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We consider world-sheet theories for non-Abelian strings assuming compactification on a cylinder with
a finite circumference L and periodic boundary conditions. The dynamics of the orientational modes is
described by the two-dimensional CPðN − 1Þ model. We analyze both the nonsupersymmetric (bosonic)
model and the N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ emerging in the case of 1=2-BPS saturated strings
(Bogomol'nyi–Prasad–Sommerfteld saturated string that breaks only half of supersymmetry) in N ¼ 2

supersymmetric QCD with Nf ¼ N. The nonsupersymmetric case was studied previously; technically our
results agree with those obtained previously, although our interpretation is totally different. In the large-N
limit we detect a phase transition at L ∼ Λ−1

CP (which is expected to become a rapid crossover at finite N). If
at large L the CPðN − 1Þ model develops a mass gap and is in the Coulomb/confinement phase, with
exponentially suppressed finite-L effects, at small L it is in the deconfinement phase, and the orientational
modes contribute to the Lüsher term. The latter becomes dependent on the rank of the bulk gauge group. In
the supersymmetric CPðN − 1Þ models at finite L we find a large-N solution which was not known
previously. We observe a single phase independently of the value of LΛCP. For any value of this parameter
a mass gap develops and supersymmetry remains unbroken. So does the SUðNÞ symmetry of the target
space. The mass gap turns out to be independent of the string length. The Lüscher term is absent due to
supersymmetry.
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I. INTRODUCTION

Recently there was considerable progress in studies of
long confining strings; see [1]. The energy of the
Abrikosov-Nielsen-Olesen (ANO) closed string [2] in
the Abelian-Higgs model as a function of the string length
L (in the large-L limit) can be written as

EðLÞ ¼ TL −
γ

L
þ c3
TL3
þ � � � ; ð1:1Þ

where T is the string tension and the ellipses stand for terms
of the higher order in 1=L. This 1=L expansion is
determined by the low-energy effective two-dimensional
theory on the string world sheet. For the Abrikosov-
Nielsen-Olesen string the world-sheet theory is given by
the Nambu-Goto action plus higher derivative corrections.
It is plausible to assume that a similar structure applies to
QCD confining strings. Recently significant progress
occurred in measuring the spectrum of long confining
QCD strings in lattice simulations; see, for example, [3].
The 1=L term in (1.1) is referred to as the Lüscher term

[4]. The coefficient γ is universal. Its value is determined by
the number of massless (light) degrees of freedom on the
string world sheet. The Abelian strings possess only two
massless excitations due to two translational zero modes;
the Lüscher term is, correspondingly, γ ¼ π=3.

In this paper we will study the energy of a finite-L closed
non-Abelian string assuming that L is much larger than the
string transverse size.
The main feature of the non-Abelian strings is the

occurrence of extra (quasi)moduli: orientational zero
modes associated with their color flux rotation in the
internal space. Dynamics of these orientational moduli is
described by the two-dimensional CPðN − 1Þmodel on the
string world sheet. If the bulk theory supporting such string
vortices is supersymmetric,1 the world-sheet CPðN − 1Þ
model will have various degrees of supersymmetry. Non-
Abelian strings were first found in N ¼ 2 supersymmetric
gauge theories [5–8]. Later this construction was general-
ized to a wide class of non-Abelian gauge theories, both
supersymmetric and nonsupersymmetric; see [9–12]. The
Lüsher term for nonsupersymmetric non-Abelian strings
was previously discussed in [13].
Our current task is broader: we want to study the L

dependence of EðLÞ for all values of L, large and small
(see below), taking account of the orientational moduli that
are described by the two-dimensional CPðN − 1Þ model.

1In the simplest version non-Abelian vortex strings are
supported in gauge theories with the UðNÞ gauge group and
Nf ¼ N flavors of quarks.
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The latter is asymptotically free and develops its own
dynamical scale ΛCP. This modifies the expansion in (1.1).
Assuming that

ΛCP ≪
ffiffiffiffi
T
p

ð1:2Þ

we can write

EðLÞ ¼ TLþ fðΛCPLÞ
L

þO

�
1

TL3

�
: ð1:3Þ

Below we will present a detailed calculation of the string
energy for strings with

L ≫ 1=
ffiffiffiffi
T
p

: ð1:4Þ

For these values of L higher derivative corrections to the
effective world-sheet theory can be ignored, and we use a
CPðN − 1Þ-based description to calculate the function
fðΛCPLÞ (which is already known [13] in the limits
L ≫ Λ−1

CP and L ≪ Λ−1
CP). To solve the CPðN − 1Þ model

we use the large-N approximation [14]. Given the con-
straint (1.4) which is also assumed, we call the string
“large” if L ≫ Λ−1

CP, and “small” otherwise.
Now, when we have two free parameters in the problem

under consideration, N and L, and both can be large, the
ordering of taking limits is of paramount importance and a
source of a number of paradoxes. We will always take first
the limit N → ∞. In this limit the number of dynamical
degrees of freedom is infinite (even in the quantum-
mechanical limit L → 0) and, moreover, all interactions
die off. This makes possible phase transitions.
For a nonsupersymmetric case we find a phase transition

in the CPðN − 1Þ model on the string world sheet. Its origin
is intuitively clear: at large L the theory is strongly coupled
while at small L it is weakly coupled, and its behavior
should be close to that given by perturbation theory.
Correspondingly, at a large string length this theory develops
a mass gap and is in the Coulomb/confinement phase. Finite-
length effects coming from orientational moduli are expo-
nentially suppressed. We find that at L ≫ ΛCP

fðΛCPLÞ ¼ −
π

3
− N

ffiffiffi
2

π

r ffiffiffiffiffiffiffiffiffiffiffiffi
ΛCPL

p
e−ΛCPL þ � � � ; ð1:5Þ

where the first term is the conventional Lüscher term coming
from the translational moduli.
At a small length the CPðN − 1Þ model is in the

deconfinement phase. Massless orientational moduli con-
tribute to the Lüscher term, which becomes dependent on
the rank of the bulk gauge group. At

ffiffiffiffi
T
p

≪ L ≪ ΛCP we
find that

fðΛCPLÞ ¼ −N
π

3
: ð1:6Þ

The asymptotic values of the Lüscher coefficient γ
associated with the limits of large and small L in (1.5)
and (1.6), respectively, were reported earlier in [13] for the
open string. Here we confirm these results and derive
fðΛCPLÞ for the closed string. In other words, we impose
periodic boundary conditions (on the boson and fermion
fields in the case of the supersymmetric model; see below).
If N is large but finite, we expect that the phase transition

becomes a rapid crossover. We do not expect strictly
massless states to appear in the small-L domain at finite N.
Next, we study a supersymmetric case considering a

BPS-saturated (satisfying the BPS equation, which is a
condition for energy minimum) non-Abelian string in
four-dimensional N ¼ 2 SQCD (N ¼ 2 extended super-
symmetric quantum chromodynamics). In this case the
world-sheet theory for orientational modes is the N ¼
ð2; 2Þ supersymmetric CPðN − 1Þ model. Solving this
theory in the large-N limit we find a single phase with
unbroken supersymmetry and a mass gap. The mass gap
turns out to be independent of the string length. The chiral
Z2N symmetry is broken down to Z2, in much the same way
as for an infinitely long string. The photon field acquires a
mass term, and no Coulomb/confining potential is gen-
erated. Instead, the theory has N degenerate vacua repre-
senting N elementary strings. The Lüscher term vanishes
due to the boson-fermion cancellation.
Thus, the dynamical L-behavior of non-Abelian strings,

with or without supersymmetry, is drastically different in
the large-N solution.
As was mentioned, in both cases we impose periodic

boundary conditions on the spatial interval of length L. In
the nonsupersymmetric case this is equivalent to endowing
the string under consideration with temperature β−1,

β ¼ L: ð1:7Þ

Such strings were considered previously; see, e.g.,
[15–17]. Our results differ from those of [15–17] partly
in interpretation and partly in essence.
The paper is organized as follows. In Secs. II and III we

briefly review nonsupersymmetric bulk theory supporting
non-Abelian strings and the large-N solution of the
CPðN − 1Þ model at L → ∞ [14], respectively. In
Sec. IV we use the large-N method to study non-
Abelian strings of finite length and, in particular, describe
the Coulomb/confinement phase. Section V is devoted
to the deconfinement phase. In Secs. VI and VII, central
in our analysis, we deal with the supersymmetric N ¼
ð2; 2Þ string. In Sec. VIII we calculate the photon mass
on the world sheet of the supersymmetric string under
consideration as a function of L. Section IX summarizes
our conclusions. Appendixes contain details of our
calculations.

