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We study the cylinder-plate and the cylinder-cylinder Casimir interaction in the (D + 1)-dimensional
Minkowski spacetime due to the vacuum fluctuations of massless scalar fields. Different combinations of
Dirichlet (D) and Neumann (N) boundary conditions are imposed on the two interacting objects. For the
cylinder-cylinder interaction, we consider the case where one cylinder is inside the other and the case where
the two cylinders are outside each other. By computing the transition matrices of the objects and the
translation matrices that relate different coordinate systems, the explicit formulas for the Casimir
interaction energies are derived. From these formulas, we compute the large separation and small
separation asymptotic behaviors of the Casimir interaction. For the cylinder-plate interaction with R < L,
where R is the radius of the cylinder and L is the distance from the center of the cylinder to the plate, the
order of decay of the Casimir interaction only depends on the boundary conditions imposed on the cylinder.
The orders are L™°+!/1In(L) and L=P~!/1n L, respectively, for the Dirichlet and Neumann boundary
conditions on the cylinder. For two cylinders with radii R; and R, lying parallelly outside each other, the
orders of decay of the Casimir interaction energies when R, + R, < L are L™°*!'/(InL)?, L=P='/InL,
and L~P-3, respectively, for DD, DN/ND, and NN boundary conditions, where L is the distance between
the centers of the cylinders. The more interesting and important characteristic of Casimir interaction
appears at small separation. Using the perturbation technique, we compute the small separation asymptotic
expansions of the Casimir interaction energies up to the next-to-leading-order terms. The leading terms
coincide with the respective results obtained using the proximity force approximation, which is of order
d~P+1/2 where d is the distance between the two objects. The results on the next-to-leading-order terms are
more interesting and important. We find some universal behaviors. It is also noticed that for the case of
Dirichlet-Dirichlet cylinder-plate interaction the next-to-leading-order term agrees with that obtained using
the derivative expansion. Hence, based on our results on other boundary conditions and on the cylinder-
cylinder interaction, we postulate a formula for the derivative expansion to expand the Casimir interaction
energy up to the next-to-leading-order terms for DD, DN, ND, and NN boundary conditions, for the
interaction between two curved surfaces in (D + 1)-dimensional Minkowski spacetime. It is found that the
postulate agrees with our previous results on the sphere-sphere interactions except when D = 4.
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I. INTRODUCTION

In the pioneering work [1], Casimir proposed the
existence of a force between two parallel perfectly
conducting plates due to the vacuum fluctuations of
electromagnetic fields. This gives rise to the concept
of vacuum energy, which was referred to as Casimir
energy. In subsequent years, the Casimir effect has been
generalized to any quantum fields, and it is a purely
quantum effect. The idea of this Casimir energy is quite
simple. The ground state energy of a quantum harmonic
oscillator is not zero, but it is equal to Aw/2, where w is
the frequency. A quantum field can be considered as the
superposition of an infinite number of quantum harmonic
oscillators, each with a different ground state energy.

*LeePeng.Teo@nottingham.edu.my

1550-7998/2015/92(2)/025023(20)

025023-1

PACS numbers: 03.70.+k, 11.10.Kk, 12.20.Ds

Casimir defined the Casimir energy as the sum of the
ground state energies:

Ecys = 7 . (1)
This sum is divergent, and regularization is required.
However, in the existence of two objects (boundaries),
one can obtain a finite Casimir interaction energy after
subtracting away the Casimir self-energies of each of the
objects.

The Casimir self-energy of an object is of its own
interest, and it has been under active investigation (see
Ref. [2] for a review). On the one hand, it is closely related
to the one-loop effective action [3], and on the other hand, it
has been proposed to be a candidate for the dark energy
[4-6]. Since the advent of string theory, studying physics in
higher dimensional spacetime has become the norm rather
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than an exception. There has been quite a number of
works that explored the Casimir energies of rectangular
cavities, spheres, and cylinders in higher dimensional
spacetimes [7—17].

The Casimir effect is more interesting when there exist
two interacting objects. In the last century, theoretical
computations of Casimir interaction were limited to the
configuration of two parallel plates. However, the advance-
ment in nanotechnology and Casimir experiments at the
end of the last century have called for a theoretical
understanding of the Casimir interaction between any
nonflat objects. About ten years ago, a major breakthrough
in Casimir research was brought by a few groups of
researchers [18—41], which have shed new light on the
research of Casimir interaction between two objects. Using
worldline numerics, multiple-scattering method, or mode
summation method, exact formulas for the Casimir inter-
actions of cylinder-plate, cylinder-cylinder, sphere-plate,
and sphere-sphere configurations have been computed.
This has enabled the more precise analytical and numerical
studies of the nature and the strength of the Casimir force.
Nonetheless, these works have been limited to the (3 4 1)-
dimensional Minkowski spacetime.

Last year, we took the first step to understand the Casimir
interactions between nonflat objects in higher dimensional
spacetime [42-45]. We considered the sphere-plate
and sphere-sphere interactions due to the vacuum fluctua-
tions of massless scalar fields in (D + 1)-dimensional
Minkowski spacetime and studied the dependence of the
Casimir interaction on the dimension of spacetime. Since
cylindrical objects played an equally important role in
physics as spherical objects, we explore the Casimir
interaction between a cylinder and a plate and between
two cylinders in (D + 1)-dimensional Minkowski space-
time in this work.

We generalize the formalism established in Ref. [41] to
compute the Casimir interaction energy between a cylinder
and a plate, between two parallel cylinders where one lies
inside the other, and between two parallel cylinders exterior
to each other. We consider a massless scalar field with
combinations of Dirichlet (D) and Neumann (N) boundary
conditions. The generic formula for the Casimir interaction
energy between two objects can be written in the form

ECas = h /°° déln Tr(l — '|]'1@12‘[|'2621) (2)

27 Jo

and is thus known as the TGTG formula. Here, T' is related
to the scattering matrix of object i and can be computed by
matching the boundary conditions on the object. The
matrix G is the translation matrix that relates the wave
functions of object i to the wave functions of object j. The
nontrivial problem is to compute these T’ and G” matrices.

After deriving the TGTG formulas for the cylinder-plate
and the cylinder-cylinder interactions, we derive the large
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separation and small separation asymptotic behaviors of the
Casimir interactions. The large separation asymptotic
behavior is easy to compute since it only depends on a
few entries in each of the T and G matrices. To compute the
small separation asymptotic behavior beyond the leading
term is a tedious task [32,33,42-52]. As a confirmation of
the correctness of the TGTG formula, the leading term of
the small separation expansion of the Casimir interaction
energy is found to agree with that derived using the
proximity force approximation. One of the major contri-
butions of the present work is the result of the next-to-
leading-order term of the small separation expansion. For
the cylinder-plate configuration with DD boundary con-
ditions, we find that our result agrees with that computed
using a derivative expansion in Ref. [53]. Inspired by the
work [54], we use our results on the cylinder-cylinder
interaction to postulate a derivative expansion formula for
the Casimir interaction energy in (D + 1)-dimensional
spacetime, up to the second-order term, for the interaction
between any two objects with combinations of Dirichlet
and Neumann boundary conditions. This ansatz is found to
agree with the results we derive for the sphere-sphere
interaction in Ref. [43] except when D = 4.

