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We start with an SUðN Þ Yang-Mills theory on a manifold M, suitably coupled to scalar fields in the
adjoint representation of SUðN Þ, which are forming a doublet and a triplet, respectively, under a global
SUð2Þ symmetry. We show that a direct sum of fuzzy spheres S2 IntF ≔ S2FðlÞ ⊕ S2FðlÞ ⊕ S2Fðlþ 1

2
Þ ⊕

S2Fðl − 1
2
Þ emerges as the vacuum solution after the spontaneous breaking of the gauge symmetry and paves

the way for us to interpret the spontaneously broken model as a UðnÞ gauge theory over M × S2 IntF .
Focusing on a Uð2Þ gauge theory, we present complete parametrizations of the SUð2Þ-equivariant, scalar,
spinor and vector fields characterizing the effective low energy features of this model. Next, we direct our
attention to the monopole bundles S2�F ≔ S2FðlÞ ⊕ S2Fðl� 1

2
Þ over S2FðlÞ with winding numbers �1,

which naturally come forth through certain projections of S2 IntF , and give the parametrizations of the SUð2Þ-
equivariant fields of the Uð2Þ gauge theory over M × S2�F as a projected subset of those of the parent
model. Referring to our earlier work [1], we explain the essential features of the low energy effective action
that ensues from this model after dimensional reduction. Replacing the doublet with a k-component
multiplet of the global SUð2Þ, we provide a detailed study of vacuum solutions that appear as direct sums of
fuzzy spheres as a consequence of the spontaneous breaking of SUðN Þ gauge symmetry in these models

and obtain a class of winding number �ðk − 1Þ ∈ Z monopole bundles S2;�ðk−1Þ
F over S2FðlÞ as certain

projections of these vacuum solutions and briefly discuss their equivariant field content. We make the
observation that S2 IntF is indeed the bosonic part of the N ¼ 2 fuzzy supersphere with OSPð2; 2Þ
supersymmetry and construct the generators of the ospð2; 2Þ Lie superalgebra in two of its irreducible
representations using the matrix content of the vacuum solution S2 IntF . Finally, we show that our vacuum
solutions are stable by demonstrating that they form mixed states with nonzero von Neumann entropy.
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I. INTRODUCTION

Dynamical generation of fuzzy extra dimensions in the
form of a fuzzy sphere S2F or the product S2F × S2F from
SUðN Þ gauge theories coupled to scalar fields in the
adjoint representation of the gauge group [2–4] (see [5]
for a review) constitutes recent intriguing examples of the
ideas introduced in [6,7], and known by the name “decon-
struction” in the literature. In the latter, it was shown that
extra dimensions may emerge dynamically in a four-
dimensional renormalizable and asymptotically free gauge
theory, while in the aforementioned recent studies [2,4], it
was demonstrated that vacuum expectation values of the
scalar fields form fuzzy sphere(s) and fluctuations around
these vacuum configurations take the form of gauge fields
over S2F or S2F × S2F, leading to the interpretation that the
emerging theories after spontaneous symmetry breaking
are gauge theories over M4 × S2F or M4 × S2F × S2F with
smaller gauge symmetry groups. This latter fact is also
ascertained by the construction of a tower of Kaluza-Klein
(KK) modes of the gauge fields. Inclusion of fermions in
models over M4 × S2F or M4 × S2F × S2F have also been

investigated in the recent past, and it has been found that
low energy physics obtained from KK modes analysis have
“mirror fermions,” where chiral fermions come with pairs
of opposite chirality and quantum numbers [4,8].
These emerging models with fuzzy extra dimensions have

connections with effective models arising in the low energy
limit of string theories, such as the Berenstein-Maldacena-
Nastase matrix model [9,10] and massive deformations of
the N ¼ 4 super Yang-Mills theories, for instance, the
N ¼ 1� models [11–13]. In fact, the model investigated in
[4] has the same field content as the N ¼ 4 super Yang-Mills
theory, but it is a massive deformation of the latter involving
potential terms breaking the SUSY completely and the global
SUð4Þ R-symmetry down to a global SUð2Þ × SUð2Þ.
Another related paper [14] launched an investigation, starting
from a higher dimensional SUðN ÞYang-Mills matrix model,
which is similar to the Ishibashi-Kawai-Kitazawa-Tsuchiya
matrix model [15] associated with the low energy physics of
the type IIB superstring theory, and considered the sponta-
neous symmetry breaking schemes mediated by the appear-
ance of fuzzy spheres. They have shown that the surviving
gauge group after symmetry breaking, which is of the form
SUð3Þc × SUð2ÞL ×Uð1ÞQ, couples to all fields of the
standard model (SM) in a suitable manner, and the resulting*kseckin@metu.edu.tr
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low energy physics appears to be an extension of the standard
model. In [16] certain orbifold projections of N ¼ 4 super
Yang-Mills theory have been considered, and it was shown
that utilizing soft supersymmetry breaking terms reveals extra
dimensions which are twisted fuzzy spheres consistent with
orbifolding. Implications of this model related to the standard
model and the minimal supersymmetric SM (MSSM) at low
energies are also studied in [16].Other related new results have
been reported in [17,18].
In our recent work, we have given the equivariant para-

metrizations of Uð2Þ andUð4Þ gauge theories overM × S2F
and M × S2F × S2F, respectively, which has provided further
insights on the structure of these theories that characterize
their low energy physics [1,19,20]. In these studies, we have
adapted and employed the coset space dimensional reduction
(CSDR) techniques discussed in [5,21,22] (see also [3] in this
context). The essential idea behind this technique may be
presented briefly by considering a Yang-Mills theory with a
gauge group S over the product space M ×G=H. Group G
has a natural action on its coset, and demanding that theYang-
Mills gauge fields be invariant under this G action up to S
gauge transformations leads immediately to G-equivariant
parametrization of the gauge fields. Subsequently, such
models may be dimensionally reduced by integrating over
the coset space G=H, and an explicit form of the low energy
effective action may be obtained. After determining the
SUð2Þ and SUð2Þ × SUð2Þ equivariant parametrizations of
fields in [1,20], we were able to compute the dimensionally
reduced actions by tracing over the fuzzy spheres, and we
found that Abelian Higgs-type models with one or several
(four for the case in [20]) complex scalar fields and addi-
tionally some real scalars emerge, which have attractive or
repulsive (multi)vortex solutions depending on the couplings
between the scalars and the gauge fields in the parent SUðN Þ
theory. The case ofM ¼ Rθ, theMoyal plane, was treated in
[19], and we have found noncommutative vortices and flux
tube solutions in the low energy limit. Other recent related
work on equivariant reduction over extra dimensions includes
[23–29].
It is also worthwhile to remark that results that bear

resemblance especially to our findings in [1,20] have also
emerged in the context of Aharony-Bergman-Jafferis-
Maldacena models [30,31]. The latter are, as is well known,
N ¼ 6 SUSYUðN Þ × UðN ÞChern-Simons gauge theories
at the level ðk;−kÞ with scalar and spinor fields in the
bifundamental and fundamental representations, respec-
tively, of the SUð4ÞR-symmetry group. A particular massive
deformation of the Aharony-Bergman-Jafferis-Maldacena
model [32,33] preserving all the supersymmetry but partially
breaking the R symmetry down to SUð2Þ × SUð2Þ ×
Uð1ÞA ×Uð1ÞB × Z2 leads to vacuum solutions of the
model, which are fuzzy spheres in the bifundamental
formulation realized in terms of the Gomis–Rodriguez-
Gomez–Van Raamsdonk–Verlinde matrices [32,34]. A par-
ticular parametrization of the fields given in [35,36] leads to a

low energy effective action involving four complex scalar
fields interacting with a sextic potential, containing the
relativistic Landau-Ginzburg model in a certain limit.
These developments indicate that there is ample motiva-

tion for further exploring the structure of gauge theories with
spontaneously generated fuzzy extra dimensions. In this
article we find a new class of fuzzy extra dimensions
emerging from an SUðN Þ gauge theory as direct sums of
fuzzy spheres. Specifically, we orient the developments
starting with an SUðN Þ Yang-Mills theory on a manifold
M, suitably coupled to two separate sets of scalar fields both
in the adjoint representation of SUðN Þ, which are forming a
doublet and a triplet under the global SUð2Þ symmetry.
Although we only admit the bilinears (or composites) of the
SUð2Þ doublets that transform as a vector under the global
SUð2Þ, we are able to detect various new features in the
model, which can be ascribed to the implicit presence of the
doublet fields. We find that a direct sum of fuzzy spheres
S2 IntF ≔ S2FðlÞ ⊕ S2FðlÞ ⊕ S2Fðlþ 1

2
Þ ⊕ S2Fðl − 1

2
Þ appears

as fuzzy extra dimensions after the spontaneous breaking of
the gauge symmetry and forms the vacuum configuration of
our model. By considering the fluctuations around this
vacuum, we show that the spontaneously broken model
may be interpreted as a UðnÞ gauge theory overM × S2 IntF .
In order to place this interpretation on a firmer ground, we
focus on theUð2Þ theory and present complete parametriza-
tions of the SUð2Þ-equivariant, scalar, spinor, and vector
fields characterizing the effective low energy structure of this
model. Strikingly, we encounter the equivariant spinor fields
as a consequence of (although implicitly in the form of
bilinears) admitting SUð2Þ doublets.
We note that monopole bundles S2�F ≔ S2FðlÞ ⊕

