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We use the Schwinger-Dyson equations in the presence of a thermal bath, in order to study chiral-
symmetry breaking in a system of massless Dirac fermions interacting through pseudo quantum
electrodynamics, in (2þ 1) dimensions. We show that there is a critical temperature Tc, below which
chiral symmetry is broken, and a corresponding mass gap is dynamically generated, provided the coupling
is above a certain, temperature dependent, critical value αc. The ratio between the energy gap and the
critical temperature for this model is estimated to be 2π. These results are confirmed by analytical and
numerical investigations of the Schwinger-Dyson equation for the electron. In addition, we calculate the
first finite-temperature corrections to the static Coulomb interaction. The relevance of this result in the
realm of condensed matter systems, like graphene, is briefly discussed.
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I. INTRODUCTION

Chirality is a physical quantity, carried by fermionic
particles, which characterizes how these behave under a
specular reflection. Chiral symmetry is the invariance under
an operation relating different chiralities. It may be either
discrete or continuous but, in any case, masslessness is
usually a necessary condition for a system to be chiral-
symmetry invariant. Chiral symmetry is usually broken
at a quantum level by radiative corrections, which are
nonperturbative in the coupling constant.
A very convenient platform to investigate chiral-

symmetry breaking is the nonperturbative approach provided
by the Schwinger-Dyson equations (SDE). This approach
consists of a complicated system of integral equations
relating exact Green’s functions and vertex functions [1].
Nontrivial solutions of the SDE usually imply a dynamical
mass generation for the matter field. The case of quantum
electrodynamics in (3þ 1) dimensions (QED4) has been
studied in Ref. [2]. For quantum electrodynamics in (2þ 1)
dimensions (QED3), the chiral-symmetry breaking for
massless Dirac fermions has been extensively studied, both
at zero [1,3–6] and finite temperature [7–10]
Three-dimensional theories, such as QED3, have

recently attracted much attention because these models
are relevant for the theoretical description of some effects
typically observed in condensed-matter systems. Examples
range from high-Tc superconductivity [1,11] to graphene
[12–16]. Graphene is particularly interesting because its
linear tight-binding dispersion relation coincides with the

one of massless Dirac particles. Furthermore, the system
has particle-hole symmetry [17].
However, even in two-dimensional materials the real

photons propagate in (3þ 1) dimensions. This raises the
question of how to describe the electromagnetic interactions
of charged particles in (2þ 1) dimensions. This problem
was studied in Refs. [18–20]. After projecting the photons
onto (2þ 1) dimensions, a nonlocal term emerges in the
Maxwell Lagrangian, leading to the so-called pseudo
quantum electrodynamics (PQED) [18,21], sometimes also
referred to as reduced quantum electrodynamics [22,23].
It has been shown that PQED correctly describes the

physical 1=r Coulomb interaction between static charges,
contrarily to QED3 at tree level, which provides a loga-
rithmic static interaction lnðe2rÞ. The processes of canoni-
cal quantization of theories such as PQED may be found in
Refs. [24–26]. There, it was shown that PQED respects
causality. Furthermore, it has been shown that PQED
respects the Huygens principle in (2þ 1) dimensions,
unlike QED3 [27]. More recently, it has been also proved
that this theory respects unitarity [28].
In a previous publication, we investigated the occurrence

of chiral-symmetry breaking in PQED at T ¼ 0 [16]. In this
paper, we study the effect of temperature on the dynamical
chiral-symmetry breaking in PQED coupled to massless
Dirac fermions, by considering this theory in the presence
of a thermal bath. At the classical level, the theory is chiral
invariant due to the absence of a mass term for the fermions.
We show that there exists a critical temperature Tc, below
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which quantum effects produce dynamical breakdown of the
chiral symmetry, with the associated generation of a mass
gap. This occurs above a critical coupling αcðTÞ, which is
temperature dependent and increases with temperature. The
temperature, therefore, is an inhibitor of dynamical mass
generation. We estimate the ratio between the mass gap
and Tc to be approximately 2π. All these results are then
confirmed by numerical calculations. Finally, we evaluate
the corrections to the static Coulomb potential of PQED, due
to the finite temperature. For this purpose, we use the SDE
for the gauge-field propagator, which involves the vacuum
polarization. We find a logarithmic correction in the limit
of short-range distance. For the long-range limit, the
corrected interaction is proportional to the inverse of the
third power of the distance.
The outline of this paper is the following: In Sec. II we

review the Feynman rules for PQED, while in Sec. III we
study the electron self-energy in PQED by using the SDE
and the imaginary-time formalism or Matsubara frequen-
cies. In Sec. III A we prove that the sum over Matsubara
frequencies is convergent for PQED, thereafter we solve
this sum; in Sec. III B we use the zero-mode approximation
in order to solve the SDE analytically, and in Sec. III C
we use the zero-external-momentum approach in the mass
function. We obtain the critical temperature, the critical
coupling constant, and we also estimate the ratio between
the energy gap and the critical temperature. Then, we
discuss how to include more Matsubara frequencies in the
calculations. In Sec. IV we calculate the corrections to the
Coulomb potential in (2þ 1) dimensions due to the thermal
bath. We also include two Appendices; in the first one we
compare our analytical results to the numerical solution
of the full integral equation for the mass function, while in
the second one we discuss the approach about the wave
function renormalization.