This work will be interesting to those that wish to
understand quantum field theory in higher dimensional
spacetime.

II. CASIMIR INTERACTION ENERGY

In this work, we consider the vacuum fluctuations of a
massless scalar field in (D + 1)-dimensional Minkowski
spacetime with the metric

ds> =df —dx} —--- — dx3,.

The equation of motion of the scalar field ¢(x)e™®,
X = (.Xl, ...,XD) is

? ? ?
<6—X%+"'+@>§0:—?§0- (3)

We will consider the following three problems:
(i) the Casimir interaction between a cylinder and
a plate;
(i) the Casimir interaction between two parallel
cylinders, one being inside the other;
(iii) the Casimir interaction between two parallel
cylinders exterior to each other.
The boundary conditions on the cylinder and the plate are
either the Dirichlet boundary condition ¢|oungay = 0 oOF
the Neumann boundary condition 059 |poundary = 0, Where
n is the unit vector normal to the boundary.
We will take a cylinder to be

24,2 p2
X7 +x; =R7,
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where R is the radius of the cylinder. Therefore, it will
be convenient to work with the cylindrical coordinates
where
x; =rcos6, X, = rsiné, (4)
so that the cylinder x3 + x3 = R? is given by r = R. In the
cylindrical coordinates, the equation of motion (3) reads as
S5+ +o 1t —— .
r? 06° 2?

& 10, > >
or*  ror 0x3 ox3,
(5)

Solving this equation of motion, we find that the cylindrical
waves can be parametrized by (n,ks,....kp) = (n,k ),
where n is an integer, k, = (k3,...,kp) € RP~2, and
they can also be divided into regular and outgoing waves.
The explicit formulas for these cylindrical waves are
given by

1o & 0? w?
gy =

Pk, (X) = CZ5 (Ar)eind ik ttikpxp ©)

where * = reg or out for regular or outgoing waves,

re;
ng i n, Cout 2 n+l’

are normalization constants, and

Z2) = Ju(2),  Z(2) = Hy(2).

A. Casimir interaction energy between
a cylinder and a plate

For the Casimir interaction between a cylinder and a
plate, we will take the cylinder to be

X3+ x3 = R, 7'§x,-§7' for 3<i<D,
and the plate to be
H; H; :
x; =1L, - Sxi§7 for 2 <i<D.

Here, L > R, and d = L — R is the distance between the
cylinder and the plate.

For the plate x; = L, we will parametrize the plate
waves by the momenta perpendicular to the plate
(ky, k3, ..., kp) = (ky, k). Solving the equation of motion
(3) gives the plate wave basis

* — ,—isgn kyx+ikyxy+iksxz 4 +ikpx
Pk, (X) =€ TR P, (7)

where
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2
10)
ky =\|——ki—-—k>,
1 \/02 2

SgNGy = —1.

and

sgNg, = 1,

Let H = Hs...Hp. In the region between the cylinder
and the plate, we can write the scalar field ¢(x,?) in
terms of the cylindrical coordinate system centered at the
origin,

o(x.1) H/ /‘”‘3 ./m@
oo 2T

<Y

n=—oo

nkL(preg )—i—b”kigoo”t ( ))e—iwt’

(8)

or in terms of the rectangular coordinate system centered at
O =Le;:

ox.0) = ot [ [T52 ["TR

D —iw
X /_mg( ky. k(p;(egk( ) dkz out (X/))e it
©)
Here, X' = x — Le,.
Using the representation (8), we find that the boundary

condition on the cylinder » = R gives rise to a relation of
the form

bk = —Thanke, (10)
For D and N boundary conditions, 77} is given by

1,(yR)
K,(yR)’

1P (i) = 1N (ig) = (11)
respectively. Here, & is the imaginary frequency so that
i{ =w,

y=\/1<2+k§+---+k2,
¢

K=—.
C

Under the representation (9), the boundary condition on
the plate x| = 0 gives rise to a relation of the form

ckeder — _T’;debkl. (12)

For D and N boundary conditions, T];z is given by

025023-3
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TRPe) =1, THP3E) = -1, (13)
respectively.

The two representations (8) and (9) are related by
translation matrices V and W:

Pk, (X Z Vs @i, (X)
dk,
o (x) = H / Wi (). (14)

It is easy to see that the matrices V and W are diagonal in
k ;. In fact, canceling out e*s*3++knX from both sides,
we obtain exactly the same equation as in the D =3
dimension. Hence, quoting the result from dimension
D = 3 (see, for example, Ref. [41]), we have

/.2 2 n
Vn,ka = ( vt k2—+ kz) eV }/2+k%L,
: 14
2 2 n
p 4 YT+ ks 4 ks _ [aae
Wipn = 5 > < 2 > e VI Tkl
Y-+ k3 Y

Notice that (14) implies that

ahs [TV e,
—00

doke = N Wy, bk (15)

n=—0oo

From (10), (12), and (15), we find that

bk = gk
=TH, /_ ) ‘;kz Vi, T5 Z Wb ke
This is a relation of the form
(I-—M)B =0, (16)
where
M = T,VT,W,

and B is the column matrix with components 5",
The matrix B must be a nontrivial solution of (16).
Hence, we obtain the dispersion relation

det (I — M) = 0.

Using the standard contour integration technique, and the
fact that all the matrices Ty, V, T,, and W are diagonal in
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k,, we then find that the Casimir interaction energy is
given by

hcH dk % dk
Ecow =5 ¢ s 2 TrIn (1 - M),
0 2T

where

dk
M, = T{H, / e

_ T"Tkz/ dk,
2\ + ks

« (\/ r i+ kz) e-z./y2+k§L
4

k’?
Vn ko T2 sz n

7k
=TT K, v (27L).

Recall that

y=\/K*+ K. =K+t k.