S2Fðl� 1
2
Þ over S2FðlÞ [37–39], with winding numbers

�1, naturally appear after a certain projection of S2 IntF ,
which we identify and subsequently give the parametriza-
tions of the SUð2Þ-equivariant fields of the Uð2Þ theory
overM × S2�F as a projected subset of those onM × S2 IntF .
We make the observation that the low energy effective
action that ensues from this model by tracing over (dimen-
sionally reducing) S2 IntF may be seen as two decoupled
Abelian Higgs-type models by comparing with the results
of our earlier work [1].
Replacing the two-component spinors with a k-compo-

nent multiplet of the global SUð2Þ and admitting them in
our model only through their bilinears, we find vacuum
solutions, which are given as particular direct sums of fuzzy
spheres. In Sec. IV, we inspect these models in considerable
detail and determine the aforementioned vacuum solutions
and discuss their equivariant field content for the cases of
k ¼ 3 and k ¼ 4. In addition, we obtain a particular class of

winding number�ðk − 1Þ ∈ Zmonopole bundles S2;�ðk−1Þ
F

as certain projections of these vacuum solutions.
An intriguing result that we came across in our studies is

that the vacuum configuration S2 IntF forms the bosonic part
of the N ¼ 2 fuzzy supersphere with OSPð2; 2Þ supersym-
metry [37,40–42]. This follows from a comparison of the
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direct sum of SUð2Þ irreducible representations (IRRs) that
is used to describe S2 IntF and the SUð2Þ IRR decomposition
of the typical superspin IRRs of OSPð2; 2Þ. Moreover, we
manage to use the matrix content of the vacuum solution
S2 IntF to give a construction of the generators of OSPð2; 2Þ
in its three-dimensional atypical and the four-dimensional
typical irreducible representations.
We discuss the stability of our vacuum solutions using the

recent novel approach developed in [43] which addresses the
mixed state nature of configurations with several fuzzy
spheres and their quantum entropy, relying on the broader
considerations of quantum entropy and its ambiguities
recently discussed in [44,45]. We show that our vacuum
configurations, which are direct sums of fuzzy spheres, with
one or several of the fuzzy spheres at a given level occurring
more thanonce in thedirect sum, do indeed formmixed states
with nonzero von Neumann entropy, while single fuzzy
sphere solutions form pure states with vanishing entropy.
Stability of our vacuum solutions follows, since mixed states
cannot go to pure states under unitary evolution. A detailed
account of this is provided in Sec. VI.

II. GAUGE THEORY OVER M × S2 IntF

A. The model

We consider the following SUðN Þ Yang-Mills theory
with the action

S¼
Z
M

TrN

�
1

4g2
F†
μνFμν þ ðDμΦaÞ†ðDμΦaÞ

�
þ 1

~g2
VðΦaÞ;

ð2:1Þ

where

VðΦaÞ ¼ TrN ðF†
abFabÞ: ð2:2Þ

In (2.1), Fμν is the curvature associated with the suðN Þ
valued connection Aμ. We take Aμ as anti-Hermitian

(A†
μ ¼ −Aμ) and Φaða ¼ 1; 2; 3Þ ∈ MatðN Þ are anti-

Hermitian (Φ†
a ¼ −Φa) scalar fields, transforming in the

adjoint representation of SUðN Þ as
Φa → U†ΦaU; U ∈ SUðN Þ; ð2:3Þ

and in the vector representation of the global SOð3Þ≃
SUð2Þ symmetry of the action. The covariant derivative of
Φa is

DμΦa ¼ ∂μΦa þ ½Aμ;Φa�: ð2:4Þ
Fab is given in terms of Φa as

Fab ≔ ½Φa;Φb� − εabcΦc: ð2:5Þ
In (2.1) g and ~g are the coupling constants and TrN ¼
N −1Tr denotes the normalized trace.

We assume that the matrices Φaða ¼ 1; 2; 3Þ have the
following structure:

Φa ¼ ϕa þ Γa; Γa ¼ −
i
2
Ψ† ~τaΨ; ð2:6Þ

where

Ψ ¼
�
Ψ1

Ψ2

�
ð2:7Þ

is a doublet of the global SUð2Þ and ϕa, Ψα ∈ MatðN Þ
(α ¼ 1; 2) are anti-Hermitian and transform adjointly under
the SUðN Þ as ϕa → U†ϕaU and Ψα → U†ΨαU. Clearly
Γa’s are also anti-Hermitian and transform adjointly,

Γa → U†ΓaU; ð2:8Þ

under SUðN Þ, and transform in the vector of the global
SUð2Þ. In (2.6), ~τa stands for τa ⊗ 1N , τa being the Pauli
matrices. In our model we only admit the bilinears Γa’s of
the fields Ψα, but as we shall see, many new features
emerge, which can be ascribed to introducing the latter in
our model.
This theory spontaneously develops extra dimensions in

the form of direct sums of fuzzy spheres with many novel
features, as we demonstrate next.
We consider the generalization of (2.7) to k-component

multiplets transforming under the k-dimensional IRR of
SUð2Þ and their implications in Sec. IV.

B. The vacuum structure and
gauge theory over M × S2 IntF

We observe that VðΦaÞ is positive definite, and it is
minimized by the solutions of

Fab ¼ 0: ð2:9Þ

Solutions of this equation have been discussed previously
[2,9,11,12]. In general, they are given in terms of N ×N
matrices carrying direct sums of irreducible representations
of SUð2Þ. In the present case, we require that Γa’s are
bilinears in Ψα as introduced in (2.6) and (2.7), and it is not
possible to pick Γa in an arbitrary IRR of SUð2Þ, as the
corresponding Ψ will not exist, in general. We restrict
ourselves to a possible solution for which neither ϕa nor Γa
vanishes. Assuming that the dimension N of the matrices
Φa factorizes as ð2lþ 1Þ4n, Eq. (2.9) is solved by
configurations of the form

Φa ¼ ðXð2lþ1Þ
a ⊗ 14 ⊗ 1nÞ þ ð12lþ1 ⊗ Γ0

a ⊗ 1nÞ; ð2:10Þ

with

½Xa; Xb� ¼ εabcXc; ½Γ0
a;Γ0

b� ¼ εabcΓ0
c; ð2:11Þ
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up to gauge transformations Φa → U†ΦaU. In Eq. (2.11)

Xð2lþ1Þ
a are the (anti-Hermitian) generators of SUð2Þ in the

irreducible representation l and

Γ0
a ¼ −

i
2
ψ†τaψ ð2:12Þ

are 4 × 4 matrices carrying a reducible representation of
SUð2Þ. To facilitate the developments, it is necessary to
describe the structure of the latter.
We introduce two sets of fermionic annihilation-creation

operators, fulfilling the anticommutation relations

fbα; bβg ¼ 0; fb†α; b†βg ¼ 0; fbα; b†βg ¼ δαβ: ð2:13Þ

They span the four-dimensional Hilbert space with the
basis vectors

jn1; n2i≡ ðb†1Þn1ðb†2Þn2 j0; 0i; n1; n2 ¼ 0; 1: ð2:14Þ

Taking the two-component spinor

ψ ¼
�
ψ1

ψ2

�
≔

�
b1
b2

�
; ð2:15Þ

it is easy to see that the Γ0
a’s fulfill the SUð2Þ commutation

relations and bα, b
†
α are SUð2Þ spinors:

½bα;Γ0
a� ¼ −

i
2
ðτaÞαβbβ; ½b†α;Γ0

a� ¼
i
2
ðτaÞβαb†β: ð2:16Þ

The Γ0
a’s furnish a reducible representation of SUð2Þ

composed of two inequivalent singlets and a doublet;
i.e., it has the irreducible decomposition

00 ⊕ 02 ⊕
1

2
: ð2:17Þ

Here the inequivalent singlets are distinguished by the
eigenvalue ofN ¼ N1 þ N2. With the notation of (2.14) the
singlets states are j0; 0i and j1; 1i and carry the eigenvalues
of N, which are 0 and 2, respectively, and they are denoted
by the subscripts appearing in (2.17).
The quadratic Casimir operator ðΓ0

aÞ2 can be expressed as

ðΓ0
aÞ2 ¼ −

3

4
N þ 3

2
N1N2;

N1 ¼ b†1b1; N2 ¼ b†2b2; N ¼ N1 þ N2; ð2:18Þ

and has the eigenvalue 0 on the singlets and − 3
4
on the

doublet. It also follows from the anti-commutation relations
in Eq. (2.13) that N1 and N2 are projectors:

N2
1 ¼ N1; N2

2 ¼ N2: ð2:19Þ
We can define the projections to the singlet and doublet
subspaces, respectively, as

P0 ¼
ðΓ0

aÞ2 þ 3
4

3
4

¼ 1 − N þ 2N1N2;

P1
2
¼ −

ðΓ0
aÞ2
3
4

¼ N − 2N1N2: ð2:20Þ

We can split P0 into two projectors corresponding to two
inequivalent singlet representations 00 and 02 as

P00
¼ −

1

2
ðN − 2ÞP0 ¼ 1 − N þ N1N2;

P02
¼ 1

2
NP0 ¼ N1N2 ¼

1

2
N − 1

2
P1

2
: ð2:21Þ

The Γ0
a’s also fulfill

Γ0
aΓ0

b ¼ −
1

4
δabP1

2
þ 1

2
εabcΓ0

c; TrΓ0
aΓ0

a ¼ −
3

2
: ð2:22Þ

We relegate some useful identities involving Γ0
a, and some

further related formulas, to the Appendix and continue our
discussion.
Going back now to the vacuum configuration (2.10), we

observe that its SUð2Þ IRR content follows from the
Clebsch-Gordan decomposition as

l ⊗
�
00 ⊕ 02 ⊕

1

2

�
≡ l ⊕ l ⊕

�
lþ 1

2

�
⊕

�
l −

1

2

�
;

