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We construct asymptotically free renormalization group trajectories for the generic non-Abelian Higgs
model in four-dimensional spacetime. These ultraviolet-complete trajectories become visible by general-
izing the renormalization/boundary conditions in the definition of the correlation functions of the theory.
Though they are accessible in a controlled weak-coupling analysis, these trajectories originate from
threshold phenomena which are missed in a conventional perturbative analysis relying on the deep
Euclidean region. We identify a candidate three-parameter family of renormalization group trajectories
interconnecting the asymptotically free ultraviolet regime with a Higgs phase in the low-energy limit. We
provide estimates of their low-energy properties in the light of a possible application to the standard model
Higgs sector. Finally, we find a two-parameter subclass of asymptotically free Coleman-Weinberg-type
trajectories that do not suffer from a naturalness problem.
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I. INTRODUCTION

While the naturalness problem has been a dominant
paradigm for model building beyond the standard model of
particle physics, the triviality problem of the Higgs sector
conceptually appears much more severe as it inhibits a
constructive ultraviolet (UV)-complete definition of the
standard model as an interacting quantum field theory. The
triviality of the standard model Higgs sector is expected to
arise from the fundamental scalar degrees of freedom. For
pure scalar theories, strong evidence for triviality [1]—the
fact that the continuum limit can only be taken for the
noninteracting theory—has been accumulated by lattice
simulations in d ¼ 4 [2] and analytic methods [3] (see [4]
for a rigorous proof in d > 4). For non-Abelian Higgs
models, Monte Carlo methods [5] have found no indication
for continuous phase transitions facilitating a nontrivial
continuum limit. In practice, triviality arguments have been
used to put upper bounds on the Higgs mass [6] long before
its discovery.
Since ATLAS and CMS have found a comparatively

light scalar boson [7], the standard model appears to be in a
“near-critical” regime [8,9] indicating that the Higgs self-
interaction is small near the Planck scale. This would be
natural if all standard-model interactions including the
scalar self-interaction were asymptotically free (AF)
[10]. This is, however, not the case from the standard
viewpoint of perturbative β functions.
The construction of AF Yang-Mills-Higgs(-Yukawa)

systems is in principle straightforward on the basis of a
perturbative analysis [11–16]. In particular, the problematic
quartic scalar interaction λ, can be marginal-relevant (UV
stable) or -irrelevant (UV unstable), depending on the

model and the choice of trajectories. UV-complete trajec-
tories which emanate from the Gaussian fixed point (FP)
can also be built by fixing the unstable marginal-irrelevant
direction. In RG-improved perturbation theory, this sce-
nario requires additional fermions as well as eigenvalue
conditions [12,13] to be satisfied [17]. This implies a
reduction of couplings [18], here effectively removing one
parameter, as λ is then purely induced, implying a pre-
diction of the Higgs-to-W-boson mass ratio. To our knowl-
edge none of such theories comes sufficiently close to the
standard model. Alternatively, UV completion in Higgs
models can be achieved via asymptotic safety, which also
requires dynamical fermions [19].
In this Letter, we consider the construction of AF Yang-

Mills-Higgs systems from a new viewpoint. Our central
idea is that, in order for suitable AF non-Abelian Higgs
models to exist, the scalar potential needs to approach
absolute flatness concurrently with the vanishing gauge
coupling g. This permits large amplitude fluctuations of the
scalar field controlled by the latter parameter. We thus
suggest to consider gauge-rescaled scalar field variables
ϕ → gPϕ, with some power P, as the relevant measure for
amplitudes. While P at this point merely seems to be an
unphysical rescaling parameter, we show that it para-
metrizes RG-scale-dependent boundary conditions for
the effective potential. These in turn are equivalent to
g-dependent renormalization and boundary conditions for
the correlation functions of the theory. As a consequence, P
parametrizes a set of physically distinct RG flows, each one
possessing a Gaussian FP and allowing for AF trajectories.
First signatures of such a trajectory have been found in a

gauged Yukawa model in [20]. In the present work, we
explore the general pattern to construct UV-complete
trajectories for AF non-Abelian Higgs models, including
the physically relevant SU(2) model, for the first time.
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II. A PERTURBATIVE ILLUSTRATION

Let us start by recalling the standard perturbative
analysis of a non-Abelian Higgs model, as presented,
e.g., in [11]. The one-loop β-functions derived under the
standard assumption of working in the deep Euclidean
region, where the RG scale k is much larger than any other
mass scale, read