Since the dependence of M, , on (ks,...
through k|, we have

,kp) is only

hcH 277
27 (22)P20(232)

x /m di /°° dk | kP=3Trn (1 — M)
0 0

= hcHA)p / * dyyP-2Trln (1-=M), (17)
0

ECas =

where Ap is the constant

Ap = pD-1 551

TT(55)
B. Casimir interaction energy of one cylinder
inside the other

For the Casimir interaction between two cylinders, one
inside the other, we take the smaller cylinder to be

H;
<x; <=t

2 2 _ p2
X7 +x3 =Ry, 3

_H;
— for3<i<D,

2

the center of which is at the origin O, and the larger
cylinder is taken to be

(x; —L)* +x3 = R3, i <=

H; H;
7 2’ for3<i<D,

the center of which is at O’ = Le,. Notice that L < R, — R,
and d =R, — R; — L is the distance between the two

cylinders.
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As in the cylinder-plate case, we can represent the scalar
field ¢(x, ) in the region between the two cylinders in
two different ways, one with respect to the cylindrical
coordinate system centered at O,

o(x.1) H/ /d"* ./""@
oo 2T

<Y (@

n=-—oo

nk, (preg ) + bn’kL(pzl,ll‘t:L (X))e_iwt,

(18)

and one is in terms of the cylindrical coordinate system
centered at O’ = Le;:

(', 1) H/ /‘”‘ﬁ./wﬁ
oo 2T

<Y

n=—o0

€2 (x/)

o k| @, kJ_ + dn,kL(pout (X/))e—imt‘

nk

(19)

The boundary conditions on the cylinders give

bn’kl _ Trllan k| Crl.,kJ_ — _ngn’ki, (20)
with
riP(ig) = TR g - Il
Kn(le) Kn(le)
n . Kn J/R TN : K;" }/R
ooy Kl g KR
1,(R>) I,(rRy)

The two representations (18) and (19) are related by

A0 = 3 Ve ()
n=—oo

P (x) Z Wy (X). (22)
n'=—o0

Compare to the D = 3 case (see, e.g., Ref. [41]), we find
that

Vow =Wy, = (=1)""L,_,(yL). (23)

As in the cylinder-plate case, we then find that the Casimir
interaction energy is given by

Ecy = heHA, / T AP Trin(1- M), (24)
0

where
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[s+]
~ I
Mn.n’ = T? E Vn,n”Tg Wn”,n’

n’=-c0
o0
"
= T? E 1, Tg Ly_,. (25)
n’=-c0

C. Casimir interaction energy of two parallel
cylinders outside each other

For the Casimir interaction between two parallel cylin-
ders exterior to each other, we take one cylinder to be
H;

<x < Hi
L
2

S SX s for3 <i <D,

x% + x% = R%,
the center of which is at the origin O, and the second
cylinder is taken to be

(x1—L)*+x3=R3, <x <

for3 <i

_H il <D,
2 2 -

the center of which is at O’ = Le,. In this case,
L>R +R,, and d=L—-R;—R, is the distance
between the two cylinders.

In the region between the two cylinders, the scalar field
@(x,1) can be represented by (18) using the cylindrical
coordinate system centered at O, or by (19) using the
cylindrical coordinate system centered at O'.

The boundary conditions on the cylinders give

prks — —T'l’a”'ki, 4k = —Tgcn;kj_’ (26)

with
710 ig) = IR ey R o
(18 =%k, O =%or) Y

In the present case, the two representations (18) and (19)
are related by

(s
AL = D0 UL ().
n=-—o00
4”2% Z Un n Zegkl ) (28)
n'=—oo
In other words,
[e+]
an.kl — Z Ulz,d"/*kl,
nn
n'=—c0
(o)
= N U bk (29)
n=—o0o

Compared to the D = 3 case (see, e.g., Ref. [41]), we find
that

025023-5
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Uz, =UY = (=1)"K,_y(yL). (30)

From (26) and (29), we find that

b”-kL — —Tndn’kl
/
= Tn E U12 " T” E Un// ”/bn ki .
n"=-c0 n'=—c0

Then, as in the cylinder-plate case, we find that the
Casimir interaction energy is given by

Eey = heHA, / ZdyyP2Trin (1-M),  (31)
0
where

[e+]
"
= T’11 2 : Uilzn”Tg Ufl’l’.n’

n""=—o0
=T8> Ky T8 Ky (32)
n’"=-o0

Using the fact that 1_,(z) = 1,(z), K_,(z) = K, (z), we
find that 75" = T%. Hence, Eq. (32) can be rewritten as

M,y =T" Z Uiz, Ty Uz,

=T} Y Kyew T8 Ky . (33)

III. LARGE SEPARATION ASYMPTOTIC
BEHAVIOR

In this section, we compute the asymptotic behavior of
the Casimir interaction energy when L > R and
L> R, + R,, for the cylinder-plate interaction and the
cylinder-cylinder interaction when the two cylinders are
outside each other.

First, notice that by making a change of variables
y = 7/L and expanding the logarithm we have

hcHA ©
Cas — TID/ dy)/D_zTr In (1 - M)
L 0
hCHAD
—— d"'"D 2
LP-1 Zs+1/ " nozz_w

X My My g, (34)

ny=—00

For the cylinder-plate case,

M, n THTZ n+n’(27~/)'

n,
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For the case of two cylinders exterior to each other,

ZN WN% .

Mffn,:T" Z Ky 7)T2 Kn’Jrn”

Here,
T’-LD — In(j;Rt/L) T{z,N _ I/n(j;Rl/L)
’ K,(¥R;/L)’ ' K,(7R;/L)’
and

Ni = TIK, 0 (7).

From these, we see that to determine the large separation
asymptotic behavior (i.e., L > R in the cylinder-plate case
and L > R; + R, in the cylinder-cylinder case) of the
Casimir interaction energy we need to know the small z
asymptotic behavior of 1,(z)/K,(z) and I,(z)/K)(z),
which can be obtained from any standard textbook of
special functions.

For the cylinder-plate case, when the cylinder is imposed
with Dirichlet boundary conditions, the leading term of the
large separation asymptotic expansion comes from the
terms s = 0 and ny = 0; whereas when the cylinder is
imposed with the Neumann boundary conditions, the
leading term of the large separation asymptotic expansion
comes from the terms s = 0 and ny = 0, =1, namely,

hCHAD 0 p DD
Eey~ =~ / drr” Mo
0
hcHAp [~ ..

EQN ~~—p 1 / i MGy

Cas ™~ LD—l

thAD 4 ND ND ND
B~ =55 [ a0 M ),
_ hcHA
ENN ~ ZD L A AP 2 (M + MY+ m .