II. CHIRAL-SYMMETRY BREAKING
IN PQED AT T ¼ 0

The Lagrangian of the PQED in Euclidean space-time
and for massless Dirac fermions is given by [18]

L ¼ 1

4
Fμν 2

ð−□Þ1=2 Fμν þ ψ̄ðiγμ∂μ þ eγμAμÞψ ; ð1Þ

where □ is the d’Alembertian operator, e is the electric
charge of the electron, Fμν is the usual field intensity tensor
of the U(1) gauge field Aμ, the pseudo-electromagnetic
field, ψ is a four-component Dirac field, and γμ are rank-4
Dirac matrices.
The Feynman rules, at zero temperature, imply that the

gauge-field propagator reads [16]

Δ0μνðpÞ ¼
1

2
ffiffiffiffiffi
p2

p �
δμν −

pμpν

p2

�
ð2Þ

in the Landau gauge and that the inverse of the fermion
propagator is

S−10FðpÞ ¼ −γμpμ: ð3Þ

Recently, the authors of Ref. [16] investigated chiral-
symmetry breaking in PQED at zero temperature using the
quenched- and the unquenched-rainbow approaches to
solve the SDE (see Ref. [1] for an insightful review about
the SDE). In the quenched-rainbow approach, the vacuum
polarization is neglected, whereas in the unquenched one it
is considered. Within the first approach, chiral-symmetry
breaking only occurs if α > αc, whereas for the second,
a value for the critical number of fermion flavors given by
NcðαÞwas obtained. In this case, chiral-symmetry breaking
only occurs if Nf < NcðαÞ. Furthermore, it has been
shown that the model has intrinsic characteristics of both,
QED4 (renormalizable theory) and QED3. Specially,
for QED3 the critical number of active fermions is
reobtained from PQED in the strong coupling limit, i.e.,
Ncðα → ∞Þ ¼ NQED3

c ¼ 32=π2. For QED3 this value was
first obtained in Ref. [3].

III. QUENCHED-RAINBOW APPROXIMATION
AT FINITE TEMPERATURES

The chiral-symmetry breaking in QED4 at finite temper-
atures was obtained from nontrivial analytical solutions for
the mass function ΣðpÞ, which only appear below a certain
critical temperature Tc, estimated using the zero mode of
the Matsubara frequencies [7]. Above the critical temper-
ature, the chiral symmetry is restored. It has been also
shown that the integral equation for the mass function in
QED4 accounting for temperature effects is the same as in
QED3 by taking T ¼ 0 and using a dimensional coupling
constant γ ¼ e2T=ð4πÞ ¼ αT, fixed at the limit T → 0. In
addition, this analytical approach for QED4 has been also
confirmed by a numerical solution of the full Schwinger-
Dyson equation for the mass function [7]. However, the
same set of approximations is not applicable to QED3
because there are infrared divergences in the electron self-
energy if the vacuum polarization is not taken into account.
Due to the similarities between PQED and QED4, here

we use the same set of approaches proposed in Ref. [7], and
as expected, no infrared divergence is observed in the SDE.
The inverse of the full electron propagator then reads

S−1F ðpÞ ¼ S−10FðpÞ − ΞðpÞ; ð4Þ

where the electron self-energy ΞðpÞ is given by

ΞðpÞ ¼ e2
Z

d3k
ð2πÞ3 γ

μSFðkÞΓνðk; pÞΔμνðp − kÞ; ð5Þ

with Γνðk; pÞ denoting the full vertex function. In the
lowest order, we consider Γνðk; pÞ ¼ γν, which is called
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rainbow approach. Furthermore, we use only the free
gauge-field propagator. This assumption is called the
quenched approach. Both approximations are motivated
because of perturbation theory, which establishes
Γνðk; pÞ ¼ γν þOðe3Þ and Δμν ¼ Δ0μν þOðe2Þ [1–4].
The inverse of the full fermion propagator can be written

as [1–4]

S−1F ðpÞ ¼ −pμγ
μAðpÞ þ ΣðpÞ; ð6Þ

where AðpÞ is the identity-proportional term (this term is
also called the renormalization function), and ΣðpÞ is called
the mass function. To obtain ΣðpÞ we use Eq. (6) in Eq. (4)
and calculate the trace over the Dirac matrices. The
corresponding result for zero temperature is [16]

ΣðpÞ ¼ 4πα

Z
d3k
ð2πÞ3

ΣðkÞ
A2ðkÞk2 þ ΣðkÞ2

1

jp − kj ; ð7Þ

with α ¼ e2=4π denoting the coupling constant. To obtain
AðpÞ, we multiply Eq. (4) by the Dirac matrices and
calculate the trace over them. The result for zero temper-
ature is [16]

AðpÞ ¼ 1þ 4πα

p2

Z
d3k
ð2πÞ3

AðkÞΔðqÞ
k2A2ðkÞ þ Σ2ðkÞ

×
ðp:qÞðk:qÞ

q2
; ð8Þ

where

q ¼ p − k ð9Þ

and

ΔðqÞ ¼ 1

2ðq2Þ1=2 : ð10Þ

It has been shown that AðpÞ ≈ 1 for zero temperature.
Therefore, if AðpÞ ¼ 1, ΣðpÞ fully describes the electron
self-energy ΞðpÞ [16]. In Appendix B, we show that this
result also holds for finite temperatures. Therefore, from
now on we consider AðT;pÞ ¼ 1.
Equation (7) is very similar to Eq. (14) in Ref. [16].

However, there is a different coefficient in the mass
function due to a constant factor in the gauge-field
propagator. Although this will change the critical behavior
of the theory, one verifies that the correct factor in Eq. (2)
should be 1=2 in order to obtain the precise Coulomb
interaction between charges in the plane. Indeed, the
critical coupling constant for the onset of chiral-symmetry
breaking in Eq. (7) is αc ¼ π=8 ≈ 0.40 for T ¼ 0. We
rewrite Eq. (7) as two integrals, one for the energy
component and another for the two-dimensional momen-
tum components,

ΣðpÞ ¼ 4πα

Z
dk0
ð2πÞ

Z
d2k
ð2πÞ2

ΣðkÞ
k20 þ k2 þ ΣðkÞ2

×
1

½ðp0 − k0Þ2 þ ðp − kÞ2�1=2 : ð11Þ

Next, we introduce the effects of temperature through
the Matsubara frequencies in the temporal component.
For this purpose, we must replace kμ ¼ ðk0;kÞ → ðωn;kÞ
and pμ ¼ ðp0;pÞ → ðωm;pÞ, where ωn and ωm are the
Matsubara frequencies for fermions, given by ωn ¼ ð2nþ
1ÞπT and ωm ¼ ð2mþ 1ÞπT, with n and m integers [29].
The integral over k0 becomes a sum in n by replacingR
dk0fðk0;k; TÞ → 2πT

P
nfðωn;k; TÞ and the mass func-

tion is rewritten as

ΣmðpÞ ¼
Xþ∞

n¼−∞

Z
d2k
ð2πÞ2

ð4παTÞΣðkÞ
ð2nþ 1Þ2π2T2 þ k2 þ ΣðkÞ2

×
1

½4ðn −mÞ2π2T2 þ ðp − kÞ2�1=2 : ð12Þ

This is the integral equation for the mass function in
PQED3 at finite temperatures when considering the sum
over all Matsubara frequencies in the quenched-rainbow
approach. We have an additional complication with respect
to the zero temperature case, which is the dependence of the
ΣmðpÞ function on the Matsubara frequencies ωm. We will
assume that the mass function is independent of ωm, and
therefore consider m ¼ 0. This also implies that ΣðkÞ does
not participate on the sum over n.