S. MONIN, M. SHIFMAN, AND A. YUNG PHYSICAL REVIEW D 92, 025011 (2015)

025011-2



II. NONSUPERSYMMETRIC NON-ABELIAN
STRINGS

In this section we briefly review the simplest four-
dimensional nonsupersymmetric model supporting non-
Abelian strings [18], give a topological argument for their
stability, and outline the effective low-energy theory on the
world sheet.
The model suggested in [18] is a bosonic part of N ¼ 2

supersymmetric QCD; see [11] for a review. The gauge
group of the theory is SUðNÞ ×Uð1Þ. The matter sector of
the model consists of Nf ¼ N flavors of complex scalar
fields (squarks) charged with respect to Uð1Þ, each in the
fundamental representation of SUðNÞ. The action of the
model is

S ¼
Z

d4x
�
−

1

4g22
ðFa

μνÞ2 −
1

4g21
ðFμνÞ2

þ j∇μφAj2 þ g22
2
ðφ̄ATaφAÞ2 þ g21

8
ðjφAj2 − NξÞ2

�
;

ð2:1Þ

where Ta are the generators of SUðNÞ, the covariant
derivative is defined as

∇μ ¼ ∂μ −
i
2
Aμ − iTaAa

μ;

Aμ and Aa
μ denote the Uð1Þ and SUðNÞ gauge fields

respectively, and the corresponding coupling constants
are g1 and g2. The scalar fields φkA have the color index
k ¼ 1;…; N and the flavor index A ¼ 1;…; N. Thus, φkA

can be viewed as an N × N matrix. The Uð1Þ charges of
φkA are 1=2.
Let us examine the potential of the theory (2.1) in more

detail. It consists of two non-negative terms, and conse-
quently the minimum of the potential is reached when both
terms vanish. The last term proportional to g21 forces φ

A to
develop a vacuum expectation value. One can choose φkA to
be proportional to the unit matrix, namely,

φvac ¼
ffiffiffi
ξ

p
diagð1; 1;…; 1Þ; ð2:2Þ

where we use N × N matrix notation for φkA. Then the last
but one term vanishes automatically.
The above vacuum field spontaneously breaks both the

gauge and flavor SUðNÞ groups. However, it is invariant
under the action of combined color-flavor global
SUðNÞCþF. Therefore, the symmetry breaking pattern is

UðNÞgauge × SUðNÞflavor → SUðNÞCþF:

This setup was suggested in [19] and became known later
as the color-flavor locking.

The topological stability of non-Abelian strings in this
model is due to the fact that π1ðSUðNÞ ×Uð1Þ=ZNÞ ≠ 0.
One combines the ZN center of SUðNÞwith elements e2πik=N

of Uð1Þ to get windings in both groups simultaneously.
The string solution [18] breaks the global symmetry of

the vacuum as follows:

SUðNÞCþF → SUðN − 1Þ × Uð1Þ: ð2:3Þ

As a result the orientational zero modes appear, making
the vortex non-Abelian. As is clear from the symmetry
breaking pattern of Eq. (2.3) the orientational moduli
belong to the quotient

SUðNÞ
SUðN − 1Þ ×Uð1Þ ¼ CPðN − 1Þ: ð2:4Þ

Thus, the low-energy effective theory on the string world
sheet is described by the CPðN − 1Þ model. The action of
the model was derived in [18]; it can be written as

Sð1þ1Þ ¼
Z

d2x

�
Tcl

2
ð∂kziÞ2 þ rj∇knlj2

�
; ð2:5Þ

where

Tcl ¼ 2πξ ð2:6Þ

is the classical tension of the string, zi are two translational
moduli in the perpendicular plane, nl, l ¼ 1;…; N are N
complex fields subject to the constraint

jnlj2 ¼ 1; ð2:7Þ

and r is defined below.
The covariant derivative is

∇k ¼ ∂k − iAk; ð2:8Þ

and k ¼ ð1; 2Þ labels the world-sheet coordinates. The
relation between a two-dimensional coupling r and a
four-dimensional coupling g2 at the scale

ffiffiffi
ξ
p

is given by

r ¼ 4π

g22
: ð2:9Þ

The field Ak enters is without a kinetic term and is auxiliary.
It can be eliminated by virtue of equations of motion and is
introduced to make the Uð1Þ gauge invariance of the model
explicit.
Let us count the number of degrees of freedom. The

complex scalar fields give 2N real degrees of freedom, of
which one is eliminated due to the constraint (2.7) and
another one due to Uð1Þ gauge invariance. Thus, the
total number of degrees of freedom is 2ðN − 1Þ, which
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is precisely the number of degrees of freedom in the
CPðN − 1Þ model.
To conclude this section we note that the formation of

non-Abelian strings leads to the confinement of monopoles
in the bulk theory. In fact, in the UðNÞ gauge theories
strings are stable and cannot be broken. Therefore, confined
monopoles are presented by junctions of two degenerate
non-Abelian strings of different kinds; see review [11] for
details. In the effective world-sheet theory on the string
these confined monopoles are seen as CPðN − 1Þ kinks
interpolating between distinct vacua.

III. CPðN − 1Þ MODEL AT ZERO TEMPERATURE

At large N the model was solved [14] in the 1=N
approximation. Let us outline how this is done. The
Lagrangian L of the CPðN − 1Þ model in the gauged
formulation in the Euclidean space-time can be written as

L ¼ j∇knlj þ ωðjnlj2 − rÞ; ð3:1Þ

where we rescale the nl fields. In addition, we introduce a
parameter ω to enforce the constraint. Moreover, we replace
the coupling r with the ’t Hooft coupling constant λ,

λ ¼ N
r
; ð3:2Þ

λ does not scale with N.
Since the nl fields appear quadratically in the action (3.1)

we can perform the Gaussian integration over them,
resulting in the equation for the effective potential V,

e−T̂V ¼
Z

dωdAkdet−Nð−ð∂k − iAkÞ2 þ ωÞ

× exp

�
N
λ

Z
d2xω

�
; ð3:3Þ

where T̂ stands for the (asymptotically infinite)
Euclidean time.
Since integration over ω and Ak cannot be done exactly,

we use a stationary phase approximation. Because of the
Lorentz invariance we search for a point such that Ak ¼ 0
and ω ¼ const. To find this stationary point we vary
Eq. (3.3) with respect to ω. The resulting equation is

λ

Z
d2k
ð2πÞ2

1

k2 þ ω
¼ 1: ð3:4Þ

Rewriting the bare coupling constant λ in terms of the scale
ΛCP of the CPðN − 1Þ model

4π

λ
¼ ln

M2
uv

Λ2
CP

; ð3:5Þ

where Muv is the ultraviolet cutoff, we finally find that

ω ¼ Λ2
CP: ð3:6Þ

Thus, the vacuum value of ω does not vanish. Looking at
Eq. (3.1) one can see that a positive value of ωmeans that a
mass for the fields nl is dynamically generated.
To determine the spectrum of the theory one has to

expand the effective action Eq. (3.1) around the saddle
point and consider field fluctuations in the quadratic
approximation. Linear terms vanish. Terms that are cubic
and higher are suppressed by powers of 1=

ffiffiffiffi
N
p

. Two
Feynman diagrams in Fig. 1 give rise to the kinetic term
for the U(1) gauge field.
Gauge invariance requires the answer to be

Πμν ¼ Πðp2Þðp2gμν − pμpνÞ: ð3:7Þ

The meaning of Eq. (3.7) is simple. It represents the kinetic
energy of the gauge field written in momentum space. Thus,
what was introduced as an auxiliary field becomes a propa-
gating field. Calculation in Appendix B reproduces Witten’s
result [14], Πð0Þ ¼ N=12πΛ2

CP, which is interpreted as the
inverse of the Uð1Þ charge squared of the nl fields.
A massless photon in two dimensions produces the

Coulomb potential between two charges at separation R,

VðRÞ ¼ 12πΛ2

N
R; ð3:8Þ

leading to a linear confinement of the n̄n pairs. Thus, the
spectrum of the theory contains n̄n “mesons” rather than
free n’s.
It is instructive to present an alternative interpretation of

this result. In [14] it was shown that nl fields can be
interpreted as kinks interpolating between different vacua.
The vacuum structure of the CPðN − 1Þmodel was studied
in [20]. According to this work the genuine vacuum is

FIG. 1. Feynman diagrams contributing to the kinetic term of the photon field.
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unique. There are, however, of the order N quasivacua,
which become stable in the limit N → ∞, since the energy
split between the neighboring quasivacua isOð1=NÞ. Thus,
one can imagine the n̄ field interpolating between the true
vacuum and the first quasivacuum and the n field returning
to the true vacuum as in Fig. 2. The linear confining
potential between the kink and antikink is associated with
the excess in the quasivacuum energy density compared to
that in the genuine vacuum.
This two-dimensional confinement of kinks can be inter-

preted in terms of strings and monopoles of the bulk theory;
see [18]. The fine structure of the CPðN − 1Þ vacua on the
non-Abelian string means that N elementary strings are split
by quantum effects and have slightly different tensions.
Therefore, themonopoles, in addition to the four-dimensional
confinement (which ensures that they are attached to the
string), acquire a two-dimensional confinement along the
string. Themonopole andantimonopole connected by a string
with larger tension form a mesonic bound state.
Consider a monopole-antimonopole pair interpolating

between strings 0 and 1; see Fig. 2. The energy of the
excited part of the string (labeled as 1) is proportional to the
distance as in Eq. (3.8). When it exceeds the mass of two
monopoles (which is of the order of ΛCP), then the second
monopole-antimonopole pair appear breaking the excited
part of the string. This gives an estimate for the typical
length of the excited part of the string, R ∼ N=ΛCP.
The above condition guarantees that there is enough

energy in the “wrong string” to produce a pair of kinks.
However, the probability of this process, string breaking
(which can be inferred from the false vacuum decay
theory), is proportional to expð−NÞ, i.e., dies off exponen-
tially at large N.

