one-
loop and the two-loop approximations. In Sec. IV we
describe the results of our parameter space scans, first
including only theoretical constraints combined with the
RGE evolution (Sec. IV B) and finally adding the most up
to date phenomenological constraints in Sec. IV C (for
which we have developed a new model class in the
SCANNERS program [57,58]). In the conclusions, Sec. V,
we summarize our findings. Many of the technical details,
in particular the two-loop beta functions for the complex
singlet model, are left to the appendixes.

II. THE MODEL

Wewill study an extension of the scalar sector of the SM,
obtained by adding a complex singlet field S ¼ Sþ iA,
which contains a residual Z2 symmetry A → −A after the
explicit breaking of a global Uð1Þ symmetry by soft terms
(in parentheses),

V ¼ m2

2
H†H þ λ

4
ðH†HÞ2 þ δ2

2
H†HjSj2 þ b2

2
jSj2

þ d2
4
jSj4 þ

�
b1
4
S2 þ a1Sþ c:c:

�
: ð1Þ

This model is equivalent to adding two real singlet fields to
the SM field content with appropriate symmetries imposed
as above. One should note that for this model (with the
exact Z2 symmetry) the soft breaking parameters must be
real, i.e., a1 ∈ R and b1 ∈ R [57]. Note that this symmetry
can be viewed as a CP symmetry defined by S → S�. As
long as this symmetry remains unbroken we end up with
two CP-even and one CP-odd (the dark matter) states
under this symmetry. However, when the symmetry is
spontaneously broken, we end up with three scalar states
with the SM-Higgs CP numbers and no CP violation in the
scalar sector (for a detailed discussion on how to construct
basis-invariant quantities that signal CP violation see
[59,60]). It is, however, possible to generate spontaneous
CP violation from the singlet’s phase by adding new
particles to the SM. Some of such simple scenarios were
discussed in [61,62].
This model was motivated as a way to provide a dark

matter candidate while also contributing to a successful
baryon asymmetry generation in the early Universe (see
Sec. I). However, it also allows for a broken phase where all
three neutral scalars mix. We should stress that the potential
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is exactly the same in the two cases and the only difference
between the two scenarios is solely a consequence of
distinct patterns of symmetry breaking. Furthermore, this
model is representative of the most general physical
situation one can obtain with the addition of a complex
singlet.1 Phenomenological studies at the LHC performed
for these two benchmark scenarios are indeed generic in
terms (i) of the possible final states to search for exper-
imentally, (ii) of mass hierarchies (the scalar masses can
both be either larger or smaller than the SM-like Higgs),
and (iii) of invisible decays.
The main features of the model become clearer by

expanding the fields around the two types of physical
minima that yield the correct pattern of electroweak
symmetry breaking,

H ¼ 1ffiffiffi
2

p
�

Gþ

vþ hþ iG0

�
;

S ¼ 1ffiffiffi
2

p ½vS þ sþ iðvA þ aÞ�; ð2Þ

where v ¼ 246 GeV is the SM Higgs vacuum expectation
value (VEV), and vS; vA correspond, respectively, to the
real and imaginary parts of the complex field VEV.
Organizing the field fluctuations as hi ¼ fh; s; ag and
the mass eigenstates as Hj (j ¼ 1; 2; 3), we define the
mixing matrix through2

Hj ¼ Rjihi; ð3Þ

where Rij is in general a 3 × 3 orthogonal matrix. Imposing
a Z2 symmetry on the A component of the singlet, the
minimum conditions lead to two distinct scenarios, namely,

(i) vA ¼ 0, in which case there is mixing between the
doublet fluctuation h and the singlet real fluctuation
s, while the singlet imaginary component A ¼ a
becomes a dark matter candidate. We call this phase
the dark matter phase.

(ii) vS ≠ 0 and vA ≠ 0; that is, both singlet VEVs are
nonzero, and mixing among all neutral field fluctu-
ations occurs. We call this phase the broken phase.

In a previous work [57] we have shown that, interestingly,
the theoretical and pre-LHC constraints (including the dark
matter ones), together with the LHC results, allow us to
distinguish between the two phases in some regions of the
parameter space.
One should note that simpler models can be obtained by

imposing more symmetry on this same potential. An exact
global Uð1Þ symmetry on the complex singlet implies

a1 ¼ b1 ¼ 0. Depending on the pattern of symmetry
breaking this model can have either one or two dark matter
candidates. The same number of dark matter candidates is
obtained by imposing a separate Z2 symmetry for S and A.
This implies that the soft breaking parameters are a1 ¼ 0
and b1 ∈ R. A detailed discussion of the variants obtained
from the most general potential for this complex singlet
model was presented in [57].
Returning to the model under analysis, the mass eigen-

states fields Hi always couple to the SM particles through
the combination

h ¼ R−1
hj Hj ¼ RjhHj ðj ¼ 1; 2; 3Þ ð4Þ

because only the Higgs doublet couples to fermions and
gauge bosons. Thus, for any SM coupling λðpÞhSM

to a given
particle p, it is easy to conclude that the corresponding
coupling in the singlet model for the scalar Hj is given by

λðpÞj ¼ Rjhλ
ðpÞ
hSM

; ð5Þ

i.e., its value relative to the SM coupling is simply a mixing
matrix element which is independent of the SM particle to
which the coupling corresponds. So it is convenient to
define a (global) relative coupling to SM particles for each
scalar Hj, κj, which is normalized to the respective
SM couplings and is independent (in this model) of the
(nonscalar) SM particles,

κj ≡
λðpÞHj

λðpÞhSM

¼ Rjh: ð6Þ

In the dark matter phase Rjh ¼ ðR1h; R2h; 0Þ (j ¼ 3 corre-
sponds to the dark matter candidate) while in the broken
phase all three Rjh are in principle nonzero. In order to
make it simpler to identify the couplings and masses let us
note the following. In the dark matter phase there is only
one independent reduced coupling κH126

which is the SM-
like Higgs coupling to all SM particles. The new non–dark
matter scalar has coupling κHnew

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðκH126

Þ2
q

to SM

particles, and its mass is denoted by mHnew
. Regarding the

broken phase we use the following notation for the
couplings: κH126

, with the same meaning as before, κHlight

and κHheavy
for the two extra (non-SM) scalars, where the

only restriction ismHlight
< mHheavy

while no order relation is
imposed relative to the mass of the SM-like Higgs. Note
that (without loss of generality) we take the modulus of κj
when we present our results, since a sign flip can always be
absorbed in the scalar eigenstate fluctuation without affect-
ing the widths of the scalars or the relevant cross sections—
see Sec. IV C 2.

1Except for the model also derived from (1) where one obtains
two dark matter candidates.

2Here we use a convention for the definition of the mixing
matrix according to the SCANNERS code [58] which wewill use in
our analysis.
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III. THE EFFECTIVE POTENTIAL
AND THE RGES

The RGEs describing the evolution of the scalar cou-
plings for this theory have been determined at one-loop
order in [14] from the Coleman-Weinberg potential. The
dark matter phase was then analyzed for some fixed choice
of parameters (in our study we will perform a full parameter
space scan). In this section we provide a two-loop order
calculation of the effective potential for a scalar theory
using some generic results known in the literature. We then
extract the two-loop RGEs which will allow us (combined
with the SM-like contributions to be discussed below) to
perform a detailed analysis of the vacuum stability con-
straints combined with the latest constraints from the LHC
data. The two-loop analysis is important because it pro-
vides more reliable results and it can be used to assess the
error of the one-loop approximation (for which we develop
a quantitative measure).
The radiative corrections to the couplings, fLg, of a

given quantum field theory are described by their evolution
equations. The latter are functions of the energy scale of the
process, μ, the renormalization scale. Such evolution
equations, the RGEs, are obtained by requiring renormal-
ization scale invariance of all simply connected n-point
functions which are generated by the effective action Γ½ϕi�.
In this section we focus on the scalar sector to illustrate the
procedure to obtain the RGEs. This is because the new
interactions in this model are only introduced through the
scalar potential, so the main novel ingredients of the RGEs
are in the scalar sector. All other contributions are similar,
in form, to the ones calculated in the SM. Our analysis will
allow us to obtain all of the (purely) scalar contributions
which we have checked in special limits against the SM
[63,64], the two Higgs doublet model (2HDM) [65] and
UðNÞ symmetric complex singlet models [66]. In
Appendix A 2 we present the full RGEs with all fermion
and gauge boson contributions at two loops which were
checked by implementing the model (with the linear term
removed) in the SARAH package [67].3

We denote the set of (real) scalar fields used to expand
the potential by Φi. The scale invariance conditions of the
n-point functions are known as the Callan-Symanzyk
equations. Let us define t≡ log μ. It can be shown [68]
that, for a translation invariant vacuum, the scale invariance
of all n-point functions is equivalent to the scale invariance
of the effective potential defined as the effective action per
unit volume (Vð4Þ is the 4-volume under which the effective
action is integrated)

Veff ≡ Γ½Φi�
Vð4Þ : ð7Þ

Then, the scale invariance condition reads

dVeff

dt
¼

� ∂
∂tþ

X
L

βL
∂
∂L −

X
i

γiΦi
∂
∂Φi

�
Veff ¼ 0; ð8Þ

where, for a given coupling L and field value component
Φi, we define the beta function and anomalous dimension,
respectively,

βL ≡ dL
dt

; γi ≡ −
d logΦi

dt
: ð9Þ

This condition must hold for any field value configuration.
If we expand the scale invariance condition, Eq. (8), as a
Taylor series in the fields, then each coefficient in the
expansion must vanish on its own. The vanishing of each
coefficient corresponds precisely to imposing the scale
invariance of all n-point functions.
The effective potential and the RGEs have been derived in

a number of forms in the literature for generic field theories.
Detailed derivations based on the direct calculation of n-
point functions have been performed to obtain generic
expressions [69–72]. However, often, such derivations
shadow part of the underlying simplicity of the procedure,
especially in the purely scalar case. A somewhat simpler
procedure consists of using the effective potential (which in
fact encodes all n-point functions). The effective potential
calculation for generic field theories at two-loop order was
reviewed by Martin in [56]. Typically the diagrammatic
calculation proceeds in the eigenbasis where all field
fluctuations are the mass eigenstates of the theory. The final
form of the effective potential, in general, is presented in a
form which depends on the mixing matrices at the vacuum
state. However, the RGEs are independent of the vacuum
state. Focusing on a pure scalar theory, here we start by
providing a general proof showing that it is always possible
to write the effective potential (at any order) in terms of the
original couplings of the theory independently of the vacuum
choice, as expected. We then use the results summarized in
[56] for the two-loop scalar contributions to the effective
potential in order to write an explicit (basis independent)
form of the effective potential. Finally we apply the scale
invariance constraint to obtain general expressions for the
RGEs and observe the generic cancellation of logarithmic
terms which is an important consistency check.

