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We study the statistical mechanics of a general Hamiltonian system in the context of symplectic structure
of the corresponding phase space. This covariant formalism reveals some interesting correspondences
between properties of the phase space and the associated statistical physics. While topology, as a global
property, turns out to be related to the total number of microstates, the invariant measure which assigns
a priori probability distribution over the microstates is determined by the local form of the symplectic
structure. As an example of a model for which the phase space has a nontrivial topology, we apply our
formulation on the Snyder noncommutative space-time with de Sitter four-momentum space and analyze
the results. Finally, in the framework of such a setup, we examine our formalism by studying the
thermodynamical properties of a harmonic oscillator system.
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I. INTRODUCTION

Statistical mechanics is a bridge between mechanics and
thermodynamics. Indeed, it may be assumed as the micro-
scopic mechanical basis for the macroscopic thermody-
namical properties of a physical system. The key concept
which links these two arenas is the notion of the phase
space, that is, the space of all distinct possible microstates.
The dynamical evolution is nothing but a smooth transition
from one microstate to another and statistical mechanics is
about how to count the number of these microstates. In a
more technical language, the phase space of a dynamical
system is a symplectic manifold which naturally is
equipped with a symplectic structure [1]. The symplectic
structure covariantly determines the Poisson brackets
and Liouville volume and the kinematics is then defined
in a coordinate-independent manner on the phase space.
The dynamics will be also specified upon taking the
Hamiltonian function as the generator of time evolution
in this setup. Therefore, the Hamiltonian determines how
the system evolves through the microstates and the
Liouville volume specifies how one can count and measure
them. Consider, for instance, a mechanical system consist-
ing of N particles which are subjected to some forces. Each
particle moves in Euclidean three-dimensional space R3

and the corresponding configuration space is then R3N .
Therefore, the phase space will be the cotangent bundle of

this space, that is, R3N ×R3N , which naturally admits a
symplectic structure. In terms of the positions and momenta
of the particles, the associated symplectic structure takes
the standard canonical form. Such a canonical symplectic
structure, which is also dynamically invariant, may be used
to determine the fundamental canonical Poisson brackets
and the kinematics for the system under consideration.
Subsequently, based on the canonical symplectic structure
one leads to the canonical measure which can be viewed as
a mathematical expression for the principle of equal
probabilities in standard statistical mechanics [2].
Although it might be thought that the symplectic formu-
lation is nothing but a covariant reformulation of the
standard statistical mechanics, its advantages may become
more clear when one is dealing with the Hamiltonian
systems with nontrivial structures (for instance, when the
standard Rn topology of the phase space is replaced with a
more complicated topology or the standard canonical
Poisson algebra is replaced with a deformed noncanonical
one). Such systems, are investigated in the context of
doubly special relativity theories, as a flat limit of quantum
gravity, where the four-momentum space has a curved (de
Sitter or anti–de Sitter) geometry with nontrivial topology
[3]. The space-time structure then turns out to be non-
commutative and the associated Poisson algebra between
the positions and momenta become noncanonical [4,5]. The
space-time with noncommutative coordinates was first
proposed by Snyder in Ref. [6] in order to regularize
quantum field theory in the ultraviolet regime [7]. In more
recent times, it was also used by the stability theory of the
Lie algebras to be a minimal candidate for the relativistic
quantum mechanics [8] and by string theory at a funda-
mental level [9]. The duality between curved momentum
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space and noncommutative structure was first pointed
out by Majid in Ref. [10]. The direct consequence of
space-time with noncommutative coordinates is the modi-
fication to the dispersion relation and the associated
density of states [11–16]. In symplectic formulation,
the density of states is properly determined by the
Liouville measure which will be constructed from the
symplectic structure [17]. In noncommutative space-time,
however, the corresponding symplectic structure seems to
be noncanonical, which induces a nonuniform probability
distribution over the set of microstates through a deformed
Liouville volume element. This dynamically invariant
Liouville volume enters in the definition of the Gibbs
entropy and partition function from which all the ther-
modynamical properties of a system can be extracted.
Therefore, the topology of the phase space will play an
important roll since all integrals are evaluated over the
entire phase space. For instance, let us consider a system
which has an ultraviolet cutoff due to the existence of a
maximal momentum. It is easy to see that the topology of
the spatial sector of the momentum space may be
compact. Moreover, systems with a totally compact phase
space, which can be considered as the classical limit of
quantum systems with finite dimensional Hilbert space
(e.g., angular momentum for systems with fixed total
angular momentum) were recently studied in the context
of loop quantum gravity [18]. For such a compact phase
space, the Liouville volume is finite and consequently a
finite number of microstates naturally arises [19]. This
shows the correspondence between the topology of the
phase space and the number of microstates which can be
realized when the symplectic geometry is implemented.
The black hole physics is a good example in which the
system obeys the thermodynamical laws and its statistical
origin is not thoroughly formulated yet [20,21] in the
framework of Hamiltonian formalism (see also Ref. [22]).
In this regard, formulating the statistical mechanics in its