IV. THE COULOMB/CONFINEMENT PHASE

To consider closed non-Abelian strings of length L we
compactify the space dimension; in other words, we study
CPðN − 1Þmodel (3.1) on a strip of the finite length Lwith
periodic boundary conditions.
In a Euclidean formulation considering a model at finite

length is equivalent to considering the model at finite
temperature. The correspondence between the length of the
string and the temperature is given by

L ¼ β; ð4:1Þ
where β is the inverse temperature. Thus, the limit of
infinite length is the same as the limit of zero temperature.

To solve the CPðN − 1Þ model on a finite strip we use a
large-N approximation. The CPðN − 1Þ model at a finite
temperature in the large-N approximation was solved
previously by Affleck [15]; see also [16] and [17] for
reviews. Although we use a different regularization, our
results match those obtained in [15]. There are two important
differences, however. The first one is related to the inter-
pretation of the photon mass. In [15] the emergence of the
photon mass is interpreted as a phase transition into the
deconfinement phase already at L ¼ ∞. We give a different
interpretation of the photon mass (see Sec. IVB); we do not
detect any phase transition at L ¼ ∞. We interpret the large
L phase (L > 1=ΛCP) as a Coulomb/confinement phase,
much in the same way as at infinite L [14].
The second difference with Ref. [15] is that we find a

phase transition at L ∼ 1=ΛCP into a deconfinement phase
in the limit N → ∞; see Sec. V. This is a weak coupling
phase. In this phase the global SUðNÞ is broken and the
CPðN − 1Þ model does not develop a mass gap. The gauge
field remains auxiliary, and no Coulomb/confining poten-
tial is generated.
At large but finite N we expect the phase transition to

become a rapid crossover. The spontaneous breaking of
the global SUðNÞ symmetry is in contradiction with the
Coleman theorem [21], stating that there can be no massless
nonsterile particles in 1þ 1 dimensions. Therefore we
expect that the “would be Goldstone” states of the broken
phase acquire small masses suppressed in the large-N limit.
To solve the CPðN − 1Þ model we use the mode

expansion with the periodic boundary conditions. The
open string setup involves the Dirichlet boundary con-
ditions. For example, for open string the expansion (1.1) is
modified. It acquires L-independent terms coming from the
energy associated with boundaries. We limit ourselves to a
closed string in this paper.

A. Large-N solution

Our starting point is Eq. (3.1). Integrating out nl fields,
one arrives at the same Eq. (3.3) as in the infinite L case.
However, now we take into account the gauge holonomy
around the compact dimension. Following [15] we choose
the gauge

A1 ¼ 0

and look for minima of the potential with A0 ¼ const and
ω ¼ const. The mode expansion in (3.3) gives for the
orientational part of the string energy in (1.3)

EorientðLÞ¼
N
2π

X∞
k¼−∞

Z
∞

−∞
dq1 ln

�
q21þ

�
2πk
L
þA0

�
2

þω

�
:

ð4:2Þ
To calculate (4.2) we follow [22] and use the zeta

function regularization. Details of our calculation are

FIG. 2. Configuration of the string with two particles on it. Zero
and one represent the true vacuum and the first quasivacuum,
respectively.
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presented in Appendix A. Here we give the final result for
the string vacuum energy,

EorientðLÞ ¼
NLω
4π

�
1 − ln

ω

Λ2
CP

− 8
X∞
k¼1

K1ðkL
ffiffiffiffi
ω
p Þ

kL
ffiffiffiffi
ω
p cos kLA0

�
; ð4:3Þ

where K1 is the modified Bessel function of the second
kind (also known as the Macdonald function). An impor-
tant feature of this expression is the appearance of a
nontrivial potential for the photon field. We will dwell
on this issue in the next subsection.
To find the saddle point we extremize the expression

(4.3) with respect to ω and A0, which results in the
following equations:

∂Eorient

∂A0

¼ 2NL
ffiffiffiffi
ω
p
π

X∞
k¼1

K1ðLk
ffiffiffiffi
ω
p Þ sinLkA0 ¼ 0; ð4:4Þ

log
ω

Λ2
CP
¼ 4

X∞
k¼1

K0ðLk
ffiffiffiffi
ω
p Þ cosLkA0; ð4:5Þ

where the logarithmic term in the left-hand side of Eq. (4.5)
is the renormalized inverse coupling 1=λ. The logarithmic
integral over momentum is regularized in the infrared by ω.
Equation (4.4) yields the solution of the form LA0 ¼ πl,

where l ∈ Z. However, from Eq. (4.3) it is clear that the
solution with LA0 ¼ 2πl lies lower in energy than the
solution with LA0 ¼ ð2l − 1Þπ and is, thus, physical.
We take A0 ¼ 0 as a solution of (4.4). Our result for the
orientational string energy is shown in Fig. 3, where
~V ¼ Eorient=L.
Equation (4.5) yields a nonvanishing value of ω which

we interpret—as in the case of zero temperature—as mass
generation for the nl fields. The dependence of the mass on
the string length L is shown in Fig. 4 where we put

ffiffiffiffi
ω
p ≡m: ð4:6Þ

One can see that the nl field mass increases with
decreasing L.
In the limit L ≫ 1=ΛCP the modified Bessel functions in

(4.3) exhibit exponential falloff at large L. To determine
the leading nontrivial correction to the string energy we can
use the “zeroth-order” solution ω ≈ Λ2

CP of Eq. (4.5) for the
vacuum expectation value (VEV) of ω. Clearly this zeroth-
order solution coincides with the VEV of ω in the infinite
volume; see (3.6). For the total string energy we obtain

EðLÞ ¼
�
2πξþ N

4π
Λ2
CP

�
L −

π

3

1

L

− N

ffiffiffi
2

π

r ffiffiffiffiffiffiffiffi
ΛCP

L

r
e−ΛCPL þ � � � : ð4:7Þ

In Eq. (4.7) we included the classical string tension
2πξL, its renormalization due to vacuum fluctuations in
CPðN − 1Þ [i.e., ðN=4πÞΛ2

CPL] and the contribution of the
translational modes, which give the standard Lüscher term.
This result was quoted in Sec. I; see Eq. (1.5).
We see that the quantum fluctuations of the orientational

moduli contribute both to the renormalization of the string
tension [the linear in L term in (4.7)] and to the function
fðΛCPLÞ in (1.3). As was expected, in the theory with a
mass gap the contribution of orientational moduli to the
L-dependent part of the string energy is exponentially
suppressed at large L.
Let us note that the case of an open non-Abelian string

was previously considered in [23]. The results of [23] show
the presence of long range 1=L effects coming from the
orientational sector even at large L where the theory has a
mass gap. We disagree with these results and believe that
orientational long range forces in the large-L phase are
spurious and are associated with the boundary energy
somehow induced [23] by the Dirichlet boundary con-
ditions rather than with the string itself.

2 3 4 5 6 L

1.0

0.5

0.5

1.0

1.5

2.0

4 V

FIG. 3 (color online). Effective potential (in units of Λ2
CP) as a

function of length.

1 2 3 4 5 6 L

1.0

1.1

1.2

1.3

1.4

1.5

1.6

m

FIG. 4 (color online). Mass (in units of Λ) of fields nl as a
function of L.
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B. The photon mass

The A0 dependence in the potential (4.3) ensures that the
gauge field acquires a mass [15]. It is quite natural to expect
that the photon becomes massive at nonzero temperature.
Physically this means the Debye screening.
Expanding (4.3) at large L we can write down an

effective action for the Uð1Þ gauge field,

Sgauge ¼
Z

d2x

�
1

4e2
F2
kl − N

ffiffiffi
2

π

r ffiffiffiffiffiffiffiffi
ΛCP

L3

r
e−ΛCPL cosA0L

þ � � �
�
: ð4:8Þ

The kinetic term for the gauge field at nonzero temper-
ature is calculated in Appendix B. To calculate the photon
mass to the leading order in exp ð−ΛCPLÞ we need the
expression for the gauge coupling e2 in the limit L → ∞,
namely,

1

e2
≈

N
12πΛ2

CP
; ð4:9Þ

see Sec. III. Expanding (4.8) to the quadratic order in A0 we
arrive at

m2
A ≈ 12Λ2

CP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΛCPL

p
e−ΛCPL ð4:10Þ

for the photon mass. Note that the nonzero photon mass at
finite temperature does not break the gauge invariance since
the Lorentz symmetry is explicitly broken; see [15].
The photon becoming massive was the reason for the

claim [15] that at nonzero temperature the CPðN − 1Þ
model is in the deconfinement phase. We give a different
interpretation for this effect.
We treat the quasivacua as the strings of different

tensions. Kinks and antikinks interpolate between true
vacuum and the first quasivacuum. The Debye screening
due to a finite photon mass now can be interpreted as a
breaking of the confining string between kink and antikink
in the thermal medium (through picking up a kink-antikink
pair from the thermal bath). Note that unlike pair produc-
tion from the vacuum, this process is not suppressed
as expð−NÞ.
The kink-antikink potential has the form

VðRÞ ¼ e2Re−mAR; ð4:11Þ

where R is the kink-antikink separation. It is still linear at
small R, while the exponential suppression at large R can
be understood as a breaking of the confining string due
to the creation of a kink-antikink pair from the thermal
bath. Therefore, we still interpret the large L phase as a
Coulomb/confinement phase.