A. Basis independent form

In what follows we will use the potential of the theory in
three different forms. First we use the parametrization of
[56] for a generic scalar potential in an arbitrary basis
which we call the L-basis,

V ¼ Lþ LiΦi þ
1

2!
LijΦiΦj þ

1

3!
LijkΦiΦjΦk

þ 1

4!
LijklΦiΦjΦkΦl; ð10Þ

3The SARAH package does not deal with the linear term of this
model. Our analysis based on the effective potential provides the
RGE of such a term.
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where the coupling constants fL;Li; Lij; Lijk; Lijklg are
completely symmetric under interchange of the indices
which run over the N real scalar degrees of freedom, Φi.
The second form of the potential is obtained by expanding
the fields around the classical (vacuum) configuration
through the shift

ΦiðxÞ ¼ vi þ ϕiðxÞ: ð11Þ

The vacuum expectation values are denoted as vi, whereas
the quantum fluctuations around the classical field con-
figuration are denoted as ϕi. The second form of the
potential is then

V ¼ Vð0Þ þ 1

2!
Λijϕiϕj þ

1

3!
Λijkϕiϕjϕk þ

1

4!
Λijklϕiϕjϕkϕl:

ð12Þ

The relation between the L-couplings in the first basis and
the Λ-couplings in this basis is provided in Appendix A,
Eq. (A1). Note that, in this basis (which we name Λ-basis),
the minimum conditions impose that the coefficients of the
linear terms vanish.
The third basis (named λ-basis) is used to make contact

with the general results described in [56]. It is obtained
through a rotation,Mj

i ⊂ SOðNÞ, on the space of quantum
field fluctuations such that it diagonalizes the quadratic part
of the potential to obtain mass eigenstates,

ϕj ¼ Mj
iRi: ð13Þ

In this basis, the scalar potential is given by

V ¼ Vð0Þ þ 1

2!
ðmiÞ2R2

i þ
1

3!
λijkRiRjRk þ

1

4!
λijklRiRjRkRl:

ð14Þ

The relation between the Λ-couplings of the second form
and the λ-couplings of this form is again provided in
Appendix A, Eq. (A2). It is easy to see that the relation
between the two parametrizations is obtained simply by
applying a rotation matrix to each of the indices of the
coupling.
In the perturbative regime, the RGEs are obtained by

imposing the scale invariance condition on the loop
expansion of the effective potential Veff . The loop
expansion can be thought of as a power series in the
Planck constant. Defining the perturbative parameter,
ε≡ ℏ=ð16π2Þ, the general loop expansion is represented by

Veff ¼
Xþ∞

n¼0

εnVðnÞðLðtÞ; viðtÞ; tÞ: ð15Þ

The perturbative formulation of quantum field theory is
naturally performed in terms of field fluctuations which are

mass eigenstates [as it is in the case in the λ-basis, Eq. (14)].
While this procedure simplifies the diagrammatic calcu-
lations, the final form for the effective potential is explicitly
dependent on the mixing matrices Mj

i. We now provide a
proof which shows that it is always possible to write the
n-loop effective potential without referring to a particular
basis, hence without any explicit dependence on the mixing
matrices.
The general loop expansion of the effective potential is a

sum of one-particle irreducible vacuum diagrams (i.e., with
no external lines). This statement immediately imposes a
constraint relating the number of propagator lines PD in the
diagram (the subscript D labels the diagram), and the
number of vertices, VD;k, with k external lines. Noting that
each propagator line leaving a vertex must enter another
vertex we have that

2PD ¼
X
k

kVD;k; ð16Þ

i.e., if we count the number of propagators for each vertex
and sum them all, we obtain twice the number of propa-
gator lines in the diagram. Therefore, in the physical
λ-eigenbasis, we conclude that the general n-loop contri-
bution to the effective potential must be a scalar with the
following form:

VðnÞ ¼
XNðnÞ

D

D¼1

ðλV1
� � � λVD

Þj1;…;jPD ;j1;…;jPD

× IðnÞD ðm2
j1
;…; m2

jpD
; μ2Þ; ð17Þ

where IðnÞD represents the loop integral for the diagram and
λV1

� � � λVD
represents the product of all vertex couplings in

the diagram. Note that the exact assignment of indices to
each vertex is not essential to the argument. The only
important points are that (i) to each propagator line in the
diagram corresponds a mass m2

j , and (ii) there are twice
the number of free indices in the vertices compared with the
number of masses (or equivalently propagator lines)—see
Eqs. (16) and (17). Finally, observe that we have included a
sum overD, that is, over the numberNðnÞ

D of n-loop vacuum
diagrams. Here we continue to use the Einstein convention
for the sum over scalar field (latin) indices.4

To rotate back to the Λ-basis (which does not depend on
the mixing matrices) we need to observe two facts:
(1) The loop functions IðnÞD are typically analytic in the

masses. Thus one can Taylor expand them around
m2

j ¼ μ2 to end up with a sum of monomials with

4There is a slight ambiguity in the repeated up-type indices in
Eq. (17) which are not summed over. This is a remnant of
working in the diagonal basis which disappears once we rotate
back to a generic basis.
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products of m2
j − μ2 (each multiplying the vertex

product prefactor).
(2) Each mass squared factor is contracted exactly with

two vertex indices which are set to be equal.
Thus, if we use the property that the masses, m2

j , are
obtained by applying two rotation matrices to Λij, we
obtain exactly the necessary number of rotation matrices to
rotate back all λ-vertices to Λ-vertices. In Appendix A we
detail some of the intermediate steps leading to the general
result

VðnÞ ¼
XNðnÞ

D

D¼1

ðΛ1 � � �ΛVD
Þm1;…;mPD

;mPDþ1;…;m2PD

× ½IðnÞD ðΛij; μ2Þ�m1;…;m2PD

≡ Λðn;DÞ · IðnÞD ðΛð2Þ; μ2Þ; ð18Þ

where the IðnÞD are the matrix versions of the loop integrals
(see Appendix A), and Λð2Þ is the matrix form of Λij. In the
last line we have introduced a condensed notation where
the sum over diagrams is operated by the Einstein con-
vention (through the repetition of D) and the contraction of
the field indices in the loop function IðnÞD with the field
indices in the vertex product Λðn;DÞ is represented by the dot
· operator.
This simple argument shows that it is always possible to

write the effective potential, at any loop order, in an
invariant way, in the same spirit of the trace form in which
the one-loop Coleman-Weinberg potential is usually pre-
sented. In the next section we make this discussion concrete
by writing the two-loop effective potential in this form.

B. Two-loop effective potential and RGEs

In this section we present the basis independent form
of the two-loop effective potential, renormalized in the
minimal-subtraction MS scheme. At two-loop order the
expansion, Eq. (15), becomes

Veff ¼ Vð0Þ þ εVð1Þ þ ε2Vð2Þ þOðε3Þ: ð19Þ

Here Vð0Þ is the tree-level scalar potential evaluated at the
minimum [which in the generic L-basis is given by
Eq. (A1)] and Vð1Þ is the Coleman-Weinberg potential.
The latter is often written in the literature in the form (18).
As for the two-loop term, Vð2Þ, the one-particle irreducible
diagrams that contribute involve only cubic and quartic
vertices. Therefore, in a pure scalar theory, the two-loop
correction for the effective potential is the sum of a cubic
Vð2Þ
sss with a quartic Vð2Þ

ssss contribution, i.e.,

Vð2Þ ¼ Vð2Þ
sss þ Vð2Þ

ssss; ð20Þ

which were calculated in [56] in the λ-basis. In
Appendix A 1 we provide a summary of the one- and
two-loop contributions. Using the procedure leading to
Eq. (18), we rewrite such contributions in the L-basis,
which, in a matrix condensed notation, take the simple form

Vð1Þ ¼ 1

2
½Λð2Þ2�ij

�
1

2
logðΛð2ÞÞ − t −

3

4

�
ij
; ð21Þ

Vð2Þ
sss ¼ t

2
Λi

mnΛjmn½Λð2Þðtþ 2 − logΛð2ÞÞ�ij þ tindependent;

ð22Þ

Vð2Þ
ssss ¼ t

2
ΛijklΛkl½Λð2Þðtþ 1 − logΛð2ÞÞ�ij þ tindependent;

ð23Þ

where we have omitted the t-independent part of the two-
loop contributions (since it only enters the derivation of the
RGEs at three-loop order) and we have used the matrix log
(as defined by the Taylor series over matrices).
We are now in the position to derive the generic two-loop

scalar beta functions. In Appendix A 2 we summarize the
procedure to obtain them. Similar to the effective potential
they are expanded in powers of ε, so we denote the n-loop
contributions by

fβðnÞ; βðnÞi; βðnÞij; βðnÞijk; βðnÞijkl; γðnÞig; ð24Þ

respectively, for the beta functions of the vacuum energy
(L); the linear (Li), quadratic (Lij), cubic (Lijk), and quartic
couplings (Lijkl); and the anomalous dimension of the field
Φi. The final results are more conveniently written using
the condensed notation

βðnÞi1;…;ip ¼ Li1;…;ip
X
k

γðnÞik þ δðnÞði1;…;ipÞ; ð25Þ

where ði1;…; ipÞ denotes symmetrization of the indices in
the δðnÞ. The one- and two-loop δðnÞ are then

δð1Þ ¼ 1

2
LabLab;

δð1Þi ¼ LabLab
i;

δð1Þij ¼ LabLab
ij þ LabiLab

j;

δð1Þijk ¼ Lab
ijLabk þ 2Lab

ikLabj;

δð1Þijkl ¼ LabijLab
kl þ 2LabikLab

jl; ð26Þ

and
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δð2Þ ¼ 1

2
Labð2Labγð1Þa − LcdaLcd

bÞ;

δð2Þi ¼ 2LabLabiγð1Þa − LabLcdaiLcd
b −

1

2
Lab

iLcdaLcd
b;

δð2Þij ¼ 2ðLabLabij þ Lab
iLabjÞγð1Þa − LabLcdaiLcd

bj − 2Lab
iLcd

ajLcdb −
1

2
Lab

ijLcdaLcd
b;

δð2Þijk ¼ 2ðLab
iLabjk þ Lab

jLabik þ Lab
kLabijÞγð1Þa − 3Lcd

akðLab
iLcdbj þ Lab

ijLcdbÞ;
δð2Þijkl ¼ 2ðLab

ijLabkl þ Lab
ijLabjl þ Lab

ijLabjkÞγð1Þa − 6Lab
ijLcdakLcd

bl: ð27Þ

Using these results we have obtained all two-loop scalar
contributions to the RGEs of the complex singlet model,
Eq. (1). In Appendix B we present the full two-loop RGEs
for this model also with the contributions from the other
SM particles fully included.