Straightforward computation then gives

DD thF(D—_l)
Cos = T DB DT 0 (L/R)
D-1
AR L
S 2PH TPV In (L/R)
END th(3D+ I(2)R?
Cas 2D+3 Py D+l ’
_hcH(3D + 1)I(2FHR?
gy ACHOD L DTS ) 53)
2D+3 3 LD+1

Notice that if the Dirichlet boundary condition is imposed
on the cylinder the leading term is of order L=°*!/In(L);
whereas if the Neumann boundary condition is imposed on
the cylinder, the leading term is of order L=,

025023-6
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When D = 3, Eq. (35) reads as

DD hcH

ED
€ 16zL2In (L/R)

These agree with the results obtained in Ref. [25].
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For two cylinders that are exterior to each other, we rewrite (34) as

(o]

hAcHAp N 1 o .
- ) T
LT L 1A v

s=0 ny=-—00

Eco =

5hcHR?
NN 36
Cas 327[L4 ( )
o> o> NN LN N2 (37)
=—0 g’ =—c0 ny'=—o0

As in the cylinder-plate case, we find that the leading terms of the large separation asymptotic expansions are given by

hcHAp [ 5 5 1Dx2D
E&Ds ~ _W/o dV}’D zNo,oNo,o’

flCHAD

® e D2/ a71.DA2N 1.D A72.N 1D 2N
EQy ~ — [.D-1 A dyy® 2(No,oNo,o + NoiNig +NgZiNZ1p),

N heHAp
Cas LD—l

|7 ar Ny
0

LN A2 N IN A2N
01 NTo T Ng NZpp

LN A72N 1.NA72,N 1,NA72,N 1.N 2N LN A72.N 1IN A72.N
+N—1,0N0,—1 + Nl.() NO.I + Nl,l Nl,l + N—l,—lN—l,—l + Nl,—lN—l.l + N—l,lNl.—l)’

and ERP is obtained from ERN by interchanging R, and R,.
Straightforward computation gives

oD hcHT (251)?

8 aDHEEP(R) 1O n (L/R) In (L/R,)
DN hel (22 (3D + 1)HR3

Cas

2P (22 L2+ In (L/R,)

N 3hc(D +1)(3D + 5)I'(243)?HRIR3
Cas 7 2D+5 75D (RA) L+

(38)

Notice that the leading term of the Casimir interaction is
of orders L=+ /(InL)?, L==!/(In L), and L~=P=3 respec-
tively for DD, DN, and NN boundary conditions.

From above, we see that at large separation, the decay of
the Casimir interaction is slower when the Dirichlet
boundary condition is imposed on the cylinder, and the
decay is faster when the Neumann boundary conditions is
imposed on the cylinder. For the same boundary conditions,
the decay is faster in higher dimensions.

IV. SMALL SEPARATION
ASYMPTOTIC BEHAVIOR

The small separation asymptotic behavior of the Casimir
interaction is of much more interest since the Casimir force
is inversely proportional to some power of the distance
between the objects. It is always expected that the leading
term of the Casimir interaction should agree with that
derived using the proximity force approximation. A subject

I
of much more interest is the next-to-leading-order term
because the ratio of the next-to-leading-order term to the
leading-order term is experimentally measurable. For
the cylinder-plate configuration in (3 + 1) dimensions,
the small separation asymptotic behavior has been derived
in Ref. [32] up to the next-to-leading-order term. The idea of
the derivation is similar to the perturbation in the quantum
field theory. Later, the method was generalized to compute
the small separation asymptotic behavior of the Casimir
interaction energy in various settings [33,42,43,45-52].

In Sec. II, we have seen that for the cylinder-plate or
cylinder-cylinder configurations the Casimir interaction
energy is given by

Ecy = heHAp / Y dpyP2Trin (1 - M), (39)
0

with different matrix M for different scenarios. The first
step in deriving the small separation asymptotic expansion
is to expand the logarithm in (39), which gives

Ec,s = —hcHA —_— dyyP~?
Cas D;s +1 0 Z

ny=-—o0

XD Moy My e (40)

In the following, we will discuss the different scenarios
separately.
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A. Cylinder-plate case

In this case, define

d R
& =—, n = ny, o =7R,
R 0 14
and make a change of variables,
n; =n-+n;, 1<i<s,
nV1—1?
0w=—-—
T

Approximating the summation by corresponding integra-
tions, we have

2hcHA
Fe~ -2l Zs—H/ dnn>

1-— 7 oo
x/ d’L’—( 2)2 / dny...
0 T -0

» / digMy o.My (41)

where
MY, = (=D)T K, L, Qo1+ ¢)).

Here, X = D or N is the boundary condition on the sphere,
and Y =D or N is the boundary condition on the plate,
ap = 0, aN = 1,

D I, 7N — I;,i(a))
1 - 1 - K’ (w) .
n;

Now, we need to find the asymptotic expansion M, ,,.. .

keeping in mind that n ~ !, 7; ~ 2. We also need the

Debye asymptotic expansions of the modified Bessel
|
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functions which can be found in standard handbooks such
as Ref. [55]. We find that

NEEZVW(Z) <1+M+...)’

12

L2 )

where

1+7° 1+27°
(42)
t 58 3t 778
m)=g=75,.  wl)=-gt+-r. (43
Therefore,
. (1) 1 e2nz)-—rai(z) (14 A)
ningy AT Xy + ,
- V2, (1+3) ’
where
vy =n;, y2_ni+nl+l
® 20(1 +¢)
1= iy =
n ni + g
and

AD = % <2u1 (7) —%ul(r)>,
AN = % (201@) —%u1(1)>

are of order . With the help of a computer symbolic math
package, we find that

2en

MG (e 1 [Ty g exp (<22 - TRl )

where B, and B, , are, respectively, terms of order /e and e. Substituting into (41), we find that

<y hcH ( 1) (ax+ay)(s+1) 1 /
ECas ~ D-1 D—1\ pD— 12 s 5
2 n'zr( )R s+ 1 2572

i=0

2\E2=2
o0 s [T 1—77)7 [oo o
dnnP~1=7 dr% dn,... dn,
0 0 77 —0 —0

< exp (— ot _soet ;f"“)z) 1+ (s+

TN )

i=0 j=i+1

The integration over 7; is Gaussian, and it has been explained in Ref. [32] (see also Ref. [50]). One finds that the terms of
order /e would not contribute since it is odd in one of the 71;. After the integration, one is left with an expression of the form
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D-3

- (- 1 (ax+ay)(s+1) 1 (I_TZ)T‘ oo D3 2e(s + 1)n X
ECas ~ BT 171'2F D ‘)RD 12 : dt—— | dnn®~2exp E— (1+F%),

™2

where F is a term of order e. The integration over n is straightforward using the definition of the gamma function.
One obtains

hcT(D —HHVR SN (—1)@xta)sth) 1 o
EXY o 2 /drl—rle+QX,
Cas 22D_%71'%F(%)dD_% ; (s + 1)D+1 0 ( ) ( )

where QX is a term of order € and is a polynomial of degree o 4D -5 (D —-2)(D -3) 1)2 ﬂ
2 in 72. Using =\ o3 3D(D —3) =
- 4D-5 D*+7D-6 d
J D— IF b1 r lta N _ _ 1 2\ ¢
/ dTT{I(l_Tz)T}:f(ZDiJFaZ), H <12(2D—3) 3D(2D—3) (S+ ) >R
0 2 T(&9
we find that Finally, using the fact that
hel(D )H\/E oo (_1)(ax+ay)(s+1) © oo (_l)er] e
EXY o 14+ HX , :é‘( ), _ (1 2 )C(k),
Cas 221)__ S (%)dD_%; (s + 1)D+1 (1+ ) Sz:;(erl)k ;(s+1)k
where we have

o hel(D=3¢(D + 1)HVR 4D-5 (D-2)(D-3)¢(D-1)]d

Bew ~ 220375 (2) a0 (1 * [12(21)—3)_ 3D(2D -3) ((D+ 1)} E+"')’

hcT'(D - 1)¢(D+ 1)HVR . 4D-5 (D-2)(D-3)2°-4¢(D-1) d.
220155 (2) P ( " {12<2D—3>‘ 3D(2D—3) 221D+ 1)|R )

hcT(D —1H¢(D + 1)HVR . 4D -5 D> +7D-62P —4¢( )] d
2205375 0 (2) P ( + {12(21)—3) 3D(2D —3) 2P — IC(D+1)} )