A. The sum over Matsubara frequencies in PQED

In QED4, the sum over all Matsubara frequencies
present in the integral equation for the mass function
Σðp; TÞ is calculated by standard methods [7]. However,
for PQED it is not simple to obtain the solution of the
complete series. First, we need to analyze its convergence.
Starting from Eq. (12), we see that the sum over n can be
expressed as a sum U, given by

U ¼
Xþ∞

n¼−∞
un ¼

Xþ∞

n¼−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ A2

p 1

ð2nþ 1Þ2 þ B2
: ð13Þ

Note that the terms of the sum are all positive,
since A2; B2 > 0. Furthermore, we can write

U ¼ 2
Pþ∞

n¼1 u
ðþÞ
n þ u0, where uðþÞ

n ¼ ðun þ u−nÞ=2.
Therefore, it is clear that if

Pþ∞
n¼1 u

ðþÞ
n is a convergent

sum, then U will be too.
Next, we define another independent sum V, which is

V ¼
Xþ∞

n¼1

vn ¼
Xþ∞

n¼1

1

ðnþ AÞ
1

ðnþ BÞ ; ð14Þ
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where V is convergent and has a known result.

Furthermore, we have that vn and uðþÞ
n satisfy the inequal-

ities vn ≥ uðþÞ
n ≥ 0 and

lim
n→∞

uðþÞ
n

vn
¼ 0: ð15Þ

Therefore, we can use the comparison test of series [30],

which establishes that if V is convergent, then
Pþ∞

n¼1 u
ðþÞ
n is

necessarily convergent, which implies that U is also
convergent, completing our proof. Furthermore, we have
u0 > un, for any n.
From now on, we will not write time components

anymore, hence it is needless to use bold in the momentum
components. This allows us to simplify the nota-
tion, Σ0ðp; TÞ≡ ΣðpÞ.
After showing that U is convergent, we follow an

analytical procedure to calculate the sum over the
Matsubara frequencies in Eq. (12). This is useful in order
to identify the temperature-independent term of Eq. (12),
which is called the vacuum term [31]. Thereby, we rewrite
Eq. (12) for m ¼ 0

ΣðpÞ ¼ 4πα

Z
d2k
ð2πÞ2 ΣðkÞ

Z þ∞

−∞

dy
π
σyðp;ΣðkÞÞ; ð16Þ

where the kernel σy is given by

σy ¼
Xþ∞

n¼−∞

T
4n2π2T2 þ ω2

p;k

1

ð2nþ 1Þ2π2T2 þ ϵ2k
; ð17Þ

with

ω2
p;k ¼ y2 þ ðp − kÞ2; ð18Þ

and

ϵ2k ¼ k2 þ Σ2ðkÞ: ð19Þ
Next, we calculate the sum over the Matsubara frequen-

cies in Eq. (17) and find

σy ¼ CB½2nBðωp;kÞ þ 1� − CF½1 − 2nFðϵkÞ�; ð20Þ
where nBðωp;kÞ ¼ ½expðωp;k=TÞ − 1�−1 and nFðϵkÞ ¼
½expðϵk=TÞ þ 1�−1 are the Bose and Fermi distribution
functions, respectively. The functions CB and CF are

CBðTÞ ¼
ðsp;kdp;k þ π2T2Þ

2ωp;kðd2p;k þ π2T2Þðs2p;k þ π2T2Þ ; ð21Þ

and

CFðTÞ ¼
ðsp;kdp;k − π2T2Þ

2ϵkðd2p;k þ π2T2Þðs2p;k þ π2T2Þ ; ð22Þ

where dp;k ≡ ϵk − ωp;k and sp;k ≡ ϵk þ ωp;k.

We obtain the vacuum term by using T ¼ 0 in Eq. (20).
Thereby, the kernel at zero temperature is

σyðT ¼ 0Þ ¼ CBð0Þ − CFð0Þ ¼
1

2ωp;kϵkðωp;k þ ϵkÞ
:

ð23Þ
Integrating out y in Eq. (23) yields

π

2ϵk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ϵ2k

q
"
1 −

2

π
tan−1

 ϵkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ϵ2k

q !#
; ð24Þ

where q ¼ p − k. Therefore, Eq. (12) becomes

ΣðpÞjT¼0 ¼ 4πα

Z
d2k
ð2πÞ2

ΣðkÞ
k2 þ Σ2ðkÞGðq;ΣðkÞÞ; ð25Þ

where

G ¼ ϵk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ϵ2k

q
"
1 −

2

π
tan−1

 
ϵkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 − ϵ2k

q !#
: ð26Þ

Admitting ΣðkÞ is not dependent on momentum, it
follows that Eq. (25) is logarithmically divergent. This is
the same degree of divergence of the mass-proportional
term in the electron self-energy, obtained through pertur-
bation theory at one-loop expansion at zero temperature.
Here, however, since we are interested in the nonperturba-
tive regime, we shall consider ΣðkÞ a nontrivial function of
the momentum, which vanishes at large momentum. For
this purpose, it is more convenient to convert the integral
equation into a differential equation with asymptotic
conditions.
Although the previous analytical method is sufficient to

solve the sum over all Matsubara frequencies, the angular
integration obtained from Eqs. (16) and (20) does not allow
us to obtain the differential equation for the mass function.
Next, we shall explore a different analytical approach to
circumvent this problem.
We return to the integral equation, but we integrate

out the angular variable instead of summing over the
Matsubara frequencies. Therefore, Eq. (12) reads