A similar question can be addressed in QCD. Dowe have
confinement of quarks in QCD? We believe that the answer
is positive. However, the confining string can be broken by
quark-antiquark production. We suggest a similar interpre-
tation for the CPðN − 1Þ model at nonzero temperature.
If L is very large (very low temperatures), the thermal

string breaking can be ignored; however, once L reduces
below logN=ΛCP, the thermal breaking becomes operative.

C. Small length limit

As was already mentioned, we will show in the next
section that once L decreases below 1=ΛCP our CPðN − 1Þ
model undergoes a phase transition into the deconfinement
phase. To prove this we calculate the vacuum energy in the
deconfinement phase in the next section and show that it
lies below that in the Coulomb/confinement phase.
To make this comparison we will examine Eqs. (4.3)

and (4.5) in the low-L limit. These expressions determine
the vacuum energy and the ω expectation value in the
Coulomb/confinement phase.
Assuming that L2ω ≪ 1 we can use the following

approximation for the sum of the modified Bessel functions
[see Eq. (8.526) in [24]]:

X∞
n¼1

K0ðnyÞ ≈
π

2y
þ 1

2
ln

y
4π
þ γ

2
þOðy2Þ; ð4:12Þ

where γ ≈ 0.577 is the Euler-Mascheroni constant.
Consequently, we get from (4.5)

ln
ffiffiffiffi
ω
p
ΛCP
¼ 2

�
π

2L
ffiffiffiffi
ω
p þ 1

2
ln
L

ffiffiffiffi
ω
p
4π
þ γ

2

�
; ð4:13Þ

or approximately

ln
1

ΛCPL
¼ π

L
ffiffiffiffi
ω
p : ð4:14Þ

Now the logarithmic integral that determines the renor-
malized inverse coupling 1=λ is regularized in the infrared
by 1=L rather than by

ffiffiffiffi
ω
p

(which is the case in the large-L
limit). This gives us the ω expectation value,

ffiffiffiffi
ω
p ¼ π

L
1

ln ð1=ΛCPLÞ
þ � � � : ð4:15Þ

Equation (4.15) justifies our approximation L2ω ≪ 1 at
L ≪ 1=ΛCP. Note also that at L ≪ 1=ΛCP the coupling
constant is small—it is frozen at the scale 1=L [the
logarithm in the left-hand side of (4.14) is large], so the
theory is at weak coupling.
To find the orientational energy in this limit we need to

find an approximate expression for the sum of the modified
Bessel functions that appears in (4.3),
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SE ¼
2L

ffiffiffiffi
ω
p
Lπ

X∞
k¼1

K1ðkL
ffiffiffiffi
ω
p Þ

k
: ð4:16Þ

The derivative of the modified Bessel functions satisfies the
following relation [see Eq. (9.6.28) in [25]]:

K01ðxÞ ¼ −K0ðxÞ −
K1ðxÞ
x

: ð4:17Þ

Let us introduce a notation,

S1ðxÞ ¼
X∞
k¼1

K1ðkxÞ
k

: ð4:18Þ

Then

ðxS1ðxÞÞ0 ¼ −x
X∞
k¼1

K0ðkxÞ ≈
ðIV:12Þ

−
π

2
−
x
2
ln

x
4π

−
xγ
2
þOðx3Þ: ð4:19Þ

Integrating this expression one finds

xS1ðxÞ ≈ −
xπ
2
−
x2

4
ln

x
4π

−
x2

8
ð2γ − 1Þ þ constþOðx4Þ:

ð4:20Þ

The behavior of the modified Bessel function at small
values of the argument is given by [see Eq. (9.6.9) in [25]]

K1ðxÞ ∼
1

x
: ð4:21Þ

Thus, the sum S1ðxÞ can be approximated as follows:

S1ðxÞ ≈
X∞
k¼1

1

xk2
¼ π2

6x
: ð4:22Þ

Hence the constant appears to be π2=6. Now we are ready
to present the approximate expression we seek for

SE ¼
2

Lπ
L

ffiffiffiffi
ω
p

S1ðL
ffiffiffiffi
ω
p Þ ≈ π

3L
−

ffiffiffiffi
ω
p

−
Lω
2π

ln
L

ffiffiffiffi
ω
p
4π

−
Lω
4π
ð2γ − 1Þ: ð4:23Þ

With this approximation we arrive at the orientational
energy

EorientðLÞ ¼ −
π

3

N
L
þ N

ffiffiffiffi
ω
p

−
N
2π

ωL ln
1

ΛCPL
þ � � �
ð4:24Þ

Substituting here the VEV of ω [see (4.15)], we get

EorientðLÞ ¼ −
π

3

N
L
þ π

2

N
L

1

ln ð1=ΛCPLÞ
þ � � � : ð4:25Þ

The first term here is the Lüscher term proportional to the
number of orientational degrees of freedom 2ðN − 1Þ ≈ 2N
(in the large N limit). It gets corrected by an infinite series
of powers of inverse logarithms ln ð1=ΛCPLÞ, if we naively
extend the Coulomb/confinement phase into the region of
small L. We will show in the next section that in fact the
theory undergoes a phase transition into a different phase,
with a lower energy.

V. DECONFINEMENT PHASE

Classically the CPðN − 1Þ model has 2ðN − 1Þ massless
states that can be viewed as Goldstone states of the broken
SUðNÞ symmetry. Indeed, classically the vector nl satisfies
a fixed length condition, jnj2 ¼ r; see (3.1). Thus classi-
cally nl acquires a VEV breaking SUðNÞ symmetry.
However, as was shown above, in the strong coupling

large L domain the spontaneous symmetry breaking does
not occur, in much the same way as in the infinite-L limit;
see [14]. At strong coupling the vector nl is smeared all
over the vacuum manifold due to strong quantum fluctua-
tions. The theory has a mass gap, and moreover the number
of the massive n fields becomes 2N. Effectively the
classical constraint jnj2 ¼ r is lifted; see [14].
At small L the theory enters a weak coupling regime sowe

expect an occurrence of the classical picture in the limit
N → ∞. To study this possibility we assume that one
component of the field nl, say n0 ≡ n, can develop a VEV.
Then we integrate over all other components of nl

(l ¼ 1; 2;…) keeping the fields n and ω as a background.
Note that a similarmethodwas used in [26] for studying phase
transitions in the CPðN − 1Þ model with twisted masses.
Now, instead of (4.24), we get

EorientðLÞ ¼ ωLjnj2 − π

3

N
L
−

N
2π

ωL ln
1

ΛCPL
þ � � � ; ð5:1Þ

where the ellipses stand for higher terms in L2ω. Note that
here we drop the contribution associated with the integra-
tion over the constant n [the second term in (4.24)] because
we introduce n0 as a constant background field [in other
words, we drop the term with k ¼ 0 in (4.2)].
Minimizing over ω and n we arrive at the equations

jnj2 ¼ N
2π

ln
1

ΛCPL
þ � � � ;

ωn ¼ 0: ð5:2Þ

The solution to these equations with nonzero n0 read

jnj2 ¼ N
2π

ln
1

ΛCPL
; ω ¼ 0: ð5:3Þ
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We see that the mass gap ω is not generated. Substituting
this in (5.1) we get that the orientational energy reduces just
to the Lüscher term, namely,

EorientðLÞ ¼ −
π

3

N
L
: ð5:4Þ

This energy is lower than the one in (4.25). Therefore,
we conclude that at L ∼ 1=ΛCP the theory undergoes a
phase transition into the phase with the broken SUðNÞ
symmetry. This ensures the presence of 2ðN − 1Þ
Goldstone states nl, l ¼ 1;…; ðN − 1Þ. The photon
remains an auxiliary field, and no kinetic term is generated
for it. As a result, there is no Coulomb/confining linear
rising potential between the n states. The phase with the
broken SUðNÞ is a deconfinement phase. Since jnlj is
positively defined, Eq. (5.3) shows that this phase appears
at L < 1=ΛCP.
The results of numerical calculations are in agreement

with our conclusions. The relation between orientational
energies in both phases is shown in Fig. 5. One can see that
the Lüscher term energy is lower and is thus physical.
The phase with the broken symmetry in two dimensions

can occur only in the limit N → ∞. As was already
explained, if N is large but finite, this would contradict
the Coleman theorem [21]. Therefore, we expect that at
large but finite N the phase transition becomes a rapid
crossover. In particular, we expect that the nl fields are
not strictly massless. They have small masses suppressed
by 1=N.
To conclude this section let us note that the CPðN − 1Þ

model compactified on a cylinder with the so-called twisted
boundary conditions was studied in [27]. No phase tran-
sition was found; moreover, it was shown that the theory
has a mass gap that shows no L dependence and is
determined entirely by ΛCP. We believe that our results
are not in contradiction with those obtained in [27], because
at finite L the boundary conditions matter: they can be

crucial. In particular, the twisted boundary conditions can
be viewed as a gauging of the global SUðNÞ group with a
constant gauge potential. Then the global SUðNÞ is
explicitly broken. This model should be considered as
distinct as compared to the CPðN − 1Þ model with the
periodic boundary conditions studied in this paper.

