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Entanglement entropy of gauge fields is calculated using the partition function in curved spacetime with
a boundary. Deriving a Gibbons-Hawking-like term from a Becchi-Rouet-Stora-Tyutin (BRST) action
produces a Wald-entropy-like codimension-2 surface term. It is further suggested that boundary degrees
of freedom localized on the entanglement surface generated from the gauge redundancy could be used to
resolve a subtle mismatch in a universal conformal anomaly-entanglement entropy relation.
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I. INTRODUCTION

Despite being perhaps the weirdest consequence of
quantum mechanics [1], the concept of entanglement plays
an important role in many areas of physics: it is a key
ingredient in quantum information, an order parameter in
the phase transition in many-body systems [2], and a
measure of renormalization group flow in quantum field
theories [3]. The entanglement entropy is also suggested as
the origin of the black-hole entropy [4,5]. Decomposing the
full Hilbert space into pieces A and its complement B,

H ¼ HA ⊗ HB; ð1Þ

the entanglement entropy (or von Neumann entropy) is
defined by

SEE ≡ −trρA log ρA: ð2Þ

The reduced density matrix,

ρA ≡ trBρ; ð3Þ

is a partial trace of the full density matrix ρ over the degrees
of freedom in the region B. We will be interested in the
entanglement entropy of continuous quantum gauge-field
theories. For gauge-field theories where the observables are
Wilson loops, the partition given in (1) can be an issue since
such a partition would cut some loops. The Hilbert space of
gauge fields is defined modulo the gauge transformation.
The direct factorization as a product of two Hilbert spaces
of the subsystems could be troublesome. See [6–9] for
attempts to address this issue in lattice gauge theories.
It is often difficult to compute the entanglement entropy

directly, in particular for spacetime dimensions higher than
two. There are several alternative ways to compute the
entanglement entropy. One is the so-called replica (conical)
method [10,11] (see also [12]). In this method one
calculates the partition function on an n-fold cover of
the background spacetime where a conical singularity is

introduced. In this paper we will avoid the conical
singularity by adopting a new method introduced recently
in [13] (see also [14]). We focus on obtaining the universal
contribution to the entanglement entropy in Minkowski
spacetime with a spherical entangling surface with a radius
R. The main observation in [13] is that the full causal
development, D, connected to the spherical region with the
radius R can be conformally mapped to a new geometry
H ¼ S1 ×Hd−1, where Hd−1 is a ðd − 1Þ-dimensional
hyperbolic plane and S1 is a circle associated with periodic
Euclidean time. (One can also consider a conformal
mapping to the static patch of de Sitter space. In this paper
we will mostly focus on the hyperbolic geometry
S1 ×Hd−1.) The vacuum correlators in the causal develop-
ment of the region inside the spherical surface in
d-dimensional flat spacetime D are mapped to thermal
correlators on H. Moreover, the modular flow on D is
shown to correspond to the time translation on H. The
correlators on H are periodic in time under an imaginary
shift by a 2πR. The radius R of the circle S1 then defines the
temperature

T ¼ 1

β
¼ 1

2πR
: ð4Þ

Therefore, by conformally mapping a vacuum state of a
conformal field theory (CFT) onto a thermal state on the
hyperbolic spacetime, the computation of the entanglement
entropy across the sphere then can be calculated as the
thermal entropy of the hyperbolic spacetime via

SEE ¼ ð1 − β∂βÞ logZðβÞjH;β¼2πR: ð5Þ

On the other hand, AdS/CFT correspondence [15] also
provides a way to calculate the entanglement entropy
[16,17]. We focus on the field-theory calculation in
this paper.
A minor nuisance of the entanglement entropy in con-

tinuum quantum field theories is its UV cutoff dependence.
However, despite the fact that the coefficients of power-law
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divergences depend on regularization schemes, the log-
divergent term in the entanglement entropy (in even space-
time dimensions) is scheme independent, hence becoming a
universal result. Moreover, the log-divergent term in the
entanglement entropy with a spherical entangling surface in
d-dimensional flat spacetime is shown to be dictated by the
central charge [13,17]