ΣðpÞ ¼ 16παT
ð2πÞ2

Z
∞

0

kdkΣðkÞIðp; k;ΣðkÞÞ; ð27Þ

where I is given by

Iðk; p;ΣðkÞÞ ¼
Xþ∞

n¼−∞

1

ð2nþ 1Þ2π2T2 þ k2 þ ΣðkÞ2

×
KðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp − kÞ2 þ 4n2π2T2
p ; ð28Þ
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with KðxnÞ denoting the elliptic function. For xn < 1, we
have KðxnÞ ¼ π=2þ πxn=8þOðx3nÞ, with xn given by

xn ¼ −
4pk

ðp − kÞ2 þ 4n2π2T2
: ð29Þ

Next, we propose an approximation to the sum U, in
order to obtain an analytical solution to ΣðpÞ. The zero-
mode approximation, i.e., U ≈ u0 has been used for QED4
in Ref. [7] and is also valid for the PQED.

B. Zero-mode approximation

For low temperatures, the sum over n in Eq. (28) is
approximately given by the term u0. Therefore, by taking
n ¼ 0 in Eq. (27), we find

ΣðpÞ ¼ 16πγ

ð2πÞ2
Z

∞

0

dk
k

jp − kj
Kðx0ÞΣðkÞ

π2T2 þ k2 þ ΣðkÞ2 ; ð30Þ

where γ ¼ αT is a dimensional coupling constant. This
condition is necessary to study the dynamical mass gen-
eration in the case of a nonzero critical temperature Tc.
However, one may always return to the coupling constant
and consider it in the context of a finite critical coupling
constant αcðTÞ at finite temperatures. The symmetry is
fully restored if Tc ¼ 0 or αcðTÞ → ∞. Note that both
interpretations are equivalent, in the sense that at very low
temperatures, interaction effects become more relevant.
Next, we divide Eq. (30) into two parts, the infrared part

k < p and the ultraviolet part k > p. Furthermore, we
include a ultraviolet “cutoff” Λ (bear in mind that we may
return to the continuum limit Λ ¼ ∞ at any time in the
calculations). However, for comparison with lattice field
theory, it is interesting to keep the cutoff finite. Using these
approaches in the elliptic function, we obtain

k
jp − kjKðx0Þ ≈

kπ
2p

θðp − kÞ þ π

2
θðk − pÞ: ð31Þ

Therefore, Eq. (30) becomes

ΣðpÞ ¼ 2γ

p

Z
p

0

dk
kΣðkÞ

π2T2 þ k2 þ ΣðkÞ2

þ 2γ

Z
Λ

p
dk

ΣðkÞ
π2T2 þ k2 þ ΣðkÞ2 : ð32Þ

We can neglect the nonlinear term and approximate
Σ2ðkÞ þ k2 þ π2T2 ≈ k2 þ π2T2. As argued earlier in the
literature, this approximation does not change significantly
the critical behavior of the theory [5]. Furthermore, T is
dominant in the region where k → 0 and is negligible in
the region where k → Λ. This shows that the temperature
behaves like a natural infrared cutoff for Eq. (32). This
infrared cutoff is identified as the critical temperature for
chiral-symmetry breaking [7]. Thereby, by taking the first
derivative of the above expression, we have

dΣðpÞ
dp

¼ −
2γ

p2

Z
p

πTc

dk
ΣðkÞ
k

; ð33Þ

which can be converted to a second-order differential
equation given by

d
dp

�
p2

dΣðpÞ
dp

�
þ 2γ

p
ΣðpÞ ¼ 0; ð34Þ

with infrared and ultraviolet boundary conditions given,
respectively, by

lim
p→πTc

p2
dΣðpÞ
dp

¼ 0 ð35Þ

and

lim
p→Λ

ΣðpÞ ¼ 0: ð36Þ

The solution of the differential equation (34) is

ΣðpÞ ¼ C1

ffiffiffiffi
γ

p

r
J1

 ffiffiffiffiffi
8γ

p

s !
þ C2

ffiffiffiffi
γ

p

r
Y1

 ffiffiffiffiffi
8γ

p

s !
; ð37Þ

where J1ðxÞ and Y1ðxÞ are the Bessel functions of first and
second kind, respectively. C1 and C2 are arbitrary constants
with dimension ½C1� ¼ ½C2� ¼ 1, both in units of energy.
From Eq. (36), it is possible to show that C2 ¼ 0, because
xY1ðxÞ is not zero if x → 0, with x ¼ ffiffiffiffiffiffiffiffi

γ=Λ
p

. On the other
hand, Eq. (35) provides the identity

2J1ðξÞ þ ξJ0ðξÞ − ξJ2ðξÞ ¼ 0; ð38Þ
where ξ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8γ=πTc

p
. Equation (38) has a set of nontrivial

solutions fξng ¼ fξ0; ξ1;…g, where ξn < ξnþ1 for any n.
The minimal value ξ0 is chosen to define the critical
temperature Tc,

Tc ¼
8γ

πξ20
: ð39Þ

Using Eq. (38), one can show that ξ0 ≈ 2.40, thus
allowing us to determine the critical temperature only
in terms of the dimensional coupling constant, Tc ¼
8αT=πξ20 ¼ 0.44αT, i.e., for T <Tc, then α> αcðT≈TcÞ¼
πξ20=8≈2.26. This result shows that even for low temper-
atures the critical coupling constant is much larger than in
the case of zero temperature αcðT ¼ 0Þ ¼ π=8 ≈ 0.40 [16].
For an arbitrary value of γ, it can be verified by numerical

tests that the full integral equation, given by Eq. (30),
obeys Σðp; T ≥ TcÞ → 0. Therefore, a nontrivial solution
for ΣðpÞ requires a nontrivial value for Tc.
The approach of this section has provided an analytical

solution for the mass function Σðp; TÞ, as well as an
estimative for Tc. Unfortunately, from the analytical
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solution, it is not clear that Σðp; T ¼ TcÞ → 0. In order to
confirm the phase transition at Tc and αcðTÞ, in the next
section, we will recalculate the mass function, but at zero
external momentum.