C. A measure of the one- to two-loop truncation error

Since the RGEs are computed through a truncation of a
perturbative series, it is useful to define a measure of the
error of the approximation by comparing the one-loop with
the two-loop approximation. To define such a measure let
us first define a (functional) norm of a given real function
fðtÞ defined on an interval t ∈ ½t0; t0 þ ΔT� by

N½f�≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

t0þΔT

t0

dt
ΔT

fðtÞ2
s

: ð28Þ

Then we define the relative distance between a curve
fðtÞ and a curve gðtÞ with respect to a scale function
sðtÞ by

δ½f; g; s�≡ N½f − g�
N½s� ; ð29Þ

which for smooth functions is positive definite and non-
singular [if sðtÞ is not identically zero everywhere]. Let us
consider now a given coupling LðtÞwith mass dimension d.
Consider the one-loop approximation Lð1ÞðtÞ and the two-
loop approximation Lð2ÞðtÞ. We define its relative error as
the relative distance between the curves Lð1ÞðtÞ and Lð2ÞðtÞ
with an appropriate scale as follows:

δL12 ≡

8>><
>>:

�
N½Lð1Þ−Lð2Þ�

N½Lð2Þ�

�1
d; N½Lð2Þ�1d

MZ
> ϵ

ðN½Lð1Þ−Lð2Þ�Þ1d
MZ

; N½Lð2Þ�1d
MZ

< ϵ

; ð30Þ

whereMZ is the Z boson mass (i.e., the typical electroweak
mass scale at which the couplings are set) and ϵ ¼ 10−2 is a
small constant. The latter is introduced to safeguard against
numerical errors in couplings which are very close to zero
so the differences would be due to round-off errors rather
than a real difference between the one- and two-loop

approximations. In the case d ¼ 0 we do not have to
divide by any mass scale so we use

δL12 ≡
(

N½Lð1Þ−Lð2Þ�
N½Lð2Þ� ; N½Lð2Þ� > ϵ

N½Lð1Þ − Lð2Þ�; N½Lð2Þ� < ϵ
: ð31Þ

Finally, we define a global quality factor to evaluate the
error of the one-loop approximation, Δ12, to be the largest
of all computed relative distances

Δ12 ¼ max
L

δL12: ð32Þ

This error measure should be interpreted with care. First
because it corresponds to a difference between the one- and
two-loop approximations, so it assesses the error of the one-
loop approximation and the importance of the two-loop
approximation.5 Second (see discussion in Sec. IV B) the
global error will indicate that the two-loop approximation is
important, but the individual errors, δL12, will be small for
the couplings which determine the interesting features of
the results. Finally we should note that we use the full two-
loop results in our analysis.

IV. RESULTS OF THE PARAMETER
SPACE SCANS

In this section we present a detailed analysis of the
allowed parameter space of the complex singlet model. We
start by presenting in the next section (Sec. IV B) a
theoretical study of the effect of the RGE evolution of
the couplings, where we consider as initial conditions at the
Z mass scale:

(i) that the minimum is global and provides the right
pattern of electroweak symmetry breaking;

(ii) that the vacuum is stable (the potential is bounded
from below);

5To assess the error of the two-loop approximation a three-loop
calculation would be required. Nevertheless one expects that
the two-loop approximation is a substantial improvement of the
one-loop if the perturbative expansion is to hold.

TWO-LOOP STABILITY OF A COMPLEX SINGLET … PHYSICAL REVIEW D 92, 025024 (2015)

025024-7



λ > 0 ∧ d2 > 0 ∧ δ2 > −
ffiffiffiffiffiffiffi
λd2

p
; ð33Þ

(iii) that perturbative6 unitarity holds

jλj ≤ 16π ∧ jd2j ≤ 16π ∧ jδ2j ≤ 16π

∧
					 32 λþ d2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

2
λþ d2

�
2

þ d22

s 					 ≤ 16π:

ð34Þ

Two distinct studies are performed, one for the dark matter
phase and one for the broken phase. We will then move on,
in Sec. IV C, to a complete phenomenological analysis
where we will add, to these electroweak scale conditions,
all available experimental constraints from dark matter
experiments and from collider experiments (to be described
in detail later).

A. Low scale input

In this study, we will be interested in assessing the
importance of the two-loop running compared with one-
loop running when drawing conclusions on parameter
bounds from global scans. In fact our strategy is not to
focus on very constrained or particularly tuned scenarios
(which may lead to conclusions which are not generic) but
to visualize millions of scenarios in parameter space
projections to determine conditions on the physical param-
eters that are imposed by the combination of all the
phenomenological and theoretical constraints the model
is subject to.
For internal consistency, in the two-loop running, one

must provide one-loop input relations among the param-
eters of the theory and the physical parameters (such as
masses and couplings). In particular, it is well known that
top quark contributions are dominant relative to other SM-
like contributions in the one-loop relations between the
scalar masses/couplings relations, so we have made the
approximation of neglecting light fermion and gauge boson
contributions. In Appendix C we analyze the effect of
correcting the initial data, used in the RGE running, with
such one-loop relations. There we show that such correc-
tions to the initial data have a small effect in the shape of the
regions we obtain, so they do not change our conclusions
from the perspective of a global scan (see Sec. IV B and
Appendix C).
We set all our input at the Z-boson mass scale (μ ¼ MZ).

In particular, we have extracted the SM top Yukawa
coupling value at the Z-scale from the GAPP code by
Erler [73] which performs fits to electroweak precision

data. We have set the code to the current best fit point to all
the latest electroweak data.
Unless stated otherwise, the scans are performed

according to the ranges defined in Table I. The SM
Higgs mass is varied between 124.7 and 127.1 GeV
while the SM VEV is fixed at 246 GeV. The ranges for
the VEVs both in the broken phase (vA; vS ≠ 0) and in
the dark matter phase (vS ≠ 0 and vA ¼ 0) were chosen
to be in the interval between 0 and 1000 GeV.
Regarding the scalar masses, for the theoretical study
of the RGE effects, we used all new particle masses in
the range [0,1000] GeV. As for the phenomenological
study, the new visible scalar masses vary in the interval
between 12 and 1000 GeV, and the mass of the dark
matter candidate varies in the interval between 6 and
1000 GeV.7 Finally, in the dark matter phase, the a1
coupling is an input parameter, and its range has been
set in the ½−108; 0� GeV3 interval. Note that the fact that
a1 < 0 in the dark matter phase is a consequence of the
choice of vacuum combined with the (conventional)
choice of positive VEVs for the scan.
As previously explained in [57], we use the VEVs as

input parameters for numerical convenience in the scan.
This explores the linearity of the vacuum condition in
the couplings. Then, using the VEVs, the masses, and
the angles from the mixing matrix as independent
parameters, the vacuum conditions become a linear
system for the dependent couplings which can be solved
efficiently.

TABLE I. Range of parameters in the scans with and without
phenomenological constraints for the dark matter and broken
phases. In the dark matter phase, ms1 is the new visible scalar’s
mass andms2 is the mass of the dark matter candidate, whereas in
the broken phase both are visible. The parameter a1 is an input
parameter only in the dark matter phase.

Dark matter phase Broken phase

Scan parameter Min Max Min Max

mh (GeV) 124.7 127.1 124.7 127.1
ms1 (GeV)
–Theoretical 0 1000 0 1000
–Phenomenological 12 1000 12 1000
ms2 (GeV)
–Theoretical 0 1000 0 1000
–Phenomenological 6 1000 12 1000
vh (GeV) 246 246 246 246
vS (GeV) 0 1000 0 1000
vA (GeV) 0 0 0 1000
a1 (GeV3) −108 0 n/a

6A model that breaks perturbative unitarity is not necessarily
wrong. However, to deal with such a possibility is largely beyond
the scope of this work.

7In the phenomenological analysis we have a lower bound on
the masses due to the lack of data from colliders (mainly LEP)
and from dark matter searches (LUX).
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B. RGE running with no phenomenological constraints

In this section we study the effect of the renormalization
group running of couplings on the allowed parameter space
of the theory.We first perform a dedicated scan over the free
parameters of the theory at the low scale where we apply:
(i) the tree level perturbative unitarity test (which is inbuilt,
for any model, in the SCANNERS code—see also [57]),
(ii) the requirement that the electroweak minimum is the
global one, and (iii) the potential is bounded from below. For
each point which is accepted under these constraints we
perform an RGE running of all couplings assuming their
values are set at the electroweak scale, theZ bosonmass, i.e.,
μ ¼ MZ.We let the evolution proceed up to the Planck scale,
MPl ∼ 1019 GeV (if neither of the conditions discussed
below is violated), and keep information on the cutoff scale
(denoted henceforth the stopping scale) where one of the
following occurs for the running couplings:

(i) Violation of the boundedness from below condition,
Eq. (33). The quartic couplings reach values such
that the potential of the theory acquires runaway
directions for large field values.

(ii) Perturbative unitarity violation, i.e., any of the
conditions in Eq. (34) fail. Typically this is also
related with the appearance of a Landau pole in one
of the couplings. In practice we have checked that,
for all points in our scan, the poles only appear in the
quartic couplings so this condition automatically
prevents them.

The purpose of this separate study is to understandwhat cuts
are imposed by radiative effects at higher scales before
introducing the phenomenological constraints.
We found that, for all points in our scan, the only

couplings for which perturbative unitarity was violated
before the Planck scale were λ and d2. As for boundedness
from below, Eq. (33), all conditions except d2 > 0 were

violated in several points of the scan. In fact, we found that
the final d2, for all points in our scan, was always greater
than the initial one.

1. Dark matter phase

In Fig. 1 we start by highlighting the allowed parameter
space for the stopping scale as a function of the initial λ
coupling. The behavior of the stopping scale as a function
of λ will turn out to be crucial in explaining our results. We
also include the measure of the one-loop error in the color
scale for the λ coupling (δλ12, on the left) and for the global
error (Δ12, on the right). The figure contains a projection of
points where the stopping scale (vertical axis) is compared
with the initial condition for λ at the electroweak scale. We
see that there is only a narrow range of λ couplings,
between λ≃ 0.5 and λ≃ 1, for which the Planck scale is
reached with none of the stability/perturbative unitarity
conditions being violated.
Regarding the error measures displayed in the color

scale, the left panel shows that there are points everywhere
with a small one-loop truncation error for λ (i.e., δλ12). Only
points close to the boundaries, which correspond to points
where perturbative unitarity is violated (signaling that some
coupling is evolving to a Landau pole) have truncation
errors close to 50%. Note, however, that our results contain
full two-loop order corrections, whereas this error measure
is the difference between the one-loop and the two-loop
calculations. Thus we expect our result to have a smaller
error. Regarding the global one-loop error (Δ12 in the right
panel) it shows that there are always some couplings with
order one error which supports the importance of using the
two-loop approximation, especially if one wants to study
quantities involving the new scalar couplings which are
absent in the SM. Finally, one should note that we have
checked that the quartic couplings and the top Yukawa