SEE;log ¼ ð−1Þd2−14A log

�
R
δ

�
; ð6Þ

where δ is the divergence cutoff. The type-A central charge
“A” is defined as the conformal anomaly coefficient in even
spacetime dimensions in

hTμ
μi ¼

X
i

BdðiÞIdðiÞ − 2ð−Þd2AEd; ð7Þ

where Ed is the Euler density and IðdÞi are the Weyl
invariants that define the type-B anomalies in d dimensions.
The type-B central charges do not contribute in our
discussion since the spacetime in consideration will be
conformally flat. We are interested in the universal contri-
bution to the entanglement entropy from the type-A central
charge.
Notice that Eqs. (6), (7) use a scheme without introduc-

ing the so-called type-D trace anomaly. (In 4D, the type-D
anomaly reads hTμ

μi ¼ γ□R with the type-D central
charge γ.) This is also the minimal scheme used recently
in [18,19] to obtain the general stress tensors from
conformal anomalies based on the method discussed in
[20]. (See also the recent paper [21] for related discussion.
In their footnote 2, it is suggested that the log-divergent
term in the entanglement entropy of the 4D Uð1Þ gauge
field might be related to this scheme-dependent type-D
trace anomaly. It would be interesting to see if the approach
considered in this paper can be further identified as the
type-D anomaly contribution.)
For 4D free gauge fields with spin s ¼ 1, the result

predicted by the formula (6) is given by

Sðs¼1Þ
EE;log ¼ −

31

45
log

�
R
δ

�
: ð8Þ

This result can be independently confirmed using the vector
heat kernel on manifolds with a conical singularity [22,23].
However, to our knowledge, a field-theory calculation via
the approach developed in [13] reproducing this result is
absent (besides directly adopting the anomaly coefficients).
In [24], a direct modification of the stress tensor is
suggested to obtain this result. In this paper, we would
like to see more closely what new ingredients are needed to
give (8) without introducing the subtle conical singularity.
Our main motivation is that finding a way to improve an
alternative method of calculating the entanglement entropy
might shed light on defining the entanglement entropy
directly for general quantum gauge-field theories.

We organize this paper as follows. In the next section,
starting from the action principle, we revisit the formulation
of gauge fields in general curved spacetime with a
boundary. We argue that the corresponding Gibbons-
Hawking-like term should be derived from the action
instead of adding it by hand. Deriving such a Gibbons-
Hawking-like term from a BRST action produces a Wald-
entropy-like codimension-2 surface term. We will discuss
the suitable boundary conditions for our new action.
Although we do not adopt in the paper the replica method
that introduces the conical contact entropy [25], we point
out the similarity of the codimension-2 surface term in the
new action with the contact term in Sec. III. In Sec. IV,
we calculate the partition function and thermal entropy on
S1 ×H3 using the heat-kernel method. The main result of
this section is that the entropy (38) has a mismatch
compared to the universal conformal anomaly prediction
(8). (We refer readers to [26] for the corresponding
calculation of the conformally coupled scalar field and
fermion on S1 ×H3. The resulting entropy results are
consistent with the anomaly prediction (6).) A resolution
is suggested in Sec. V, where it is argued that one should
include the edge-mode contributions due to the gauge
symmetry. We also show that adding these edge modes
allows us to reproduce the universal log-divergent term of
the Rényi entropy of gauge fields. We conclude this paper
with some remarks on the entropy mismatch in the static
patch of de Sitter space found by [27], the issue of the
Hilbert space decomposition, and black-hole entropy.