most fundamental form is important, at least, for two
reasons: (i) finding a more precise and fundamental
interpretation for the basis of the statistical mechanics,
and (ii) studying the statistical mechanics for the
Hamiltonian systems with nontrivial structure, such as
those we have mentioned above. Motivated by the stated
issues, in this paper we are going to formulate statistical
mechanics for a general Hamiltonian system in a covariant
(coordinate-independent) manner. The paper is organized
as follows. In Sec. II, we deal with the kinematics and
dynamics of a many-particle system with general
Hamiltonian structure in the context of symplectic geom-
etry. The statistical mechanics for such systems is formu-
lated in Sec. III. In Sec. IV, by means of the constructed
setup we study the statistical mechanics in the
Snyder noncommutative space-time with curved energy-
momentum space as an explicit example of a physical
system with nontrivial (noncommutative) Hamiltonian

structure. As a case study, the thermodynamical properties
of a harmonic oscillator system in Snyder space is also
presented at the end of this section. Section V is devoted to
the summary and conclusions.

II. HAMILTONIAN SYSTEMS

In this section, in order to study the statistical mechanics
in the context of symplectic geometry, we consider the
kinematics and dynamics of an N-particle system.

A. Kinematics

Let us consider a system of N particles similar to
conventional systems in statistical mechanics. The corre-
sponding 6N-dimensional kinematical phase space may be
obtained by coupling N single-particle phase spaces Γα

with α ¼ 1;…; N as

Γ ¼ Γ1 × � � � × ΓN: ð1Þ
The phase space Γ naturally admits a symplectic structureω
which is a nondegenerate closed 2-form [1]. The classical
state of this N-particle system is determined by a point in Γ
(phase point). The evolution of phase points is then
determined by the Hamiltonian vector field xH, whose
integral curves are trajectories of the phase points (phase
trajectories). From the fact that ω is nondegenerate, one can
assign a vector field to a function f as ωðxfÞ ¼ df and the
Poisson bracket between two observables (real-valued
functions on the phase space) can be defined as

ff; gg ¼ ωðxf;xgÞ: ð2Þ
These functions with the above structure constitute a Lie
algebra under Poisson brackets on Γ. We also have the so-
called Liouville volume on Γ with its standard definition as

ω3N ¼ 1

ð3NÞ!ω ∧ … ∧ ω ð3N timesÞ: ð3Þ

In terms of positions and momenta x ¼ ðq;pÞ of the
particles, the Liouville volume takes the local form

ω3N ¼
ffiffiffiffiffiffiffiffiffiffiffi
detω

p
dq11 ∧ … ∧ dq3N ∧ dp1

1 ∧ … ∧ dpN
3

≡ ffiffiffiffiffiffiffiffiffiffiffi
detω

p
d3Nqd3Np; ð4Þ

where qiα and pα
i are the ith component of the positions and

momenta of the αth particle, respectively, and ω is the
matrix representation of the symplectic structure ω with
components ωij ¼ ωð∂=∂xiα; ∂=∂xjβÞ.
Now, one may be able to decompose the symplectic

structure as

ω ¼
XN
α¼1

ωα; ð5Þ
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where ωα is the symplectic structure on Γα. Although this
assumption has no mathematical basis, from a physical
point of view it is acceptable since the particles are assumed
to be kinematically separated. In other words, the Lie
algebras of the functions defined by fωαg over fΓαg are
separately closed. Therefore, the Liouville volume over Γ
takes the form

ω3N ¼ 1

ð3NÞ!
�XN

α¼1

ωα

�
∧ … ∧

�XN
α¼1

ωα

�
; ð6Þ

where the wedge products take place 3N times. The volume
element then works out to be

ω3N ¼ ω3
1 ∧ … ∧ ω3

N ¼
�YN

α¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detωα

p �
d3Nqd3Np; ð7Þ

where ω3
α is the volume element of the corresponding fΓαg,

and we have also used the fact that ωn
α ¼ 0, for n > 3.