FIG. 1 (color online). Relative one-loop to two-loop error: In the left panel we show a projection of the parameter space where, for
each point, we represent the scale at which the evolution stopped as a function of the initial condition for λ at the electroweak scale. The
color gradation corresponds to the one- to two-loop relative error parameter for λ, i.e., δλ12 as defined in Sec. III C. The right panel shows
the same projection, with the global error parameter Δ12 in the color scale. In both panels, points with the lowest error parameters are
overlaid on top of points with higher error parameters.
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coupling, which are the ones that determine if the stability/
perturbative unitarity conditions are violated, generically
have one-loop errors smaller than 10%. So we expect our
results to be robust against higher loop corrections.
Moving on to the discussion of physical quantities which

are in principle directly measurable, such as masses and
couplings (or equivalently, in this model, mixings), we first
note an important characteristic of our study: we present,
simultaneously, two possible scenarios within the dark
matter phase study. One where the new visible mixing
scalar has a mass smaller than the known SM-like Higgs
(we refer to this as the light scenario) and the other one
where the new scalar is heavier than the SM-like Higgs
(which we call the heavy scenario).
In Fig. 2 we present a projection on the ðmHnew

; λÞ plane
(left) and another projection, in the right panel, where λ is
replaced by the reduced SM-like Higgs coupling (κH126

) on
the vertical axis. The color gradation corresponds to the
stopping scale for each point (i.e., the maximum scale up to
which the theory remains stable for the given point). In the
dark matter phasemHnew

stands for the mass of the non-SM-
like non-DM particle (i.e., which mixes with the SM
Higgs). As discussed in Fig. 1 only values of λ between
≃0.5 and ≃1 remain valid up to the Planck scale. This
range is almost independent of the mass despite the clear
correlation in the boundary region of the left panel scan. In
the right panel we see that imposing stability conditions
up to the Planck scale imposes a relatively sharp lower
bound on the mass of the new scalar state at around
mHnew

≃ 140 GeV. Furthermore, this cutoff is quite sharp in
the sense that even if one requires a stopping scale as low as
∼107 GeV, we still get a bound of about 130 GeV.8

Furthermore the right panel shows that, in this model,

not only do we need a heavier scalar to stabilize the SM but
also that it has to mix with the SM Higgs. This is clear if we
recall that for the blue points at lower masses, there are
cases where the DM particle is much heavier. Thus the DM
candidate does not play an important role here. Also note
that for generic values of fixed κH126

(away from one), there
is in fact also an upper bound; i.e., the stability region
(yellow) is in an interval of masses between ∼140 GeV and
∼250 GeV, whereas as we move toward κH126

→ 1 (i.e., for
weaker mixing between the two non-DM states), both ends
of the interval move to larger values. This is consistent with
the claim that the dark matter candidate is not contributing
to the stabilization of the theory, since in the limit κH126

→ 1
all new scalar states are effectively dark. From now on we
refer to the yellow band of points in Fig. 2 as the stability
band. We will see in the broken phase that this band is also
important to explain some boundaries of the stability band
of each of the two mixing scalars.
The origin of this lower bound on the mass of the new

heavy scalar is in fact related to the local minimum
conditions combined with fixing the ≃126 GeV Higgs
mass within 3σ of the measured central value.
Considering the dark matter phase as an example, one
can check that the (linear) minimum conditions provide two
independent constraints. In addition we have another con-
dition that fixes the mass of one of the mixing states to be
mH126

, the mass of the observed Higgs. Using all such
conditions one finds that9

λ ¼ m2
Hnew

þm2
H126

v2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

Hnew
−m2

H126

v2

�2
−
�
vS
v
δ2

�
2

s
:

ð35Þ

FIG. 2 (color online). Dark matter phase: In the left panel we present a projection on the ðmHnew
; λÞ plane where the color gradation

corresponds to the stopping scale for each point. The right panel shows another projection with the SM-like Higgs coupling, κH126
, on the

vertical axis. In both panels, points with higher stopping scales are overlaid on top of points with lower stopping scales.

8Note that we have not yet combined this with the phenom-
enological constraints which tend to push this bound to higher
values since κH126

is typically closer to 1.

9Forcing the potential to be in a global minimum implies
vSvδ2 ¼ �2κH126

κHnew
ðm2

Hnew
−m2

H126
Þ, and therefore λ is always

real.
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In the limiting case of no mixing (vS → 0) we obtain λ ¼
2m2

Hnew
=v2 or λ ¼ 2m2

H126
=v2, which are precisely the two

boundary lines that we see in Fig. 2, left panel.10

Furthermore, an expression can also be obtained for the
mixing matrix element, or equivalently

κ2H126
¼ 1

2

2
641�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Hnew
−m2

H126
Þ2 − ðvvSδ2Þ2

q
m2

Hnew
−m2

H126

3
75: ð36Þ

One can identify the upper boundary of the stability band
of Fig. 2, right panel, with a solution with the minus sign.
Then noting that in the stability region m2

Hnew
−m2

H126
> 0,

we conclude that κ2H126
¼ 1 is possible only when

m2
Hnew

→ þ∞.11

Summarizing, the main conclusions we can draw from
Fig. 2 are

(i) Stability up to the Planck scale imposes a lower
bound on the mass of the new scalar state,
mHnew

≳ 140 GeV. The closer we move to the
SM-like limit, the wider the allowed range in the
stability band, but at the same time the lower bound
on the mass moves to larger values.

(ii) The light scenario only survives up to a scale of a
few TeV, in which case new physics would be
needed at relatively low energy scales.

In Fig. 3 we present a projection on the ðλ; d2Þ plane (left
panel) and another projection on the ðλ; δ2Þ plane (right
panel). The plots clearly show that stability up to the Planck

scale requires not only λ below 1 but also that both jδ2j≲ 1
and d2 ≲ 1. As we move away from these order 1 bounds,
we quickly reach a region where stability holds only up to a
few TeV.

2. Broken phase

We now move on to discuss the broken phase where the
RGE running has similar effects on the parameters. In fact,
given that the RGEs are independent of the type of
minimum, the only difference between the two scenarios
(for the purpose of the evolution) is that the allowed regions
for the initial data obtained at the low scale are different
(i.e., the type of minimum is different for each case).
Before discussing the results we should clarify the

notation and the interval of variation for the mass of each
particle. All particles have the same quantum numbers and
therefore they all mix. One of the scalars is the SM-like
Higgs boson detected at the LHC, with a mass of
≃126 GeV. The remaining two scalar masses are denoted
as mHlight

and mHheavy
such that mHlight

< mHheavy
. These

scalars masses can be both lighter, both heavier, or one
lighter and one heavier than the ≃126 GeV one.
In Fig. 4 we present a projection on the ðmHlight

; κH126
Þ

plane (left) and another one on the ðmHheavy
; κH126

Þ plane
(right). Again, the color gradation corresponds to the
stopping scale for each point. Similar to the dark matter
phase, we can find a lower bound, but only on the heavier
mixing scalar, at a mass of about mHheavy

≃ 140 GeV.
Furthermore we observe that, in fact, the left boundary
for the yellow region in the right panel is exactly the same
as the left boundary of the stability band of Fig. 2. On the
other hand, for the lighter scalar, the yellow region’s
boundary on the right corresponds precisely to the right
boundary of the stability band of Fig. 2. Thus we conclude
that also in this scenario, we need at least one scalar with
mass larger than ∼140 GeV to stabilize the theory up to the

FIG. 3 (color online). Dark matter phase: the left panel shows a projection on the ðλ; d2Þ plane where again the color gradation
corresponds to the stopping scale for each point. The right panel shows another projection on the ðλ; δ2Þ plane. The color gradation
corresponds to the stopping scale for each point. In both panels, points with higher stopping scales are overlaid on top of points with
lower stopping scales.

10One should note at this point that we have chosen to display
only the mass range up to 500 GeV because there is nothing
qualitatively different that we found for larger masses; i.e., all the
interesting physics can be observed in this range.

11We have also verified in our scans that vSδ2 ≠ 0 in the
stability band.
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Planck scale. Observe that a scenario where the mass of
Hlight is smaller than the SM-like Higgs mass can be stable
up to the Planck scale (as long as Hheavy is in the stability
band), which could be a phenomenologically interesting
scenario at the next run of the LHC.
One can also show that in the limit where one of the new

scalars (i ¼ Hlight or Hheavy) is very weakly coupled to the
remaining SM particles (Rih → 0) we recover Fig. 2 for the
other new scalar as expected. This property is quite
interesting for it means that there is a continuous limit
connecting to the DM phase. The closer Rih is to zero, the
more indistinguishable the two phases become. Whether
we may distinguish between an exact dark matter phase or a
quasidark limit of the broken scenario will depend on how
close to the vicinity of the dark phase limit the model is, and
it would require a detailed analysis.12

It is interesting to note that this limit is not possible in some
simple extensions of the SM such as the 2HDM. In fact, the
2HDM with an exact Z2 symmetry (one doublet is odd and
the other is evenunderZ2) also allows for a darkmatter phase
(known as the inert model [74,75]) and a spontaneously
broken phase. However, in that case the continuous limit
from the broken phase to the dark phase (i.e., by taking the
limit of vanishing VEV) is not allowed if perturbative
unitarity [76] constraints are imposed. Therefore only the
inert version contains a dark matter candidate.

C. Phenomenological constraints

In this section we present the results from our phenom-
enological scans. We have already described in detail the
theoretical constraints. We will now describe what we have
included as bounds coming from various experimental
sources. Part of our procedure has been described in detail
in a previouswork [57]whichwewill often refer to for details.

1. Electroweak precision observables

We start with the electroweak precision observables,
using the S; T;U variables [77,78]. In the singlet extension
of the SM the new contributions to the radiative corrections
of the W and Z bosons self-energies [respectively,
ΠWWðq2Þ and ΠZZðq2Þ] appear only through the states
which mix with the SM Higgs doublet fluctuation. The
general expressions are available, for example, in [47]. The
relative shift between the oblique observables calculated in
the BSM model and the reference SM, ΔOi ≡Oi−
OSM

i → ðΔS;ΔT;ΔUÞ, are required to be consistent with
the electroweak fit within a 95% C.L. ellipsoid of the best
fit point ΔOð0Þ

i , i.e.,

Δχ2 ≡X
ij

ðΔOi − ΔOð0Þ
i Þ½ðσ2Þ−1�ijðΔOj − ΔOð0Þ

j Þ

< 7.815: ð37Þ

The covariance matrix is defined using the correlation
matrix, ρij, and the standard deviation of each parameter,
σi, through the expression ½σ2�ij ≡ σiρijσj. In order to test
these observables we use the latest SM global fit from the
Gfitter Collaboration [79] with a reference Higgs mass
mh;ref ¼ 126 GeV and top mass mt;ref ¼ 173 GeV. The
values of the best fit point (i.e., the shift with respect to the
reference model at the origin) and the correlation matrix
are, respectively,

ΔSð0Þ ¼ 0.03� 0.10

ΔTð0Þ ¼ 0.05� 0.12

ΔUð0Þ ¼ 0.03� 0.10

;

ρij ¼

0
B@

1 0.891 −0.540
0.891 1 −0.803
−0.540 −0.803 1

1
CA: ð38Þ

FIG. 4 (color online). Broken phase: In the left panel we present a projection along the ðmHlight
; κH126

Þ plane while on the right panel we
show a projection along the ðmHheavy

; κH126
Þ plane. The color gradation corresponds to the stopping scale for each point. In both panels,

points with higher stopping scales are overlaid on top of points with lower stopping scales.