II. GAUGE FIELDS IN CURVED SPACETIME
WITH A BOUNDARY REVISITED

Our starting point is the standard action of the Uð1Þ
gauge field Aμ on a general spacetime background M,

S ¼ 1

4

Z
M

FμνFμν; ð9Þ

where Fμν ¼ ½∇μ;∇ν� is the field strength. Due to the gauge
symmetry, δAμ ¼ ∇μλ where λ is the gauge parameter, we
add the Lorenz gauge-fixing term given by

Sgf ¼
1

2

Z
M
ð∇μAμÞ2: ð10Þ

The gauge-fixing procedure introduces the standard
Fadeev-Popov ghosts b̄ and b that are anticommuting
scalars. The full gauge-fixed action is

S ¼
Z
M

1

4
FμνFμν þ

Z
M

�
1

2
ð∇μAμÞ2 þ∇μb̄∇μb

�
: ð11Þ

The above action has the following BRST symmetry
parametrized by an infinitesimal anticommuting constant
parameter ϵ:
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δAμ ¼ ð∇μbÞϵ; δb ¼ 0; δb̄ ¼ ð∇μAμÞϵ; ð12Þ

provided that a boundary condition is imposed. Either
∇nbj∂M ¼ 0 or ∇μAμj∂M ¼ 0. (We have denoted
∇n ¼ nμ∇μ.) In fact, when one writes the bulk ghost action
as −

R
M b̄□b, integration by parts is used and we should

also impose a boundary condition: Either ∇nbj∂M ¼ 0

or b̄j∂M ¼ 0, the BRST symmetry of which requires
∇μAμj∂M ¼ 0. We will adopt ∇nbj∂M ¼ 0 in the following
discussion.
We next emphasize that, different from the action of the

nonminimally coupled scalar fields, the original gauge-
field action (11) does not have second derivatives of the
metric, so one does not really need to add by hand a
Gibbons-Hawking-like term in the action. However, as
we will discuss later on obtaining the partition function
using the heat-kernel method, it is most natural to use an
action which involves a second-order differential operator
given by

Dμν ≡□δμν − Rμν: ð13Þ

(We have denoted □ ¼ ∇μ∇μ and Rμν is the Ricci
curvature tensor generated by ½∇μ;∇ν�Aν ¼ −RμνAν.)
This operator is produced from integrating the standard
action (11) by parts. The action using the operator Dμν

naturally needs a Gibbons-Hawking-like term. However,
one should not add a new term during an immediate
calculation. Our resolution is that the Gibbons-Hawking-
like term should be derived in the gauge-field case. More
precisely, we consider

Z
M

�
1

4
FμνFμν þ 1

2
ð∇μAμÞ2

�

¼ −
Z
M

�
1

2
AμDμνAν

�

−
1

2

Z
∂M

nμ½Aν∇νAμ − Aμ∇νAν − Aν∇μAν�

¼ −
Z
M

�
1

2
AμDμνAν

�
þ 1

2

Z
∂M

KμνAμAν

þ
Z
∂M

�
Anð∇νAνÞ þ

1

4
∇nA2

�
−
1

2

Z
∂Md−1

g⊥μνAμAν:

ð14Þ

In the last line we integrate by parts one more time in
order to obtain the Gibbons-Hawking-like term that pro-
vides the cancellation involving∇nðδgμνÞ when performing
the metric variation. Kμν is the extrinsic curvature and nμ is
the (spacelike) outward unit vector normal to ∂M. g⊥μν ≡
nμnν denotes a projection onto the directions perpendicular
to the codimension-2 boundary. To our knowledge, no
literature has mentioned this kind of treatment regarding a

gauge-field action in curved spacetime with a boundary.
(See, for example, [28,29] for different approaches.)
We consider the following boundary conditions to have a

well-defined field equation of Aμ:

Anj∂M ¼ 0; ∇nλj∂M ¼ 0; ð∇nAi þ KijAjÞj∂M ¼ 0;

ð15Þ

where n is the normal component while i and j represent
the tangential components. This is referred to as the
absolute boundary condition in [30] although there the
surface action is different from ours. This set of boundary
conditions is sufficient for us to have a well-defined field
equation of Aμ. The BRST invariance of this absolute
boundary condition (15) and its consistency with the gauge
choice have been previously mentioned in [30].