_hel(D =3)¢(D +1)HVR 4D-5 D*+7D-6((D-1)]d
Few 22057 (2 )dD—- < +1)(1+ [12(21)—3)_30(21)—3) C(D+1)}E )

Eg ~ (1-27P)

E&R ~(1-277)

(44)

It is easy to check that the respective leading terms coincide with the result of the proximity force approximation

(see Sec. V). Hence, we can write
EXY { d d
B =+ 9 —+ o —
PFAXY ’
ECas R R
where

EPFADD _ pPFANN _ hCF(D —-3)¢(D + 1)HVR
Cas Cas 2D—L D=l D\ ;p-1
2P 2 I(3)d

EFFADN _ pPFAND _ (| _ »-D) hel(D - $)¢(D + 1)HVR
Cas Cas 22D_§lﬂ%r(%)dl)_%

IXY — ;XY
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FIG. 1 (color online).

oo _4D=5 _(D=2)(D-3)¢(D-1)
122D -3)  3D(2D-3) {(D+1)

o AD-=5  (D-2)(D-3)20—4¢(D-1)

X T 122D-3)" 3D(2D-3) 2D—1§(D+ )’

o 4D-5  D*+7D-62° -4((D-1)

X T 122D-3) 3D2D-3)2°—1{(D+1)

w_ 4D-5 D*+7D-6¢(D-1)

X T120@D-3) 3D2D-3) D+ 1) (45)

The values of »*Y are tabulated in Table I of Appendix A
for 3 < D < 6. 9 measures the correction to the proximity
force approximation. The dependence of 9 on D is plotted
in Fig. 1.

One observes some interesting phenomena. 9 is positive
when the cylinder is imposed with the Dirichlet boundary
conditions, which indicates a positive correction to the
proximity force approximation, and 9 is negative when the
cylinder is imposed with the Neumann boundary condi-
tions, which indicates a negative correction. The correction
is larger in the latter case. However, for all combinations of
boundary conditions, we find that the magnitude of the
correction decreases with dimension D. In fact, from (45),
we find that when D > 1

1 111
v 2 ONY (46)

8D’ 8D’

which is inversely proportional to D. This is in big contrast
to the sphere-plate interaction [42], where it is found that
8 ~ —D/4 regardless of the boundary conditions and thus
becomes negative when D is large. In the sphere-plate case,
the correction to the proximity force approximation
becomes large when the dimension of spacetime is
increased. However, for the cylinder-plate case, the cor-
rection to the proximity force approximation becomes
smaller when the dimension of spacetime is increased.

PHYSICAL REVIEW D 92, 025023 (2015)

0 r
A AAA AN
-02 | na
+v
04 | +V
v
-0.6 +
+ g\D
-0.8 v oW
-1t
v . ‘ ‘ ‘
0 5 10 15 20
D

The dependence of 9 on dimension D for different combinations of the boundary conditions.

B. Case where one cylinder lies parallelly
inside the other

In this case,

X - ~ ;,Y
MY =TS Ly, ()T Ly, (V).

n\=—co
Define
R, R, d
a = 5 = 5 - )
R, — R, R, — R, R, - R,
n = ny, o =y(Ry —Ry),

and make a change of variables,

n; =n+n;, 1<i<s,

L b b

n; :;n+%(ni+ni+l)+%‘v
nv1—12

Approximating summations by integrations, we find that

2hCHAD
Bew ~ = o= Zs+1

D-3
y / dnnP- / PACES A
0 0 T

x/ dﬁl.../ dnM, , ..M, , . (47)

where

025023-10
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MY =T N Ly (0= L, (0(1-6))
ni/=—c0
Tni,D _ Ini (aa)) Tn,»,N I;l,(aw)
' K, (aw) "' K, (aw)’
n; n;

~ ) K/ b(l) -~ K//(bCO)
T;li,D: "1( )’ T;[,N: /"1 ‘ (48)

Iy (bw) I, (bw)

Using the Debye asymptotic behavior of the modified
Bessel functions, we find that

o 1
My = (e [y e
e2vn(z1)+uan(za)=2u3n(zs)+van(za)
(14 23)5(1 4 23)s
x (14+ A +BY +C,), (49)

Mnl-,nHl ~ Cil_iz(_l)ax+aY/ dql 2an

(1+D,1+D,2)exp (———

PHYSICAL REVIEW D 92, 025023 (2015)

where

V=N, UVy=N,—n;, V3=n, UVy=n—n;y,
aw w(l—¢) bw w(l—¢)

=" 2= , 3= , L4 = 5
12 1/2 U3 Uy

p 2

Az :;”l( ) Az _UI(T)’
2a 2a

?:—E 1(2), BIQI:—E 1(2),
2a

Cz :71/11 (T) (50)

A, B,, and C, are terms of order &. As in the cylinder-plate

case, expanding each term keeping in mind that n has order

~ 1 .
™! and 71; and ¢; have order £72, we obtain

2en bt a*t

i) —qu (1+AX +B) +C,),

ar i
(51)

where D, ; and D;, are, respectively, terms of order /¢ and e. The integration over g; is straightforward and gives an

expansion of the form

Vi

M
2\/nn

~ Cil—iz (_1)(1X+ay

ORUES

(1+Gi1+Gip)exp <—— -

2 b
A n,.+])2> 1+ A5+ B +C,).  (52)

atr  4n

The rest is similar to the cylinder-plate case. We find that the up to the next-to-leading-order term the Casimir interaction

energy can be written as

EDD EDD PFA 1 _|_ 4D -5

Cas = ~Cas 2 D — 3

d _I_KDDi 5DD d
R, — R, R, R,)’
d d

Cas = ~Cas

4D -5
B2 =2 (14

4(2D -3)R, - R, R~ R,

EDN EDN PFA(l T 4D -5

42D -3)R
4D -5

d +XND£_ DNi
Ry — R, R, R,)’

NN __ pNN,PFA
ECds ECdb (1 +

Here, XY

42D —3)R, — R, R, R,

d +xNNi—xNNi>.