βg2 ¼ −b0g4; βλ ¼ Aλ2 þ B0λg2 þ Cg4: ð1Þ

The integrated flow in this simple truncation yields

λðg2Þ ¼ −
g2

2A

�
Bþ

ffiffiffiffi
Δ

p
tanh

� ffiffiffiffi
Δ

p

2b0
ðc − logðg2ÞÞ

��
ð2Þ

with B ¼ B0 þ b0 and Δ ¼ B2 − 4AC, and c is an inte-
gration constant. For the SU(2) model,

b0 ¼
43

48π2
; A ¼ 3

4π2
; B0 ¼ −

9

16π2
; C ¼ 9

64π2
;

such that Δ is negative and the flow in Eq. (2) has a branch
cut, the position of which depends on c and g2. This is the
so-called Landau pole, indicating the unbounded increase
of λ towards the UV and thus the failure of perturbation
theory. This is considered as reflecting the triviality
problem of the theory which is assumed to persist also
beyond perturbation theory. If Δ were positive, λ would
simply be proportional to g2 itself for sufficiently small g2

with a c-independent proportionality constant. In the limit
c → �∞, two special trajectories would appear, corre-
sponding to solutions of the FP equation for the ratio
ζ ¼ λ=g2 [11]

βζ ¼ g2ðAζ2 þ Bζ þ CÞ ¼ 0; ζ ¼ λ

g2
ð3Þ

and they would describe the possible UVasymptotics of all
AF trajectories. Conversely, if at least one of these roots is
positive, then there are AF trajectories in the positive ðg2; λÞ
plane. Non-Abelian Higgs models with this property have
been classified, e.g., in [14]. The standard SU(2) model is
not of this type.
In order to explore possible loop holes of this conven-

tional perturbative argument, let us study more general
potentials of the form

U ¼ λ

2

�
ϕ†ϕ −

v2

2

�
2

þ λ3
6k2

�
ϕ†ϕ −

v2

2

�
3

þ � � � : ð4Þ

This includes a possible vacuum expectation value v and
higher-order operators such as λ3 which can be used to
effectively resum higher loop contributions. A nonpertur-
bative way to study the flow of general potentials will be
used below. Here, we simply study the contribution of λ3 to

the flow of λ. Expressed in terms of ζ, we find
(∂t ¼ d=d ln k),

∂tζ ¼ βζ ¼ g2ðAζ2 þ Bζ þ CÞ − 1

g2

�
λ3

16π2
þ 9λ3
64π2ζ

�
:

ð5Þ
In contrast to Eq. (3), this equation gives rise to a finite FP
value for ζ if the ratio λ3=g4 ¼ χ stays finite and non-
vanishing. Note that χ can have either sign, as long as the
full potential U including higher order terms stays bounded
from below. If realized, this implies that λ and λ3 (and
possibly all higher λn≥3) are asymptotically free together
with the gauge coupling g2.
Perturbatively, it might seem difficult to stabilize λ3 in

this way. However, there is an effect which is missed by the
conventional perturbative analysis: to see this, let us study
the flow of the minimum v of the potential (ignoring wave
function renormalizations for the moment),

∂t

�
v2

2k2

�
¼ −2

�
v2

2k2

�
þ 3

16π2
þ 9

64π2ζ
: ð6Þ

For any positive ζ, the ratio v2=k2 is attracted to a positive
UV fixed point. This implies that U can be attracted
towards a UV fixed point potential in the regime of
spontaneous symmetry breaking (SSB), such that the
minimum increases proportional to the RG scale, v ∼ k.
This conclusion has a dramatic consequence: the stan-

dard assumption that the UV behavior of the theory can be
exhaustively analyzed in the deep Euclidean region with
k ≫ any other scale can be violated. In order to explore the
implications, we have to use a more powerful formalism
that does not rely on the deep Euclidean limit, can deal with
corresponding threshold effects as well as with the RG flow
of full potentials U.
Using the functional RG, we show below that the AF

scenario visible in Eqs. (5), (6) is indeed realized and can be
controlled in a weak-coupling analysis—though fully
accounting for threshold effects. The scalar couplings
run with the gauge coupling to zero towards the UV, with
the ratios of the type ζ; χ being fixed by a boundary
condition for the RG flow of the full potentialU. In fact, we
find a three-parameter family of such RG trajectories. The
flow of the above example with λ3 ∼ g4 (e.g., χ ¼ −2) and
threshold effects included, i.e., v2=k2 at its fixed point, is
shown below in Fig. 2.