III. CONICAL CONTACT ENTROPY

The main reason we consider in this paper a different
approach to study the entanglement entropy of gauge fields
instead of adopting the traditional replica method is that
one is already able to obtain the expected central charge-
entropy relation (8) using the conical method [22]. On the
other hand, it is well known that the conical singularity
causes subtle issues such as generating a contact term [25].
Notice that a contact term also appears in the case of the
nonminimally coupled scalar field [31]. However, as we
will discuss later, there is no entropy mismatch regarding
the expected central charge-entropy relation in the con-
formal scalar field’s case if using the hyperbolic spacetime
approach. In short, in this paper we would like to resolve
the entropy mismatch of gauge field’s entanglement
entropy without touching the contact term issue.
Although we will not focus on the conical approach in

this paper, we would like to make a short remark that, as
one can see from (14), deriving a Gibbons-Hawking-like
term from a BRST action would produce a codimension-2
surface term in general; the purpose of this section is to
show the similarity of this codimension-2 surface term with
the contact term of gauge fields. Let us briefly review the
contact term contribution to the entanglement entropy for
gauge fields [25]. (See also [32,33] for recent related
discussions.) If all surface terms are dropped, the Uð1Þ
action is simply given by

SM ¼ −
1

2

Z
M

ðAμDμνAνÞ −
Z
M

b̄□b: ð16Þ

On a manifold M with a conical singularity, we are
interested in the heat kernel for the first-order change of
the conical angle β away from 2π. The conical deficit
introduces a singular curvature at the tip of a cone.
The curvature can be expanded as [34]
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Rμν ¼ R̄μν þ ð2π − βÞg⊥μνδΣ þOð2π − βÞ2; ð17Þ

where R̄μν vanishes in flat spacetime. The higher-order
terms in (17) do not affect the entanglement entropy.
The entropy formula in the conical method reads
Scone ¼ ð1 − β∂βÞ logZðβÞjβ¼2π . The ghosts do not con-
tribute to the contact entropy. The partition function of
gauge fields can be written, using (17), as (D̄μν≡
□δμν − R̄μν)

Z
DA exp

�
1

2

Z
M

fAμðD̄μν − ð2π − βÞg⊥μνδΣÞAνg
�

¼ Z̄A −
�
π −

β

2

�Z
Σ
hg⊥μνAμAνi; ð18Þ

where the first term Z̄ denotes the “regular” contribution.
The second term leads to the contact entropy. (Σ denotes the
codimension-2 surface.) Let us also remark that this term is
intimately related to the expectation value of Wald entropy
[32,35],

hSWaldi ¼ −2π
�Z

Σ

∂L
∂Rμνλρ

ϵμνϵλρ

�
¼ −π

Z
Σ
hg⊥μνAμAνi:

ð19Þ

We see that the contact term has the same form as the last
term in the new action (14). However, in our approach
without introducing a conical singularity, such a surface
term will be killed by imposing the boundary condition
given in the last section. The treatments of the surface terms
may be different depending on whether we are considering
a physical boundary or a conical singularity. We leave the
problem of how our action interacts with the conical
singularity as a future problem.

IV. GAUGE FIELDS ON HYPERBOLIC SPACE
AND DISCREPANCY

We are interested in the entanglement entropy of gauge
fields onR1;3 with the entangling surface S2 with radius R,
at a time slice t ¼ 0. Using the approach developed in [13],
the computation of the entanglement entropy is mapped to
calculating the thermal entropy on the hyperbolic space.
The original flat spacetime metric written in polar coor-
dinates is given by

ds2 ¼ −dt2 þ dr2 þ r2d2Ω2; ð20Þ

where d2Ω2 is the metric of the sphere with unit radius.
The transformations that map the geometry into the hyper-
bolic geometry are given by [13]

t ¼ R
sinhðτRÞ

cosh uþ coshðτRÞ
; ð21Þ

r ¼ R
sinhðuÞ

cosh uþ coshðτRÞ
: ð22Þ

The metric then becomes

ds2 ¼ Ω2ð−dτ2 þ R2ðdu2 þ sinh2 ud2Ω2ÞÞ: ð23Þ

The prefactor, Ω ¼ ðcosh uþ cosh τ
RÞ−1, can be eliminated

via the conformal transformation and the resulting metric is
S1 ×H3. Notice the limits

