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In the context of an exactly soluble out of equilibrium (quenched) model, we study an extension of the
fluctuation-dissipation relation. This involves a modified differential form of this relation, with an effective
temperature which may have an explicit dependence on time scales.
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I. INTRODUCTION

The fluctuation-dissipation theorem plays an important
role in understanding physical systems in thermal equilib-
rium [1–3]. Basically, it says that the statistical fluctuations
in a system can be related to the imaginary part of the
response function of the system to a weak external
perturbation, through a temperature dependent factor.
Historically, this relation has proved quite useful in the
study of several systems, starting with the Brownian motion
of a free particle in a liquid [4] as well as the thermal noise
in a conductor [5]. In a near-equilibrium situation, it is
possible to extend the fluctuation-dissipation theorem
through a gradient expansion which is valid only for slowly
varying processes [6,7]. The study of quantum field
theories out of equilibrium is also of much interest in
many branches of physics, like in condensed matter [8] or
else in the case of heavy ion collision experiments at RHIC.
However, when the system is out of equilibrium, such a
simple extension of the fluctuation-dissipation relation
does not hold in general, since in this regime the non-
equilibrium Green’s functions are rapidly varying and
usually have two independent components (in the thermal
average of the two point function). Therefore, it is impor-
tant, both theoretically and experimentally, to obtain an
appropriate generalization in this regime.
The fluctuation-dissipation theorem gives an important

relation between the correlated and the retarded Green’s
functions of a system in thermal equilibrium [1–3]. For
example, in a scalar field theory if we define the thermal
averages

GRðx; yÞ ¼ −iθðx0 − y0Þh½ϕðxÞ;ϕðyÞ�i;
Gcðx; yÞ ¼ −2iCðx; yÞ ¼ −ih½ϕðxÞ;ϕðyÞ�þi; ð1Þ

the fluctuation-dissipation theorem states that their Fourier
transforms satisfy (pμ denotes the conjugate variable to the
coordinate difference xμ − yμ)

CðpÞ ¼ − coth
βp0

2
ImGRðpÞ: ð2Þ

Namely, the statistical fluctuations in a theory in equilib-
rium are related to dissipation in the system through a
temperature dependent factor. Here β is related to the
inverse (equilibrium) temperature and we note that the
temperature dependent factor in (2) can also be written as

coth
βp0

2
¼ 1þ 2nðp0Þ; ð3Þ

where nðp0Þ ¼ 1=ðeβp0 − 1Þ denotes the equilibrium Bose-
Einstein distribution function.
In equilibrium, the Green’s functions depend on the

difference of the time coordinates, t ¼ x0 − y0, because of
time translation invariance. However, in nonequilibrium,
time translation invariance does not hold and Green’s
functions can (and do) depend on T ¼ ðx0 þ y0Þ=2 as
well. There have been mainly two distinct proposals which
attempt to generalize the fluctuation-dissipation theorem to
systems not exactly in equilibrium. First, if the system is
very near equilibrium, Kadanoff and Baym [9] propose a
generalization of the form

Cðp; TÞ ¼ −ð1þ 2fðp0; TÞÞImGRðp; TÞ: ð4Þ

Here fðp0; TÞ is a more complicated distribution function
that needs to be determined, order by order in perturbation
theory, from the self-consistency of (4). In some cases, the
above ansatz may be extended to nonequilibrium Green’s
functions as well [10].
The second class of out of equilibrium systems to which

a generalization has been proposed is known as glassy
systems [11–13]. This comprises a wide class of systems
which have been experimentally studied systematically.
Here the relaxation time of the system is much larger
than any observation time scale. Therefore, the system
approaches equilibrium very slowly such that at any instant
of time long after nonequilibrium (but before equilibrium
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has been attained), the system is in a quasiequilibrium state.
From experimental observations as well as various other
considerations, the generalization of the fluctuation-
dissipation theorem to glassy systems is proposed to have
the form [11–13]

1

βeff
GRðx0; y0;pÞ ¼ −θðx0 − y0Þ ∂Cðx

0; y0;pÞ
∂y0 : ð5Þ

We note that this relation involves Green’s functions in the
mixed (time and momentum) space and βeff is inversely
related to an effective equilibrium temperature during the
observation time interval. (The system is in quasiequili-
brium long after nonequilibrium and this effective temper-
ature is a slowly varying function of time.) Furthermore, we
note here that while equilibrium Green’s functions depend
only on ðx0 − y0Þ, this is not true when the system is out of
equilibrium. Correspondingly the derivative with respect to
the earlier time y0 in (5) is worth emphasizing (namely, in
this case ∂

∂y0 ≠ − ∂
∂x0).