III. RG FLOW OF THE MODEL

We concentrate on non-Abelian Higgs models with a
fundamental scalar ϕ as a key building block of the
standard model of electroweak interactions; we consider
gauge groups SUðNÞ, using the standard model SU(2) for
concrete examples. This model includes a Yang-Mills
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sector LYM ¼ trFμνFμν=2 with the field strength Fμν

derived from the vector potential Wν, and a minimally
coupled scalar sector with a scalar potential that depends on
the invariant ρ≔ϕ†ϕ. In this work, we analyze the RG flow
not only restricted to the set of perturbatively renormaliz-
able operators, but include a full scalar potential. Even if
the higher operators turn out to be irrelevant and strongly
suppressed along AF trajectories, it is crucial for the UV
construction of these trajectories to go beyond the single-
coupling analysis. We study the flow of a scale-dependent
effective action

Γk ¼
Z

ZWLYM þ ZϕðDμϕÞ†ðDμϕÞ þUðρÞ; ð7Þ

where Dν ¼ ∂ν − iḡWν. Here, all wave function renorm-
alizations Zϕ;W , the coupling ḡ, and the potential U depend
on a RG scale k. The RG β function(al)s for these quantities
have been computed in [20], using the Wetterich equa-
tion [21,22]. This formulation of the functional RG is
useful as it makes no assumptions about the magnitude
of the running masses and couplings, and incorporates
dynamically generated thresholds. The relevance of the
latter for UV completeness has first been studied in [23].
Using the background-field formalism, the running of

the renormalized gauge coupling g2 ¼ ḡ2

ZW
is linked to that

of the wave function renormalization [24],

∂tg2 ¼ ηW g2; ηW ¼ −∂t logZW; t ¼ ln k: ð8Þ

The present ansatz for the effective action yields the
standard one-loop running, amended by threshold effects
owing to gauge bosons and the Higgs scalar acquiring
masses in the broken regime. Similarly, the scalar anoma-
lous dimension ηϕ ¼ −∂t logZϕ exhibits a standard one-
loop form including threshold effects [20].
Our search strategy for asymptotic freedom generalizes

the preceding perturbative illustration by looking for
trajectories such that the ϕ4 coupling vanishes as λ ∼ g4P

in the UV, with arbitrary power P > 0. The example given
above corresponds to P ¼ 1=2. The nontrivial asymptotic
value for λ=g4P can be observed by rescaling the scalar field

x ¼ g2P ~ρ ¼ g2P
Zϕ

k2
ρ; ρ ¼ ϕ†ϕ; ð9Þ

such that x plays the role of a natural renormalized
dimensionless field. For the full scalar potential, we
demand that higher couplings vanish in the UV with
corresponding or higher powers of g. The dimensionless
effective potential

fðxÞ ¼ uð~ρÞj~ρ¼g−2Px ¼ k−4UðρÞjρ¼g−2PZ−1
ϕ k2x; ð10Þ

should then stay finite and nonvanishing in the far UV (the
dimensionless quantities u and ~ρ are often used in the
functional-RG literature).
The flow equation for this rescaled effective potential

reads [20],

∂tf ¼ βf ≡ −4f þ ð2þ ηϕ − PηWÞxf0

þ 1

16π2

�
3
XN2−1

i¼1

lðGÞ40T ðg2ð1−PÞω2
W;iðxÞÞ

þ ð2N − 1ÞlðBÞ40 ðg2Pf0Þ þ lðBÞ40 ðg2Pðf0 þ 2xf00ÞÞ
�
;

ð11Þ

where the scheme-dependent threshold functions l encode
the decoupling of massive modes. Using the linear regu-

lator [25], we have lðBÞ40 ðwÞ ¼ 1=2
1þw ð1 −

ηϕ
6
Þ and analogously

for lðGÞ40T ðwÞ upon replacing ηϕ by ηW. The gauge-boson
mass parameters ω2

W;iðxÞ arise from the eigenvalues of
ðg2PZϕ=k2Þϕ†fTi; Tjgϕ, e.g., ω2

W;iðxÞ ¼ x=2 for SU(2) for
any i ¼ 1, 2, 3.
Standard perturbative results are, of course, contained

in Eq. (11): an expansion to order ϕ4 yields the universal
one-loop βλ function of Eq. (3) upon (i) ignoring RG
improvement, ηϕ;W → 0 inside the threshold functions, and
(ii) taking the deep Euclidean limit, i.e., ignoring threshold

effects lðG=FÞ40 ðwÞ → lðG=FÞ40 ð0Þ after the expansion in ϕ.
Similarly, the additional terms ∼λ3 in Eq. (5) are derived by
including this operator in the ansatz for the potential.
Projecting onto the flow of the minimum leads to Eq. (6) in
the limits (i) and (ii). We emphasize that many of our new
results are not fully visible or remain hidden in this
conventional perturbative limit.