Clearly,
ffiffiffiffiffiffiffiffiffiffiffi
detω

p
, that is, a function on Γ, factorizes into

products of f ffiffiffiffiffiffiffiffiffiffiffiffiffi
detωα

p g. This cannot be realized in the most
general situation, where the symplectic structure cannot be
written as (5).
As a special case, consider a system consisting of N

particles subject to some forces moving in Euclidean three-
dimensional space with standard R3 topology. Therefore,
the phase space will be R3N ×R3N , which is indeed the
cotangent bundle of the configuration space, that is, R3N .
Geometrically, the cotangent bundle is a symplectic mani-
fold endowed with a canonical symplectic structure

ωc ¼ dQi
α ∧ dPαi ; ð8Þ

in which Q and P are interpreted as the positions and
momenta of particles, respectively. The summation is over
both i ¼ 1; 2; 3 and α ¼ 1;…; N. This is the canonical
representation of symplectic structure and coordinates
ðQi

α; Pαi Þ are known as the canonical coordinates.
Substituting the canonical structure (8) into the definition
(2), the Poisson bracket will be

ff; ggc ¼
∂f
∂Qi

α

∂g
∂Pαi −

∂f
∂Pαi

∂g
∂Qi

α
; ð9Þ

which leads to the standard canonical Poisson algebra

fQi
α;Q

j
βgc ¼ 0; fQi

α; P
β
jgc ¼ δijδ

β
α; fPαi ; Pβjgc ¼ 0:

ð10Þ

Also, with the help of (8) we get from (3) the Liouville
volume as

ω3N
c ¼ d3NQd3NP; ð11Þ

which is nothing but the standard volume element on R6N .
Thus, the kinematics of the standard statistical mechanics
can be recovered as a special case of this setup. Taking into
account the fact that detωc ¼ 1, the measure associated to
the standard volume element (11) assigns a uniform
probability distribution to the set of microstates. This is
justifiable in the light of Laplace’s principle of indifference,
which states that in the absence of any further information,
all outcomes are equally likely [2]. This is the fundamental
basis of the statistical mechanics.
In the case where the space-time has a noncommutative

structure, apart from the details of the different models, there
is always a deformation parameter which can be linked to a
minimal length associated with the system under consid-
eration. The direct consequence of this setup is the modi-
fication of the dispersion relation and the density of states
(see Ref. [8] for the special case of the stable noncommu-
tative algebra for the relativistic statistical mechanics). The
density of states is determined by the symplectic structure
and the associated Liouville volume. Since the symplectic
structure takes a noncanonical form in terms of the physical
positions and momenta ðq; pÞ in noncommutative spaces
[19], we have detω ¼ detωðq; pÞ ≠ 1. This result immedi-
ately shows that Laplace’s indifference principle is no longer
applicable for a noncommutative space-time. This is because
of the fact that there is extra information in these setups
(minimal length or maximal momentum) and the Liouville
measure then assigns a nonuniform probability distribution
over the set of microstates by means of the relation (4). This
simple consideration of noncommutative space-time as an
example of a kinematically deformed system shows the
advantage of the coordinate-independent symplectic formu-
lation of the statistical mechanics (see Refs. [17,23] for
explicit examples). We will explicitly consider such an
example in Sec. IV.
It also should be noted that, according to the Darboux

theorem, there is always a local chart on Γ in which any
symplectic structure takes the canonical form with
detω ¼ 1. In the case of kinematically deformed systems
such as the noncommutative space-time, however, the new
canonical coordinates cannot be interpreted as the positions
and momenta of the particles. Moreover, in the case of
standard statistical mechanics, one can also find a local
chart in which the standard canonical structure ωc takes a
noncanonical form with detωc ≠ 1. But again, these new
noncanonical coordinates cannot be interpreted as positions
and momenta of particles. In all of the above cases, as we
will see in the next section, the partition function and
consequently resultant thermodynamical properties are
independent of the chart in which the system is considered.