XY,PFA

are defined in (45) and are equal to the XY for the cylinder-plate case, and Eq, " is the leading term that

coincides with the proximity force approximation. It is given explicitly by

thl"(
EQR pra = ECapra =
EQN pra = Elg;?s,PFA =(1-277)

Hence, we have

—)¢(D+1) | RiR
22035 T(R)dP: | Ra— Ry

025023-11
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o (et (5w )
where
9bD _ 4(4211))__53) + KDD%_ }{DD%’
9PN _ 4(42DD__53) + }{DNé_}{ND%’
o= 4?2?)_—53) P % - % ’
NN — 74(42DD__53) + N % — N % . (53)

Recall that b =a + 1. Hence, we can regard 9 as
depending on dimension D and f = b/a = R,/R,—the
ratio of the radius of the larger cylinder to the radius of the
smaller cylinder. Then,

1 s

a — ——— —_ —_——

-1 -1

In Fig. 2, we plot the dependence of 9 on dimension D and
the radii ratio § for different boundary conditions.

We observe that 9 is always positive when the inner
cylinder is imposed with the Dirichlet boundary conditions.

091
+ :1.
o DD B 5
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osf Tk e,
+ vaxxx;°o..
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D
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D

FIG. 2 (color online).

PHYSICAL REVIEW D 92, 025023 (2015)

When the inner cylinder is imposed with the Neumann
boundary conditions, J can be positive or negative depend-
ing on dimension D and the ratio of the radii of the
cylinders. When D is large, we observe some universal
behavior. In fact, from (53) and the asymptotic behavior of
»®Y obtained in (46), we find that when D > 1

1

~ —

19XY ,
2

regardless of the boundary conditions. This agrees with the
graphs we obtained in Fig. 2. The dominating term actually
comes from

4D -5
42D -3)’

which is universal for all boundary conditions.

C. Case where two parallel cylinders are
exterior to each other

In this case,

(9]
X n’.Y
MY =TV Ky (PL)T Koy, (YL).
n'=—00
4,
ooN + B=15
12t v =2
v x B=25
1 %o ° B=3
LVXe
X ®
087 +VV><;.
++VV§>.<).(>.<..
(]
oo Raasiss i1y
0.4 :
0 5 10 15 20
S +
051 L+ TEvesisttese
v Xxo'..
Xo® +B=15
0 Vx. v B=2
. x =25
) B=3
-0.5 *
NN
-1 L—— . . .
0 5 10 15 20
D

The dependence of 9 on dimension D and the radii ratio f for different combinations of boundary conditions.
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Define Using the Debye asymptotic behavior of the modified

Bessel functions, we find that
R, R, d

= , b = . E = s
n = ny, o =7y(Ry + Ry),

I 1
M, , ~ (-1 “X*“Y/ dqi 5———
NNy ( ) — 127[\/@

e2vin(zn)—van(z2)+2v3n(z3)—van(z4)

and make a change of variables

n; =n+n, 1 <i<s, (1+ 23)5(1 + 23
b b . .
n' :En+%(ni+ni+l) + 4 x (1+ A7 + By + ), (56)
nv1-—1°
Q= ———
ar

. . . where
As in the previous case, we find that

2hcHA) (1—1)”7
Ecy ~ - dnnP! [ d
Cas RP-1 Zs+1/ i / Ty =n, vi=ni+n;, wvz=nl, vy=ni+n;,,

o . _aw _o(l+e) b ~o(l+e)
X /_oo dn... /_oo dl’lsMnO.n]...Mnl‘,no, (54) 21 _V_l’ Zz—T, Z3—V—3, Z4—T,
2 2
where AZD:;M(T), Agzzvl(f),
2a 2a
X e ", BD=— BY =— ,
M =T Ky (1 4+ e) T TR TR
ni=—co 2a
Co=——u (7). (57)
XKan ]( (1 +8)) n
Tni,D In,-(aw) Tni,N _ I;,LI(CI(U)
! K, (aw)’ ! K, (aw)’
, As before, expanding each term according to orders of
T";'D _ I”i(bw) T":’N _ I”i(ba)) (55) 5 gives
2 K, (bo)’ > K (bw)

2en b a?
(1 +D; 1 +D;,) exp (“T(ni—"m)z - qu’2>(1 + AL + By +Cy),

M”i-”i+l ~ Cil_iz(_l)aXJraY/_ dQl art 4n

© 2nn
(58)

where D; | and D, , are, respectively, terms of order /¢ and ¢. The rest is similar to the case where one cylinder is inside the
other. We find that, up to the next-to-leading-order term, the Casimir interaction energy can be written as

EvB‘]i)b EEESPFA<1 421[)) 53 Rl iR2 _|_}(DDRil_|_}(DD RiQ) ,
EZ = E&NSPFA<1 42DD 53 T jl-Rz +xDNRil+xNDR%>,
Egp = EggpFA<1 42DD 53 &, j-Rz +xNDRil+}(DNRi2>,
ERN = E™™ <1 42DD 53 T i %t xNNRil+ N R%) (59)
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Here, E)C(:S’PFA is the leading term that coincides

with the proximity force approximation. It is given
explicitly by

hAcHT(D-1){(D+1)

EDD _ ENN —
Cas,PFA 7 ™~ Cas,PFA ™ _1 D=l 1
: 2205375 1(R)dP>

DN __ ND _ -D
ECas,PFA - ECas.PFA - (1 -2 )

R\R;
R{+R,
Hence, we have
EXY { d d
=<1+ 9% +o .
EgAXY R+ R, R, + R,
where
0.61
04l L] ﬁDD * A=1
' ; + A=15
02t k¢ v A=2
Ve x A=25
of *i;. © A=3
%i;,
-0.2 ¥i.§§i
N L ITTTYY
' 5 10 15 20
D
-0.5 cx¥ $§
ittt
—1t **X§Z>V<§°.
Xvxel
*XV:(. * B:l
-1.51 va x B=15
:< v B:Z
2 x B=25
st o e B=3
-3 :
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FIG. 3 (color online).
conditions.

PHYSICAL REVIEW D 92, 025023 (2015)

9bD 4(4211))__53) + PP 1 + DD%’
9DN _ 4(4211))__53) XDN% %ND%’
gND 4(45)__53) + NDl_I_}{DN%’
NN 4é£;if”-%zNNl-+zNN%. (60)

Recall that b =1 —a. Hence, we can regard § as
depending on dimension D and A = b/a = R,/R;—the
ratio of the radii of the cylinders. Without loss of generality,
we can assume that R, > R;. Then, A > 1,

o A
“TAYD A+

In Fig. 3, we plot the dependence of d on dimension D
and the radii ratio A for the different boundary conditions.