In some simpler models, relation (5) can also be
generalized to (we will see this in Sec. III)

Ωeff

2
coth

βeffΩeff

2
GRðx0; y0;pÞ ¼ −θðx0 − y0Þ∂Cðx

0; y0;pÞ
∂y0 ;

ð6Þ

which reduces to (5) in the classical limit. Here Ωeff is an
effective frequency (energy) and both Ωeff and βeff need to
be determined, order by order, from the self-consistency of
(6) as well as from other considerations.
Simple soluble models provide an arena for testing

these generalized proposals as well as for constructing
possible further generalizations. However, there are only
a few out of equilibrium models which are soluble. In an
earlier paper [14] (see also [15]), we had studied the large
time behavior in one such model. Here we take up this
model again to test the validity of these proposals. In
Sec. II, we describe the model and point out that this
behaves like a glassy system in the sense that the system
has a long relaxation time. In this section we also give
the exact Green’s functions for this system. In Sec. III,
we show that the Green’s functions in this model satisfy
the generalized glassy equation (6) and we determine the
effective parameters Ωeff ; βeff . We conclude with a brief
summary in Sec. IV.

II. THE MODEL AND THE EXACT
GREEN’S FUNCTIONS

The model that we study is a simple out of equilibrium
model which is soluble. We assume that for negative times,
x0 ≤ 0 (the reference time can be arbitrary, we choose it to
be zero for simplicity), the model describes a free scalar

field theory of mass m in thermal equilibrium at (inverse)
temperature β. A mass correction is introduced for times
x0 ≥ 0. Therefore, the Lagrangian density describing the
system is given by

L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 − θðx0Þ δm

2

2
ϕ2 ¼ L0 þ LI: ð7Þ

This is a quenched model and the interaction term
LI ¼ −θðx0Þ δm2

2
ϕ2, which breaks time translation invari-

ance, also takes the theory out of equilibrium. The sudden
quench makes this a genuinely out of equilibriummodel for
any value of the parameter δm2. As we will see towards the
end of Sec. III, this model mimics the behavior of a hot
scalar field plasma undergoing a sudden expansion (for
δm2 < 0) or contraction (for δm2 > 0), which cools or
heats up on time scales much smaller than the relaxation
time of the fields [16].
We note here that this simple model captures the

essential out of equilibrium features of more realistic
self-interacting scalar field theories, where the interaction
term has the form −λθðx0Þϕ2n; n ≥ 2, in the penguin
approximation [17]. However, unlike the present model
which is soluble, the more realistic models are studied
partly analytically and numerically [18–20].
The free retarded and correlated Green’s functions in this

model have the momentum space forms

Gð0Þ
R ðpÞ ¼ 1

p2 −m2 þ iϵsgnðp0Þ
;

Cð0ÞðpÞ ¼ −
1

2i
Gð0Þ

c ðpÞ ¼ πð1þ 2nðjp0jÞÞδðp2 −m2Þ;
ð8Þ

where ϵ denotes the infinitesimal Feynman regularization
parameter which is to be taken to zero, ϵ → 0þ, only at the
end of the calculation. The advanced Green’s function can

be obtained from (8) as Gð0Þ
A ðpÞ ¼ Gð0Þ

R ð−pÞ. In the mixed
space, the free Green’s functions have the forms

Gð0Þ
R ðx0 − y0;ωÞ ¼ −

1

ω
θðx0 − y0Þ sinωðx0 − y0Þ

¼ GAðy0 − x0;ωÞ;

Cð0Þðx0 − y0;ωÞ ¼ 1

2ω
ð1þ 2nðωÞÞ cosωðx0 − y0Þ; ð9Þ

where we have identified ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

Treating LI ¼ −θðx0Þ δm2

2
ϕ2 as a perturbation, the exact

Green’s functions can now be calculated and have the
mixed space forms [14]
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GRðx0; y0;ω;ΩÞ ¼ θðx0 − y0Þ
�
−
1