ð2:23Þ

where l ≠ 0: Let us introduce the short-hand notation

ðXð2lþ1Þ
a ⊗ 14 ⊗ 1nÞ þ ð12lþ1 ⊗ Γ0

a ⊗ 1nÞ
≕ Xa þ Γ0

a ≕ Da: ð2:24Þ
A unitary transformation U†DaU can bringDa to the block
diagonal form

Da ≔ U†DaU ¼ ðXð2lþ1Þ
a ; Xð2lþ1Þ

a ; Xð2lþ2Þ
a ; Xð2lÞ

a Þ ⊗ 1n;

ð2:25Þ
with

DaDa ¼ Diag

�
−lðlþ 1Þ1ð2lþ1Þn;−lðlþ 1Þ1ð2lþ1Þn;−

�
lþ 1

2

��
lþ 3

2

�
1ð2lþ2Þn;−

�
l −

1

2

��
lþ 1

2

�
1ð2lÞn

�
: ð2:26Þ
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Thus, we see that we can interpret the vacuum configura-
tion for Φa as a direct sum of four concentric fuzzy spheres

S2 IntF ≔ S2FðlÞ ⊕ S2FðlÞ ⊕ S2F

�
lþ 1

2

�
⊕ S2F

�
l −

1

2

�
:

ð2:27Þ

Levels of all four fuzzy spheres are correlated by the
parameter l. This internal structure of the vacuum is well
reflected by the derivations on S2 IntF that we introduce in
(2.29). In fact, as we see in Sec. V, this vacuum structure
perfectly fits the superspin J IRR of the supergroup
OSPð2; 2Þ. For this reason, we may think of the vacuum
as the even part of a N ¼ 2 fuzzy supersphere [37,40,42].
Now, the configuration in (2.10) spontaneously breaks

the SUðN Þ down to UðnÞwhich is the commutant of Φa in
(2.10). The global SUð2Þ is spontaneously broken com-
pletely by the vacuum. There is, however, a combined
global rotation and a gauge transformation under which the
vacuum remains invariant.
Fluctuations about this vacuum may be written as

Φa ¼ Xa þ Γ0
a þ Aa ¼ Da þ Aa; ð2:28Þ

where Aa ∈ uð4Þ ⊗ uð2lþ 1Þ ⊗ uðnÞ.
We may interpret Aa ða ¼ 1; 2; 3Þ as the three compo-

nents of a UðnÞ gauge field on S2 IntF . Φa are indeed the
“covariant coordinates” on S2 IntF and Fab is the field
strength, which takes the form

Fab ¼ ½Xa þ Γ0
a; Ab� − ½Xb þ Γ0

b; Aa� þ ½Aa; Ab� − εabcAc;

¼ ½Da; Ab� − ½Db; Aa� þ ½Aa; Ab� − εabcAc; ð2:29Þ

when expressed in terms of the gauge fields Aa. We also
note that in the second line above, we have used
adDa· ¼ ½Da; ·�, which are the natural derivations on S2 IntF .
To summarize, with (2.28) the action in (2.1) takes the

form of a UðnÞ gauge theory1 onM × S2 IntF with the gauge
field components AM ¼ ðAμ; AaÞ ∈ uð2lþ 1Þ ⊗ uð4Þ ⊗
uðnÞ and field strength tensor FMN ¼ ðFμν; Fμa; FabÞ
where

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�
Fμa ¼ DμΦa ¼ ∂μAa − ½Xa þ Γ0

a; Aμ� þ ½Aμ; Aa�;
Fab ¼ ½Xa þ Γ0

a; Ab� − ½Xb þ Γ0
b; Aa� þ ½Aa; Ab� − εabcAc:

ð2:30Þ

It is important to remark here that for gauge theories on
fuzzy spaces, there is no canonical way to separate the
component of the fuzzy gauge field normal to the fuzzy
sphere(s). This is usually achieved by imposing a gauge
invariant condition, which disentangles the normal com-
ponent in the commutative limit l → ∞ [37,48,49], or by
turning the normal component into a scalar field with a
large mass and adding it to the action by a Lagrange
multiplier-like term [38,39]. Here, we have admitted a
vacuum solution of concentric fuzzy spheres carrying the
direct sum representation (2.23), and therefore as discussed
in [2], the latter choice can not be availed. Following
[37,48,49] we consider imposing the constraints

ðXa þ Γa þ AaÞ2 ¼ ðXa þ ΓaÞ2 ¼ −ðlþ γÞðlþ γ þ 1Þ1
ð2:31Þ

where γ is taking on the values � 1
2
; 0. In the commutative

limit l → ∞, we see that this condition gives the trans-
versality condition on Γa þ Aa as x̂aðΓa þ AaÞ → −γ, as
long as Aa are smooth and bounded for l → ∞, and
therefore converges to the commutative field AaðxÞ in this
limit. Here x̂a with x̂ax̂a ¼ 1 are the coordinates on the
sphere S2 and we have used the fact that Xa

l → x̂a
when l → ∞.
It is possible to elaborate on the emergence of such a

gauge theory with fuzzy extra dimensions, by working out
the KK tower of states on M due to the extra dimensions
S2 IntF in a manner similar to that given in [2] for fuzzy extra
dimensions in the form of an S2F and S2F with nonzero
monopole number. These lead to KK spectra with ground
states separated from the rest of the excitations by large
energy gaps. In the case of S2F the ground state of the KK
tower is gapless and the resulting low energy effective
action (LEA) is that of UðnÞ Yang-Mills on M. As for the
latter, the off-diagonal ground state KK modes acquire
masses, while the diagonal ones remain massless, with the
LEA differing from the former by a constant additive term
proportional to the square of the monopole winding
number. In the present case, it is reasonable to expect that
a similar KK structure occurs, corroborating with the
emergence of the U(n) gauge theory on M × S2 IntF .
However, we are not going to direct our developments
in this way, but will focus on the formulation of equivariant
gauge fields for Uð2Þ theory and draw qualitative con-
clusions for the low energy physics emerging from such
equivariant gauge fields.

1In fact, the gauge fields are, in general, valued in the
enveloping algebra UðnÞ of uðnÞ. This is a well-known feature
of noncommutative field theories [46,47]. This fact will be more
apparently seen when we give the equivariant parametrizations of
the gauge fields in Sec. III. The latter involve intertwiners of the
IRRs of suð2Þ, which are elements of the enveloping algebra
SUð2Þ.
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C. Projection to the monopole sectors

Another highly interesting structure that emerges from
S2 IntF is the projection of S2 IntF to

S2�F ≔ S2FðlÞ ⊕ S2F

�
l� 1

2

�
; ð2:32Þ

which may readily be interpreted as the monopole bundles
over S2FðlÞ with winding numbers �1 [37,38].
Let us start with the projector

Πα ¼
Y
β≠α

−ðXa þ Γ0
aÞ2 − λβðλβ þ 1Þ1

λαðλα þ 1Þ − λβðλβ þ 1Þ ; ð2:33Þ

where α ¼ 0;þ;− and λα take on the values l, lþ 1
2
and

l − 1
2
, respectively.Πα’s project to the irreducible subspaces

with the IRR content l ⊕ l, lþ 1
2

and l − 1
2

for
α ¼ 0;þ;−, respectively. We see that the projection Π0

may be written as

Π0 ¼ 12lþ1 ⊗ P0 ⊗ 1n ð2:34Þ

as a short calculation can demonstrate, and therefore we
may further construct

Π00
≔ 12lþ1 ⊗ P00

⊗ 1n; Π02
≔ 12lþ1 ⊗ P02

⊗ 1n;

Π0 ¼ Π00
þ Π02

; ð2:35Þ

as projections to the subspaces with the occupation
numbers N ¼ 0 and N ¼ 2, respectively. We also note
that we may write

Π1
2
≔ Πþ þ Π− ¼ 12lþ1 ⊗ P1

2
⊗ 1n: ð2:36Þ

Projection from S2 IntF given in Eq. (2.27) onto the
monopole bundle S�F in (2.32) is facilitated by either of
the projectors

ð1 − Π∓Þð1 − Π00
Þ; ð1 − Π∓Þð1 − Π02

Þ: ð2:37Þ

Monopole sectors with winding numbers �1 over fuzzy
spheres were found as possible vacuum solutions in the
model treated in [2] in which only an adjoint triplet of
scalar fields ϕa was present. In our model, however,
appearance of the monopole sectors can be attributed to
the presence of the doublet Ψ transforming under the

fundamental IRR of the global SUð2Þ. This allows us to
write down the equivariant parametrization of gauge fields
in a suitable manner as we shall see in the ensuing sections,
and it naturally leads to the presence of equivariant spinor
fields which do not appear otherwise. In addition to these,
generalization of the doublet field to all higher dimensional
multiplets enables us to give a systematic treatment of a
family of fuzzy monopole bundles with winding numbers
m ∈ Z appearing as fuzzy extra dimensions. This is
discussed in Sec. IV, as we have already noted before.
To keep track of different projections appearing

in our discussions and to orient the ensuing developments,
we list the projections Πk∈Matðð2lþ1Þ4nÞ (k ¼ 0; 1

2
; 00;

02;þ;−) introduced in this section, together with the
subspaces they project to, in Table I. Here we have
introduced