12In a previous work [57] we have discussed some scenarios
where the two phases could be distinguished experimentally.
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2. Collider bounds

The ranges we have chosen for the scalar masses in our
scans, Table I, are such that the spectrum contains a Higgs
boson of mass ≃126 GeV to explain the observed signals
at the LHC. Furthermore the LHC (and previous colliders
such as LEP and the Tevatron) also provides strong
experimental limits on new scalars. To apply all available
experimental constraints on the Higgs couplings and on
new scalars, we make use of SCANNERS’ external interfaces
with other codes. The 95% C.L. exclusion limits were
applied using HIGGSBOUNDS [80], and HIGGSSIGNALS [81]
was used to check for consistency with the observed Higgs
boson at the LHC (i.e., to obtain the probability for the fit of
the model point to all known signal data).
HIGGSBOUNDS/SIGNALS needs as input all branching

ratios (BR) and decay widths of the new scalar particles to
all possible final states, as well as cross-section ratios for all
possible production modes (i.e., normalized to the SM
cross section). This information is then used to compute
experimental quantities such as the signal rates

μi ¼
σNewðHiÞBrNewðHi → XSMÞ
σSMðhSMÞBrSMðhSM → XSMÞ

: ð39Þ

Here σNewðHiÞ and σSMðhSMÞ are, respectively, the Higgs
production cross sections for Hi and for a SM Higgs with
mass mHi

; BrNewðHi → XSMÞ is the Hi BR to SM particles
while BrSMðhSM → XSMÞ is the SM Higgs BR (again
evaluated at the mass mHi

).
As previously discussed in Sec. II, each scalar couples to

SM particles exactly as the SM Higgs with a suppressing
factor given by a mixing matrix element, Rih. Furthermore,
because there are new scalars involved, the BRs have to be
reweighted to account for new decay channels to new scalar
particles whenever they are kinematically allowed. In this
case the signal rates then become

μi ¼ R2
ih

R2
ihΓðhSM → XSMÞ

R2
ihΓðhSM → XSMÞ þ

P
ΓðHi → new scalarsÞ :

ð40Þ

The latter reduces to μi ¼ R2
ih, i.e., to the cross-section

ratio, whenever the given scalar is not allowed to decay to
other new scalars. Note that because the experimental
results are given in terms of rates, there is no need to
calculate the Higgs production cross sections.
The experimental tables in HIGGSBOUNDS only contain

(so far) searches for one scalar decaying to two identical
scalars. In our model this proceeds via Hi → HjHj,
corresponding to the partial width

ΓðHi → HjHjÞ ¼
g2ijj

32πmi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
j

m2
i

s
; ð41Þ

where gijj is the coupling between scalars i; j; j and mj is
the mass of the scalar state Hj (see also [57]).
Finally we must note that we have used HIGGSBOUNDS-

4.1.3, which includes data for both visible and invisible
decay searches at colliders, and HIGGSSIGNALS-1.2.0,
which contains all the LHC Higgs measurements to
date.

3. Dark matter constraints

(i) Relic density: For the dark matter phase, we used the
MICROMEGAS [82] software package to calculate the
relic densityΩAh2 for the dark matter particle, A. We
then reject points for which ΩAh2 is larger than the
upper 3σ band (Ωch2 þ 3σ) of the combination of
measurements from theWMAP and Planck satellites
[83,84],

Ωch2 ¼ 0.1199� 0.0027: ð42Þ

(ii) Direct detection–nucleon scattering cross section:
Another constraint to be applied to the DM phase
comes from limits obtained in experiments attempt-
ing to detect directly the dark candidate. Such
experiments place bounds on the spin-independent
scattering cross section of weakly interacting mas-
sive particles on nucleons. Using the procedure
described in [57], we compute the scattering cross
section for the dark scalar with MICROMEGAS

which is then reweighted by the factor13 ΩA=Ωc.
Finally, the point is rejected if this prediction is
larger than the upper bound set by the LUX2013
Collaboration [85].

D. Discussion

With all the previous theoretical and experimental
constraints taken into account we now move on to the
discussion of the parameter space that is still allowed for
each of the two phases of the model.

1. Dark matter phase

In this section we analyze the results for the dark matter
phase. We start by applying the collider bounds at 1, 2, and
3σ. In Fig. 5, left, we present a projection on the plane of
the new visible scalar mass versus its coupling, and on the
right the same but against the observed Higgs coupling. As
expected, close to the observed Higgs mass (≃126 GeV)
all values of the Higgs couplings are allowed. This is
because in this scenario the coupling is shared by the two
states such that their squares add up to one corresponding to
the SM Higgs coupling. This scenario was discussed as the

13This is such that it is taken into account that the dark
candidate cannot explain all observed relic density if smaller than
the Planck/WMAP measurements.
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twin peak Higgs in the context of the singlet model in
[86,87]. One would expect that there would be more
allowed points at 2 and 3σ. However, the electroweak
precision constraints shrink the allowed region to κH126

≳
0.8 for masses ≳250 GeV.
In Fig. 6 we show the accepted scenarios on the

ðmHnew
; κH126

Þ plane. In the left panel the color gradation
indicates the relic density of the new invisible particle. We
note that plenty of points saturate the experimental meas-
urement Ωch2 within the 3σ error band. Comparing it with
Fig. 5, we see that those points are densely populated in the
region where the new visible scalar and the observed Higgs
boson signal are consistent within 1σ with the LHC data.
Furthermore, if we insist in RG stability up to scales of the
order of the GUT scale (MGUT ∼ 1016 GeV), we find that a
significant subset of these model points overlap with the
yellow band in the right panel of Fig. 6.

This shows that if the mass of the new visible scalar is
larger than about ∼170 GeV, there is an island of complete
models (i.e., that explain fully Ωc—see Fig. 7) which are
also RG stable and consistent with experimental data (for
large mHnew

such an island shrinks to a line toward
decoupling). If one of such model points is realized in
nature, the coupling of the new visible scalar, to SM
particles, can then be as large as κHnew

∼ 0.4, which may be
observable at the 13=14 TeV LHC runs.14

In Fig. 7, left panel, we analyze the allowed parameter
space for the complete models on the ðmHNew

; mDMÞ plane.
These are defined as the points that have been accepted in
the scan within 3σ and with all limits imposed and that are

FIG. 6 (color online). Dark matter phase: Observed Higgs coupling, κH126
, as a function of the new visible scalar mass. In the left panel

the color gradation corresponds to the dark matter relic density, whereas on the right panel it represents the scale at which the evolution
has stopped. Points with higher values in the color scale are overlaid on top of points with lower values.

FIG. 5 (color online). Dark matter phase: We show projections of the new visible scalar mass (mHnew
) versus its coupling (κHnew

) on the
left and versus the observed Higgs coupling (κH126

) on the right. The bottom layer (grey) is the full scan of points allowed within 3σ. The
remaining layers (overlaid on top in the order 3σ; 2σ; 1σ) contain the cut that Hnew is not allowed to decay to a pair of dark matter
particles.

14A detailed analysis of the experimental reach to such
scenarios is, however, necessary to confirm if they can be
excluded at the LHC.
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stable at least up to the GUT scale, as well as for which the
relic density of the model saturates the Planck/WMAP
measurement within 3σ. One should note that the results do
not change much if the high scale is changed by a few
orders of magnitude. Thus, for models where the UV
completion appears at an intermediate symmetry breaking
scale (such as the seesaw [88] scale 1011–1016 GeV) the
results are qualitatively the same.
The main features of the result are as follows. There is a

lower bound around mHnew
≃ 170 GeV which results from

the combination of all imposed constraints (see Fig. 7, left).
There is also a lower bound on the dark matter particle mass
just below mDM ≃ 1

2
mH126

GeV, and an excluded wedge
around mDM ¼ 1

2
mHnew

. These correspond to regions where
the annihilation channels AA → Hi (to visible Higgses) are
very efficient in reducing the relic density so it becomes
difficult to saturate the measured Ωc. These two lines can
also be observed in the right panel where the (reweighted)
direct detection cross section is represented in the color
scale and where completeness was not imposed forΩc. The
two black lines correspond precisely to the annihilation
channels above, since the weight factor (ΩA=Ωc) drops
abruptly. In this panel, the excluded region below mDM ≃
50 and away from mDM ¼ 1

2
mHnew

is due to the strongest
exclusion power from the LUX data for masses in this
range. We again have opted for showing the plots with the
mass range only up to 500 GeV to better capture the details
of the low mass region and also because the extended mass
range is an obvious continuation of regions shown in Fig. 7.

2. Broken phase

In this scenario we need three mixing matrix elements
(R1h, R2h, and R3h) to describe all scalar couplings to the
SM particles. Since R2

1h þ R2
2h þ R2

3h ¼ 1, only two of
them are independent. As previously explained, our scan
boxes are such that one of the scalars has a mass within the

experimental band for the SM-like Higgs while the remain-
ing two can be heavier, lighter, or degenerate with the SM-
like one. Therefore we will be analyzing several scenarios
simultaneously: (i) scenarios with up to three degenerate
scalar states, (ii) scenarios with both new scalars heavier or
both lighter than the SM-like Higgs, and finally, (iii) sce-
narios with one new scalar heavier than the SM-like Higgs
and the other one lighter. Observe that while in the dark
matter phase κH126

fixes all non-DM scalar couplings to the
SM particles, in this phase we need two of the reduced
couplings, κj, to determine the third one.
In Fig. 8 we present the allowed parameter space after

including all phenomenological bounds. The top left panel
shows the projection of the heavy scalar mass versus its
coupling to the SM particles, while in the bottom left the
heavy scalar mass is replaced by the light one. The right
panels are the same except that in the vertical axis we
represent the coupling of the SM-like Higgs mass. The grey
points in the bottom right and both top panels (bottom
layer) correspond to the full set of solutions that survive the
LHC Higgs measurements at 3σ. In the top left panel, the
additional constraint that the heavy scalar is not allowed to
decay to the light one is represented in three layers of points
that survive at 3σ (brown), 2σ (blue), and 1σ (green)—
overlaid in that order from the bottom to the top. In the right
panels, the same representation is used for the colored
points, except that the cuts are as follows: top right, the
light Higgs is 5 GeV away from degeneracy with the
≃126 GeV SM-like one; bottom right, the heavy Higgs is
5 GeV away from degeneracy with the SM-like one.
One of the most striking features of this model is that

after the 8 TeV run, the reduced SM-like Higgs coupling to
SM particles, κH126

, appears to be basically unconstrained at
3σ. However, one must note that this is a remnant of the
various degenerate scenarios as follows. The visible grey
points on the top right panel correspond to points on the
green peak of the bottom right one. This means that such

FIG. 7 (color online). Saturated model: The two panels show a projection of the dark matter mass (mDM) versus the new scalar mass
(mHnew