We observe that 9 is always negative for the DN, ND,
and NN boundary conditions. When both cylinders are
imposed with the Dirichlet boundary conditions, 9 can be
positive or negative depending on dimension D and the
ratio of the radii of the cylinders. When D is large, we
observe some universal behavior. In fact, from (60) and the

-0.4
.oooooooooooogg
XXxxxxgééxxx¥¥$$
0.6 'xvvviiz+;¥iii**
B T
X n *9\6
-0.8 L ox * p=l
- + B=15
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*
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The dependence of d on dimension D and the radii ratio A for different combinations of the boundary
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asymptotic behavior of »*Y obtained in (46), we find that
when D > 1

19XY

1
2 9
regardless of the boundary conditions. This agrees with the

graphs we obtained in Fig. 3. The dominating term actually
comes from

4D -5
42D -3)’

which is universal for all boundary conditions.

V. POSTULATE FOR DERIVATIVE
EXPANSION FORMULA

In a series of papers [53,56,57], Fosco, Lombardo, and
Mazzitelli used derivative expansion to compute the
|

F(%)D +1)

D+l Pt
1 D-3)(D-1)(D-2)_(D-1
bZ(D):_szH;%{_( : 2D )F<
B D+1 (D=-2)(D=3)¢[D-1)
_b‘)(D)( 6 6D C(D+1)>'

PHYSICAL REVIEW D 92, 025023 (2015)

Casimir interaction energy between a curved surface and
a plate with the Dirichlet boundary conditions up to the
next-to-leading-order term. In Ref. [53], they showed that
the derivative expansion of the Casimir interaction energy
is given by

EDE — he / dP1x,
S

x<b0(D) ! I )

veoP TP R aop T
(61)

Here, x, = (x,,...,Xxp), x; = yw(x,),x, € S defines the
position of the curved surface with respect to the plate at
x; =0, and

>§(D )+ D+ 1)F<D+1>C(D + 1)}

2

(62)

Consider the cylinder-plate interaction. We can take the cylinder to be (x; — L)? 4+ x3 = R?. Then,

w(xy) =wlx)=L- \/ R* - x3,

Some computations give

1

X2

2_ 2
R° —x;

VI// = €.

2H\/R

1 R

dP~'x :2H/ dx
/S - ly(x )P o (L -
1

(D -1 . 3d 1 N
R —2)°  2aP-32P-'T(R)r (L) 4R2D -3 ’
x3  2HVR

(D -1 2 d

R
/dD_lXL—D = 2H/ dX2 5 5D P2 5 = 51 AD-Tr(D s
s ly(x1)] o (L-R-X)PR-x} 24’32 TR (2H)2D - 3R

Hence, derivative expansion gives

4D -5

goeop | hel(D - D¢(D+1)HVR (1 [

Cas 2p-1 D=l /p\ ;p_1
24P 1073 (5)d 2

12(2D - 3)

(D-2)(D=-3)¢(D-1)]d
~ 3D(2D -3) g(D+1)]E+”'>’ (63)

agreeing with the result we obtained in the first formula of (44).
Encouraged by this, we would like to give a postulate for the result of derivative expansion for the DN, ND, and NN
boundary conditions, in the case where the two interacting objects are both curved. Inspired by Ref. [54], let us formulate

the following ansatz for the small separation asymptotic behavior of the Casimir interaction energy between the two curved

objects in (D + 1)-dimensional Minkowski spacetime:
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EQy, /dD_lXngaJH)(l +p(H)VH, - VH,
T

+ p2(H)VH, - VH, + B (H)VH, - VH; + - - ),
(64)

where Sgas is the Casimir energy density between two
parallel plates for a conformally coupled massless scalar
field, X can be taken to be the x; = 0 plate parametrized by
X, = (x2,...,xp), x; = H{(x,) and x, = H,(x ) are the
height profiles of the two objects with respect to X, and
H = H; — H, is the height difference. When the second
object is a plate, we can take it as the plate x; = 0, and
then H2 =0.

Notice that

PHYSICAL REVIEW D 92, 025023 (2015)

According to the result of Ref. [53] we mentioned
above,

D+1 (D-2)(D-=-3)¢(D-1)
6 6D D+ 1)

pR> = 5P = (67)

We are going to determine the values of f;, f,, and S, for
DD, DN, ND, and NN boundary conditions based on our
results on the small separation asymptotic expansions of the
Casimir interaction energies between two cylinders exterior
to each other.

We can take the two cylinders to have height profiles

by " (D)
Eu (H) = =5 (65)
where H =L, —\/R}=x3, Hy =—L,+\/R} —x3.
AcT(ZEH¢ (D41
ppo(D) = (D) = -2 DY),
2 D4l Then, L = L| + L, is the distance between the centers
ng(D):bgD(D) _ (1_2—D>hCF(T)§£DI+1) (66) of the cylinders. Assuming that R; < R,, some tedious
2D+ g% computations give
J
/dD—lx i—zH/R' dx !
) ~HP 0 (L- /R =x*=\/R}—x*)"
H |22RR,T(D -3 9 d 3 d d
_n 2>{1+ ) (_+_>+...}, )
d -2 Rl +R2 F(D) 4(2D - 3) R1 +R2 4(2D - 3) Rl R2
VH,-VH R, 1 x2
dP~'x #:2H/ dx
/2 S HP 0 (L—y/R-xX-\/R-2)P R -x
H [2zRR,T(D-3) 2 d d
dD_i Rl +R2 F(D) 2D - 3 R1 Rl +R2
VH,-VH Ry 1 2
/dD_lXL#:ZH/ dx D 2x 2
x H 0 (L-+/R—x>— /R, —x*)" Ry —x
H [2zRR,T(D-3) 2 d d
_ 1 1442 ( 2) iR ST , (70)
dD_i Rl +R2 F(D) 2D - 3 R2 Rl +R2
VH,-VH Ry 1 x?
aP-lx L T2 —2H/ dx
/}: tOHP 0 (L-R-2-RB-2)P /B2 RB-2
H [2zR R, T(D-1%) 2 d
— ] UZASR4Y) ( 2) + o). (71)
dD_E Rl + R2 F(D) 2D —_ 3 Rl + Rz

025023-
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Substituting into (64), we find that for the interaction of two cylinders

EREXY _ v H [22R\R,T(D -}) {1 L9 d 3 (d N d)
*® d’= \| R, + R, T(D) 42D -3) R, +R, 42D -3)\R, R,
+w<g_ d >+2§Y<D>(g_ d ) WD) d }
2D-3 \R;, Ry +R, 2D-3 \R, R +R, 2D -3 R +R,
b=t s Fif)(,;f) {1455 (320 0) - 20 0) - 290 0))
s (00 -3) s (o -3) 72)
Comparing to our results (59), we find that the leading terms do agree, and the next-to-leading-order terms give
=28 (D)~ 25 (D) - 28 () = - 2,
o -2 4023 _ (P2 23),()0 & Eg - B (D) = (D),
2w-i:“’if—”@?‘“g’)‘?)2” S
e e o R} 73)
From these, we obtain
P (D) =2~ (D) - Y (D), (74)
and D+1 (D-2)(D-3)¢(D-1
pro(D) = pRo(p) = 2t - PRI
pPN(D) = P (D) :D;] (B- 26),()1) 3>§E§;B§i:f

When D = 3, these agree with the results obtained in Ref. [54].
Now, let us compare these results to the results of two spheres we obtained in Ref. [43]. In this case, we take the height

profiles of the spheres with radii R; and R, to be

H1:L1—

2.2
Ry —x7,

H,=-L,+ \/R%—xi,

where x| = +/ x% + -+ x%). L, + L, = L is the distance between the centers of the spheres.