τ ¼ �∞ → ðt ¼ �R; r ¼ 0Þ; ð24Þ

u ¼ ∞ → ðt ¼ 0; r ¼ RÞ ð25Þ

confirm that the full causal development D is indeed
covered in H after the conformal mapping.
We will use the heat-kernel method on S1 ×H3 to obtain

the partition function and the entropy. We denote the kernel
asKðx; y; sÞ on a fixed spacetime backgroundM satisfying
the heat equation

ð∂s þDÞKðx; y; sÞ ¼ 0; ð26Þ

where D is a second-order differential kinetic operator.
A boundary condition is imposed, Kðx; y; 0Þ ¼ δðx; yÞ.
The trace of the heat kernel is given by

KðsÞ ¼
Z
M

Kðx; x; sÞ ¼
X
i

e−sλi ; ð27Þ

with summation over all eigenvalues λi of the operator D
including possible degeneracy. Notice that the parameter s
must have dimensions of length squared if the argument
of the exponential is to be dimensionless. The partition
function can be expressed via the heat kernel,

logZ ¼ −
1

2

X
i

log λi ¼
1

2

Z
∞

0

ds
s
KðsÞ: ð28Þ

For the Uð1Þ gauge field on S1 ×H3, after imposing
the boundary condition (15), the action (14) reduces to (16).
The partition function can be written as

Z ¼ Detð−□sÞ
Z

DAμ exp

�
1

2

Z
S1×H3

AμDμνAν

�
; ð29Þ

where the factor Detð−□sÞ stands for the Faddeev-Popov
determinant. Factoring out the temporal index and perform-
ing a Gaussian integral over Aτ yields

Z ¼ Detð−□sÞ1=2
Z

DAi exp

�
1

2

Z
S1×H3

�
AiDijAj

��
: ð30Þ
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Next we write

logZðβÞ ¼ 1

2
ðDetð−□sÞ − DetðDijÞÞ≡ 1

2

Z
∞

0

ds
s
KðsÞ;

ð31Þ

where we have decomposed the total heat kernel by

KðsÞ ¼ KijðS1ÞKijðH3Þ − KsðS1ÞKsðH3Þ; ð32Þ

with KijðS1Þ being a shorthand for tr
R
S1 Kijðs; τ; τÞ and

KijðH3Þ for tr RH3 Kijðs; x; xÞ. The same notation applies on
Ks (scalar) parts. The volume simply factorizes in the heat
kernels because the hyperbolic space is homogeneous.
The heat kernel on S1 can be evaluated using the method

of images preserving the periodic boundary condition.
The result is given by an infinite sum on an infinite line
shifted by 2πRnð≡nβÞ,

KijðS1Þ ¼
2β

ð4πsÞ1=2
X∞
n¼1

e−
n2β2

4s ¼ KsðS1Þ: ð33Þ

The n ¼ 0 part is ignored because it will not contribute to
the entanglement entropy.
The heat kernels KijðH3Þ and KsðH3Þ can be found in

the literature [36,37] and are given by

KijðH3Þ ¼ e−
s
R2 þ 2þ 4 s

R2

ð4πsÞ3=2 ; KsðH3Þ ¼ e−
s
R2

ð4πsÞ3=2 :

ð34Þ

Plugging these results into (31) gives

logZðβÞ ¼ 2π2R2 þ 15β2

90R2β3
VolðH3Þ: ð35Þ

We have to introduce an IR cutoff since the volume ofH3 is
divergent. We let [13]

coshðumaxÞ ¼
R
δ
: ð36Þ

The scale of the hyperbolic curvature is set to be R.
We obtain a log term from

VolðH3Þ ¼ −2πR3 log

�
R
δ

�
þ � � � ð37Þ

Finally, using (5), we obtain the entropy

SEE;log ¼ −
16

45
log

�
R
δ

�
: ð38Þ

We find a mismatch when we compare this result with the
conformal anomaly prediction (8).