). On the left, the color gradation corresponds to jvSδ2j (which is a measure of the degree of mixing). Points were accepted with a
stopping scale larger than the GUT scale and which explain fully the relic density, Ωc, within 3σ. On the right, we represent in the color
scale the spin-independent direct detection cross section (with no cuts) which is used in the text to explain some feature of the left panel.
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grey points correspond to a scenario where two of the
masses are degenerate. Similarly the grey points on the
bottom right panel correspond to points on the green peak
of the top right plot. The scenario where the three scalars
are degenerate in mass is captured by points that pile at the
peak around≃126 GeV in all panels (the SM-like coupling
is shared by the three scalars). We would then have a
triplets peak scenario instead of a twin peak one.
When the scalar masses are away from degeneracy we

have an almost constant bound on κH126
(except in mass

regions where limits from the nonobservation of scalars are
stronger). This is a consequence of the property that this
coupling is universal for all SM particles. Because R2

1h þ
R2
2h þ R2

3h ¼ 1 or in terms of kappas, κ2H126
þ κ2Hlight

þ
κ2Hheavy

¼ 1, the other two couplings depend on the value
of κH126

but we can see in the right plots that some freedom
is still allowed.
Finally, the bounds are clearly stronger if the heavy state

is not allowed to decay to two light ones. This is why we

have grey points above the 3σ level on the top left but not
on the bottom left.
In Fig. 9 we present the allowed parameter space within

3σ and no other restrictions. On the left panels we show the
projection of the new scalar mass (mHheavy

on the top, and
mHlight

on the bottom) versus their couplings to SM
particles, whereas on the right panels, the vertical axis
contains the observed reduced SM-like Higgs coupling to
SM particles. For all plots the color gradation indicates the
scale at which the evolution stopped, and points with a
higher stopping scale are overlaying points that stopped at a
lower scale. As previously discussed at length, it is clear
that one needs a heavy scalar which mixes with the SM-
Higgs to stabilize the theory up to the Planck scale. Also,
when κH126

is exactly 1, stability up to the Planck scale no
longer holds.
It is interesting to note that, regarding the twin peak

scenarios, the one where the lighter Higgs is almost
degenerate with the SM-like one is, not only allowed,

FIG. 8 (color online). Broken phase: In the top row of panels we represent the mass of Hheavy versus its own coupling to SM particles
(left) and versus the SM-like Higgs coupling (right). The bottom panels are similar but forHlight in the horizontal axis. The bottom layer
of points in all panels (grey) corresponds to the full set of points which are consistent with all experimental bounds and the LHC
measurements within 3σ. On top we overlay points which are within 3σ; 2σ, and 1σ with the following cuts for each panel: Top left,
Hheavy cannot decay to Hlight; top right, Hlight is away from degeneracy with the SM-like Higgs by 5 GeV; and bottom right, Hheavy is
away from degeneracy with the SM-like Higgs by 5 GeV.
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but stable up to the Planck scale. On the contrary, and
because one needs a scalar heavier than about 140 GeV for
stability, the scenario where the heavier one is almost
degenerate with the SM-like Higgs is not stable up to high
energy scales.

V. CONCLUSIONS

In this work we have performed the first stability study of
a complex singlet extension of the SM using the full two-
loop renormalization group equations. We have first pro-
vided a general proof showing that the effective potential of
a pure scalar theory can always be written in a form which
does not depend explicitly on the vacuum choice, at any
order in perturbation theory. Using these results we wrote
the two-loop effective potential in terms of the couplings of
the model and derived the scalar contributions to the RGEs
from its scale invariance. These were then used in a
numerical study of the effects of the RGE evolution.
Following the RGE study, we have analyzed the effect of

all phenomenological constraints at the electroweak scale
namely from the LEP, Tevatron, and LHC experiments,

electroweak precision bounds, and direct and indirect
constraints on dark matter. For this type of model this
exhausts the experimental constraints on the parameter
space because there is neither CP-violation in the theory
nor charged Higgs scalars (that would be subject to B-
physics constraints). Finally we have combined the RGE
study with the phenomenological study to discuss the
interplay between the two sources of constraints.
Themodelwe have analyzed contains twodistinct phases,

one where the Z2 symmetry is unbroken, which we named
dark matter phase and predicts a dark matter candidate
alongside with a new visible scalar, and one where the
symmetry is spontaneously broken, denoted as broken
phase, predicting two new scalar states. We have shown
that there is a continuous limit connecting the broken phase
to the dark matter phase, a feature which is not allowed in
models such as the inert version of the 2HDM due to
perturbative unitarity constraints. The broken phase also
contains a triplets peak scenario that could only be probed
via the measurement of the scalar self-interactions, whereas
twin peak scenarios can occur in both phases.

FIG. 9 (color online). Broken phase: In the top row of panels we represent the mass of Hheavy versus its own coupling to SM particles
(left) and versus the SM-like Higgs coupling (right). The bottom panels are similar but for mHlight

in the horizontal axis. All points
correspond to the full set which is consistent with all experimental bounds and the LHC measurements within 3σ. For all plots the color
gradation corresponds to the scale at which the evolution stopped. Points are overlaid in order of the stopping scale with higher stopping
scales on top of points with lower stopping scales.
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Our main findings were presented (whenever possible) in
terms of measurable quantities such as the physical scalar
masses and their couplings to other SM particles. This has
allowed us to show, clearly, the following important results:

(i) In the dark matter phase there is a stability band; that
is, there is a range of masses of the new scalar where
the theory is stable up to the Planck scale. The lower
limit of this new scalar mass is about 140 GeV, but it
depends on the SM-like Higgs coupling to the SM
particles. To be more precise, stability needs a
nonzero mixing between the two scalars. After
combining the phenomenological constrains within
3σ, forcing stability at least up to the GUT scale, and
making the relic density of the model saturate the
Planck/WMAP measurement within 3σ, the lower
bound for the new scalar mass is raised to
about ≃170 GeV.

(ii) We have also shown that there are vast regions of the
parameter space in agreement with all experimental
data, simultaneously saturating the experimental
bounds for dark matter and stable to very high
energy scales such as, at least, the GUT scale. The
mass of the dark matter candidates is restricted
to ≳50 GeV.

(iii) The most striking feature of the broken phase is its
phenomenological potential. It is clear that there is
still plenty of parameter space left to be scrutinized
at the LHC, but several different mass hierarchy
scenarios are possible leading to interesting final
states, such as having two new scalars lighter than
126 GeV.

(iv) The broken phase also has a stability band. However,
it is interesting to note that stability up to the Planck
scale is possible even with a new scalar lighter than
126 GeV, provided the heavy state is heavier than
approximately 140 GeV. All these types of scenarios
can be probed at the next run of the LHC.

As a final note, it would be interesting to explore if the
central result of this paper is robust against changes in the
structure of this minimal version of the complex singlet
model, that is, if the shape of the stability band and its lower
cutoff of 140 GeV does not change if more general scalar
interaction terms are allowed.
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APPENDIX A: DETAILS OF THE BASIS
INDEPENDENT CALCULATIONS

The field dependent expressions for the couplings in the
Λ-basis in terms of the vacuum expectation values vi and
the couplings in the L-basis are

Vð0Þ ¼ Lþ Livi þ
1

2!
Lijvivj

þ 1

3!
Lijkvivjvk þ

1

4!
Lijklvivjvkvl;

Λij ¼ Lij þ Lijkvk þ
1

2
Lijklvkvl;

Λijk ¼ Lijk þ Lijklvl;

Λijk ¼ Lijkl: ðA1Þ

The couplings in the rotated λ-basis (where the field
fluctuations are the physical eigenstates) are related to
the Λ-basis by

m2
i ¼ MmiMniΛmn;

λijk ¼ Mm
iMn

jMp
kΛmnp;

λijkl ¼ Mm
iMn

jMp
kMq

lΛmnpq: ðA2Þ

Note that the field space indices are lowered and raised by
the flat Euclidean space metric δij. We also use the Einstein
convention that repeated indices which are one up and one
down are summed over.
The main steps to prove the general result, Eq. (18), are

as follows. Using the property that the loop functions must
be totally symmetric in the interchange of the masses, and
assuming the Taylor expansion of the loop functions IðnÞD
converges with a nonzero radius around μ2, we have that

IðnÞD ðm2
j1
;…; m2

jpD
Þ ¼

X
q1;…;qPD

aðnÞq1;…;qPD
ðm2

j1
− μ2Þq1 � � � ðm2

jpD
− μ2ÞqPD : ðA3Þ

Inserting in Eq. (17) we obtain
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VðnÞ ¼
XNðnÞ

D

D¼1

X
q1;…;qPD

aðnÞq1;…;qPD
ðλ1 � � � λVD

Þj1;…;jPD ;j1;…;jPD ðm2
j1
− μ2Þq1 � � � ðm2

jpD
− μ2ÞqPD : ðA4Þ

Now we use the fact that, when rotating back each λA coupling in the vertex product, each up index is rotated by a mixing
matrix so that

VðnÞ ¼
XNðnÞ

D

D¼1

X
q1;…;qPD

aðnÞq1;…;qPD
ðΛ1 � � �ΛVD

Þm1;…;mPD
;mPDþ1;…;m2PD

×M j1
m1

� � �M jPD
mPD

M j1
mPDþ1

� � �M jPD
m2PD

ðm2
j1
− μ2Þq1 � � � ðm2

jpD
− μ2ÞqPD : ðA5Þ

Using the orthogonality condition obeyed by the mixing matrices we can finally transfer the rotation matrices to the mass
factors. Denoting the two-by-two matrix formed with the components Λij by Λð2Þ, then we obtain

VðnÞ ¼
XNðnÞ

D

D¼1

X
q1;…;qPD

aðnÞq1;…;qPD
ðΛ1 � � �ΛVD

Þm1;…;mPD
;mPDþ1;…;m2PD ½ðΛð2Þ − μ2Þq1 �m1mPDþ1

� � � ½ðΛð2Þ − μ2ÞqPD �mPD
m2PD

ðA6Þ

≡XNðnÞ
D

D¼1

ðΛ1 � � �ΛVD
Þm1;…;mPD

;mPDþ1;…;m2PD ½IðnÞD ðΛð2Þ; μ2Þ�m1;…;m2PD
: ðA7Þ

Equation (A6) defines the matrix version of the loop
functions IðnÞD .