C. Zero-external-momentum approximation

In this section, we will take zero external momentum in
Eq. (30), i.e., Σðp; TÞ ≈ Σð0; TÞ ¼ mðTÞ. At zero momen-
tum, the mass function is the pole of the fermion propa-
gator, therefore 2mðTÞ is the energy gap between positive
and negative energies. It has been argued that the mass
function reaches its maximum value exactly at p → 0
[5,16]. Therefore, if mðTÞ ≠ 0 we immediately conclude
that chiral-symmetry breaking will occur. By using this
approach into Eq. (30), we have

1 ¼ 2γ

Z
Λ

0

dk
π2T2 þ k2 þmðTÞ2 : ð40Þ

Equation (40) can be transformed into a transcendental
equation for mðTÞ, given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðTÞ2 þ π2T2

p
2γ

¼ tan−1
�

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðTÞ2 þ π2T2

p �
: ð41Þ

In order to obtain an analytical solution for mðTÞ,
we expand the right-hand side (rhs) of Eq. (41) for
Λ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðTÞ2 þ π2T2

p
. This is a reasonable assumption,

since we are in the low-temperature regime and the
generated mass is expected to be much smaller than the
ultraviolet cutoff. We perform a Taylor expansion until
second order, tan−1ðxÞ ≈ π=2 − 1=xþOðx−2Þ if x > 1, and
we find two possible solutions

mðTÞ ≈�π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT2

c − T2Þ
q

; ð42Þ

where T2
c ¼ γ2Λ2=ð2γ þ ΛÞ2. From now on, let us admit

that mðTÞ > 0. Next, we return γ → αT, to obtain the
critical coupling constant

αcðTÞ ¼
Λ

ðΛ − 2TÞ : ð43Þ

Equation (43) allows us to estimate an interval for αcðTÞ.
Let us choose T ¼ 0.3 Λ as an upper bound, because
T=Λ ≪ 1. In this case, αcðT ¼ 0Þ < αc < αcðT ¼ 0.3 ΛÞ,
i.e., 1.0 < αc < 2.5. For the particular value T ¼ 0.5 Λ the
chiral symmetry is completely restored. However, it is clear
that the high-temperature limit T ≈ Λ → ∞ is not allowed
within this approach.
Having in mind condensed-matter applications, we

consider the fact that the cutoff Λ is a physical parameter
determined by the lattice spacing, i.e., Λ ∝ 1=aL, where
usually aL ≈ 10−10 m. For graphene, the cutoff is

Λ ¼ ℏvF=aL ≈ 3.0 eV [32]. Conversely, from a quantum
field theory perspective, one should take Λ ¼ ∞, which
implies αc ¼ 1.0.
In the case of quantum field theory applications to

particle physics, however, dimensional regularizationwould
be more appropriate. In this case, we should return to
Eq. (12) and perform the dimensional regularization, gen-
eralizing the two-dimensional integral into a D-dimensional
integral. Then, after some calculations, we conclude that the
critical coupling in the zero-external-momentum approach
is equal to one. In fact, this result may also be obtained
from Eq. (40) with Λ ¼ ∞. Therefore, αcðTÞ ¼ 1.0 is a
result that does not depend on the regulator. Nevertheless,
the full understanding of the pattern of chiral-symmetry
breaking in PQED, using the dimensional regularization,
requires a more complete study of the integral equation in
Eq. (12), especially applying better analytical and numerical
approaches that go beyond the scope of the present paper.
A similar problem has been discussed in the framework

of quenched quantum electrodynamics in (3þ 1)-
dimensions (QED4) [33,34]. For QED4, it has been shown
that the results in these two different regulators are in
agreement. We shall not discuss more elaborated analytical
and numerical approaches by using this regulator in the
present paper.
We now connect Tc with the mass function at zero

temperature, using Eq. (42). For T ¼ 0, we obtain
Tc ≈mð0Þ=π. Thus, it is possible to calculate the ratio R
between the energy gap 2mð0Þ and Tc, given by R ¼ 2π.
For QED3, the authors in Ref. [19] calculated this ratio and
obtained RQED3 ¼ 9.36 for one copy of the Dirac field.
Equation (42) shows that the chiral-symmetry breaking

in PQED at finite temperatures is a second-order phase
transition, with critical exponent equal to 1=2.
The zero external-momentum approximation is an ideal

approach to include the sum over Matsubara frequencies in
Eq. (27). Indeed, in this limit we have

1 ¼ 2γ

Z
Λ

0

dkk
Xþ∞

n¼−∞

1

ð2nþ 1Þ2π2T2 þ k2 þmðTÞ2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 4n2π2T2
p : ð44Þ

We can find numerical solutions to mðTÞ by using
Eq. (44), thereby verifying that the zero-mode appro-
ximation is in good agreement with the SDE for all
Matsubara frequencies. This concludes our investigation
of chiral-symmetry breaking within the quenched-rainbow
approach. The general important points to be retained are:
(i) the quenched-rainbow approach provides reasonable
physical solutions for the mass function in PQED, similarly
to QED4 and quite differently from QED3; (ii) nontrivial
solutions have been found for T < Tc; (iii) Tc is estimated
from the energy gap at zero temperature; and (iv) the
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zero-mode approximation is found to be in agreement with
the sum over all Matsubara frequencies.
We have assumed that Σðp; T > TcÞ → 0 based on the

fact that systems at high temperatures naturally are less
prone to quantum effects. Then, no chiral-symmetry break-
ing should be observed. However, for the sake of com-
pleteness, we will briefly discuss how to obtain explicitly
this trivial solution. From the integral Eq. (30), we must
use p2 þ T2 þ Σ2ðpÞ ≈ T2, a realistic assumption for high
temperatures. Then, by using the expansion in Eq. (31),
we find the differential equation

d
dp

�
p2

dΣðpÞ
dp

�
¼ 0; ð45Þ

the general solution of which is

ΣðpÞ ¼ C3

p
þ C4: ð46Þ

Note that C4 ¼ 0, since Σðp → ∞Þ ¼ 0, and C3 ¼ 0
because Σðp → 0Þ must be finite. In this limit, T is no
longer an infrared cutoff, and Σðp; TÞ ¼ 0.