B. Dynamics

As we have mentioned above, the time evolution of the
system is determined by the Hamiltonian vector field xH. It
can be obtained by solving the dynamical equation
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ωðxHÞ ¼ dH; ð12Þ
where H is the Hamiltonian function of the system that is a
real-valued function over Γ and ωðxHÞ is an interior
product of ω and xH. Additionally, xH can be expanded as

xH ¼
XN
α¼1

xα
H; ð13Þ

where xα
H is the projection of xH on Γα. Note that, in

general, the domain of components of xα
H is the whole

phase space Γ and consequently the Lie brackets between
fxα

Hg will not vanish:

½xα
H;x

β
H� ≠ 0: ð14Þ

However, as a special case, one can consider a system
consisting of noninteracting particles. Therefore, the
Hamiltonian function can be written as the sum of
individual Hamiltonians, that is,

H ¼
XN
α¼1

Hα: ð15Þ

So, from decomposition (5) for the symplectic structure, the
dynamical equation (12) becomes�XN

α¼1

ωα

��XN
β¼1

xβ
H

�
¼

XN
α¼1

dHα: ð16Þ

Using the fact thatωαðxβ
HÞ ¼ 0, for α ≠ β, one is led to a set

of N independent differential equations

ω1ðx1
HÞ ¼ dH1;…;ωNðxN

HÞ ¼ dHN: ð17Þ

Now, it is clear that the domain of the components of xα
H

will be Γα and the Lie brackets between xα
H and xβ

H vanish:

½xα
H;x

β
H� ¼ 0: ð18Þ

This can be seen as a criterion for the kinematical and
dynamical separability of the particles. In the Appendix,
we will see that this benchmark shows itself as a criterion
for the statistical independence of the macroscopic sub-
systems which in turn is a definition of equilibrium.
The other important property of the Hamiltonian systems

is the existence of an invariant measure that enables one to
construct the equilibrium statistical mechanics through the
well-known Liouville theorem as

d
dt

ω3N ¼ 0; ð19Þ

where d=dt ¼ ∂=∂tþ LxH is the total time derivative and
LxH denotes the Lie derivative with respect to xH. The

conservation of ω3N can be traced back to the fact that
LxHω

3N ¼ 3NðLxHωÞ ∧ ω3N−1 and LxHω ¼ dωðxHÞ þ
dðωðxHÞÞ ¼ 0, where we have used dðωðxHÞÞ ¼ d2H ¼
0 and the closure of the symplectic structure dω ¼ 0. It is
obvious that ω3N is not explicitly time dependent. Note also
that the Liouville theorem arises from the particular
dynamics of a Hamiltonian system.
Consider the standard statistical mechanics as a special

case, where the kinematics is given by canonical symplectic
structure (8). The dynamical equation (12) then leads to the
familiar form of the Hamilton’s equations in terms of the
physical positions and momenta as

dQi
α

dt
¼ ∂H

∂Pαi ;
dPαi
dt

¼ −
∂H
∂Qi

α
: ð20Þ

Note that when the symplectic structure has a noncanonical
form, the form of Hamilton’s equations would deviate from
the relation (20).
The triple ðΓ;ω; HÞ constitutes a general Hamiltonian

system and we explore the statistical physics of this general
system in the next section by means of an invariant volume
elementω3N which is covariantly defined in the relation (3).

III. STATISTICAL MECHANICS

Statistical mechanics links macroscopic properties of a
system to microscopic laws that are quantum mechanical at
the fundamental level. The basic concept is the von
Neumann entropy that is defined as

S ¼ −Trðρ̂ ln ρ̂Þ; ð21Þ

where ρ̂ is the density operator [24]. Using the principle of
maximum entropy and considering specific relevant stat-
istical constraints, we can find the density operator which
contains all the statistical information about the system at
equilibrium. For example, for a system in contact with a
thermal bath at temperature T and therefore with a fixed
mean energy, the resultant normalized density operator
works out to be