1. Effective potential at two loops in the λ-basis

In this section we summarize the scalar contributions to
the effective potential in the basis of physical scalar states.
The Coleman-Weinberg potential for a generic quantum
field theory (QFT) is given by the supertrace

Vð1Þ ¼ 1

4

X
n

ð−1Þ2snð2sn þ 1Þðm2
nÞ2ðlogðm2

nÞ − 2t − cnÞ;

ðA8Þ

where sn is the spin of some ψn field and mn its physical
mass (λ-basis). In the MS scheme cn ¼ ð3=2; 3=2; 5=6Þ,
respectively, for a scalar, a fermion, or a vector field. In
particular, for a scalar theory

Vð1Þ ¼
X
i

1

4
ðm2

i Þ2
�
−2t −

3

2
þ logðm2

i Þ
�
: ðA9Þ

As for the two-loop cubic and quartic contributions they are
[56]

Vð2Þ
sss ¼ 1

6

X
i;j;k

ðλijkÞ2fðm2
i þm2

j þm2
kÞt2

þ ½2ðm2
i þm2

j þm2
kÞ −m2

i logm
2
i −m2

j logm
2
j

−m2
k logm

2
k�tþ Pð2Þðm2

i ; m
2
j ; m

2
kÞg; ðA10Þ

Vð2Þ
ssss ¼ 1

2

X
i;j

λiijjm2
i m

2
j

�
t

�
tþ 1 −

1

2
ðlogm2

i þ logm2
jÞ
�

þ 1

4
ð1 − logm2

i − logm2
jþ logm2

i logm
2
jÞ
�
;

ðA11Þ

where the cubic scale independent term is

Pð2Þðm2
i ; m

2
j ; m

2
kÞ

¼ −
5

2
ðm2

i þm2
j þm2

kÞ −
1

2
ξðm2

i ; m
2
j ; m

2
kÞ; ðA12Þ

with
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ξðm2
i ; m

2
j ; m

2
kÞ

¼ ρ

�
2 log

�
m2

k þm2
i −m2

j − ρ

2m2
k

�
log

�
m2

k þm2
j −m2

i − ρ

2m2
k

�

− log

�
m2

i

m2
k

�
log

�
m2

j

m2
k

�
− 2Li2

�
m2

k þm2
i −m2

j − ρ

2m2
k

�

− 2Li2

�
m2

k þm2
j −m2

i − ρ

2m2
k

�
þ π2

3

�
; ðA13Þ

and

ρ ¼ ðm4
i þm4

j þm4
k − 2m2

i m
2
j − 2m2

i m
2
k − 2m2

jm
2
kÞ1=2;

ðA14Þ

and Li2ðxÞ is the dilogarithm function.
Now it is explicit that Vð1Þ; Vð2Þ

sss, and V
ð2Þ
ssss are in the form

(17) so one can apply the transformations leading to the
general form (18) to obtain the results in Eqs. (21), (22),
and (23).

2. Scale invariance conditions and logarithm
cancellations

The scale invariance of the effective potential is
expressed in the Callan-Symanzyk conditions, Eq. (8).
Similar to the effective potential, all beta functions and
anomalous dimensions can be expanded perturbatively in
powers of ε,

βLðtÞ ¼
Xþ∞

n¼0

εnþ1βðnþ1Þ
L ðtÞ; γiðtÞ ¼

Xþ∞

n¼0

εnþ1γðnþ1Þ
i ðtÞ:

ðA15Þ

For the purpose of argument, here we label any coupling by
L. If we insert these expansions in the scale invariance
condition, Eq. (8), and equate order by order in powers of ε,
we get a tower of equations

DðmÞVð0Þ ¼ −
∂VðnÞ

∂t −
Xn−1
m¼1

DðmÞVðn−mÞ; ðA16Þ

where we have defined

DðmÞ ≡X
L

βðmÞ
L

∂
∂L −

X
i

γðmÞ
i vi

∂
∂vi : ðA17Þ

The left hand side of Eq. (A16) contains the nth order beta
functions and anomalous dimensions, and the right hand
side contains lower order beta functions and anomalous
dimensions. Thus, this provides an iterative procedure by
which the nth order evolution functions (left hand side) are
extracted from the nth order effective potential and evo-
lution functions of order m < n [right hand side
of Eq. (A16)].
Let us now apply (A16) to a purely scalar theory. First

we note that

DðmÞVð0Þ ¼ DðmÞ
�
Lþ Livi þ

1

2!
Lijvivj þ

1

3!
Lijkvivjvk þ

1

4!
Lijklvivjvkvl

�

¼ βðnÞ þ ½βðnÞi − LiγðnÞi�vi þ
1

2!
½βðnÞij − LijγðnÞi − LijγðnÞj�vivj

þ 1

3!
½βðnÞijk − LijkγðnÞi − LijkγðnÞj − LijkγðnÞk�vivjvk

þ 1

4!
½βðnÞijkl − LijklγðnÞi − LijklγðnÞj − LijklγðnÞk − LijklγðnÞl�vivjvkvl; ðA18Þ

so indeed the left hand side contains the nth order evolution
functions. As for the right hand side, we assume it has a
similar polynomial form in the VEVs, i.e.,

−
∂VðnÞ

∂t −
Xn−1
m¼1

DðmÞVðn−mÞ

¼ δðnÞ þ δðnÞivi þ δðnÞijvivj þ δðnÞijkvivjvk

þ δðnÞijklvivjvkvl: ðA19Þ

However, specializing to one and two loops we know that
the effective potential is not polynomial in the VEVs—it
contains various log and Li2 functions. Such terms must
always cancel out in the Callan-Symanzyk equations, so

they provide an internal consistency check of the calcu-
lation. Inserting (A18) and (A19) in (A16) and equating, we
finally get the general result, Eq. (25).
Finally, we outline the steps leading to the general results

Eqs. (26) and (27). At one-loop order, using Eq. (21) we
have that

−
∂Vð1Þ

∂t ¼ 1

2
ΛijΛij

¼ 1

2

�
Lij þ Lijkvk þ

1

2
Lijklvkvl

�

×

�
Lij þ Lij

mvm þ 1

2
Lij

mnvmvn

�
: ðA20Þ
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Expanding and collecting the various coefficients of the
powers of the VEVs we obtain the δð1Þi1;…;ip , Eq. (26). At
two loops

−
∂Vð2Þ

∂t −Dð1ÞVð1Þ

¼ 1

2
ΛijðDð1ÞΛij − ΛijmnΛmn − 2Λi

mnΛjmnÞ

−
�
Λð2Þ

�
1

2
logΛð2Þ − t

��
ij

× ðDð1ÞΛij − Λi
mnΛjmn − ΛijklΛklÞ; ðA21Þ

where we have separated the terms which are not poly-
nomial in the VEVs and are scale dependent, on the
second line. Expanding the Λ-couplings in terms of the
L-couplings we obtain

−
∂Vð2Þ

∂t −Dð1ÞVð1Þ

¼ δð2Þ þ δð2Þivi þ δð2Þijvivj
þ δð2Þijkvivjvk þ δð2Þijklvivjvkvl

þ
�
Λð2Þ

�
1

2
logΛð2Þ − t

��
ij
Λijγð1Þi: ðA22Þ

In the log terms on the second line all first order beta
functions coming from Dð1ÞΛij have canceled the terms
−Λi

mnΛjmn − ΛijklΛkl as expected. All that remains is a
contribution which is proportional to the anomalous
dimensions. The one-loop anomalous dimensions are,
however, strictly zero before we include nonscalar con-
tributions. Note, however, that the cancellation of this term
with fermion contributions to the effective potential can be
observed in the SM contributions (which we include in the
final RGEs for the complex singlet model).

APPENDIX B: TWO-LOOP RGES FOR THE
COMPLEX SINGLET MODEL

We present here a summary of the one- and two-loop
RGEs for the complex singlet model Eq. (1), which were
calculated as described in Sec. III. The structure of both the
gauge and fermion sectors of the complex singlet model are
identical to the SM. Therefore, the two-loop beta functions
of the gauge and Yukawa15 couplings are

βð1Þgi ¼ big3i ; βð2Þgi ¼ g3i

�X
j

bjig2j þ Ciy2t

�
; ðB1Þ

βð1Þyt ¼ yt

�
9

2
y2t −

17

20
g21 −

9

4
g22 − 8g23

�
;

βð2Þyt ¼ yt

�
3

8
λ2 þ δ22

8
− 3y2t λ − 12y4t þ

393

80
g21y

2
t

þ 225

16
g22y

2
t þ 36g23y

2
t þ

1187

600
g41

−
23

4
g42 − 108g43 −

9

20
g21g

2
2 þ

19

15
g21g

2
3 þ 9g22g

2
3

�
;

ðB2Þ

with

bi ¼
�
41

10
;−

19

6
;−7

�
; Ci ¼

�
−
17

10
;−

3

2
;−2

�
;

bji ¼

0
BB@

199
50

9
10

11
10

27
10

35
6

9
2

44
5

12 −26

1
CCA: ðB3Þ

For the scalar sector one must consider the SM contribu-
tions and those arising from the complex singlet field. For
the quartic and bilinear couplings we have, respectively,

βð1Þλ ¼ 27

50
g41 þ

9

5
g21g

2
2 þ

9

2
g42 − 24y4t þ 6λ2 þ δ22 þ 4λγð1Þh ;

βð2Þλ ¼ −
3411

500
g61 −

1677

100
g41g

2
2 −

289

20
g21g

4
2 þ

305

4
g62 − y2t

�
171

25
g41 −

126

5
g21g

2
2 þ 9g42

�

− y4t

�
32

5
g21 þ 128g23

�
þ 120y6t þ λ

�
297

100
g41 þ

9

2
g21g

2
2 þ

99

4
g42 þ 24y4t

�

þ λ2
�
54

5
g21 þ 54g22 − 72y2t

�
− 21λ3 − 2δ32 − 3λδ22 þ 4λγð2Þh þ 12λ2γð1Þh ; ðB4Þ

15We do not consider in this paper contributions from the tau and bottom Yukawa couplings, and the first two generations of Yukawa
couplings, due to their smallness.
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βð1Þ
m2 ¼ 3m2λþ b2δ2 þ 2m2γð1Þh ;

βð2Þm2 ¼ m2

�
189

200
g41 þ

9

20
g21g

2
2 þ

63

8
g42 þ λ

�
63

10
g21 þ

63

2
g22 − 36y2t

��

−
9

2
m2λ2 −

1

2
m2δ22 − b2δ22 þ 2m2γð2Þh þ 6λm2γð1Þh ; ðB5Þ

where, in limit δ2 → 0 and b2 → 0, we recover the usual Standard Model equations consistent with [63,64], up to
(conventional) normalizations of the couplings. The β-functions for the remaining parameters are

βð1Þδ2
¼ δ2½2d2 þ 2δ2 þ 3λþ 2γð1Þh þ 2γð1ÞS �;

βð2Þδ2
¼ δ2

�
189

200
g41 þ

9

20
g21g

2
2 þ

63

8
g42 þ δ2

�
6

5
g21 þ 6g22 − 12y2t

�
þ λ

�
63

10
g21 þ

63

2
g22 − 36y2t

�

−3d22 − 6d2δ2 −
7

2
δ22 − 9δ2λ −

9

2
λ2þ2ðγð2Þh þ γð2ÞS þ ðδ2 þ 3λÞγð1Þh þ ð2d2 þ δ2Þγð1ÞS Þ

�
; ðB6Þ

βð1Þb2
¼ 2b2d2 þ 2m2δ2 þ 2b2γ

ð1Þ
S ;