IV. STATIC INTERACTIONS BETWEEN
MASSLESS DIRAC PARTICLES AT T ≠ 0

IN THE PQED APPROACH

In this section, we recalculate the static interaction
between charges in the plane, in order to clarify the
physical interpretation of the electromagnetic interaction
in the plane at finite temperatures. For this purpose, we
must include the corrections of the vacuum polarization to
the gauge-field propagator.
From Eq. (2), we obtain the static gauge-field propaga-

tor, given by

Δμνðp0 ¼ 0;pÞ ¼ δμ0δν0

2
ffiffiffiffiffi
p2

p : ð47Þ

It has been shown [18] that this propagator reproduces the
Coulomb interactions for static charges in the plane. The
static vacuum polarization at finite temperatures has been
calculated in Ref. [19], and for massless Dirac particles it is
given by

Πμνðp0 ¼ 0;p; TÞ ¼ −
2αT
π

δμ0δν0fðp; TÞ; ð48Þ

where

fðp; TÞ ¼
Z

1

0

dx ln

�
2 cosh

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

T2
xð1 − xÞ

r ��
: ð49Þ

Let us now consider the high-temperature limit p → 0 in
Eq. (49); then fðp → 0; TÞ ¼ ln 2.

The corrected propagator reads

Δ̄−1
μν ðp; TÞ ¼ Δ−1

μν ðpÞ − Πμνðp; TÞ; ð50Þ

leading to

Δ̄μνðp; TÞ ¼
δμ0δν0

2
ffiffiffiffiffi
p2

p
þM2ðTÞ

; ð51Þ

where

M2ðTÞ ¼ 2αT ln 2
π

: ð52Þ

The static interaction VðrÞ is obtained from a Fourier
transformation of Eq. (51),

VðrÞ ¼ e2
Z

d2p
ð2πÞ2

e−ip:r

2
ffiffiffiffiffi
p2

p
þM2ðTÞ

: ð53Þ

The angular integral in Eq. (53) is performed, yielding

VðrÞ ¼ e2
Z

∞

0

dp
2π

pJ0ðprÞ
2pþM2ðTÞ ; ð54Þ

where J0ðprÞ is the Bessel function and p ¼
ffiffiffiffiffi
p2

p
. By

defining z≡ 2pþM2ðTÞ and changing the integration
variable into z, we obtain, after some algebra, that
Eq. (54) may be rewritten as

VðrÞ ¼ e2

4πr
− e2

M2ðTÞ
4π

Z
∞

0

dy
J0ðyÞ

2yþ rM2ðTÞ ; ð55Þ

where y≡ pr. The first term on the rhs of Eq. (55) is the
Coulomb interaction, while the second one is a correction
due to the thermal bath. The integral over y yields [35]

Z
∞

0

dy
J0ðyÞ

2yþ rM2ðTÞ ¼
π

4

�
H0

�
r
r0

�
− Y0

�
r
r0

��
; ð56Þ

where

r0ðTÞ ¼
2

M2ðTÞ ¼
π

αT ln 2
; ð57Þ

H0ðr=r0Þ is the Struve function, and Y0ðr=r0Þ is the Bessel
function of the second kind. Therefore, the static interaction
between charged particles in PQED in the presence of the
thermal bath is

Vðr; r0Þ ¼
e2

4πr

�
1 −

πr
2r0

�
H0

�
r
r0

�
− Y0

�
r
r0

���
: ð58Þ

We now rewrite the potential Vðr; r0Þ as a function of the
dimensionless variable l≡ r=r0ðTÞ,
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r0VðlÞ ¼
e2

4πl

�
1 −

π

2
l½H0ðlÞ − Y0ðlÞ�

�
: ð59Þ

For l ≪ 1, we have

r0VðlÞ ¼
e2

4πl

�
1þ l ln

�
l
2γ̄

�
þOðl2Þ

�
; ð60Þ

where ln γ̄ ¼ −γe and γe is the Euler’s constant. For l ≫ 1,
we use the asymptotic representation of the Struve
function [35]

H0ðlÞ− Y0ðlÞ ¼
1

π

Xp−1
m¼0

Γðmþ 1=2Þ
Γð1=2−mÞ

�
l
2

�
−2m−1

þOðl−2p−1Þ;

ð61Þ

and consider p ¼ 2, to find

r0VðlÞ ¼
e2

4πl3
½π þOðl−2Þ�: ð62Þ

The last result indicates that the corrected potential,
for r ≫ r0ðTÞ, goes to zero much faster than the usual
Coulomb potential. In Fig. 1, we plot Eq. (58) and the usual
Coulomb potential for comparison.
Next, we estimate the physical value of r0ðTÞ. Let us

assume a massless particle with energy dispersion
E ¼ vp ¼ ℏv=r, where v ¼ fc is the particle velocity,
0 ≤ f ≤ 1, and c is the light velocity. For graphene
f ¼ 1=300 and for a relativistic particle f ¼ 1, for instance.
Taking this into account, we rewrite Eq. (57) in physical
units,

r0ðTÞ ¼
πℏfc

αfkBT ln 2
; ð63Þ

where we reintroduced ℏ and kB, the Planck and
Boltzmann’s constant, respectively and αf ¼ αQED4=f ¼
1=ð137fÞ is the coupling constant. Thus, r0ðTÞ≈
10−5=T m, with T in Kelvin and f ¼ 1=300. At room
temperature T ¼ 300 K, we find r0 ≈ 10 nm, which is
much larger than the atomic scale. This value is smaller
when f is less than 1=300.
There is a parallel between the static interaction in PQED

at finite temperatures and QED3 at zero temperature.
Indeed, starting from the screened static gauge-field propa-
gator in QED3, obtained from the respective SDE, it has
been shown that at large r the static electron-electron inter-
action is given by VðrÞ ∝ lnðe2rÞ þ hðrÞ, where hðrÞ ∝
1=rþOð1=r2Þ [36]. Therefore, the results are similar
to PQED. However, for QED3 the Coulomb potential is
the correction to the confining potential and the term
which breaks scale invariance is the dimensional electric
charge, instead of the temperature as in PQED. For finite
temperatures, the static potential of QED3 behaves like
VðrÞ ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðTÞrp

expð−MðTÞrÞ [19], which is quite
different from the corresponding result for PQED
in Eq. (60).