VI. SUPERSYMMETRIC CPðN − 1Þ MODEL
WITH NO COMPACTIFICATION

Non-Abelian strings were first found in N ¼ 2 super-
symmetric QCD with the UðNÞ gauge group and Nf ¼ N
quark hypermultiplets [5–8]; see [9–12] for reviews. In
much the same way as for the nonsupersymmetric case the
internal dynamics of orientational zero modes of non-
Abelian string is described by two-dimensional CPðN − 1Þ
model living on the string world sheet. The string solution
is 1=2-BPS saturated; therefore the two-dimensional model
under consideration is N ¼ ð2; 2Þ supersymmetric. In this
section we briefly review the large-N solution of the
N ¼ ð2; 2Þ CPðN − 1Þ model in infinite space [14]. In
the next section we will present the large-N solution of
the model on a strip of a finite length L (cylindrical
compactification).
The bosonic part of the action of the CPðN − 1Þmodel is

given by

Sbos ¼
Z

d2x

�
j∇inlj2 þ

1

4e2
F2
ij þ

1

e2
j∂iσj2 þ

1

2e2
D2

þ 2jσj2jnlj2 þ iDðjnlj2 − r0Þ
�
; ð6:1Þ

where the covariant derivative is defined as ∇i ¼ ∂i − iAi
and σ is a complex scalar field, the scalar superpartner of
Ai. Moreover, r0 is the bare coupling constant. In the limit
e2 → ∞ the gauge field Ai and σ become auxiliary fields.D
stands for the D component of the gauge multiplet. The
factor i is due to the passage to the Euclidean notation.
The fermionic part of the action takes the form

Sferm ¼
Z

d2x
�
ξ̄lRið∇0 − i∇3ÞξlR þ ξ̄lLið∇0 þ i∇3ÞξlL

þ 1

e2
λ̄Rið∇0 − i∇3ÞλR þ

1

e2
λ̄Lið∇0 þ i∇3ÞλL

þ ði
ffiffiffi
2
p

σξ̄lRξ
l
L þ i

ffiffiffi
2
p

n̄lðλRξlL − λLξ
l
RÞ þ H:c:Þ

�
;

ð6:2Þ

where the fields ξlL;R are the fermion superpartners of nl and
λL;R belong to the gauge multiplet. In the limit e2 → ∞ they
enforce the following constraints:

n̄lξlL ¼ 0; n̄lξlR ¼ 0: ð6:3Þ

0.2 0.4 0.6 0.8 1.0 L

150

100

50

0

V

FIG. 5 (color online). Comparison of orientational energies in
both phases. The Lüscher term always lies lower. We set
ΛCP ¼ 1.
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The field σ is auxiliary and can be eliminated, namely,

σ ¼ −
iffiffiffi
2
p

r0
ξ̄lLξ

l
R: ð6:4Þ

A. Large-N solution

The N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ model was
solved in the large-N limit by Witten [14]; see also [28].
In this section we briefly review this solution.
Since both fields nl and ξl appear quadratically, we can

integrate them out. This produces two determinants,

det−Nð−∂2
i þ iDþ 2jσj2ÞdetNð−∂2

i þ 2jσj2Þ: ð6:5Þ

The first determinant comes from the boson nl fields, while
the second comes from the fermion ξl fields. Note that if
D ¼ 0 the two contributions obviously cancel each other,
and supersymmetry is unbroken. As before, the nonzero
values of iDþ 2jσj2 and 2jσj2 can be interpreted as
nonzero values of the mass of nl and ξl fields, and we
put Ak ¼ 0.
The final expression for the effective potential is given

by (see, for example, [28])

Veff ¼
Z

d2x
N
4π

�
−ðiDþ 2jσj2Þ ln iDþ 2jσj2

Λ2
CP

þ iD

þ 2jσj2 ln 2jσj
2

Λ2
CP

�
; ð6:6Þ

where the logarithmic ultraviolet divergence of the cou-
pling constant is traded for the scale ΛCP.
To find a saddle point we minimize the potential with

respect to D and σ, which yields the following set of
equations:

ln
iDþ 2jσj2

Λ2
CP

¼ 0;

ln
iDþ 2jσj2

2jσj2 ¼ 0: ð6:7Þ

The solution to these equations is

D ¼ 0; ð6:8Þ
which shows that supersymmetry is not broken. The VEV
of σ is

ffiffiffi
2
p

σ ¼ ΛCPe
2πk
N i; k ¼ 0;…; ðN − 1Þ: ð6:9Þ

We see that σ develops a VEV giving masses to the nl fields
and their fermion superpartners ξl. The phase factor in the
right-hand side of (6.9) does not follow from (6.7). It comes
from the broken chiral Uð1Þ symmetry. The axial anomaly

breaks it down to Z2N . The field σ has the chiral charge 2.
This explains the phase factor in (6.9). Once jσj has a
nonzero VEV, the anomalous symmetry breaking ensures
that the theory has N vacuum states. Clearly this fine
structure cannot be seen in the large N approximation since
the phase factor is a 1=N effect.
In full accord with the Witten index, the solution above

has N vacua, each with the vanishing energy.
Consider now the vector multiplet. In much the same

way as in the nonsupersymmetric case, the photon becomes
a propagating field. To find the renormalized gauge
coupling one needs to evaluate the two Feynman diagrams
shown in Fig. 6. Details of the appropriate calculation are
given in Appendix C. The result is

1

e2
¼ N

4π

1

Λ2
CP

: ð6:10Þ

Through the coupling to the Imσ (due to the chiral
anomaly) now the photon acquires a mass. Moreover, the
fermion fields λL;R also become propagating, with the same
mass as that of the photon, as required by supersymmetry.
The masses of the fields of the vector multiplet are as
follows [14,28]:

mph ¼ mλL;R ¼ mReσ ¼ mImσ ¼ 2ΛCP: ð6:11Þ

Since the photon became massive there is no linear rising
Coulomb potential between the charged states. There is no
confinement in the supersymmetric CPðN − 1Þmodel even
in the infinite volume limit. It has N degenerate vacua that
are interpreted as N degenerate elementary non-Abelian
strings in the four-dimensional bulk theory. In contrast to
the nonsupersymmetric case, the confined monopoles of
the bulk theory, which are seen as kinks interpolating
between the CPðN − 1Þ vacua, are free to move along the
string; see [11] for further details.

VII. SUPERSYMMETRIC CP(N − 1)
ON A CYLINDER

Now we compactify one space dimension and impose
periodic boundary conditions, for both bosons and fer-
mions, in order to preserve N ¼ ð2; 2Þ supersymmetry.
We stress that this compactification cannot be considered
as thermal. Nonzero temperature requires antiperiodic

FIG. 6. Feynman diagrams contributing to the kinetic term of
the photon.
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boundary conditions for fermions, which would break
supersymmetry explicitly.
The large-N method in the case of the N ¼ ð2; 2Þ

CPðN − 1Þ model works similar to that in the

nonsupersymmetric case. We compactify now the spatial
coordinate x1 and start from a slightly modified expression
for the determinants in Eq. (6.5). Choosing the A0 ¼ 0
gauge and assuming that A1 is nonzero, we write

det−Nð−∂2
0 − ð∂1 − iA1Þ2 þm2

bÞdetNð−∂2
0 − ð∂1 − iA1Þ2 þm2

fÞ; ð7:1Þ

where we introduced the following notation:

m2
b ¼ iDþ 2jσj2; m2

f ¼ 2jσj2: ð7:2Þ

The evaluation of each of the determinants is no different from that in the nonsupersymmetric case. Again we use the
zeta-function method. Using expressions in Appendix C we can derive the effective potential,