IV. FIXED POINTS AND SCALING SOLUTIONS

Let us first search for scaling solutions, which corre-
spond to FPs of the RG flow, representing candidates for
asymptotic limits of AF trajectories. For this, we consider
Eq. (11) in the limit g → 0, but keeping x and fðxÞ finite.
The latter facilitates the consideration of boundary con-
ditions for the effective potential, and thus for correlation
functions, which are unapparent in conventional perturba-
tion theory. Since the scalar loops in the last line approach
irrelevant constants for g → 0, and the anomalous dimen-
sions also approach zero asymptotically, the flow equation
for fðxÞ becomes a first-order differential equation. The
behavior of the gauge-boson-loop in the second line
depends on the value of P. For P ≠ 1, it approaches zero
(P > 1) or an irrelevant constant (0 < P < 1) and hence
can be ignored. Therefore, for any regulator and any
SUðNÞ, the FP solutions to the remaining part of the first
line of Eq. (11) satisfying ∂tf ¼ 0 read
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f�ðxÞ ¼ ξx2; P ≠ 1; ð12Þ

for a generic ξ [irrelevant constants in fðxÞ are ignored].
For P ¼ 1, the gauge loop contributes nontrivially to the
effective potential. For SU(2), we find using the linear
regulator

f�ðxÞ ¼ ξx2 −
�

3

16π

�
2
�
2xþ x2 log

�
x

2þ x

��
; P ¼ 1;

ð13Þ

with ξ arbitrary. The precise functional form is regulator
dependent, but any regulator yields this Coleman-
Weinberg-type shape. For ξ ≥ 0, the potential is bounded
from below and has a nontrivial minimum xmin�. For ξ ¼ 0,
the minimum is at infinity.
The FP potentials of Eqs. (12), (13), once reexpressed in

terms of the original fields ϕ, provide the simplest portrait
of a two-parameter family of asymptotically free solutions.
Different values of ðξ; PÞ correspond to different flows in
coupling space. This translates into different g-dependent
boundary conditions for integrating the RG equation for
UðρÞ. Near the FP, the trajectories differ from Eqs. (12),
(13) by higher powers of the gauge coupling. The trajec-
tories can systematically be constructed in a weak-coupling
expansion by expanding βf in powers of g2, and computing
the potential fðxÞ for which this approximate β functional
vanishes. This procedure is justified by the stability
analysis given below.
For P ∈ ð0; 1� the next-order approximation includes a

linear term in the leading power of g2. The leading power is
g2P for P ∈ ð0; 1=2�, and g2ð1−PÞ for P ∈ ½1=2; 1�. The
corresponding effective potentials are in the SSB regime

fðxÞ ¼

8>><
>>:

ξx2 − ξ 3
16π2

g2Px for P ∈ ð0; 1=2Þ
ξx2 − 3ð3þ8ξÞ

128π2
gx for P ¼ 1=2

ξx2 − 9
128π2

g2ð1−PÞx for P ∈ ð1=2; 1Þ
:

For P ∈ ð0; 1=2Þ or P ¼ 1=2 the position of the minimum
is g2 independent [~ρmin ¼ 3=32π2 and ~ρmin ¼ 3ð3þ 8ξÞ=
256π2ξ respectively], whereas for P ∈ ð1=2; 1Þ it is propor-
tional to ξ−1g2ð1−2PÞ and thus running to infinity in the UV.
For P ¼ 1, we solve the corresponding equation numeri-
cally. The resulting potential u as a function of the unscaled
field ~ρ is shown in Fig. 1. Again, the minimum of u
approaches infinity ∼1=g2 in the UV, and the curvature at
the minimum vanishes like g4.
While our analysis fully remains in the weak-coupling

regime, our scaling solutions evade the triviality problem
already signaled by conventional perturbation theory
because of nontrivial threshold phenomena: since the
scaling potentials have nontrivial minima which are finite
in dimensionless units or even diverge with g2 → 0, the