V. DISCUSSION

In this paper, we show that the inclusion of finite-
temperature effects into the SDE leads to a critical
parameter Tc for the onset of dynamical mass generation.
Moreover, at high temperatures the chiral symmetry is
restored. The finite temperature also increases the value of
the critical coupling constant; for low temperatures, we
estimate that 1.0 < αcðTÞ < 2.5, which are large values
compared to the equivalent zero-temperature result
αcðT ¼ 0Þ ¼ π=8 ≈ 0.40. Our analytical findings were
verified by performing numerical tests. We estimate the
ratio between the energy gap and the critical temperature
for PQED to be R ¼ 2π. Furthermore, we show that
the Coulomb potential between static charges in the plane
is corrected by a logarithmic potential proportional to
M2ðTÞ ∝ αT, where α ¼ e2=ð4πÞ for the short-range limit,
while a third-power potential emerges in the long-range
limit. A deeper investigation of the ground state generated
by this interaction may bring interesting physical results.
For graphene, the investigation of chiral-symmetry

breaking in (2þ 1) dimensional theories is an important
topic, since this effect has been related to a dynamical gap
generation, which can be relevant to describe electronic
transport in this system. It has been argued that this gap
energy leads to important technological applications for
graphene, such as a graphene transistors [37]. PQED at
T ¼ 0 admits gap generation, but only above a critical
coupling constant. Although our results include finite
temperatures, and thus are more realistic because any
measurement of the gap is done at T ≠ 0, we are consid-
ering vF ¼ c. The inclusion of still more physical param-
eters to study chiral-symmetry breaking in PQED may lead

0.5 1 1.5 2
0

0.01
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0.03

0.04
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r r0

r 0
V

(r
   

 ) r 0

FIG. 1 (color online). We artificially consider α ¼ 1=137 and
r0 ¼ 1.0 for both lines. The thick line is the corrected potential
given in Eq. (58), while the dashed line is the usual Coulomb
potential for T ¼ 0. Here r and r0 are given in units of T−1.
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to results closer to the experimental findings in graphene. It
may as well bring a deeper understanding of how to control
this energy gap. These parameters, among others, should be
the Fermi velocity vF, finite temperature T, magnetic field
B, and chemical potential μ. A recent experimental meas-
urement at low magnetic fields has determined an upper
limit of 0.1 meV for a possible gap in suspended monolayer
graphene [38].
According to the Coleman theorem, there is no

Goldstone boson in (1þ 1) dimensions, i.e., no sponta-
neous (continuous) symmetry breaking may occur [39–41].
Because of this theorem, one may conclude that there is no
ferromagnetism or antiferromagnetism in the Heisenberg
model in one or two dimensions [40]. For (2þ 1) dimen-
sional theories at finite temperatures, the theorem also
applies due to the loop integrals, which behave effectively
in (1þ 1) dimensions [19]. This is observed for the case of
PQED in Eq. (12). Therefore, there is no continuous chiral-
symmetry breaking from the very beginning and the
dynamically generated mass instead breaks the discrete
chiral symmetry. For the case of the continuous chiral
symmetry, the dynamical mass generation could be related
to the Kosterlitz-Thouless mechanism [42], as has been
discussed for the Gross-Neveu model in (2þ 1) dimen-
sions at finite temperatures [43]. Because of the Kosterlitz-
Thouless mechanism, no continuous symmetry is broken,
even in the massive phase, thus avoiding any possible
disagreement with the Coleman theorem [43].
The nonlocal approach of PQED has been applied to the

study of superconductivity in (2þ 1) dimensions in the
view point of the Kosterlitz-Thouless mechanism [20].
In this case, because of the coupling constant between
the matter and the bosonic excitation (lattice effect),
it has been shown that the gauge-field propagator has finite
mass, thus finite penetration depth, which may lead to an
effective description of the Meissner effect in supercon-
ductors. Furthermore, we have obtained the ratio R between
the energy gap and the critical temperature for the matter
field, which is almost twice the value obtained from
the BCS theory for superconductivity. We shall explore
elsewhere the possible relation between dynamical
mass generation, Kosterlitz-Thouless mechanism, and
superconductivity [20].
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APPENDIX A: NUMERICAL RESULTS
FOR THE MASS FUNCTION

In this Appendix, we perform some numerical tests
to verify the validity of the analytical approaches adopted
in this paper. For simplicity, we will begin by studying
Eq. (41) and its analytical solution, Eq. (42), in which for Λ
large, we obtained Tc ¼ γ. In Fig. 2, we plot the numerical
results for Λ ¼ 10 and γ ¼ 1=ð8πÞ with dots, and the
analytical result as a solid line. Numerical solutions are
found by looking for roots of the transcendental equa-
tion (41). A very good agreement is observed. Note that
both solutions vanish almost at the same point Tc ¼ 0.04 in
units of Λ=10 ðu:ΛÞ.
Next, we investigated the influence of all Matsubara

frequencies for the mass function. After calculating the
integral over the momentum k in Eq. (44), we find