E ¼ LN
4π

�
−ðiDþ 2jσj2Þ ln iDþ 2jσj2

Λ2
CP

þ iDþ 2jσj2 ln 2jσj
2

Λ2
CP

− 8m2
b

X∞
k¼1

K1ðLmbkÞ
Lmbk

cos ðLA1kÞ

þ 8m2
f

X∞
k¼1

K1ðLmfkÞ
Lmfk

cos ðLA1kÞ
�
: ð7:3Þ

Here the first three terms are just the effective potential at L ¼ ∞, while the second and third lines are the finite-L
corrections due to bosons and fermions, respectively.
To find a stationary point we vary the above expression with respect to A1, D, and σ. The resulting equations are as

follows:

mb

X∞
k¼1

K1ðLmbkÞ sin ðLA1kÞ −mf

X∞
k¼1

K1ðLmfkÞ sin ðLA1kÞ ¼ 0;

2σ

�
− ln

m2
b

m2
f

þ 4
X∞
k¼1

K0ðLmbkÞ cos ðLA1kÞ − 4
X∞
k¼1

K0ðLmfkÞ cos ðLA1kÞ
�
¼ 0;

− ln
m2

b

Λ2
CP
þ 4

X∞
k¼1

K0ðLmbkÞ cos ðLA1kÞ ¼ 0: ð7:4Þ

Calculation of the gauge coupling constant at finite L is
also modified (see Appendix C). As a result, we arrive at

1

Ne2
¼ 1

4πm2
b

þ L
2πmb

X∞
k¼1

K1ðLmbkÞk; ð7:5Þ

which reduces to 1=4πΛ2
CP in the limit L → ∞.

Consider now the large L limit, L ≫ 1=ΛCP. Assuming
thatmb ∼mf ∼ ΛCP (we confirm this below), we expand the
string energy (7.3), keeping the first exponentially small term

E ¼ LN
4π

�
−m2

b ln
m2

f

Λ2
CP
þ iDþm2

f ln
m2

f

Λ2
CP

�

− N

ffiffiffi
2

π

r � ffiffiffiffiffiffi
mb

L

r
e−mbL −

ffiffiffiffiffiffi
mf

L

r
e−mfL

�
cosA1Lþ � � � :

ð7:6Þ

Taking derivatives with respect to D,
ffiffiffi
2
p

σ̄, and A1, we
obtain

−
N
4π

log
m2

b

Λ2
CP
þ N

1ffiffiffiffiffiffi
2π
p exp ð−mbLÞffiffiffiffiffiffiffiffiffi

mbL
p cosA1Lþ � � � ¼ 0;

ffiffiffi
2
p

σ

�
N
4π

log
m2

f

m2
b

þ N
1ffiffiffiffiffiffi
2π
p

�
exp ð−mbLÞffiffiffiffiffiffiffiffiffi

mbL
p −

exp ð−mfLÞffiffiffiffiffiffiffiffiffi
mfL

p
�
cosA1Lþ � � �

�
¼ 0;

�
exp ð−mbLÞffiffiffiffiffiffiffiffiffi

mbL
p −

exp ð−mfLÞffiffiffiffiffiffiffiffiffi
mfL

p
�
sinA1Lþ � � � ¼ 0; ð7:7Þ
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where the ellipses denote next-to-leading corrections in
1=Lmb and 1=Lmf.
The solution of these equations is as follows. The second

and third equations are satisfied at

D ¼ 0; ð7:8Þ

which shows that supersymmetry is not broken. A1 remains
undetermined.
With D ¼ 0 the first equation determines the σ expect-

ation value, namely,

N
4π

log
2jσj2
Λ2
CP
¼ N

1ffiffiffiffiffiffi
2π
p exp ð− ffiffiffi

2
p jσjLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p jσjL

q cosA1Lþ � � � :

ð7:9Þ

This equation seems to present a puzzle. It shows that the
VEVof σ depends on the parameter A1, which is arbitrary.
If this were the case, the theory would have a branch of
vacua parametrized by the Polyakov line

e
R

dx1A1 ¼ eiA1L; ð7:10Þ

which measures the holonomy around the compact dimen-
sion. More exactly, the theory would have N branches of
vacua, because Z2N symmetry ensures that the overall
phase of σ takes N values 2πk=N, k ¼ 0;…; ðN − 1Þ. This
would contradict the Witten index argument, which ensures
that the number of vacua is equal to N for the N ¼ ð2; 2Þ
supersymmetric CPðN − 1Þ model.
The resolution of this puzzle is that we should quantize

the phase variable A1L (note that
R
dx1A1 depends only on

time) as a function of the noncompact time. In the emerging
quantummechanics the phase A1L is not fixed; instead, it is
smeared all over the circle (in the ground state). As a result,
the cos ðA1LÞ in (7.9) is averaged to zero and the σ VEVs
are given by

ffiffiffi
2
p

σ ¼ ΛCPe
2πk
N i; k ¼ 0;…; ðN − 1Þ: ð7:11Þ

This is exactly the same result as for L ¼ ∞. All cosine
functions of A1L in the last equation in (7.4) are averaged to
zero; therefore the result in (7.11) is exact and does not
depend on L.
This result also can be understood by studying the exact

twisted superpotential of the N ¼ ð2; 2Þ CPðN − 1Þ
model. In the infinite volume it is given by [29–31]

WðσÞ ¼ N
4π

� ffiffiffi
2
p

σ log

ffiffiffi
2
p

σ

ΛCP
−

ffiffiffi
2
p

σ

�
: ð7:12Þ

This superpotential has correct transformation properties
with respect to the chiral Uð1Þ symmetry. Namely, inte-
grated over half of the superspace it is invariant under chiral

symmetry up to a term that precisely reproduces the chiral
anomaly. Now at finite length this superpotential in
principle could have corrections proportional to powers of

exp ð−
ffiffiffi
2
p

σLÞ: ð7:13Þ
However, these corrections would spoil the transformation
properties of the superpotential with respect to the chiral
symmetry. Therefore they are forbidden. As a result, at
finite L the exact superpotential of the theory is still given
by (7.12). Critical points of this superpotential are given by
(7.11) and do not depend on L. This matches our result
obtained from the large-N approximation.
In particular, at small L the theory is at weak coupling

and can be studied in the quasiclassical approximation. As
we already mentioned, the CPðN − 1Þ model compactified
on a cylinder with twisted boundary conditions was studied
in [27]. It is shown in [27] that the mass gap at weak
coupling is produced by fractional instantons and does not
depend on L in both supersymmetric and nonsupersym-
metric cases. For our case (periodic boundary conditions)
the mass gap shows L dependence in the nonsupersym-
metric case, while in the supersymmetric case it is L
independent. The quasiclassical origin of this behavior
needs to be understood in the weak coupling domain of
small L. This is left to a future work.
To conclude, in the N ¼ ð2; 2Þ supersymmetric

CPðN − 1Þ model we have a single phase with the
unbroken supersymmetry and N vacua. Each vacuum
has vanishing energy and is parametrized by the VEV of
σ in Eq. (7.11). Unlike the nonsupersymmetric problem,
this VEV is independent of L.

VIII. THE PHOTON MASS

In this section we outline the photon mass calculation.
The effective action for the gauge field can be written

as [28]

Sgauge ¼
Z

d2x

�
1

4e2
F2
kl −

N
4π

log
σ

σ̄
F�

�
; ð8:1Þ

where the photon mixing with σ is due to the chiral
anomaly and

F� ¼ 1

2
ϵijFij ð8:2Þ

is the dual gauge field strength. In the case of an infinitely
long string the gauge coupling and the photon mass were
found [28],

1

e2
¼ N

4π

1

Λ2
CP

; ð8:3Þ

and
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mph ¼ 2ΛCP; ð8:4Þ

respectively. In Sec. VII we derived the expression for the
gauge coupling in the case of finite length; see (7.5). The
corresponding expression for the photon mass in the limit
of ΛCPL ≫ 1 is

m2
ph ≈ ð2ΛCPÞ2ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΛCPL

p
e−ΛCPLÞ; ð8:5Þ

where we used the asymptotic expansion of the modified
Bessel functions [see Eq. (9.7.2) in [25]],

K1ðxÞ ∼
ffiffiffiffiffi
π

2x

r
e−x: ð8:6Þ

Since K00ðxÞ ¼ −K1ðxÞ, we can also determine the photon
mass in the opposite limit of ΛCPL ≪ 1,

X∞
k¼1

K1ðkxÞk ¼ −
�X∞

k¼1
K0ðkxÞ

�0
≈

π

2x2
−

1

2x
;

m2
ph ≈

ΛCPL
π
ð2ΛCPÞ2 ≪ ð2ΛCPÞ2: ð8:7Þ

IX. CONCLUSIONS

We the studied two-dimensional CPðN − 1Þmodel [both
nonsupersymmetric and N ¼ ð2; 2Þ] compactified on a
cylinder with circumference L (periodic boundary con-
ditions). We found the large-N solution for any value of L
and discussed in detail the large-L and small-L limits.
A drastic difference is detected in passing from the

nonsupersymmetric toN ¼ ð2; 2Þ supersymmetric case. In
the former case in the large-N limit we observe a phase
transition at L ∼ Λ−1