QI ¼ i
Xa⊗Γ0

a⊗ 1n− 1
4
Π1

2

1
2
ðlþ 1

2
Þ ; Q2

I ¼−Π1
2
: ð2:38Þ

III. EQUIVARIANT PARAMETRIZATION
OF Uð2Þ GAUGE FIELDS OVER M × S2 IntF

We now focus on aUð2Þ gauge theory onM × S2 IntF . We
are going to obtain the SUð2Þ-equivariant parametrizations
of gauge fields in the most general setting first to shed some
further light on the structure of gauge fields over S2 IntF and
subsequently restrict our attention to the monopole sector
S2�F given in (2.32).
Construction of SUð2Þ-equivariant gauge fields on

S2 IntF can be performed following the ideas in [1]. We pick
a set of symmetry generators ωa ∈ uð2lþ 1Þ ⊗ uð4Þ ⊗
uð2Þ forming a subset of the matrices Matðð2l þ 1Þ4nÞ
which generate SUð2Þ rotations of S2 IntF up to SUð2Þ gauge
transformations. Our choice is

ωa ¼ ðXð2lþ1Þ
a ⊗ 14 ⊗ 12Þ þ ð12lþ1 ⊗ Γ0

a ⊗ 12Þ −
�
12lþ1 ⊗ 14 ⊗ i

σa

2

�
¼ Xa þ Γ0

a − i
σa

2
¼ Da − i

σa

2
; ð3:1Þ

with the consistency condition

TABLE I. Projections Πk and the representations to which they
project.

Projector To the representation

Π0 l ⊕ l
Π1

2
ðlþ 1

2
Þ ⊕ ðl − 1

2
Þ

Π00
l

Π02
l

Πþ ¼ 1
2
ðiQI þ Π1

2
Þ ðlþ 1

2
Þ

Π− ¼ 1
2
ð−iQI þ Π1

2
Þ ðl − 1

2
Þ

SEÇKIN KÜRKÇÜOǦLU PHYSICAL REVIEW D 92, 025022 (2015)

025022-6



½ωa;ωb� ¼ εabcωc; ð3:2Þ

which is readily satisfied as can easily be checked.
ωa has the SUð2Þ IRR content

l ⊗
�
00 ⊕ 02 ⊕

1

2

�
⊗

1

2
≡

�
2l ⊕

�
lþ 1

2

�
⊕

�
l −

1

2

��
⊗

1

2

≡ 2

�
lþ 1

2

�
⊕ 2

�
l −

1

2

�
⊕ ðlþ 1Þ ⊕ 2l ⊕ ðl − 1Þ; ð3:3Þ

where the bold coefficients stand for the multiplicities of the respective IRRs.
SUð2Þ equivariance of the gauge theory on M × S2 IntF requires the fulfillment of the following symmetry constraints,

½ωa; Aμ� ¼ 0; ½ωa;ψα� ¼
i
2
ð~τaÞαβψβ; ½ωa;ϕb� ¼ ϵabcϕc: ð3:4Þ

We can determine dimensions of the solution spaces for Aμ, ψα and Aa by working out the Clebsch-Gordan
decomposition of the adjoint action of ωa. Part of the Clebsch-Gordan series of interest to us reads

�
2

�
lþ 1

2

�
⊕ 2

�
l −

1

2

�
⊕ ðlþ 1Þ ⊕ 2l ⊕ ðl − 1Þ

�
⊗

�
2

�
lþ 1

2

�
⊕ 2

�
l −

1

2

�
⊕ ðlþ 1Þ ⊕ 2l ⊕ ðl − 1Þ

�

≡ 14 0 ⊕ 24
1

2
⊕ 30 1 ⊕ � � � : ð3:5Þ

We note that the appearance of equivariant spinors in this decomposition is purely due to the fact that we have admitted the
doublet field Ψ in our model. We will give the construction of these equivariant spinors shortly.
Correspondence of projections Πk ∈ Matðð2lþ 1Þ × 4 × 2Þ (k ¼ 0; 1

2
; 00; 02;þ;−) to the representations occurring in

(3.3) are listed in Table II.
A suitable set for the 14 rotational invariants is provided by the following set of anti-Hermitian matrices:

Q00
¼ Π00

QB; Q02
¼ Π02

QB; QS1; QS2; Π00
; Π02

; Πþ; Π−; iS1; iS2;

Q− ¼ 1

4lðlþ 1ÞΠ−ðð2lþ 1Þ2QB − iÞΠ−; Qþ ¼ 1

4lðlþ 1ÞΠþðð2lþ 1Þ2QB − iÞΠþ;

QF ¼ 12lþ1 ⊗ Γ0
a ⊗ σa − i

1

2
Π1

2
; QH ¼ −iεabc

Xa ⊗ Γ0
b ⊗ σcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þp −
1

2
QBI þ i

1

2
Π1

2
; ð3:6Þ

where

QB ¼ Xa ⊗ 14 ⊗ σa − i
2
1

lþ 1
2

; QSðiÞ ¼
Xa ⊗ si ⊗ σa − i

2
Si

lþ 1
2

; QBI ¼ i
ðlþ 1

2
Þ2fQB;QIg þ 1

2
Π1

2

2lðlþ 1Þ ; ð3:7Þ

and

Si ¼ 12lþ1 ⊗ si ⊗ 12; si ¼
�
σi 02

02 02

�
; i ¼ 1; 2: ð3:8Þ

All of these invariants2 are in the matrix algebra Matðð2lþ 1Þ × 4 × 2Þ. It can be verified that they all commute with ωa
and that they are linearly independent, so they form a basis for the rotational invariants of ωa. This is not an orthogonal basis
under the inner product defined by theN −1Tr, although some pairs happen to be orthogonal. It is possible to show that their
squares are evaluated to be:

2We can certainly form a rotational invariant of the natural form σaðXa þ ΓaÞ ¼ σaDa. We note, however, that this is not linearly
independent from the given set of rotational invariants in (3.6).
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Q2
B ¼−1; Q2

� ¼−Π�; Q2
00 ¼−Π00

;

Q2
02 ¼−Π02

; Q2
SðiÞ ¼−Π0; ðiSiÞ2 ¼−Π0;

Q2
F ¼−Π1

2
; Q2

I ¼−Π1
2
; Q2

BI ¼−Π1
2
; Q2

H ¼−Π1
2
;

ð3:9Þ

from which we observe that all iQ and Si are idempotents
in the subspaces defined by the relevant projections. It is
also easy to observe that

Π1
2
QF ¼ QF; Π1

2
QI ¼ QI; Π1

2
QH ¼ QH; Π1

2
QBI ¼ QBI;

Π1
2
Q� ¼ Q�; Π1

2
QSðiÞ ¼ 0; Π1

2
Q00

¼ 0; Π1
2
Q02

¼ 0: ð3:10Þ

Using the rotational invariants listed in (3.6), it is possible to give a suitable basis for the objects that transform as vectors
under the adjoint action ofωa. From (3.5) we see that there are 30 of them and the set of basis vectors for these can be picked
as follows:

½Da;Q00
�; Q00

½Da;Q00
�; fDa;Q00

g;
½Da;Q02

�; Q02
½Da;Q02

�; fDa;Q02
g;

½Da;Q−�; Q−½Da;Q−�; fDa;Q−g;
½Da;Qþ�; Qþ½Da;Qþ�; fDa;Qþg;
½Da;QH�; QH½Da;QH�; fDa;QHg;
½Da;QF�; QF½Da;QF�; fDa;QFg;
½Da;QS1�; Q0½Da;QS1�; fDa;QS1g;
½Da;QS2�; Q0½Da;QS2�; fDa;QS2g;
Π00

ωa; Π02ωa; Π−ωa; Πþωa; S1ωa; S2ωa; ð3:11Þ

where Q0 ¼ Q00
þQ02

¼ Π0QB.
Equivariant spinors may be constructed from βα ≔ 12lþ1 ⊗ bα ⊗ 12 and the rotational invariants given in (3.6). A

linearly independent set of 24 spinors is provided by the list below:

Π00
βαQ−; Q00

βαΠ−; Q00
βαQ−;

Π00
βαQþ; Q00

βαΠþ; Q00
βαQþ;

Π−βαQ02
; Q−βαΠ02

; Q−βαQ02
;

ΠþβαQ02
; QþβαΠ02

; QþβαQ02
;

S1βαΠþ; S1βαΠ−; Π−βαS2; ΠþβαS2;

QS1βαΠþ; QS1βαΠ−; Π−βαQS2; ΠþβαQS2;

QS1βαQþ; QS1βαQ−; Q−βαQS2; QþβαQS2: ð3:12Þ

TABLE II. Projections Πk and the representations occurring in
(3.3) to which they project.

Projector To the representation

Π0 2ðlþ 1
2
Þ ⊕ 2ðl − 1

2
Þ

Π1
2

ðlþ 1Þ ⊕ 2l ⊕ ðl − 1Þ
Π00 ðlþ 1

2
Þ ⊕ ðl − 1

2
Þ

Π02 ðlþ 1
2
Þ ⊕ ðl − 1

2
Þ

Πþ ðlþ 1Þ ⊕ l
Π− ðl − 1Þ ⊕ l
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Let us also note that, upon using

Π1
2
βαΠ1

2
¼ 0; Π1

2
β†αΠ1

2
¼ 0 ð3:13Þ

and Π0Π1
2
¼ 0, it is readily observed that projection to the

Π1
2
sector leaves all the equivariant spinors projected away.