V. EDGE ENTROPY FROM ENTANGLING
SURFACE

Here we suggest a way to resolve the mismatch found
in (38). Our resolution is based on including edge modes
localized on the entangling surface.
Recall that the gauge symmetry results in the gauge-

fixing condition ∇μ
ðMÞAμ ¼ 0. The gauge redundancy is

determined by

□ðMÞλ ¼ 0; ð39Þ

where □ðMÞ is the d’Alembertian operator on M. In the
bulk, the residual gauge freedom is fixed by imposing a
boundary condition on the boundary of M, which is
∂M ¼ S1 × S2. (We take u → ∞ as the boundary.) That
is, we fix the residual gauge by imposing a constraint on
the boundary, λ∂M ¼ λ̄, where λ̄ still satisfies □ð∂MÞλ̄ ¼ 0.
Notice that by taking a large-u limit, the 4D metric (23)
(after eliminating the conformal factor) effectively reduces
to 2D since the radius of the time circle is much smaller
than the radius of S2, R sinh umax. Therefore, in the sense of
the Kaluza-Klein massive modes decoupling, the effective
boundary becomes S2 and the gauge redundancy condition
results in a constraint on S2 given by

ΔðS2Þλ̄ ¼ 0; ð40Þ

whereΔðS2Þ is the Laplacian operator on S2. Recall also that
in the large-u limit, Eq. (25) shows that it corresponds to
the t ¼ 0 slice that is used to define the original time-
independent entanglement entropy with a static entangling
surface.
We interpret that the entangling boundary plays a role to

encode these boundary redundancy modes. In other words,
the freedom of choosing different boundary data, λ̄, in (40)
is interpreted as having edge degrees of freedom on the
entangling boundary. We suggest that these boundary
modes give additional contributions to the entanglement
entropy and can be used to resolve the mismatch (38).
The standard bulk action (14) does not see the boundary

modes since all surface actions are set to zero using the
boundary condition. We treat the constraint (40) as a field
equation on S2 and define the corresponding partition
function again by (28). The question then can be reduced
to finding the corresponding eigenvalues using the heat-
kernel method.
The heat kernel on S2 is essentially given by solving the

standard eigenvalue problem of the Laplacian on S2. The
eigenvalues are lðlþ 1Þ with the orbital quantum number l
with the degeneracy given by ð2lþ 1Þ. The eigenfunction is
the familiar spherical harmonic. (See [38] for heat kernels

CENTRAL CHARGE AND ENTANGLED GAUGE FIELDS PHYSICAL REVIEW D 92, 025010 (2015)

025010-5



in different spacetime manifolds.) The heat kernel (density)
that we need is given by

KðS2Þ ¼ 1

4πr2
X∞
l¼0

ð2lþ 1Þe−slðlþ1Þ
r2 : ð41Þ

We will be interested in the small-s expansion. We use the
Euler-MacLaurin formula

X∞
l¼0

fðlÞ ¼
Z

∞

l¼0

dlfðlÞ þ 1

2
fð0Þ − 1

12
f0ð0Þ þ � � � ð42Þ

with a function fðlÞ satisfying fðnÞð∞Þ ¼ 0 for arbitrary n.
We focus on the scheme-independent log divergence;
the higher-order terms in (42) are irrelevant. From (41)
and (42) we obtain

KðS2Þ ¼ 12r4 þ 4r2sþ s2

48πr4s
þ � � � ð43Þ

We define the partition function on S2 as

logZðS2Þ ¼ 1

2
VolðS2Þ

Z
∞

ϵ2

ds
s
KðS2Þ; ð44Þ

where VolðS2Þ ¼ 4πr2 is simply the area of the entangle
surface. The s-independent term in (43) gives the log
divergence. Notice that the gauge parameter λ is understood
as the ghost b so it contributes as a negativemassless scalar
field on S2. We obtain the log-divergent term from the edge
modes, logZðS2Þ → − 1

6
logðR2

ϵ2
Þ. A dimensional scale R is

inserted to have a dimensionless argument. We see that
the log-divergent term is independent of the radius of the
entangling surface. We identify the UV cutoff ϵ with the
cutoff δ in regularizing VolðH3Þ, ϵ ¼ δ. The edge correc-
tion is given by