βð2Þb2
¼ m2δ2

�
21

5
g21 þ 21g22 − 24y2t

�
− 3b2d22 − b2δ22 − 2m2δ22 þ 4m2δ2γ

ð1Þ
h þ 4b2d2γ

ð1Þ
S þ 2b2γ

ð2Þ
S ; ðB7Þ

βð1Þd2
¼ 5d22 þ 2δ22 þ 4d2γ

ð1Þ
S ; βð2Þd2

¼ δ22

�
21

5
g21 þ 21g22 − 24y2t

�
− 16d32 − 6d2δ22 − 4δ32 þ 4δ22γ

ð1Þ
h þ 10d22γ

ð1Þ
S þ 4d2γ

ð2Þ
S ;

ðB8Þ

βð1Þb1
¼ b1d2 þ 2b1γ

ð1Þ
S ;

βð2Þb1
¼ −2b1d22 − b1δ22 þ 2b1d2γ

ð1Þ
S þ 2b1γ

ð2Þ
S ; ðB9Þ

βð1Þa1 ¼ a1γ
ð1Þ
S ; βð2Þa1 ¼ a1γ

ð2Þ
S : ðB10Þ

The anomalous dimensions of the SM Higgs and S and A
fields are obtained from the general formalism in [69] and
can be checked in the SM limit [63,64],

γð1Þh ¼ 3y2t −
9

20
g21 −

9

4
g22;

γð2Þh ¼ 1293

800
g41 þ

27

80
g21g

2
2 −

271

32
g42 þ

17

8
g21y

2
t

þ 45

8
g22y

2
t þ 20g23y

2
t −

27

4
y4t þ

3

8
λ2 þ δ22

8
; ðB11Þ

γð1ÞA ¼ γð1ÞS ¼ 0;

γð2ÞA ¼ γð2ÞS ¼ δ22 þ d22
4

: ðB12Þ

APPENDIX C: ONE-LOOP INPUT RELATIONS

In this section we analyze the effect of correcting the
initial data, used in the RGE running at two loops, with
one-loop input relations, using the dark matter phase to

illustrate the effects. Here we have corrected our scalar
sector tree level input data (whose scan boxes are detailed
in the next paragraph) at one loop using the effective
potential approach (to compute p2 ¼ 0 contributions) and
the variation of the one-loop scalar self-energies (for the p2

dependent terms) as described below.
In our scans, we chose the physical scalar masses,

mixing matrix angles, vacuum expectation, and a subset
of the scalar couplings (which remain independent) as input
(seven parameters in total which corresponds to the number
of couplings in our potential). All remaining scalar cou-
plings are functions of this input. At one loop, we use a
similar strategy; i.e., we provide these parameters as input,
and then we correct the dependent couplings/parameters at
one loop to perform the RGE running consistently. This is
done by recalling the one-loop definitions of the physical
vacuum state and of the scalar state masses. As mentioned
in Sec. III, for a translation invariant vacuum, the VEVs, vi,
at the minimum are determined by the stationary points of
the effective potential (these are the tadpole equations),
namely

∂Veff

∂vi ¼0⇔
∂Vð0Þ

∂vi þε
∂Vð1Þ

∂vi þ���≡TðL;vkÞi¼0: ðC1Þ

Again we have denoted the set of couplings collectively by
L. This provides a set of constraints relating the couplings
and the VEVs. Regarding the physical scalar particle states,
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they are defined through the poles of the (Dyson
resummed) inverse scalar propagator which we denote

G−1
ij ¼ ið−p2δij þM2

ij þ Πðp2ÞijÞ; ðC2Þ

⇔ G−1
ij ¼ ið−p2δij þ ∂2

ijVeff þ ΔΠðp2ÞijÞ: ðC3Þ

Here M2
ij is the mass matrix obtained from the tree level

potential, ΔΠðp2Þ ¼ Πðp2Þ − Πð0Þ, and we have used the
relation (in matrix notation for brevity)

−∂2Veff ¼ iðG−1Þp2¼0 ¼ −M2 − Πð0Þ: ðC4Þ

The physical pole masses of the scalar states a ¼
fh; s1; s2g are then defined through

0 ¼ det ð−m2
a1þ ∂2Veff þ ΔΣðm2

aÞÞ; ðC5Þ

which means that the scalar eigenstate a is an eigenvector
(Ej

a) of G−1 with null eigenvalue, i.e.,

G−1
ij E

j
a ≡ PðL; vi; m2

a; Ej
aÞia ¼ 0: ðC6Þ

Our approach consists on solving, perturbatively (i.e., in an
expansion in powers of ε), for the one-loop corrections of
the subset of dependent couplings in fLg given input data
for the physical scalar state pole masses and VEVs. This is
determined by the system



TðL; vkÞi ¼ 0

PðL; vi; m2
a; Ej

aÞia ¼ 0
: ðC7Þ

Since we have used the effective potential computed in the
modified minimal subtraction (M̄S) scheme in the Landau
gauge, we have also used the scalar self-energies computed
under the same conditions by Martin in [89]. We have
perturbatively expanded the system (C7) [90] in the dark
matter phase and found explicit expressions for the cor-
rected couplings fm2; λ; δ2; b2; d2; b1g and the overlap of
the second mixing scalar Hnew with the Higgs doublet
fluctuation, i.e., the correction to κHnew

. If we define the
general notation for the loop expansion of some coupling/
parameter by L ¼ Lð0Þ þ εLð1Þ þ � � �, then the final one-
loop corrections in the dark phase are

m2ð1Þ ¼ 1

v
½3Vh − vSðW10 − 2κð0Þ2Hnew

W10

þ κH126
κð0ÞHnew

ðW00 −W11ÞÞ ðC8Þ
−vðκ2H126

W00 − 2κH126
κð0ÞHnew

W10 þ κð0Þ2Hnew
W11Þ�; ðC9Þ

λð1Þ ¼ 2

v3
½−Vhþvðκ2H126

W00−2κH126
κð0ÞHnew

W10þκð0Þ2Hnew
W11Þ�;
ðC10Þ

δð1Þ2 ¼ 2

vvS
½W10 − 2κð0Þ2Hnew

W10 þ κH126
κð0ÞHnew

ðW00 −W11Þ�;

ðC11Þ

bð1Þ2 ¼ 1

vS
½2Vs − vW10 − vSW11

− κH126
κð0ÞHnew

ð2vSW10 þ vðW00 −W11ÞÞ
þκð0Þ2Hnew

ð2vW10 þ vSðW11 −W00ÞÞ þ vSW22�; ðC12Þ

dð1Þ2 ¼ 2

v3S
½−Vs þ vSð2κH126

κð0ÞHnew
W10

þ κð0Þ2Hnew
ðW00 −W11Þ þW11Þ�; ðC13Þ

bð1Þ1 ¼ Vs

vS
−W22; ðC14Þ

κHnew
¼ κð0ÞHnew

þ δκH126ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p ; δ≡ ε
W01 −W10

m2
Hnew

−m2
H126

: ðC15Þ

All masses (m2
i ), VEVs (vi), the other κH126

, and a1 were set
as weak scale input.16 Also note that, on the last line, we
have written the corrected κHnew

in full using the normali-
zation condition for the corresponding corrected eigenvec-
tor, for consistency. The loop corrections are encoded in the
quantities

Va ¼ δhayt
ffiffiffi
2

p
m3

t

�
log

m2
t

μ2
− 1

�
−
1

2
Ri
aλ

k
kim

2
k

�
log

m2
k

μ2
− 1

�
ðC16Þ

and

Wia ¼ Rh
i R

h
ay2t

�
m2

t

�
3 log

m2
t

μ2
− 1

�
− ðm2

a − 4m2
t ÞI0

�
m2

a

m2
t

�
−m2

a log

�
m2

t

μ2

��
þ λϵ1ϵ2i

�
1 −

1

2
log

�
m2

a

μ2

��
λϵ1ϵ2a

−
1

2

�
λkkiam

2
k

�
log

m2
k

μ2
− 1

�
þ λkli λkla

�
log

m2
k

μ2
− 1þ fðm2

k; m
2
l Þ þ I1

�
m2

l

m2
k

;
m2

a

m2
k

�
− I2

�
m2

l

m2
k

���
k;l≠goldstones

; ðC17Þ

16Observe that since we perform a global scan, to some extent, what is used as input is arbitrary because the scan will run over all possible
scenarios.Our choicewasguidedby theprinciple of providingas inputasmanyphysical quantities aspossible,whilekeeping the scanefficient.
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where the indices i; a ¼ f0; 1; 2; 3; 4; 5g in Wia corre-
spond, respectively, to the eigenstates fHnew; H126; Hdark;
G1; G2; G3g (Gi are Goldstone degrees of freedom),
whereas in Va the index a is a weak basis index. Note
that on the second line we have explicitly canceled out the
infrared divergence coming from the Goldstone masses
between the derivatives of the effective potential and the
self-energies. The term which is left over contains a sum
over ϵ1 and ϵ2 which runs over Goldstone directions only
(first term on the second line). We have also checked
explicitly that the correct cancellations occur such that the
Goldstones are present in the one-loop inverse propagator
and that we recover the one-loop results in the SM limit.
Finally the loop function combinations appearing are
defined,

fðx; yÞ≡ x
log x − log y

x − y
; ðC18Þ

I0ðxÞ≡ℜ

�Z
1

0

dt log ½1 − tð1 − tÞðxþ iϵÞ�
�
; ðC19Þ

I1ðx; yÞ≡ℜ

�Z
1

0

dt log ½tþ ð1 − tÞx − tð1 − tÞy − iϵ�
�
;

ðC20Þ

I2ðxÞ≡ −1þ x log x
x − 1

: ðC21Þ

For brevity here we define I0 and I1 through their integral
forms though they can be integrated explicitly.
In Fig. 10 we finally present a comparison of the regions

generated for Fig. 2, but now with the one-loop corrected
initial data. It is clear that the main conclusions of our
study, which correlate with the shape of the stability band,
are not affected by these corrections. In particular, the lower
bound for the mass of the new visible scalar which is
responsible for stabilizing the scalar potential remains the
same. The only relevant difference is a small thickening of
the stability band for larger masses (see right hand side
panel) and a lowering of the upper boundary on the
ðλ; mHnew

Þ plane which is related to the corrected minimum

FIG. 10 (color online). Dark matter phase corrected: Here we display the same quantities as in Fig. 2 with the one-loop corrected
initial data. On the left panel, we also indicate the line which defines the tree level upper boundary for comparison.

FIG. 11 (color online). Dark matter phase corrected: Here we display the same quantities as in Fig. 10. The color gradient
shows the relative difference to the λ between tree level and with the one-loop initial data correction, defined

Δλ ¼ jελð1Þj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð0Þ2 þ ðλð0Þ þ ελð1ÞÞ2

q
.
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conditions that define the vacuum of the theory (see
left panel).
Finally in Fig. 11 we show the relative difference

between tree level and one-loop input (in percentage) for
the λ coupling in the color scale. Everywhere the error is

small, especially in the intermediate mass region where the
stability lower bound is obtained. (The only exception is
close to the origin in the right panel which can be checked
to be just due to λ going to zero, so the relative error
definition becomes ill defined.)
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