This is naturally expected as no spin-1
2
representation

appears in the Clebsch-Gordan expansion (3.5) then.

A. Equivariant fields in the monopole sector

Projection of the equivariant quantities over S2 IntF to the
monopole sector S2�F introduced in (2.32) is facilitated by
the projectors

ð1 − Π∓Þð1 − Π02
Þ ¼ Π02

þ Π�: ð3:14Þ

After this projection there are 4 equivariant scalars, 6
spinors and 8 vectors which are given by the following
subsets of (3.6), (3.12), (3.11), respectively,

Q00
; Q�; Π00

; Π�; ð3:15Þ

Π00
βαQ�; Q00

βαΠ�; Q00
βαQ�;

Π�βαS2; Π�βαQS2; Q�βαQS2; ð3:16Þ

½Da;Q00
�; Q00

½Da;Q00
�; fDa;Q00

g; Π00
ωa;

½Da;Q��; Q�½Da;Q��; fDa;Q�g; Π�ωa:

ð3:17Þ

Replacing the ð1 − Π02
Þ factor in the projection (3.14)

with ð1 − Π00
Þ leads to an equivalent set of equivariant

objects as listed above in which ðΠ00
; Q00

Þ is replaced
with ðΠ02

; Q02
Þ.

We can parametrize Aμ as

Aμ ¼
1

2
a1μQ00

þ 1

2
a2μQ� þ 1

2
a3μΠ00

þ 1

2
a4μΠ�; ð3:18Þ

where aiμ ði ¼ 1; � � � ; 4Þ are 4 Hermitian gauge fields over
the manifold M. This suggests that we can, in general,
expect to get a Uð1Þ⊗4 gauge theory after tracing over
S2�F , unless one or more of the gauge fields decouple
from the rest of the theory, which could, in principle,
happen at least in the large l limit.
Parametrization of Aa in this sector may also be given.

It reads

Aa ¼
1

2
φ1½Da;Q00

� þ 1

2
ðφ2 − 1ÞQ00

½Da;Q00
� þ i

1

4l
φ3fDa;Q00

g þ 1

2l
φ4Π00

ωa

þ 1

2
χ1½Da;Q�� þ

1

2
ðχ2 − 1ÞQ�½Da;Q�� þ i

1

4l
χ3fDa;Q�g þ

1

2l
χ4Π�ωa; ð3:19Þ

where φi and χi ði ¼ 1; � � � ; 4Þ are real scalar fields
over M.
As ðΠ00

; Q00
Þ and ðΠ�; Q�Þ form mutually orthogonal

sets under the matrix product, we can save a lot of labor
by making contact with our earlier work [1] and
immediately inferring the low energy effective action
that emerges from this parametrization of the fields as
two separate Uð1Þ ⊗ Uð1Þ Abelian gauge theories
decoupled from each other.3 In the first subspace there
are ða1μ; a3μÞ as the Abelian gauge fields, a complex scalar
φ ¼ φ1 þ iφ2 charged under a1μ and two real scalars φ3 and
φ4. Scalar fieldsφ,φ3 andφ4 interact with a quartic potential
of the form given in [1] which reads, in the l → ∞ limit,

V ¼ 1

2
ðjφj2 þ φ3 − 1Þ2 þ φ3jφj2 þ

1

2
φ2
4: ð3:20Þ

In the second subspace ða2μ; a4μÞ are theAbelian gauge fields;
the complex field χ ¼ χ1 þ iχ2 is charged under a2μ, and

there are two real scalars χ3 and χ4. The interaction potential
has the same form as the one above with the substitution
φi → χi. The structures of these two mutually independent
sectors are essentially identical; they only differ by the level
of the fuzzy sphere corresponding to each sector: l and
l� 1

2
, respectively. The Abelian Higgs-type models men-

tioned above have attractive and repulsive multivortex
solutions, which are studied in [1].

B. Other sectors

We can think of projecting to several other sectors of the
full theory. Projecting out either of the singlets using
ð1 − Π02

Þ or ð1 − Π00
Þ leads to 8 scalars, 12 spinors and

18 vectors. These may be seen as the equivariant fields of
the Uð2Þ theory over the fuzzy spheres,

S2FðlÞ ⊕ S2F

�
lþ 1

2

�
⊕ S2F

�
l −

1

2

�
: ð3:21Þ

Scalars are Q�;Π�; QF;QH and ðΠ00
; Q00

Þ or ðΠ02
; Q02

Þ,
respectively, and spinors and vectors are easily identified
from the lists given in (3.12) and (3.11).

3This is, however, not so for models that will emerge from the
full sector and also from some other sectors discussed in the next
subsection. See the brief remark after (3.22).
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Projecting away both of the singlet sectors using
ð1 − Π0Þ ¼ ð1 − Π02

Þð1 − Π00
Þ, i.e., projecting onto the

Π1
2
sectors, leaves 6 equivariant scalars and 14 equivariant

vectors, and no spinors as noted earlier. These may be seen
as equivariant fields of the Uð2Þ theory over the space

S2F

�
lþ 1

2

�
⊕ S2F

�
l −

1

2

�
; ð3:22Þ

which may be interpreted as a fuzzy monopole bundle of
winding number 2.
It may be useful to consider the parametrizations for the

fields Aμ, Φ α and Aa for these cases or, for that matter, for
the full set of equivariants. We may expect that the
emerging LEAs will, in general, be more complicated
Abelian Higgs-type models with several Abelian gauge
fields, some of which may decouple in the large l limit;
nevertheless, we do not expect that they will all separate
into a number of Abelian Higgs-type models with Uð1Þ ⊗
Uð1Þ gauge symmetry, since in these cases not all the
equivariants are mutually orthogonal and many more
coupling terms could be foreseen to occur after tracing
over the fuzzy spheres.
Projecting away the Π1

2
sectors leaves 8 scalars and 16

vectors and no spinors. These may be seen as equivariant
fields of the Uð2Þ theory over the sector

S2FðlÞ ⊕ S2FðlÞ: ð3:23Þ

In this case the 8 equivariant scalars areQ00,Q02,QS1,QS2,
Π00, Π02, iS1 and iS2. We may view these Q as obtained
from

Q ¼

0
BB@

Q Q

Q Q
0

0 0

1
CCA; Q ¼ Xa ⊗ σa − i

2
1

lþ 1
2

: ð3:24Þ

We then have

Q00
¼ Π00

QΠ00
; Q02

¼ Π02
QΠ02

;

QS1 ¼ Π00
QΠ02

þ Π02
QΠ00

;

QS2 ¼ −iΠ00
QΠ02

þ iΠ02
QΠ00

: ð3:25Þ

LEA for this model should involve four decoupled Uð1Þ ⊗
Uð1Þ gauge theories of the type mentioned in the previous
section, as can be readily inferred from the foregoing
discussion.

IV. MODELSWITH k-COMPONENTMULTIPLETS

We now consider replacing the doublet field Ψ in (2.7)
by a k-component multiplet ðk ≥ 2Þ of the form

Ψ ¼

0
BBBBB@

Ψ1

Ψ2

..

.

Ψk

1
CCCCCA
; ð4:1Þ

of the global SUð2Þ, whereΨα ∈ MatðN Þ (α ¼ 1; 2; ; � � � k)
are SUðN Þ scalars transforming under its adjoint repre-
sentation as Ψα → U†ΨαU. We have

Γa ¼ −
i
2
Ψ† ~λaΨ; ~λa ¼ λa ⊗ 1N ; ð4:2Þ

with λa being the spin k−1
2

IRR of SUð2Þ satisfying
½λa; λb� ¼ 2iεabcλc. Under SUðN Þ these Γa transform
adjointly as

Γa → U†ΓaU. ð4:3Þ

Following the line of developments of Sec. II B, we see
that possible vacuum solutions of the model in the form of
direct sums of fuzzy spheres are characterized by the
structure of matrices Γa satisfying the SUð2Þ commutation
relations

½Γa;Γb� ¼ εabcΓc: ð4:4Þ

To construct these matrices, we introduce k sets of
fermionic annihilation-creation operators, fulfilling

fbα; bβg ¼ 0; fb†α; b†βg ¼ 0; fbα; b†βg ¼ δαβ. ð4:5Þ

They span the 2k-dimensional Hilbert space with the basis
vectors

jn1; n2; � � � nki≡ ðb†1Þn1ðb†2Þn2 � � � ðb†kÞnk j0; 0i; ð4:6Þ

with ðnα ¼ 0; 1Þ. Number operator N ¼ b†αbα is valued in
the range from 0 to k. Let us note that ðknÞ ¼ k!

n!ðk−nÞ! is the
number of states with the occupation number n, and there
are 2k-states in total since

P
k
n¼0ðknÞ ¼ 2k.

Taking the k-component multiplet

ψ ¼

0
BBBBB@

ψ1

ψ2

..

.

ψk

1
CCCCCA

≔

0
BBBBB@

b1
b2

..