threshold effects remain relevant also in the UV. Thus the
deep Euclidean region which is convenient for a standard
perturbative analysis is incapable of properly accounting
for the present scaling solutions.
For P > 1, logarithms slightly complicate the weak-

coupling expansion. By taking the full gauge loop into
account, analytical forms for the scaling solutions can be
found which will be given elsewhere [26].
Let us now perform a stability analysis of these trajec-

tories, taking advantage of their asymptotic description in
terms of FPs of the RG flow of fðxÞ. For small gauge
coupling, perturbations about these trajectories are trans-
lated into deviations from the FP, with components δg2 ¼
g2 and δfðxÞ ¼ fðxÞ − f�ðxÞ. Since βg2 is proportional to
−g4, any eigenperturbation with nonvanishing gauge cou-
pling must be marginal-relevant. Indeed the g-dependent
potential f determined above is by construction a para-
metrization of the marginal-relevant eigendirection, since
its flow is frozen apart from the running of g. Conversely,
any nonmarginal eigenperturbation must have a vanishing
g2 component. At g2 ¼ 0, the eigenvalue problem sim-
plifies to the Gaussian one, for which the eigenperturba-
tions are simple powers, δf ∝ xn. This includes a relevant
(n ¼ 1) and a marginal direction (n ¼ 2). Beyond the linear
analysis, the n ¼ 2 direction is actually marginal-irrelevant,
as is familiar from perturbation theory. This is visible in
the stream-plot of Fig. 2 where the green (thick) line is the
projection of a ðP ¼ 1=2; ξ≃ 0.95Þ-asymptotically free
trajectory onto the ðg2; λÞ plane. We emphasize that all
our effective potentials are polynomially bounded, exhibit
self-similar eigenperturbations and thus satisfy standard
RG requirements [27].
To summarize, we have identified new AF trajectories in

the non-Abelian Higgs model. In addition to the standard
mass-type relevant deformation, we have provided the
approximate parametrization of one marginal-relevant
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0.030

u

FIG. 1 (color online). Dimensionless potential u as a function
of the dimensionless field invariant ~ρ for the SUðN ¼ 2Þ model
with P ¼ 1 and ξ≃ 2 × 10−4 (corresponding to xmin � ¼ 2) for
increasing values of g2 from blue (flatter) to green (steeper),
g2 ∈ f0.01; 0.02; 0.03; 0.04; 0.048g.
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eigenperturbation for each pair ðξ; PÞ. For UV-complete
trajectories, the marginal-irrelevant ϕ4-type perturbation is
zero. Therefore, once a specific UV asymptotic behavior is
determined by ðξ; PÞ, only one physical parameter remains
apart from an absolute scale. This is one parameter less
than in usual perturbative scenarios. Yet, we gained the
two positive parameters ξ and P, labeling different AF
trajectories.

V. MASS SPECTRUM

The preceding analysis investigated the UV behavior of
the AF trajectories in the non-Abelian Higgs model. In
order to explore the long range mass spectrum, we have to
integrate the flow of the effective potentials towards the IR.
If the trajectories end in a SSB phase, a Fermi scale kF and
gauge boson and Higgs masses are generated. Trajectories
emanating from a given fixed-point theory specified by ξ
and P consist of the corresponding marginal-relevant
eigenperturbation (parametrized by the gauge coupling
g2Λ) possibly superimposed by a finite component of the
relevant direction (the δf ∼ xn¼1 Gaussian perturbation)
with some coefficient cΛ at a UV scale Λ. Inspired by the
standard model hierarchy, we assume cΛ to be very small,
such that the system will spend a long RG time on top of the
marginally relevant trajectory, establishing a large hier-
archy kF ≪ Λ. At a cross-over (CO) scale kCO the relevant
component sets in and drives the system away from the
marginal-relevant trajectory. In practice, the initial con-
ditions cΛ, g2Λ at Λ can be traded for cCO, g2CO to be specified
at kCO [in the standard model, kCO ∼Oð1Þ TeV].
For a simple estimate (blind to nonperturbative bound-

state effects [28]) of the mass spectrum, we initialize the
flow at kCO with a potential fCO that is equal to the analytic

parametrization of the marginal perturbation obtained
in the previous section, plus a relevant component,
fCO ¼ fðx;P; ξ; g2COÞ þ cCOx. We then evolve the full
RG flow from kCO down to kF. At the Fermi scale, the
gauge coupling g2 as well as the dimensionful conven-
tionally renormalized vev v and mass parameters m2