CP (which is expected to become a rapid
crossover at finite N). At large L the CPðN − 1Þ model
develops a mass gap and is in the Coulomb/confinement
phase, with exponentially suppressed finite-L effects. At
small L it is in the deconfinement phase; the orientational
modes contribute to the Lüsher term. The latter becomes
dependent on the rank of the bulk gauge group.
In the supersymmetric CPðN − 1Þ model we have a

different picture. Our large-N solution exhibits a single
phase independently of the value of LΛCP. For any value of
this parameter a mass gap develops and supersymmetry
remains unbroken. So does the SUðNÞ symmetry of the
target space (i.e., it is restored). The mass gap turns out to
be independent of the string length. The Lüscher term is
absent due to supersymmetry.
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APPENDIX A: CALCULATION OF ZETA
FUNCTION

We define the zeta function of an operator Ω as follows:

ζðsÞ ¼ TrΩ−s: ðA1Þ

The operator of interest is given in Eq. (3.3),

Ω ¼ −ð∂k − iAkÞ2 þm2; ðA2Þ

where instead of ω we write m2. In the A1 ¼ 0 gauge the
expression for the zeta function takes the form

ζðsÞ ¼ T̂
2π

X∞
k¼−∞

Z
∞

−∞
dq1

�
q21 þ

�
2πk
L
þ A0

�
2

þm2

�
−s
:

ðA3Þ

Gauge invariance requires invariance under transformation
A0 → A0 þ 2πk0=L, where k0 is AN integer. This is
manifest in (A.3) since the shift can be absorbed in the
sum. We always can look for a solution for A0 in the
interval jA0j < π=L, say A0 ¼ 0.
To evaluate the expression in (A3) we will need the

following identities:

ΓðZÞ ¼
Z

∞

0

dttz−1e−t;
Z

∞

0

dxðx2Þðα−1Þ=2ðx2 þ A2Þβ−1

¼ 1

2
ðA2Þβ−1þα=2Bðα=2; 1 − β − α=2Þ; ðA4Þ

Bðx; yÞ ¼ ΓðxÞΓðyÞ
Γðxþ yÞ : ðA5Þ

The definition of the modified Bessel functions of the
second kind is

Z
∞

0

dxxν−1 exp

�
−
a
x
− bx

�
¼ 2

�
a
b

�
ν=2

Kνð2
ffiffiffiffiffiffi
ab
p
Þ:

ðA6Þ

The definition of the theta function (see Chapter 21
of [32]) is
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Θ3ðx; τÞ ¼
X∞
k¼−∞

qk
2

e2πix ¼ 1þ 2
X∞
k¼1

qk
2

cos 2kx; q ¼ eπiτ: ðA7Þ

Its Jacobi transformation is

Θ3ðx; τÞ ¼ ð−iτÞ−1=2 exp
�
x2

iπτ

�
Θ3ðx=τ;−1=τÞ: ðA8Þ

The evaluation of the zeta function, Eq. (A3), proceeds as follows:

ζðsÞ ¼ðA:5Þ T̂
2π

Γð1
2
ÞΓðs − 1

2
Þ

ΓðsÞ
X∞
k¼−∞

��
2πk
L
þ A0

�
2

þm2

�
1=2−s

¼ T̂
2π

Γð1
2
ÞΓðs − 1

2
Þ

ΓðsÞ
�
2π

L

�
1−2s X∞

k¼−∞

��
kþ LA0

2π

�
2

þ ϵ2
�
1=2−s

¼ðA:4Þ T̂
2π

Γð1
2
ÞΓðs − 1

2
Þ

ΓðsÞ
�
2π

L

�
1−2s 1

ΓðzÞ
Z

∞

0

dttz−1e−tα
2
X∞
k¼−∞

e−k
2t−kβ2t

¼ðA:7Þ T̂
2π

Γð1
2
ÞΓðs − 1

2
Þ

ΓðsÞ
�
2π

L

�
1−2s 1

ΓðzÞ
Z

∞

0

dttz−1e−tα
2Θ3

�
iβ2t
2

;
it
π

�

¼ðA:7Þ;ðA:8Þ
F

ffiffiffi
π
p
ΓðzÞ

Z
∞

0

dttz−3=2e−tα
2þβ4t=4

�
1þ 2

X∞
k¼1

e−
k2π2
t cos πkβ2

�

¼ðA:6ÞF
ffiffiffi
π
p
ΓðzÞ

�
1

G2

�
z−1

2

�
Γ
�
z −

1

2

�
þ 4

X∞
k¼1
ðπkGÞz−1

2Kz−1
2
ð2πkGÞ cos πkβ2

�

¼ðA:6Þ T̂L
4π

1

m2s−2

�
1

s − 1
þ 4

ΓðsÞ
X∞
k¼1

�
Lmk
2

�
s−1

Ks−1ðLmkÞ cosLA0k

�
; ðA9Þ

where we introduced intermediate notations

ϵ ¼ Lm
2π

; z ¼ s −
1

2
; F ¼ T̂

2π

Γð1
2
ÞΓðs − 1

2
Þ

ΓðsÞ
�
2π

L

�
1−2s

; ðA10Þ

and

α2 ¼
�
LA0

2π

�
2

þ
�
Lm
2π

�
2

; β2 ¼ LA0

π
; G2 ¼ α2 − β4=4: ðA11Þ

To find the derivative of the zeta function we will make use of the following properties of Euler’s Γ function:

Γðzþ 1Þ ¼ zΓðzÞ; Γð0Þ ¼ ∞: ðA12Þ

The derivative is evaluated as follows:

ζ0ð0Þ ¼ T̂L
4π

�
−

1

m2s−2
1

ðs − 1Þ2 −
2 lnm

m2s−2ðs − 1Þ −
4Γ0ðsÞ

Γ2ðsÞm2s−2

X∞
n¼1

�
Lmk
2

�
s−1

Ks−1ðLmkÞ cosLA0k

�				
s¼0

¼ T̂Lm2

4π

�
−1þ lnm2 þ 8

X∞
k¼1

K1ðkLmÞ
kLm

cosLA0k

�
: ðA13Þ

Following [22] we can write the generating functional,
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lnZ ¼ 1

2
ζ0ð0Þ þ 1

2
ln μ2ζð0Þ; ðA14Þ

where a normalization constant μ has dimension of mass.
Renormalizability requires

μ ¼ Muv:

Thus, in terms of the zeta function and its derivative the
expression for the effective potential becomes

V ¼ −
N

T̂
ðζ0ð0Þ þ ζð0Þ lnM2

uvÞ−
N
4π

Lm2 ln
M2

uv

Λ2
: ðA15Þ

Substituting the expressions for the zeta function and its
derivative we obtain

V ¼ NLω
4π

�
1 − ln

ω

Λ2
CP

− 8
X∞
k¼1

K1ðkL
ffiffiffiffi
ω
p Þ

kL
ffiffiffiffi
ω
p cos kLA0

�
;

ðA16Þ

where we replaced m2 by ω.

APPENDIX B: KINETIC TERM IN CASE
OF BOSONIC THEORY

To find the Uð1Þ charge of the nl fields one has to
consider only the second diagram in Fig. 1. The first
diagram is needed only for renormalization. The relevant
part of the action written in the Minkowski spacetime takes
the form

iSMB ¼ i
Z

d2x½∇μn̄l∇μnl−m2jnj2�

¼ i
Z

d2x½∂μn̄l∂μnl −m2jnj2þ iAμðn̄l∂
↔

μnlÞþA2jnj2�;

ðB1Þ

where ∂↔μ ¼ ~∂μ − ∂ μ. We then pass to Euclidean space,

t ¼ −iτ; A0 ¼ iÂ0; Ai ¼ Âi:

The action in Euclidean space is

SEB ¼
Z

d2x̂½∂kn̄l∂knl þm2jnj2 þ iÂkðn̄l∂
↔

knlÞ þ Â2jnj2�:
ðB2Þ

Now we can determine the Feynman rules. The results are
shown in Fig. 7. Thus for the kinetic term (in the case of an
infinitely long string) one can write

Πij ¼ N
Z

d2q
ð2πÞ2

ðpi þ 2qiÞðpj þ 2qjÞ
ðm2 þ q2Þðm2 þ ðpþ qÞ2Þ : ðB3Þ

Introducing the Feynman parameter to combine the
denominators

1

αðαþ βÞ ¼
Z

1

0

dx
1

ðxβ þ αÞ2 ; ðB4Þ

and substituting l ¼ qþ px in Eq. (B3) we arrive at

Πij

¼ N
Z

d2ldx
ð2πÞ2

½pipjð1− 2xÞ2 − 2xðpilj þ pjliÞ þ 4lilj�
ðl2 þm2 þ p2xð1− xÞÞ2 :