.

bk

1
CCCCCA
; ð4:7Þ

it is easily seen that Γa’s fulfilling the SUð2Þ commutation
relations are given by the 2k × 2k matrices
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Γ0
a ¼ −

i
2
ψ†λaψ ; ½Γ0

a; N� ¼ 0; ð4:8Þ

and bα, b
†
α satisfy the commutation relations

½bα;Γ0
a� ¼ −

i
2
ðλaÞαβbβ; ½b†α;Γ0

a� ¼
i
2
ðλaÞβαb†β: ð4:9Þ

Γ0
a’s form a reducible representation of SUð2Þ. To give the

IRR decomposition of Γ0
a ’s we note that all Γ0

a commute
with N. Therefore, the states with a fixed eigenvalue of N
form an IRR of SUð2Þ, and the number of states at a fixed
eigenvalue of N corresponds to the dimension of this IRR.
Hence, IRRs of SUð2Þ occurring in the decomposition of
Γ0
a may be labeled as

lk
n ≔

ðknÞ − 1

2
; ð4:10Þ

with n denoting the eigenvalue of N. What remains is to
determine the multiplicities of these representations in the
decomposition. Since ðknÞ ¼ ð k

k−nÞ, we see that for odd k
each IRR appears twice, while for even k each IRR occurs
twice except the largest representation, which occurs only
once. This happens since ðkk

2
Þ ¼ ð k

k−k
2
Þ holds identically for

even k. Putting these facts together we can write the IRR
content of Γ0

a as

Lk odd ≔ lk
0 ⊕ lk

1 ⊕ � � � ⊕ lk
k ¼ 2

Xk−12
n¼0

⊕ lk
n; k odd;

Lk even ≔ lk
0 ⊕ lk

1 ⊕ � � � ⊕ lk
k
2

⊕ � � � ⊕ lk
k

¼ lk
k
2

⊕ 2
Xk2−1
n¼0

⊕ lk
n; k even; ð4:11Þ

where lk
0 ¼ lk

k ¼ 0; i.e., they are the trivial
representations.
If we assume that the dimension N of the matrices Φa

factorizes as ð2lþ 1Þ2km, then the vacuum configurations
of the SUðN Þ gauge theory may be given as

Φa ¼ ðXð2lþ1Þ
a ⊗ 12k ⊗ 1mÞ þ ð12lþ1 ⊗ Γ0

a ⊗ 1mÞ;
ð4:12Þ

up to gauge transformations.
The configuration in (4.12) spontaneously breaks the

UðN Þ down to UðmÞ which is the commutant of Φa
in (4.12).
SUð2Þ IRR content of this solution follows from the

Clebsch-Gordan decompositions

l⊗Lkodd¼
Xk−12
n¼0

2ðlþlk
nÞ⊕ � ��⊕2jl−lk

nj;

l⊗Lkeven¼ðlþlk
k
2

Þ⊕ � � �⊕ jl−lk
k
2

j

þ
Xk2−1
n¼0

2ðlþlk
nÞ⊕ � � �⊕2jl−lk

nj: ð4:13Þ

Thus, the vacuum solutions are direct sums of concentric
fuzzy spheres

S2;IntF;k odd ≔
Xk−12
n¼0

2S2Fðlþ lk
nÞ ⊕ � � � ⊕ 2S2Fðjl − lk

njÞ;

S2;IntF;k even ≔ S2Fðlþ lk
k
2

Þ ⊕ � � � ⊕ S2Fðjl − lk
k
2

jÞ

þ
Xk2−1
n¼0

2S2Fðlþ lk
nÞ ⊕ � � � ⊕ 2S2Fðjl − lk

njÞ:

ð4:14Þ

We see that a particular class of winding number
�ðk − 1Þ monopole bundles are obtained by projecting
from S2;IntF;k odd or S2;IntF;k even to

S2;�ðk−1Þ
F ≔ S2FðlÞ ⊕ S2Fðl� lk

1Þ: ð4:15Þ

Let us look at the cases of k ¼ 3 and k ¼ 4 in somewhat
more detail. For k ¼ 3, we have Γa’s carrying the repre-
sentation 20 ⊕ 21, which is eight dimensional. We have

S2;IntF;3 ¼ 2S2Fðlþ 1Þ ⊕ 2S2FðlÞ ⊕ 2S2Fðl − 1Þ; ð4:16Þ

and it is possible to show that the adjoint action of the
symmetry generators ωa ¼ Xa þ Γ0

a − i σ
a

2
decomposes

under a Clebsch-Gordan series to give 80-equivariant
scalars and 200 vectors. For k ¼ 4, Γa’s carry the repre-
sentation 20 ⊕ 2 3

2
⊕ 5

2
, which is 16 dimensional. We have

S2;IntF;4 ¼ 2S2FðlÞ ⊕ S2F

�
lþ 5

2

�
⊕ 3S2F

�
lþ 3

2

�

⊕ 3S2F

�
lþ 1

2

�
⊕ 3S2F

�
l −

1

2

�
⊕ 3S2F

�
l −

3

2

�

⊕ S2F

�
l −

5

2

�
: ð4:17Þ

In this case, a short calculation yields the number of
equivariant scalar, spinors and vectors to be 42, 24 and
108, respectively.
Another important observation is that equivariant

spinor fields emerge only for even k. We can immediately
make the consistency of this fact with the equivariance
conditions (3.4) manifest for the k ¼ 3 case. We see that the
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3-component multiplet is in the vector representation of the
global SUð2Þ, and therefore it transforms as a vector:

½ωa;ψb� ¼
i
2
ðλaÞbcψc ¼ εabcψc; ð4:18Þ

since ðλaÞbc ¼ −2iεabc in the adjoint representation
of SUð2Þ.

V. CONNECTION TO THE OSPð2;2Þ AND
OSPð2;1Þ FUZZY SUPERSPHERES

The relation of the vacuum configurations S2;IntF and
S2;�F to the bosonic (even) parts of the OSPð2; 2Þ and
OSPð2; 1Þ fuzzy superspheres with N ¼ 2 and N ¼ 1
supersymmetry, respectively, emerges naturally as we shall
demonstrate now. Here we follow Refs. [37,40], where a
comprehensive discussion of these supergroups and con-
struction of fuzzy superspheres may be found, and we
confine the discussion of their representation theory and
properties of the associated Lie superalgebras to their
pertinent parts that we utilize in this section.
First, we recall from (2.23) that S2;IntF has the SUð2Þ IRR

content

�
lþ 1

2

�
⊕ l ⊕ l ⊕

�
l −

1

2

�
: ð5:1Þ

From the representation theory of the supergroup
OSPð2; 1Þ, it is known that its IRRs are labeled by an
integer or half-integer J , which is called the superspin.
This superspin J representation of OSPð2; 1Þ decomposes
under the SUð2Þ IRRs as

J OSPð2;1Þ ≡ J SUð2Þ ⊕
�
J −

1

2

�
SUð2Þ

: ð5:2Þ

IRRs of OSPð2; 2Þ fall into two categories: typical
J OSPð2;2Þ and atypical J Atypical

OSPð2;2Þ. The latter are irreducible
with respect to the OSPð2; 1Þ, and in fact, they coincide
with the superspin J representation ofOSPð2; 1Þ.4 Typical
representations J OSPð2;2Þ are reducible under the
OSPð2; 1Þ IRRs as

J OSPð2;2Þ ≡ J OSPð2;1Þ ⊕
�
J −

1

2

�
OSPð2;1Þ

≡ J SUð2Þ ⊕
�
J −

1

2

�
SUð2Þ

⊕
�
J −

1

2

�
SUð2Þ

⊕ ðJ − 1ÞSUð2Þ; J OSPð2;2Þ ≥ 1; ð5:3Þ

while ð1
2
ÞOSPð2;2Þ decomposes as

�
1

2

�
OSPð2;2Þ

≡
�
1

2

�
OSPð2;1Þ

⊕ ð0ÞOSPð2;1Þ

≡
�
1

2

�
SUð2Þ

⊕ ð0ÞSUð2Þ ⊕ ð0ÞSUð2Þ: ð5:4Þ

Now, comparing the second line of (5.3) with (5.1), we
see that they match for J OSPð2;2Þ ¼ lþ 1

2
. Without going

into the details of the construction of fuzzy superspheres,
we make the observation that this fact has the immediate
implication that S2;IntF is the bosonic part of the OSPð2; 2Þ
fuzzy supersphere at superspin level J OSPð2;2Þ ¼ lþ 1

2
. We

also clearly see that the monopole bundles

S2�F ≔ S2FðlÞ ⊕ S2F

�
l� 1

2

�
ð5:5Þ

form the even (bosonic) part of the OSPð2; 1Þ fuzzy
supersphere at superspin levels J OSPð2;1Þ ¼ lþ 1

2
and

J OSPð2;1Þ ¼ l for the upper sign and lower sign in (5.5),
respectively.
Eight generators of the superalgebra ospð2; 2Þ Λi ≡

ðΛa;Λμ;Λ8Þ ða ¼ 1; 2; 3Þ, ðμ ¼ 4; 5; 6; 7Þ fulfill the graded
commutation relations

½Λa;Λb� ¼ iεabcΛc; ½Λa;Λμ� ¼
1

2
ðΣaÞνμΛν;

½Λa;Λ8� ¼ 0; ½Λ8;Λμ� ¼ ΞμνΛν;

fΛμ;Λνg ¼ 1

2
ðCΣaÞμνΛa þ

1

4
ðΞCÞμνΛ8; ð5:6Þ

where

Σa ¼
�
σa 0

0 σa

�
; C ¼

�
C 0

0 −C

�
; Ξ ¼

�
0 I2
I2 0

�
;

ð5:7Þ

and C is the two-dimensional Levi-Civita symbol.
The reality condition on this Lie superalgebra is imple-

mented by the graded dagger operation ‡, which acts on
Λa’s as

Λ‡
a ¼ Λ†

a ¼ Λa; Λ‡
μ ¼ −CμνΛν; Λ‡

8 ¼ Λ†
8 ¼ Λ8:

ð5:8Þ

Restrictions to the generators Λa, ða ¼ 1; � � � ; 5Þ give the
graded commutation relations of the Lie superalge-
bra ospð2; 1Þ.
It turns out that we can give a construction of the

generators of ospð2; 2Þ in the representation ð1
2
ÞAtypicalOSPð2;2Þ≡

ð1
2
ÞOSPð2;1Þ. This is the three-dimensional fundamental

representation of both ospð2; 2Þ and ospð2; 1Þ.
4For this reason generators Λ6;7;8 can be nonlinearly realized in

terms of the generators of OSPð2; 1Þ [37].
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Γa, bα, b
†
α, N and 14 form a basis of 4 × 4matrices acting on the four-dimensional module (2.14) carrying the direct sum

representation 00 ⊕ 02 ⊕ 1
2
of suð2Þ. Projecting out the first summand in this direct sum by the projector ð1 − P00

Þ, we can
restrict ourselves to the three-dimensional submodule in which we can realize Λa’s as follows:

Λa ≔ −ið1 − P00
ÞΓ0

a ¼
�
0 0

0 1
2
σi

�
; i ¼ 1; 3; Λ2 ≔ ið1 − P00

ÞΓ0
2 ¼

�
0 0

0 1
2
σ2

�
;

Λ4 ≔ −
1

2
ð ~b1 þ ~b†2Þ ¼

1

2

0
B@

0 0 −1
−1 0 0

0 0 0

1
CA; Λ5 ≔

1

2
ð ~b†1 − ~b2Þ ¼

1

2

0
B@

0 1 0

0 0 0

−1 0 0

1
CA;

Λ6 ≔
1

2
ð ~b1 − ~b†2Þ ¼

1

2

0
B@

0 0 −1
1 0 0

0 0 0

1
CA; Λ7 ≔

1

2
ð ~b†1 þ ~b2Þ ¼

1

2

0
B@

0 1 0

0 0 0

1 0 0

1
CA;

Λ8 ≔ ð1 − P00
ÞN ¼

0
B@

2 0 0

0 1 0

0 0 1

1
CA: ð5:9Þ

In (5.9) we have introduced the notation

~bα ≔ ð1 − P00
Þbαð1 − P00

Þ; ~b†α ≔ ð1 − P00
Þb†αð1 − P00

Þ;
ð5:10Þ

in which restriction to the three-dimensional submodule is
understood. For consistency, with the graded dagger
operation on Λμ’s introduced above, we have that the
graded dagger operation on ~bα and ~b†α should be defined as

~b‡α ¼ ~b†α; ð ~b†αÞ‡ ¼ − ~bα: ð5:11Þ

It can be verified by direct calculation that matrices given
in (5.9) satisfy the commutation relations given above
and thereby form the fundamental representation of
ospð2; 2Þ. Restriction of the matrices to Λa, ða ¼
1; � � � ; 5Þ gives a realization of the fundamental repre-
sentation of ospð2; 1Þ.
Let us also note that the four-dimensional typical

representation ð1
2
ÞOSPð2;2Þ given in (5.4) differs from

ð1
2
ÞAtypicalOSPð2;2Þ only by an SUð2Þ singlet. Keeping the leftmost

column and topmost row of zeros after projecting with ð1 −
P00

Þ in all Λa’s simply gives this four-dimensional repre-
sentation of OSPð2; 2Þ.
We find the emergence of these supersymmetry algebras

from the vacuum structure of our model intriguing, and
although in our model vacuum is purely bosonic, we
speculate that perhaps a suitable extension of our model
could lead to fuzzy superspheres as their vacuum solution.
Our initial attempts along this direction have not been
successful; any progress on this issue will be reported
elsewhere.

VI. STABILITY OF THE VACUUM SOLUTIONS

In this section we follow the novel developments and
reasoning given in [43] to argue the stability of vacuum
solutions, in the form of direct sums of fuzzy spheres
given in (2.27). For matrix models, such as the one
considered in this paper and also for other string theory
related matrix models (for instance, those discussed in
[9,10,50]), potentials may be minimized by choosing the
matrix fields as the generators of suð2Þ Lie algebra,
which are in irreducible or reducible representations. For
the latter case, vacuum configurations may be seen as
forming direct sums of fuzzy spheres, in general. The
crucial observation of [43] is that such direct sums of
fuzzy spheres form mixed states, as long as one or
several of the fuzzy spheres at a given level appear more
than once in the direct sum, while the vacuum solutions
formed by a single fuzzy sphere are pure states.5 It then
follows that, since mixed states cannot unitarily evolve to
pure states, such vacuum configurations are stable.
Following the developments in [43], the situation in
our case may be understood as follows.
We have that the matrices Φ spanning the vacuum

configurations treated in this paper are in the matrix algebra
A ¼ MatðN Þ. We can consider a state ω on the algebra A,
which is a linear map from A to the complex numbers C.
This state satisfies

ωðΦ�ΦÞ ≥ 0; ∀ Φ ∈ A; ωð1Þ ¼ 1: ð6:1Þ

5At this point, it is appropriate to note that the aforementioned
developments in [43] are based on the two recent papers [44,45]
addressing, in much detail, the quantum entropy of mixed states
and their associated ambiguities.
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In this algebraic formalism, a single fuzzy sphere, say at
level L, may be described by imposing the condition

ωðXaXaÞ ¼ LðLþ 1Þωð1Þ ¼ −LðLþ 1Þ: ð6:2Þ

In order to describe direct sums of fuzzy spheres of the form

S2 IntF ≔ S2FðlÞ ⊕ S2FðlÞ ⊕ S2F

�
lþ 1

2

�
⊕ S2F

�
l −

1

2

�
;

ð6:3Þ

we use the projectors Π00
, Π02

, Πþ and Π− given in (2.33)
and (2.35), which are of rank ð2lþ 1Þn, ð2lþ 1Þn, ð2lþ
2Þn and ð2lÞn, respectively. We can consider the states ωα

defined as

ωαðΠαDaDaΠαÞ ¼ −LαðLα þ 1Þ; ð6:4Þ

where the subscripts α take on the values 00, 02, þ and −;
correspondingly the Lα’s take on the values l, l, lþ 1

2
,

l − 1
2
, respectively. We recall that the notation Da was

introduced earlier in (2.25).
The condition introduced by Eq. (6.4) constrains and

splits the matrix algebra A into a direct sum of matrix
algebras

AΠ ≔ Matðð2lþ 1ÞnÞ ⊕ Matðð2lþ 1ÞnÞ
⊕ Matðð2lþ 2ÞnÞ ⊕ Matðð2lÞnÞ: ð6:5Þ

This corresponds to the decomposition of A into the fuzzy
spheres in (6.3) where each summand in the latter is
tensored with 1n.
Projections corresponding to distinct IRRs are unique up

to unitary transformations, while projections corresponding
to repeated IRRs are not so. To make this point more
concrete, we can first express the projectors Πα in the form

6

Πα ¼
XL

L3¼−L
jL;L3; αihL;L3; αj; Πα ∈ AΠ: ð6:6Þ

If we perform a unitary transformation

jL; L3;αi ¼
X
β

uαβjL;L3; βi; ð6:7Þ

where u ∈ Uð2Þ ⊗ Uð1Þ ⊗ Uð1Þ, then the projectors Πα

transform under this unitary transformation as Πα →
U†ΠαU and take the form

ΠαðuÞ ¼
XL

L3¼−L

X
β;γ

u†γαuαβjL;L3; βihL;L3; γj: ð6:8Þ

ΠαðuÞ are projectors since

Π2
αðuÞ ¼ ΠαðuÞ; Π†

αðuÞ ¼ ΠαðuÞ ð6:9Þ

are easily verified.
We note that uαβ ¼ δαβ for α; β ¼ þ;− and therefore

Π�ðuÞ ¼ Π�, while the representations with spin l
get mixed by the Uð2Þ part of the transformations,
i.e., Π00

ðuÞ ≠ Π00
and Π02

ðuÞ ≠ Π02
. We see that,

although all Πα belong to AΠ, not all of the transformed
projectors ΠαðuÞ are elements of the algebra of
observables AΠ.
Following [43], we can consider the expectation value of

an element O of AΠ in the state ω:

ωðOÞ ¼
X
α

λαωαðOÞ; ð6:10Þ

where λα is a probability vector (0 ≤ λα ≤ 1,
P

αλα ¼ 1)
and

ωαðOÞ ¼ 1

2Lα þ 1

X
L3

X
L0
3

hL;L3; αjOjL; L0
3; αi: ð6:11Þ

It can be checked that this form of ωα is consistent with the
condition given in (6.4).
Under the unitary transformation defined by (6.7), the

ωðOÞ state remains invariant, and therefore we have
Uð2Þ ⊗ Uð1Þ ⊗ Uð1Þ symmetry. It then follows that under
the transformation (6.7),

λβðuÞ ¼
X
α

λαu
†
βαuαβ ¼

X
α

λαjuαβj2. ð6:12Þ

In accordance with our remarks after (6.9), under this
unitary evolution λ�ðuÞ ¼ λ�, while λαðuÞ ≠ λα for α ≠ �,
in general.
In the density matrix language, we may express the pure

states by the density matrix

ρα ¼ jψαihψαj ¼
X
L3;L0

3

C�
L0
3
CL3

jL;L3; αihL;L0
3; αj;

ð6:13Þ

where

jψαi ¼
X
L3

CL3
jL; L3;αi;