ΔSðs¼1Þ
EE;log ¼ −

1

3
log

�
R
δ

�
; ð45Þ

which resolves the mismatch.
Let us generalize our discussion to the Rényi entropy

defined by

Sq ¼
log trρqA
1 − q

: ð46Þ

It has the following simple relation to the entanglement
entropy (assuming a satisfactory analytic continuation can
be performed):

SEE ¼ lim
q→1

Sq: ð47Þ

Having the hyperbolic partition function, we can calculate
the Rényi entropy via

Sq ¼
logZðqβÞ − q logZðβÞ

ð1 − qÞ
����
β→2πR

: ð48Þ

Using (35), we obtain

Sq ¼
ðqþ 1Þð31q2 þ 1Þ

360πq3R3
VolðH3Þ: ð49Þ

Let us also include the edge modes. We should view the
edge contribution as a universal contribution (the log-
divergent term) in the sense that it is independent of β
or the radius of the entangling surface. It then should be
also independent of the parameter q inserted in temperature
T ¼ 1

2πRq. By adding the edge contribution (45), the full
log-divergent term of the Rényi entropy becomes

Sðs¼1Þ
q;log ¼ −

1þ qþ 31q2 þ 91q3

180q3
log

�
R
δ

�
: ð50Þ

This result (giving the coefficient -31=45 when taking
q ¼ 1) is now consistent with the Rényi entropy result
obtained in [22,23] for gauge fields calculated by intro-
ducing the conical singularity.
If we use the hyperbolic spacetime heat kernels ([36,37])

to consider the 4D conformally coupled scalar field, the
log-divergent term in the Rényi entropy can be obtained
directly. We obtain

Sðs¼0Þ
q;log ¼ −

1þ qþ q2 þ q3

360q3
log

�
R
δ

�
: ð51Þ

Taking q ¼ 1 gives

Sðs¼0Þ
EE;log ¼ −

1

90
log

�
R
δ

�
; ð52Þ

which matches exactly with the expected type-A anomaly
prediction. On the other hand, there is no mismatch
problem for fermions. The heat-kernel and related algebra
can be found in literature (for example, see the appendix in
[26]). For useful reference, we list the corresponding result
of the 4D Dirac fermion,

S
ðs¼1

2
Þ

q;log ¼ −
7þ 7qþ 37q2 þ 37q3

720q3
log

�
R
δ

�
: ð53Þ

Taking q ¼ 1, it gives the expected conformal anomaly
prediction

S
ðs¼1

2
Þ

EE;log ¼ −
11

90
log

�
R
δ

�
: ð54Þ

In short, the field-theory calculation of the log-divergent
terms of the conformally coupled scalar field and massless
fermion on S1 ×H3 match directly with the conformal
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anomaly prediction, without any edge corrections needed.
This is consistent with the fact that the boundary modes
contribute in the gauge-field case due to the existence of
the gauge symmetry.

VI. CONCLUDING REMARKS

Let us make a remark on the contribution of the edge
modes to the entropy calculation in the static patch of de
Sitter space. Starting again with the flat-space metric (20),
one uses the coordinate transformation [13]

t ¼ R
cos θ sinhðτ=RÞ

1þ cos θ coshðτ=RÞ ; ð55Þ

r ¼ R
sin θ

1þ cos θ coshðτ=RÞ ð56Þ

to obtain

ds2 ¼ Ω2½−cos2θdτ2 þ R2ðdθ2 þ sin2θdΩ2
d−2Þ�; ð57Þ

where Ω ¼ ð1þ cos θ coshðτ=RÞÞ−1 is the conformal fac-
tor to be eliminated. The remaining metric is the static patch
of de Sitter space with the scale R. The important limits are