ðB5Þ

Terms linear in l vanish. To find the Uð1Þ charge we only
need to consider the pipj structure. Thus, the expression
for the charge is

1

Ne2
¼

Z
d2ldx
ð2πÞ2

ð1 − 2xÞ2
ðl2 þm2 þ p2xð1 − xÞÞ2

¼
Z

1

0

dx
4π

ð1 − 2xÞ2
m2 þ p2xð1 − xÞ : ðB6Þ

Expanding the last expression to the zeroth power in p one
finally finds

1

Ne2
¼

Z
1

0

dx
4πm2

ð1 − 2xÞ2 ¼ 1

12πm2
: ðB7Þ

The case of the finite length string is considered along
similar lines. We recall (see [15]) that the limit pμ → 0 is
understood as first putting p0 ¼ 0 and then letting p1 go
continuously to zero. As a result, only Π00 ≠ 0. Using the
Feynman rules one can derive the following expression:

Π00 ¼
N
L

X∞
k¼−∞

Z
dq
2π

4ω2
k

ðm2þq2þω2
kÞðm2þðpþqÞ2þω2

kÞ
;

ðB8Þ

where we defined ωk ¼ 2πk=L. Introducing again the
Feynman parameter and making the same substitution
one arrives at

FIG. 7. Feynman rules: vertex and the propagator of nl field.
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Π00 ¼
X∞
k¼−∞

Nω2
k

L

Z
1

0

dx

ðm2 þ ω2
k þ p2xð1 − xÞÞ3=2 : ðB9Þ

We expand this expression and keep only the leading power
in p. Then the expression for the charge becomes

1

Ne2
¼ 1

4L

� X∞
k¼−∞
ðm2 þ ω2

kÞ−3=2 −m2
X∞
k¼−∞
ðm2 þ ω2

kÞ−5=2
�

¼ L2

32π3

� X∞
k¼−∞
ðk2 þ α2Þ−3=2 − α2

X∞
k¼−∞
ðk2 þ α2Þ−5=2

�
;

ðB10Þ

where α ¼ Lm=2π. We deal with these sums as follows:

S1ðz;αÞ≡
X∞
k¼−∞
ðk2 þ α2Þ−z

¼ðA:4Þ 1

ΓðzÞ
Z

∞

0

dttz−1e−tα
2
X∞
k¼−∞

e−k
2t

¼ðA:7Þ 1

ΓðzÞ
Z

∞

0

dttz−1e−tα
2Θ3ð0; it=πÞ

¼ðA:8Þ
ffiffiffi
π
p
ΓðzÞ

Z
∞

0

dttz−1e−tα
2Θ3ð0;−π=itÞ

¼ðA:6Þ
ffiffiffi
π
p
ΓðzÞ

�
Γðz − 1

2
Þ

α2z−1
þ 4

X∞
k¼1

�
kπ
α

�
z−1

2

Kz−1
2
ð2kπαÞ

�
:

ðB11Þ

Thus the expression for the charge can be written as

1

Ne2
¼ 1

4L

�
L
2π

�
3

½S1ð3=2;αÞ− α2S1ð5=2;αÞ�

¼ 1

12πm2
þ L
2πm

X∞
k¼1

K1ðkLmÞk−
L2

6π

X∞
k¼1

K2ðkLmÞk2:

ðB12Þ

In the limit Lm ≫ 1 the contributions from the modified
Bessel functions are exponentially small and thus the
expression for the charge reduces to that for the infinitely
long string.

APPENDIX C: KINETIC TERM IN THE
SUPERSYMMETRIC CASE

In Appendix B we calculated the first diagram (the boson
part) in Fig. 6. Now we will calculate the second diagram
(the fermion part). The relevant part of the fermion action in
the Minkowski spacetime is

iSMF ¼ i
Z

d2x

�
ξ̄iγμ∇μξ − i

ffiffiffi
2
p

σξ̄

�
1 − γ5

2

�
ξ

þ i
ffiffiffi
2
p

σ�ξ̄
�
1þ γ5

2

�
ξ

�
; ðC1Þ

where ∇μ ¼ ∂μ − iAμ is the covariant derivative, and the γ
matrices are defined as

γ0 ¼
�
0 −i
i 0

�
; γ1 ¼

�
0 i

i 0

�
; γ5 ¼

�
1 0

0 −1
�
:

We pass to Euclidean space,

t ¼ −iτ; A0 ¼ iÂ0; Ai ¼ Âi;

γ̂0 ¼ γ0; γ̂1 ¼ −iγ1; γ̂5 ¼ γ5;

and, since in Euclidean formulation ξ and ξ̄ are indepen-
dent, we define

ξ̂ ¼ ξ; ˆ̄ξ ¼ iξ̄:

Thus, the action in Euclidean space can be presented as
follows:

SEF ¼ −
Z

d2x̂

�
ˆ̄ξiγ̂k∂̂kξ̂þ ˆ̄ξγ̂kÂkξ̂

−
ffiffiffi
2
p

σ ˆ̄ξ

�
1 − γ̂5

2

�
ξ̂þ

ffiffiffi
2
p

σ� ˆ̄ξ
�
1þ γ̂5

2

�
ξ̂

�
: ðC2Þ

Examining this expression in components one can find that
it matches that of (6.2). Since from now on all calculations
will be carried out in Euclidean space we will drop the caret
notation. Using (C2) we find the Feynman rules that
are shown in Fig. 8, where we introduced a notation
σ ¼ aþ ib and the mass is m2 ¼ 2a2 þ 2b2.
We begin from the case of the infinitely long string. The

fermion contribution to the kinetic term is

Πij ¼ −
Z

d2q
ð2πÞ2

1

ðq2 þm2Þ½ðpþ qÞ2 þm2�
× Tr½γiðqþ i

ffiffiffi
2
p

bþ
ffiffiffi
2
p

aγ5Þγj
× ðpþ qþ i

ffiffiffi
2
p

bþ
ffiffiffi
2
p

aγ5Þ�: ðC3Þ

FIG. 8. Feynman rules: vertex and the propagator of ξl field.
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The Clifford algebra is, as usual,

fγiγjg ¼ 2δij: ðC4Þ
As a result, the trace identities for the γ matrices become

TrðγiγjÞ ¼ 2δij;

TrðγiγjγkγlÞ ¼ 2δijδkl − 2δikδjl þ 2δilδjk;

Trðodd number of γ’sÞ ¼ 0: ðC5Þ

Thus, the expression for the kinetic term takes the form

Πij ¼ −
Z

d2q
ð2πÞ2

Tr½γiqγjðpþ qÞ −m2γiγj�
ðq2 þm2Þ½ðpþ qÞ2 þm2�

¼ −
Z

d2q
ð2πÞ2

1

ðq2 þm2Þ½ðpþ qÞ2 þm2�
× ½2qiðpþ qÞj þ 2qjðpþ qÞi

− 2q _ðpþ qÞδij − 2m2δij�: ðC6Þ

Notice that generally speaking Trðγiγjγ5Þ ≠ 0 in two
dimensions. However, we find that both such contributions
cancel each other.
We proceed as in the bosonic theory, introducing the

Feynman parameter and making the same substitution.
Linear terms drop out, as usual. Furthermore, considering
only pipj structure we obtain

Πij
F ¼ pipj

Z
d2ldx
ð2πÞ2

1 − ð1 − 2xÞ2
ðl2 þm2 þ p2xð1 − xÞÞ2

¼ pipj

Z
1

0

dx
4π

1 − ð1 − 2xÞ2
m2 þ p2xð1 − xÞ : ðC7Þ

Expanding to zeroth order in p we find the fermion
contribution to e2,

1

Ne2F
¼ 1

6πm2
: ðC8Þ

Combining this with the result we obtained in the boson
theory, we finally arrive at

1

Ne2
¼ 1

4πm2
: ðC9Þ

In the case of the finite length string the starting
expression (C6) is modified,

Πij ¼ −
1

L

X∞
k¼−∞

Z
dq
2π

1

ðq2 þm2Þ½ðpþ qÞ2 þm2�
× ½2qiðpþ qÞj þ 2qjðpþ qÞi

− 2q _ðpþ qÞδij − 2m2δij�: ðC10Þ

Again, just as in the boson theory we consider Π00. After
we make the same substitution and introduce the Feynman
parameter, we obtain

Π00 ¼
m2

L

X∞
k¼−∞

Z
1

0

dx

ðp2xð1 − xÞ þm2 þ ω2
kÞ3=2

: ðC11Þ

Then we expand this expression and keep only the first
nonvanishing power in p. Thus, the fermionic contribution
to the charge is

1

Ne2F
¼ m2

4L

X∞
k¼−∞
ðm2 þ ω2

kÞ−5=2: ðC12Þ

Summarizing, we obtained a sum identical to that in
(B10). Therefore, their evaluation is identical too.
Combining the result found in this appendix with that of
the boson theory, we obtain for the charge

1

Ne2
¼ 1

4πm2
þ L
2πm

X∞
k¼1

K1ðLmkÞk: ðC13Þ
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