X
L3

jCL3
j2 ¼ 1; 0 ≤ jC�

L0
3
CL3

j ≤ 1: ð6:14Þ
6We note that in the succeeding expressions, we write α and L

of Lα separately for notational clarity. Thus, we, for instance,
have jLα; L3i ≕ jL;L3; αi.
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In view of (6.10) we also introduce the density matrix ρ as

ρ ¼
X
α

λαðuÞρα; 0 < λα < 1;
X
α

λα ¼ 1: ð6:15Þ

Expectation values ofO in the states ωα and ω may now be
expressed as

ωαðOÞ ¼ TrðραOÞ; ωðOÞ ¼ TrðρOÞ: ð6:16Þ

Consistency of ωα given in Eq. (6.16) with Eqs. (6.4) and
(6.11) may be easily checked after noting that ραΠα ¼ ρα.
We observe that the decomposition of ρ into ρα given in

Eq. (6.15) is not unique, due to the Uð2Þ ⊗ Uð1Þ ⊗ Uð1Þ
symmetry transforming the λα’s as given in (6.12); there-
fore, ρ is describing a mixed state. This fact may also be
seen from

Trðρ2Þ ¼
X
α

jλαðuÞj2 < 1: ð6:17Þ

Consequently, the S2 IntF configuration in Eq. (6.3) is
characterized by the density matrix ρ, which is mixed.
We conclude, therefore, that S2 IntF is a mixed state. Since a
mixed state cannot evolve into a pure state under unitary
time evolution, decay of S2 IntF into a single fuzzy sphere S2F,
a pure state, is not possible; hence, the S2 IntF vacuum is
stable.
We can compute the von Neumann entropy of S2 IntF . It is

given as

SðρÞ ¼ −Trðρ log ρÞ
¼ −

X
α

λαðuÞ log λαðuÞ þ
X
α

λαðuÞSðραÞ;

¼ −
X
α

λαðuÞ log λαðuÞ ð6:18Þ

where the second line follows from the entropy theorem
[51] and the third line follows from the fact that ρα are
pure states and therefore SðραÞ ¼ 0. The transformation in
(6.12) is Markovian, and since

P
αjuαβj2 ¼

P
βjuαβj2 ¼ 1,

it is doubly stochastic. Therefore, the Markov process is
irreversible and will increase the entropy of S2 IntF . SðρÞ has
the maximal value SmaxðρÞ ¼ 2 log 2 for λα ¼ 1

4
; ∀ α.

However, we note that SmaxðρÞ can only be reached if
and only if the system starts with λ� ¼ 1

4
since λ�ðuÞ ¼ λ�.

Otherwise, SðρÞ is quenched; it still increases but its
maximal value, which is less than 2 log 2, is determined
by the initial values of λ�.
Finally, a similar line of reasoning may be given to show

that the vacuum solutions S2;IntF;k odd and S2;IntF;k even in (4.14)
obtained for k-component multiplet models are all stable
too, as they contain several identical copies of SUð2Þ IRRs,
and therefore they form mixed states. In particular, it is
readily observed that the unitary symmetry leading to

mixed states for S2;IntF;k3 in (4.16) is Uð2Þ⊗3, while it is

Uð3Þ⊗4 ⊗ Uð2Þ ⊗ Uð1Þ ⊗ Uð1Þ for S2;IntF;k4 in (4.17).

VII. CONCLUSIONS AND OUTLOOK

In this work, we have considered an SUðN Þ Yang-Mills
theory coupled to a distinct set of scalar fields which are
both in the adjoint representation of SUðN Þ but form,
respectively, a doublet and a triplet under the global SUð2Þ
symmetry. We have found that the model spontaneously
develops fuzzy extra dimensions, which is given by the
direct sum S2 IntF ≔ S2FðlÞ⊕S2FðlÞ⊕ S2Fðlþ 1

2
Þ⊕ S2Fðl− 1

2
Þ.

We have first examined the fluctuations about the vacuum
configuration S2 IntF and reached the result that the sponta-
neously broken model has the structure of a UðnÞ gauge
theory overM × S2 IntF . In order to support these results, we
have presented complete parametrizations of SUð2Þ-
equivariant, scalar, spinor and vector fields characterizing
the effective low energy behavior of the Uð2Þ model on
M × S2 IntF . An important outcome of this analysis has been
the appearance of equivariant spinor fields, which can be
ascribed to admitting SUð2Þ doublets (although implicitly
in the form of bilinears) in our model. We have also seen
that winding number �1 monopole bundles S2�F are
naturally contained in S2 IntF , and they can be accessed after
certain projections, which we have provided. SUð2Þ-equiv-
ariant fields of the Uð2Þ theory over M × S2�F and the low
energy features of the latter are also discussed. Introducing
a k-component multiplet of the global SUð2Þ symmetry
into our model, we have found new fuzzy extra dimensions
that are again given in terms of direct sums of fuzzy
spheres, and which also contain a particular class of
winding number �ðk − 1Þ ∈ Z monopole bundles

S2;�ðk−1Þ
F . We have also seen that the SUð2Þ-equivariant

spinor fields only appear for even k multiplets. Another
surprising feature that we have encountered is that S2 IntF
identifies with the bosonic part of the N ¼ 2 fuzzy super-
sphere with OSPð2; 2Þ supersymmetry. In addition, we
were able to construct the generators of the ospð2; 2Þ Lie
superalgebra in the three-dimensional atypical and the four-
dimensional typical irreducible representations by utilizing
the matrix content of the vacuum solution S2 IntF . Finally, we
have argued that our vacuum solutions are stable since they
form mixed states with nonzero von Neumann entropy.
In a forthcoming publication [52], we apply our present

ideas to SUðN Þ gauge theories obtained from a massive
deformation of the N ¼ 4 super Yang-Mills theory dis-
cussed in [4]. In addition to scalar fields transforming under
the representation ð1; 0Þ ⊕ ð0; 1Þ of the global SUð2Þ ⊗
SUð2Þ symmetry, in the same vein as the developments in
this paper, we also admit scalar fields transforming under
ð1
2
; 0Þ ⊕ ð0; 1

2
Þ of the global symmetry, which enter into the

action only through their bilinears carrying the ð1; 0Þ ⊕
ð0; 1Þ representation. It turns out that, this model
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spontaneously develops fuzzy extra dimensions, which
may be written as direct sums of the products S2F × S2F.
In [52] these and related matters will be addressed
thoroughly.
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APPENDIX: IDENTITIES AND FORMULAS
RELATED TO Γ0

a

Some helpful relations and identities are as follows:

P1
2
N ¼ NP1

2
¼ P1

2
; P1

2
Γ0
a ¼ Γ0

aP1
2
¼ Γ0

a;

ð1− P02
ÞΓ0

a ¼ Γ0
a; ð1− P02

ÞP1
2
¼ P1

2
; ð1− P02

ÞN ¼ P1
2
;

NΓ0
a ¼ Γ0

aN ¼ Γ0
a; N2 ¼ 2N − P1

2
: ðA1Þ

Another suitable realization of Γ0
a can be given by

introducing the 4 × 4 γ-matrices with the Euclidean
signature

fγi; γjg ¼ 2δij: ðA2Þ

Taking

b1 ¼
1

2
ðγ1 þ iγ2Þ; b†1 ¼

1

2
ðγ1 − iγ2Þ;

b2 ¼
1

2
ðγ3 þ iγ4Þ; b†2 ¼

1

2
ðγ3 − iγ4Þ; ðA3Þ

we can write

Γ0
1 ¼ −

1

4
ðγ2γ3 − γ1γ4Þ

Γ0
2 ¼ −

1

4
ðγ1γ3 þ γ2γ4Þ

Γ0
3 ¼

1

4
ðγ1γ2 − γ3γ4Þ: ðA4Þ

The associated chirality operator γ5 ¼ iγ1γ2γ3γ4 can be
expressed in the oscillator realization as

γ5 ¼ 2N − 4N1N2 − 1; ðA5Þ

and has the eigenvalue −1 on the singlets and 1 on the
doublet. Accordingly, the chiral projections are nothing but
P0 and P1

2
as expected:

P0 ¼
ð1 − γ5Þ

2
; P1

2
¼ ð1þ γ5Þ

2
: ðA6Þ

For additional clarity it is useful to have the matrix
form of some of these operators in the basis where the rows
and columns are given in the order j0; 0i; j1; 1i,
j0; 1i; j1; 0i. We have

b1 ≔

0
BBB@

0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0

1
CCCA; b2 ≔

0
BBB@

0 0 −1 0

0 0 0 0

0 0 0 0

0 1 0 0

1
CCCA;

b†1 ≔

0
BBB@

0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

1
CCCA; b†2 ≔

0
BBB@

0 0 0 0

0 0 0 1

−1 0 0 0

0 0 0 0

1
CCCA;

ðA7Þ

N ≔

0
BBB@

0 0 0 0

0 2 0 0

0 0 1 0

0 0 0 1

1
CCCA; N1 ≔

0
BBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

1
CCCA; N2 ≔

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCA; ðA8Þ

P00
≔

0
BBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; P02

≔

0
BBB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCCA; P1

2
≔

0
BBB@

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

1
CCCA; ðA9Þ
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γ1 ¼
�

0 σ1

σ1 0

�
; γ2 ¼

�
0 σ2

σ2 0

�
; γ3 ¼ −

�
0 σ3

σ3 0

�
; γ4 ¼ i

�
0 12

−12 0

�
; ðA10Þ

and

γ5 ¼
�−12 0

0 12

�
: ðA11Þ
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