ρ̂c ¼
1

Z
exp½−Ĥ=T�; ð22Þ

where Ĥ is the Hamiltonian operator of the system andZ is
called the canonical partition function which is defined as

Z ¼ Tr exp½−Ĥ=T� ¼
X
i

exp½−εi=T�; ð23Þ

where fεig are the energy eigenvalues of Ĥ and the
summation is taken over all the accessible microstates
for the system. At the fundamental level, the microscopic
laws are quantum mechanical and the microstates are
determined by quantum mechanics. On the other hand,
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in the classical limit, the microstate of a system represents
itself as a point on the corresponding phase space and due
to the infinite resolution of phase space points, the
summation over microstates is really not well defined.
Consequently, one cannot construct a full classical stat-
istical mechanics in essence. However, quantum mechanics
provides the semiclassical approximation in the spirit of the
uncertainty principle. Indeed, a phase space with finite
resolution and well-defined number of classical microstates
can be achieved through the approximation [17]

Tr →
1

N!

Z
Γ
ω3N; ð24Þ

where 1=ðN!Þ is due to the fact that the particles may be
indistinguishable and ω3N is the dynamically invariant
Liouville volume element of the 6N-dimensional symplec-
tic manifold Γ which is defined in the relation (3). It is
important to note that the semiclassical approximation (24)
coincides with the full quantum consideration at high
temperature regime. In this limit, the von Neumann entropy
(21) is replaced with the Gibbs entropy

S ¼ −
1

N!

Z
Γ
ρ ln ρω3N; ð25Þ

where ρ is now interpreted as a probability density over the
space of microstates Γ. The maximum entropy principle for
a system in heat bath at temperature T leads to the Gibbs
state

ρc ¼
1

Z
exp½−H=T�; ð26Þ

whereH is the Hamiltonian function of the system andZ is
the semiclassical canonical partition function

Z ¼ 1

N!

Z
Γ
exp½−H=T�ω3N: ð27Þ

The result of the integral over the phase space for the total
partition function (27) is independent of a chart in which
the system is considered when the dynamical equation (12)
is satisfied in a chart-independent manner. While the local
form of the symplectic structure determines the probability
distribution over the set of microstates, from the statistical
point of view, we expect that the resultant thermodynamical
properties extracted from a partition function are indepen-
dent of a chart in which the physical system is considered
(see, for instance, Ref. [17], in which the partition function
in two different charts is calculated).
By considering the decompositions (5) and (15) for the

symplectic structure ω and Hamiltonian function H,
respectively, the probability density will also be decom-
posed as

ρcω
3N ¼ ðρ1cω3

1Þ ∧ … ∧ ðρNc ω3
NÞ; ð28Þ

where ραc is the Gibbs state defined on Γα. Hence the
integral over Γ can be factorized into the products of the
integrals over the phase spaces of the particles as

Z ¼ 1

N!

YN
α¼1

�Z
Γα

exp½−Hα=T�ω3
α

�
: ð29Þ

Now, if the particles are influenced by the same kinematics
and dynamics, the partition function can be written in the
well-known form

Z ¼ ZN
1

N!
; ð30Þ

where we have defined the single-particle state partition
function

Z1 ¼
Z
Γ1

exp½−H1=T�ω3
1: ð31Þ

It is usually claimed that the relation (30) is applicable
when one ignores the quantum correlations between
particles. This means that decompositions such as (5)
and (15) may be considered as conditions for the absence
of quantum correlations. Moreover, the general formalism
which is formulated in this section can also support a
Hamiltonian system with very nontrivial structure, e.g., a
kinematically classical entangled system in which the
decomposition (5) is no longer applicable.