FðmÞ ¼ 1 − 2γ
Xþ∞

n¼−∞

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð1þ 4nÞπ2T2

p
×

�
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 4n2π2T2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð1þ 4nÞπ2T2

p �

− tan−1
�

2nπTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ð1þ 4nÞπ2T2

p ��
: ðA1Þ

The roots of FðmðTÞÞ ¼ 0 yield the mass function mðTÞ
for a given value of T. We estimate the critical temperature
by imposing that for T ¼ Tc the mass vanishes,
mðT ¼ TcÞ ¼ 0. Thus, we obtain a critical temperature
Tc ¼ 0.10 u:Λ. This result shows that the very simple zero-
mode approach is already enough to provide an estimate of
Tc in units of Λ. However, a more accurate result is
expected when one includes all of the Matsubara frequen-
cies. To investigate this more complicated case,
we include an effective limit to the Matsubara frequencies,
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FIG. 2 (color online). The solid line is the analytical solution
given by Eq. (42) and the dots are the numerical results.
We use Λ ¼ 10 and γ ¼ 1=ð8πÞ u:Λ. The critical temperature
is Tc ¼ γ ¼ 0.04 u:Λ.
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n ∈ ½−lo;þl0� with l0 ¼ 10. It is possible to show that for
any number larger than l0, the function FðmðTÞÞ remains
nearly the same. Indeed, as we demonstrated, the sum over
n is convergent, therefore we expect that un ¼ 0 if n → ∞.
For nonzero external momentum, we can compare the

analytical solution in Eq. (37) to the numerical solutions of
the nonlinear integral Eq. (30). For this purpose, we have to
choose a value for the arbitrary constant A in the analytical
solution. For temperatures larger than Tc ¼ 0.44γ ¼
0.018 u:Λ for γ ¼ 1=ð8πÞ u:Λ, the mass function given
by the nonlinear integral equation vanishes, as expected
from the analytical solution. Therefore, Fig. 3 shows that
the analytical solution found earlier is in very good
agreement with the nonlinear integral equation.

APPENDIX B: THE RENORMALIZATION
FUNCTION AðpÞ

In this Appendix, we show that AðT;pÞ ¼ 1 is also a
suitable approach for finite temperatures. This approach has
been discussed for QED3 at zero temperature in Ref. [5],
while for PQED it has been verified in Ref. [16]. After
introducing the Matsubara frequencies in Eq. (8) as in
Sec. III, we obtain

Að ~pÞ ¼ 1þ 4παT
~p2

Xþ∞

n¼−∞

Z
d2k
ð2πÞ2

Að~kÞΔð ~qÞ
~k2A2ð~kÞ þ Σ2ð~kÞ

×
ð ~p: ~qÞð~k: ~qÞ

~q2
; ðB1Þ

where ~p¼ðπT;pÞ, ~k¼ðð2nþ1ÞπT;kÞ, and
~q¼ð−2nπT;qÞ. We assume m ¼ 0 because Að ~pÞ ¼
AðT;pÞ should be independent on Matsubara frequ-
encies. For simplicity, let us consider

ffiffiffiffiffi
p2

p ≡ p and
p · k ¼ pk cos θ. The angular integral may be solved
analytically, and after some simplifications we obtain

Iθnðp; kÞ ¼
Z

2π

0

dθ
Δð ~qÞð ~p: ~qÞð~k: ~qÞ

~q2

¼ 8nπ2T2Hnðp; kÞYnðp;−kÞ
ðpkÞ3=2 Eð−4Ynðp; kÞÞ;

ðB2Þ
where EðxÞ ¼ π=2 − ðπ=8Þxþ � � � for jxj < 1 is the com-
plete elliptic integral,

Ynðp; kÞ ¼
pk

ðp − kÞ2 þ ð2nπTÞ2 ; ðB3Þ

and

Hnðp; kÞ ¼ 2nYnðp; kÞ1=2ðp2 − π2T2Þ
þ 2pY1=2

n ðp; kÞðp − kÞ − pkY−1=2
n ðp; kÞ:

ðB4Þ

Next, we obtain the integral equation for Að ~pÞ with a
kernel only dependent on the internal-momentum integral,

Að ~pÞ ¼ 1þ αT
π ~p2

Xþ∞

n¼−∞

Z
kdkAð~kÞIθnðp; kÞ
~k2A2ð~kÞ þ Σ2ð~kÞ : ðB5Þ

As expected, AðT;pÞ ¼ 1þOðαÞ, which indicates the
accuracy of the approximation AðpÞ ≈ 1 [5]. Beyond this
argument, we need to look for a numerical solution of
Eq. (B5) for Σðk; TÞ ¼ 0 (the symmetric phase), as in
Fig. 3. Note that, since Σðk; TÞ ∝ α, we should not consider
Σðk; TÞ ≠ 0 in order to solve the integral equation for
AðT;pÞ because these new terms are of order α2. This
symmetric phase for AðT ¼ 0;pÞ has been also discussed
in the context of QED3 [5]. In Fig. 4, we plot the numerical
results for Aðp; TÞ.
In order to obtain the results in Figs. 1 and 3, we

converted the momentum-dependent kernel in Eqs. (30)
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FIG. 3 (color online). The dashed line is the numerical solution
of the nonlinear integral equation given by Eq. (30). The solid
line is the analytical solution Eq. (37) for A ¼ 0.15 and B ¼ 0.
For these two lines we used Λ ¼ 10 and T ¼ 0.01 u:Λ. The thick
line is the numerical solution for T ¼ 0.03 u:Λ. For this approach
Tc ¼ 0.44γ ¼ 0.018 u:Λ for γ ¼ 1=ð8πÞ u:Λ.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1.

1.2

p

A
(p

,T
)

FIG. 4 (color online). Numerical solution of Eq. (B5) for
α ¼ 1=ð8πÞ, T ¼ 1.0 u:Λ, Λ ¼ 10, n ∈ ½−10;þ10�, which
shows that Að ~pÞ ≈ 1 is indeed a realistic approximation.
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and (B5) into a system of nonlinear algebraic equations
by using the repeated trapezoidal quadrature rule, as has
been successfully done for PQED at T ¼ 0 [16].
The fundamental step is to replace the continuum
variables p and k into a set of discrete variables xi
and yi, with 10−3 < xi; yi < Λ ¼ 10. In this interval,
we obtained a set of M ¼ 300 solutions for the

mass function ΣiðxiÞ, which implies in a separation
h ¼ ð10 − 10−3Þ=ð300 − 1Þ ≈ 0.033 between the discrete
variables. For T ≠ 0, the temperature is only a new
parameter inside the kernel of the nonlinear integral
equations. More details about the numerical procedures
may be found in Ref. [16] for PQED at T ¼ 0, in Ref. [5]
for QED3 at T ¼ 0, and in Ref. [7] for QED4 at T ≠ 0.
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