ω
θð−x0Þθð−y0Þ sinωðx0 − y0Þ − 1

Ω
θðx0Þθðy0Þ sinΩðx0 − y0Þ

þ 1

2ω
θðx0Þθð−y0Þ

��
1 −

ω

Ω

�
sinðΩx0 þ ωy0Þ −

�
1þ ω

Ω

�
sinðΩx0 − ωy0Þ

��
; ð10Þ

Cðx0; y0;ω;ΩÞ ¼ 1

2ω
ð1þ 2nðωÞÞ

�
θð−x0Þθð−y0Þ cosωðx0 − y0Þ

þ 1

2
θð−x0Þθðy0Þ

��
1þ ω

Ω

�
cosðωx0 −Ωy0Þ þ

�
1 −

ω

Ω

�
cosðωx0 þΩy0Þ

�

þ 1

2
θðx0Þθð−y0Þ

��
1þ ω

Ω

�
cosðΩx0 − ωy0Þ þ

�
1 −

ω

Ω

�
cosðΩx0 þ ωy0Þ

�

þ 1

2
θðx0Þθðy0Þ

�ðΩ2 þ ω2Þ
Ω2

cosΩðx0 − y0Þ þ ðΩ2 − ω2Þ
Ω2

cosΩðx0 þ y0Þ
��

; ð11Þ

where we have denoted

Ω2 ¼ ω2 þ δm2: ð12Þ

In writing the exact Green’s functions in (10) and (11),
we have suppressed the exponentials involving the regu-
larization parameter for simplicity, but they are quite
relevant in understanding the large time behavior of the
system. For example, for x0; y0 > 0 (namely, after the
quench), the correlated Green’s function has the form (with
the regularization parameter included)

Cðx0; y0;ω;ΩÞ

¼ 1

4ω
ð1þ 2nðωÞÞ

�
Ω2 þ ω2

Ω2
e−ϵjx0−y0j cosΩðx0 − y0Þ

þ Ω2 − ω2

Ω2
e−ϵðx0þy0Þ cosΩðx0 þ y0Þ

�
; ð13Þ

and so on. Therefore, the regularization parameter plays the
role of the inverse relaxation timewhich in the present case is
large. Correspondingly the system behaves like a glassy
system. It is worth pointing out here that in a more realistic
model with a genuine scalar interaction, the damping comes
from the imaginary part of the self-energy which is mim-
icked, in this simple theory, by the regularization parameter.

III. COMPARISON WITH THE GLASSY
EQUATION

Our Lagrangian density (7) describes a quenched, out of
equilibrium model which has the characteristics of a glassy
system.Therefore, for any value of δm2, we donot expect it to
satisfy the Kadanoff-Baym relation (4) which is assumed to
hold only in systems near equilibrium. (Namely, as we have
already pointed out in Sec. II, this is a genuinely out of
equilibriummodel for anyvalueof δm2 because of the sudden
quench.) Fourier transforming the time difference ðx0 − y0Þ
of the Green’s functions in (10) and (11), we have, in fact,
explicitly verified that relation (4) does not hold in the present
case.We note that even if we assume δm2 to be small, even to
lowest order in perturbation theory, the corresponding con-
tributions to the Green’s functions violate the Kadanoff-
Baym ansatz. For example, to order δm2, we get terms of the
form x0 sin½ωðx0 − y0Þ� which are neither translationally
invariant nor slowly varying. In fact, such terms become
divergent at large times, which reflect the pinch singularities
present in thermal perturbation theory [14].
Our interest, therefore, is to check whether relation (5) or

(6) is satisfied in the present soluble model. To begin with,
let us note from (5) or (6) that because of the θðx0 − y0Þ
term on the right-hand side, we have to consider only the
terms in Cðx0; y0;ω;ΩÞ where x0 > y0. This eliminates
the second term in Cðx0; y0;ω;ΩÞ in Eq. (11). Taking the
derivative of this with respect to y0 we obtain