IV. APPLICATION IN NONCOMMUTATIVE
SPACES

Existence of a minimal length is suggested by any
quantum gravity candidate such as string theory and loop
quantum gravity [25,26]. It is then widely believed that a
nongravitational theory which supports the existence of a
minimal length would arise at the flat limit of quantum
gravity. Such a theory would be reduced to the standard
relativistic quantum mechanics at low energy regime where
the effects of a minimal length are negligible. Evidently,
taking a minimal length into account naturally leads to the
space-time with noncommutative coordinates. The first
attempt in this direction was done by Snyder in 1947
who formulated a Lorentz-invariant discrete space-time
with noncommutative coordinates [6]. The space-time with
noncommutative structure is also suggested by the theory
of stability of the Lie algebras [8]. On the other hand,
existence of a universal minimal length cannot be sup-
ported by the special relativity since any length scale in one
inertial frame may be different in another observer’s frame
through the well-known Lorentz-Fitzgerald contraction.
Thus, the doubly special relativity theories are formulated
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in order to take into account an observer-independent
minimum length as well as the velocity of light [27].
The curved four-momentum space then naturally appears to
be a suitable framework to formulate the doubly special
relativity theories [3]. Furthermore, the different doubly
special relativity theories can be obtained from the different
basis of the κ-Poincaré algebra on the associated κ-
Minkowski noncommutative space-time [28]. In this
respect, it is also shown that the Snyder noncommutative
algebra which is proposed in Ref. [6] and the stable algebra
of relativistic quantum mechanics that is obtained in
Ref. [8] can be obtained from a ten-dimensional phase
space with curved geometry for the four-momentum space
through the symplectic reduction process [4]. Thus, it
seems that the space-time with curved four-momentum
space and noncommutative coordinates is a fundamental
framework for taking into account a minimal length scale in
the flat limit of quantum gravity [29]. It would also be
claimed that the Lorentz invariance is an approximate
symmetry and will be broken at a high energy regime.
Therefore, the Lorentz-violating noncommutative algebra
was proposed by Camelia in Ref. [27], which supports the
existence of a minimal observer-independent length scale.
Magueijo and Smolin showed that the Lorentz invariance
can also be preserved by a nonlinear action of the Lorentz
group on the momentum space [30]. In order to preserve the
Lorentz invariance, the following commutation relations
for the generators will be held:

fJab; Jcdg ¼ Jadηbc þ Jbcηad − Jbdηac − Jacηbd;

fJab; pcg ¼ paηbc − pbηac; fJab; xcg ¼ xaηbc − xbηac;

ð32Þ

where ηab ¼ diagðþ1;−1;−1;−1Þ is the Minkowski
metric and a; b; c; d ¼ 0;…; 3. The commutation relations
between ðxa; paÞ then classify the different Lorentz-
invariant algebras such as the Snyder noncommutative
algebra [6], the stable algebra [8], and also the standard
Lorentz algebra.
While the relativistic algebras are written in the

eight-dimensional relativistic phase space, to formulate
the statistical mechanics one needs to work in a six-
dimensional nonrelativistic subalgebra of the deformed
relativistic algebras in which the time parameter is fixed
and the corresponding Poisson brackets take a noncanoni-
cal form. By means of the resulting deformed Hamiltonian
system, one can study the statistical mechanics with the
help of the constructed setup in the pervious sections. In
recent years, many works have gone in this direction in
order to study the effects of an ultraviolet cutoff (minimal
length and maximal momentum) on the thermodynamical
properties of the physical systems. For instance, thermo-
dynamics of some physical systems in noncommutative
spaces is studied in Ref. [31]. For the special case of the

Snyder noncommutative space, see Ref. [32], in which the
thermodynamics of the early Universe is explored. It is
shown that the Liouville theorem for the deformed phase
space with general noncanonical Poisson algebra is sat-
isfied. However, as we have shown in Sec. III, the Liouville
theorem can be justified in a very simple manner in the
covariant formalism, which also shows the advantage of the
setup. Furthermore, thermodynamical ideal gases are stud-
ied in the context of doubly special relativity theories [16].
Also, motivated by the string theory, the generalized
uncertainty principle is suggested which supports the
existence of a minimal length as a nonzero uncertainty
in position measurement [25,33]. For the statistical
mechanics in this setup, see Refs. [34,35]. Inspired by
loop quantum gravity, the polymer quantum mechanics
is formulated which supports the existence of a minimal
length known as the polymer length scale [36].
Thermodynamical properties of the ideal gases and har-
monic oscillator are also studied in Refs. [17,37]. To see the
effects of minimal length on the thermodynamics of the
black holes in noncommutative space, the generalized
uncertainty principle framework, and the polymer quanti-
zation scheme, see Refs. [38–40]. Apart from the details of
the above-mentioned effective approaches to quantum
gravity phenomenology, all of them try to consider the
effects of a minimal length in a relevant manner, and
implementing the covariant formalism can clarify the
consequences and applications in its most fundamental
form in the language of symplectic geometry.