W , m
2
H

in kCO units will depend only on P, ξ, cCO and g2CO for
sufficiently big kCO because of universality. We choose g2CO
such that g2F acquires a standard-model-like value; since the
gauge running is logarithmically slow, g2CO and g2F do not
differ significantly. The parameter cCO should be chosen
sufficiently small in order to justify that it is ignored above
kCO, but also sufficiently large in order to drive the system
rapidly into the SSB regime; in practice, cCO ¼ −0.01 was
used for our estimates. For the running below kCO, we
approximate the full effective potential by a standard
polynomial expansion about its minimum; order-ϕ8 poly-
nomials turned out to be sufficient.
The Higgs-to-gauge boson mass turns out to be an

increasing function of ξ, which is approximately linear,
at least for small-enough ξ, m2

H=m
2
W ∼ ξ. The slope

depends on P and decreases for larger P. This suggests
that any desired physical value of the mass ratio corre-
sponds to a one-dimensional section through the ðξ; PÞ
plane, spanning the set of AF theories. Comparing the IR
results at the Fermi scale to the initial values at kCO, we find
that the flow towards the IR essentially preserves the mass
ratio already set by the initial condition at kCO. In our scans
we observed an almost ðξ; PÞ-independent ratio kCO=kF of
about one order of magnitude.
Let us finally explore the physical properties of

Coleman-Weinberg-like trajectories which are defined as
those with a zero relevant component [29]. We use an order-
ϕ4 polynomial truncation and integrate the flow by keeping
fixed the ratio χ between u000ð~ρminÞ and a suitable power of
g2, which determines the parameters ðP; ξÞ. To reduce
errors, we numerically solve the truncated finite-g2 FP
equations for fðxÞ including subleading corrections to the
analytic formulas given above. We observe that these
Coleman-Weinberg-like trajectories end in the SSB phase
in the IR only if the gauge coupling at initialization is
smaller than a critical P-dependent value. The resulting
Higgs-to-gauge boson mass parameter ratio is then a
function of ξ. For instance in the P ¼ 1=2 case, freeze-
out occurs when the quartic coupling is still in the FP

regime, such that the UV relation m2
H

4m2
W
¼ 2ξ is preserved.

We emphasize that the measured value of the Higgs
boson mass can be understood as essentially driven by top
fluctuations [8,30–32]. The small Higgs masses (ignoring
bound-state effects [28]) in the pure non-Abelian Higgs
model along Coleman-Weinberg trajectories thus appear to
fit the requirements of a realistic model. These trajectories
may also be useful to construct a natural large hierarchy in
the standard model via the Higgs portal [33]; in such a

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

g2

FIG. 2 (color online). Phase diagram and UV flow of the SU(2)
model in terms of λ ¼ u00ð~ρminÞ and the gauge coupling. This is
obtained by a polynomial truncation of the potential uð~ρÞ,
retaining only the beta functions of λ, v2=k2 and g2 and their
dependence on the higher coupling χ ¼ u000ð~ρminÞ=g4. Here we fix
xmin to its FP value and show the flow for a constant χ ¼ −2
boundary condition, which is consistent with asymptotically-free
trajectories for P ¼ 1=2. The colored thick line highlights the root
of the finite-g2 FP equation for the coupling f00ðxminÞ ¼ λ=g2.
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scenario, our non-Abelian Higgs model could play the role
of a UV-complete hidden sector.
In summary, we have discovered a three-parameter

family of AF non-Abelian Higgs models. Our results rely
on a controlled weak-coupling analysis. Nevertheless, a
conventional perturbative analysis in the deep Euclidean
region is blind to these new trajectories as they arise from
threshold phenomena which require a resummation to
become visible in perturbation theory. If usable in the
context of the full standard model or GUTs, our RG
trajectories do not suffer from ϕ4 triviality and thus are
candidate building blocks for a UV-complete quantum field
theory. A two-parameter subset of Coleman-Weinberg-like
AF trajectories is even free from the naturalness problem.
We expect these trajectories to be directly accessible to

lattice methods: simulations with bare potentials along the
marginal-relevant eigenperturbations should lie on a line of
constant physics. Still, rather large lattices may be neces-
sary to resolve the Fermi scale as well as the crossover to
the asymptotic regime.
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