τ ¼ �∞ →ðt; rÞ ¼ ð�R; 0Þ; ð58Þ

θ ¼ π

2
→ðt; rÞ ¼ ð0; RÞ: ð59Þ

We see again that the new coordinates cover the causal
developmentD of the ball r ≤ R at t ¼ 0. As shown in [13],
similar to the hyperbolic space, the modular transformation
inside D again corresponds to the time translation
in de Sitter space after the conformal mapping. The state
in de Sitter geometry becomes thermal at T ¼ 1=ð2πRÞ.
The thermal entropy in de Sitter space then can also be
identified as the entanglement entropy in flat spacetime
with a codimension-2 spherical entangling boundary.
In [27], the thermal entropy in 4D de Sitter space is

calculated. Interestingly, the same mismatch (38) is found
in the log-divergent term. The volume of de Sitter space is
finite, so in this case there is no need to introduce an IR
cutoff. The log divergence comes from the UV divergence
of the partition function. In calculating the partition
function of gauge fields, the gauge-fixing process again
results in the gauge redundancy that is needed to be fixed
by imposing a boundary constraint. Notice that in this case,
one identifies the entangling boundary as the cosmological
horizon at the boundary of the static patch at θ ¼ π=2.
From the metric (57) (with d ¼ 4), we see that the
boundary defined by the limit θ → π=2 is again effectively
(in the spirit of Kaluza-Klein dimensional compactifica-
tion) a 2D sphere because the prefactor of the time direction
shrinks to zero in this limit. The boundary redundancy

modes effectively satisfy again (40), which gives the same
edge correction (45) that resolves the mismatch found in
the de Sitter space calculation as well.
It would be of great interest to better understand the edge

modes and explore their potential applications. It has been
suggested [6] (see also [7–9]) that one might modify the
Hilbert space decomposition as

H ¼ HA ⊗ HB ⊗ H∂A; ð60Þ

where H∂A denotes a boundary Hilbert space, to have a
special treatment of boundary in calculating the entangle-
ment entropy of gauge fields. Let us make an initial attempt
to relate this idea to the approach considered here. If one
wants to derive the edge contribution (45) starting from a
classical surface action, an immediate issue is that a surface
action will cause a trouble regarding the variation principle
when getting the bulk field equation. If we introduce a
boundary Hilbert space HS2 separately, we might consider
a surface action subjected to the path integral quantization
in this separated Hilbert space. Then, to incorporate the
contribution from the edge, we introduce the following
edge partition function:

ZðS2Þ ¼ ðZðb̄; bÞÞ12; Zðb̄; bÞ ¼
Z

Db̄Dbe−
R
S2
ðb̄□bÞ:

ð61Þ

(Since the edge part does not have any gauge field, we
simply define δbS2 ¼ δb̄S2 ¼ 0 so that the surface action
remains BRST invariant.) Notice that because of the
intrinsic asymmetric treatment on ghost fields b and b̄ in
the BRST transformation, δA ¼ ∇b in (12), the gauge
redundancy (and the resulting edge correction on the
entropy) is solely determined by b in this framework, so
we adopt ðZðb̄; bÞÞ12 as the correct counting.
Finally, we would like to point out that the edge modes

are introduced in the context of black-hole entropy in [39],
where the authors consider BPS black holes with
AdS2 × S2 near horizon geometry. They argue that gauge
symmetries give rise to physical modes that localize on
the boundary of AdS2 and contribute to the black-hole
entropy.1 The boundary modes in their context come also
from supersymmetry and diffeomorphism invariance. It is
shown that the boundary modes are needed to obtained the
expected log corrections to the black-hole entropy. While it
remains to further explore the deeper relation between the
black-hole entropy and the entanglement entropy, it would
be nice to see that the edge modes are essential in both
contexts. It would be interesting to calculate the entangle-
ment entropy of gravitons or other types of gauge fields
using the approach considered in this paper, without

1I thank Finn Larsen for explaining some concepts in [39].
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introducing the conical singularity, and see if the corre-
sponding entanglement edge modes due to gauge redun-
dancies are needed to explain possible discrepancies.
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Note added.—Recently, a paper [40] appeared that con-
sidered the entanglement entropy of gauge fields using an
approach in which the conical singularity was introduced.
The authors of that paper related the 4D mismatch result
with the entangling boundary S2 independently.
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