θðx0 − y0Þ ∂Cðx
0; y0;ω;ΩÞ
∂y0 ¼ θðx0 − y0Þ ð1þ 2nðωÞÞ

2ω

�
θð−x0Þθð−y0Þω sinωðx0 − y0Þ

þ θðx0Þθð−y0Þ
2

��
1þ ω

Ω

�
ω sinðΩx0 − ωy0Þ −

�
1 −

ω

Ω

�
ω sinðΩx0 þ ωy0Þ

�

þ θðx0Þθðy0Þ
2

�
Ω2 þ ω2

Ω
sinΩðx0 − y0Þ −Ω2 − ω2

Ω
sinΩðx0 þ y0Þ

��
: ð14Þ
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Let us look at the expression in (14) long after the quench where observations on glassy systems are made. In this regime
x0; y0 ≫ 0 with x0 − y0 (observation interval) finite so that Eq. (14) takes the form

θðx0 − y0Þ ∂Cðx
0; y0;ω;ΩÞ
∂y0 ¼ θðx0 − y0Þ ð1þ 2nðωÞÞ

4ω

Ω2 þ ω2

Ω
sinΩðx0 − y0Þ; ð15Þ

where we have used the regularization described in (13) to set the second term to zero for x0 − y0 finite but x0 þ y0 large.
Comparing this result with the retarded Green’s function in (10) in the same time regime, we note that we can write

−θðx0 − y0Þ ∂C∂y0 ¼
ðΩ2 þ ω2Þ coth βω

2

4ω
GR ¼ Ω

2
coth

βeffΩ
2

GR: ð16Þ

Here the effective temperature can be determined from

coth
βeffΩ
2

¼ Ω2 þ ω2

2ωΩ
coth

βω

2
: ð17Þ

Therefore, we see that, in this model, the generalized
glassy equation (6) holds which reduces to (5) in the high
temperature (classical) limit. In this case, we note that
Ωeff ¼ Ω. Formally, Eq. (17) is solved for the effective
temperature as

βeff ¼
2

Ω
Arcth

�
Ω2 þ ω2

2ωΩ
coth

βω

2

�

¼ 4ω

Ω2 þ ω2
tanh

βω

2
þ � � � : ð18Þ

When βω ≪ 1, this leads to [see (12)]

1

βeff
≃Ω2 þ ω2

2ω2

1

β
¼

�
1þ δm2

2ω2

�
1

β
ð19Þ

where 1=β is proportional to the temperature.
This relation can be interpreted as saying that the case

δm2 > 0 can be understood as corresponding to a rapid
contraction (of a scalar field plasma) leading to a higher
effective temperature, while δm2 < 0 can be understood as
a rapid expansion leading to a lower effective temperature.
We note that we have a soluble model which yields exact

Green’s functions. Therefore, in this model we can also
explore regimes other than the glassy regime. In particular,
we note from (10) and (14) that in the regimes x0; y0 < 0

and x0 > 0; y0 < 0, the exact Green’s functions also satisfy
a glassylike equation (6), namely

−θðx0 − y0Þ ∂C∂y0 ¼
ω

2
coth

βω

2
GR: ð20Þ

In other words, when y0 < 0, the Green’s functions satisfy
the same simple equation independent of whether x0 > 0 or
x0 < 0 (although the forms of the Green’s functions in the

two regimes are quite different). This emphasizes the
special role played by the earlier time y0. Furthermore,
in both these regimes Ωeff ¼ ω and βeff ¼ β. This is easily
understood in the regime x0; y0 < 0 (initial equilibrium
regime), while the behavior in the regime x0 > 0; y0 < 0
originates from causality which singles out the earlier time.

IV. CONCLUSION

We have studied the relation between the correlated and
the retarded Green’s functions in nonequilibrium, within
the context of an exactly soluble quenched model. This
model is characterized by a slow approach to equilibrium at
large times which is similar to the behavior observed in
glassy systems. We have shown that this relation is a
generalization of the differential form of the classical
fluctuation-dissipation theorem which, in general, involves
an effective temperature with a manifest dependence on
time sectors. The earlier time y0 appearing in the retarded
Green’s function has a special role in this relation, which is
a consequence of causality. When y0 < 0 (the quench
reference time has been chosen to be zero for simplicity),
this is similar to the fluctuation-dissipation relation in
equilibrium. When y0 > 0, but small, no such relation
holds since in this regime the system is far away from
stationarity. On the other hand, for large and positive values
of y0, the system approaches asymptotically a near-
stationary state. In this case, a generalized differential form
of the fluctuation-dissipation relation exists which contains
an effective temperature. We have determined this temp-
erature which is higher or lower than the initial equilibrium
temperature, depending respectively on whether the
quench leads to a sudden contraction or expansion of
the system.
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