025023-17



LEE-PENG TEO

Now, assuming R; < R,, some tedious computations give

PHYSICAL REVIEW D 92, 025023 (2015)

1

1 2r 7 R,
dD—l - d D— 2
L XJ— HD F(DT_I)/)\ xlx

~ VR =2 - VR - x1)"
2 R\R bt 3(D + 1 d D+1/d d
= Do ﬂD D1l ( 2 > {1 + ( ) - <_+_> +"'}7 (76)
22T®)d> \R + R, 4 R +R, 4 \R R
VH,-VH, 2% [® 1 x2
dD_IXL ! ! = / dXLX L
/2 H® T — VR = - /RE—Z)PRI—x]
2 R\R, \*=/2d 2d
= ~D1 ” D+l< 2 >2 <_+"'>v (77)
27T(R)d=> \Ri + R, Ry Ry +R,

_ VH2VH2 27TT R,
/de x, 7 _F(D‘l)/o dx x|~

2
1 X1

SR A - B B

R < R R2 >T (Zd 2d_ ) (78)
B 25 T(2)d% \R + R, R, Ry +R, ’
o VH,-VH, 27 (R D_2 1 X3
d 1 D = D=1 dXJ_XL
z H I3 Jo ~ VR =3 = /R =x1)" /R = /R -
el R1R2 b/ 24

= — u 5 M(R 2 <R R _|_> (79)

T(R)d> 1T R 1T Ry

Hence, for the interaction of two spheres, our ansatz (64) gives

3(D+1)

D
w2
Eﬁm'bm___;;@+

_D+l(d d
4 R +R, 4 \R R

d

XY XY i_ — XY d
+2/ (D)<R1 R1+R2>+2ﬁ2 (D)<R2 R1+R2> 2P <D)R1+R2+ }

_ XY z? 3(D+1)_ XY 7 pXY _ hpXY ) d
= g {1 (gD D) -2 ) )
D+1\d D+1\d
+<z XY(D) - I)Rl <2ﬁ Y(D) - :)RZ+~~}. (80)

With the values of f; and f, given by (75), this agrees
perfectly with the result we obtained in Ref. [43] for two
spheres when D # 4.

Now, some explanations are in order. The derivative
expansion technique is a formal and nonrigorous method to
obtain the small separation asymptotic behavior of the
Casimir interaction energy. The result might not be correct
due to some unobserved singularities in the formal deri-
vation. Therefore, the ansatz (64) can only be used as a
reference for the small separation asymptotic expansion of
the Casimir interaction energy, but it needs to be checked
against actual computations.

VI. CONCLUSION

In this work, we considered the Casimir interaction in
(D + 1)-dimensional spacetime due to the vacuum fluctu-
ations of massless scalar fields between a cylinder and a
plate, between two parallel cylinders where one is inside
the other, and between two parallel cylinders exterior to
each other. We derived the explicit integral representations
for the Casimir interaction energies and use them to study
the large separation and small separation asymptotic
behaviors of the Casimir interactions. The large separation
asymptotic behaviors were easy to compute, and the order
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of decay was the smallest in the Dirichlet—Dirichlet case
and largest in the Neumann—Neumann case. The compu-
tations of the small separation asymptotic behaviors were
more complicated. The leading terms were found to agree
with the proximity force approximation. The results on the
next-to-leading-order terms are important, and they exhibit
some universal behaviors. In particular, we found that for
the cylinder-plate case the ratio of the next-to-leading-order
term to the leading-order term was inversely proportional to
D. For the case where one cylinder was inside the other, the
ratio of the next-to-leading-order term to the leading-order
term approached the limiting value 1/2 when D was large.
For the case where the two cylinders were outside each
other, the ratio of the next-to-leading-order term to the
leading-order term approached the limiting value —1/2
when D was large. Hence, we found that the ratio was
bounded in dimensions for all cases we considered.
Therefore, the corrections to the proximity force approxi-
mation will not get larger in higher dimensions, in contrast
to the sphere-plate and sphere-sphere interactions, where it
was found that the ratio of the next-to-leading-order term to
the leading-order term is proportional to D when D is
large [42,43].

PHYSICAL REVIEW D 92, 025023 (2015)

An interesting thing to note is that our small separation
asymptotic expansion for the case of the Dirichlet—
Dirichlet cylinder-plate interaction agreed with the
result derived using derivative expansion in Ref. [53].
Generalizing the D = 3 case in Ref. [54], we postulated a
general form of the derivative expansion for the small
separation asymptotic expansion of the scalar Casimir
interaction energy in (D + 1)-dimensional Minkowski
spacetime, for two curved surfaces with combinations of
the Dirichlet and Neumann boundary conditions, based
on our results on the cylinder-cylinder interaction. We
also checked our postulate with the results we obtained
for the sphere-sphere interaction in Ref. [43] and found
that the postulate gives correct expansion except
when D = 4.

ACKNOWLEDGMENTS

This work is supported by the Ministry of Higher
Education of Malaysia under FRGS Grant No. FRGS/1/
2013/ST02/UNIM/02/2. We would like to thank the
anonymous referee for the valuable comments that helped
to improve the paper.

APPENDIX: TABULATION OF CONSTANTS

see Table L.
TABLE 1. The values of xXY for 3 <D < 6.
}{DD }{DN }{ND }{NN
D Exact Numerical Exact Numerical Exact Numerical Exact Numerical
7 7 7 _ 16 7 _ 40
3 36 0.1944 36 ( 0.1944 %_W) —0.5775 %_W> —1.1565
{3 £(3) L3 3
4 &~ 2020 0.1447 i o) 0.1524 G —0.4040 i) -0.5509
5_3 5 84 5 _ 75 5 _ 27
5 %_W( ) 0.1178 >~ 155”5) 0.1237 56— 155;:2) -0.3156 ﬁ—%> -0.3686
£(5 Z(5 Z(5 ‘5
6 108~ F 0.0998 108 ~ 387 207 0.1034 108 ~ 18920 -0.2594 108~ 520) -0.2811
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