A. Statistical mechanics in the Snyder
noncommutative space

As we have mentioned above, the advantages of the
covariant formulation may be revealed when a Hamiltonian
system with nontrivial structure is considered. Therefore, in
this subsection we study the statistical mechanics in the
Snyder noncommutative space as a well-known example of
a kinematically deformed Hamiltonian system.
The Snyder relativistic algebra preserves the Lorentz

invariance and therefore the commutation relations (32) are
satisfied by the corresponding generators. The commuta-
tion relations between ðxa; paÞ which define the Snyder
algebra are given by [6]

fxa; xbg ¼ Jab
κ2

; fxa; pbg ¼ ηab þ
papb

κ2
;

fpa; pbg ¼ 0; ð33Þ

where κ is the deformation parameter with the dimension of
the inverse of length, which plays the role of the universal
quantum gravity scale in this setup. The four-momentum
space of the eight-dimensional relativistic phase space of a
test particle which moves on the space-time with non-
commutative algebra (33) is a de Sitter space with topology
R × S3 [4,6]. Identifying the energy space with R, the
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topology for the space of spatial momenta will be S3. In
order to study the statistical mechanics in this setup, one
should consider the nonrelativistic subalgebra of (33) and
replace the standard canonical Poisson algebra with them.
The nonrelativistic Snyder algebra for a particle moves
in three-dimensional Euclidean space R3 and is then given
by [41]

fqi; qjg ¼ Jij
κ2

; fqi; pjg ¼ δij þ
pipj

κ2
;

fpi; pjg ¼ 0: ð34Þ

It is straightforward to show that the above commutation
relations can be realized from the symplectic structure [42]

ω ¼ dqi ∧ dpi −
1

2
dðqipiÞ ∧ d lnðp2 þ κ2Þ; ð35Þ

through the covariant definition (2) for the Poisson brack-
ets. The associated phase space of the particle is then
simply the cotangent bundle of the configuration space
which now has the nontrivialR3 × S3 topology. Indeed, the
space of the spatial momenta has compact S3 topology
rather than the standard R3 one (see Refs. [19,41,43] for
more details). Since the quantum gravity cutoff (which is
defined by the deformation parameter κ) is universal, it will
be the same for all of the particles. Thus, for the kinemat-
ically deformed system consisting of N particles which
obeys the Snyder noncommutative algebra (34), the total
symplectic structure can be obtained by the relation (5).
The phase space Γα for all of the particles is the same and
has the nontrivial R3 × S3 topology. The associated total
phase space ΓS can be easily obtained through the coupling
(1), which has the following nontrivial topology:

R3N × S3 × � � � × S3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N times

: ð36Þ

Substituting the symplectic structure (35) into the definition
(3), the corresponding Liouville volume takes the form

ω3N ¼
YN
α¼1

�
d3qα ∧ d3pα

ð1þ ðpα=κÞ2Þ
�

¼ d3Nq ∧ d3NpQ
N
α¼1ð1þ ðpα=κÞ2Þ ;

ð37Þ

where qiα and pα
i are the ith component of the positions and

momenta of the αth particle, respectively. From this relation
it is clear that the probability distribution is nonuniform in
Snyder noncommutative space and the standard uniform
one can be recovered only at low energy (low temperature)
regime κ → ∞. Indeed, the existence of a minimal length,
as an extra information, changes the probability distribution
at the high energy regime. Thus, in all of the kinematically
deformed noncommutative phase spaces, the local form of

the symplectic structure (in terms of the positions and
momenta of the particles) is noncanonical and therefore the
probability distribution will be nonuniform such that the
microstates with higher momenta are less probable. This is
the advantage of the symplectic covariant formulation of
the statistical mechanics which shows that the probability
distribution will be nonuniform on any phase space with
noncanonical Poisson algebra like the Snyder algebra (34).
However, in light of the Darboux theorem, one can always
find a local chart through the Darboux transformation

ðqiα; pα
i Þ → ðXi

α ¼ qiα −
qjαpα

i
ðpαÞ2þκ2

δikpα
k; Y

α
i ¼ pα

i Þ, in which

the symplectic structure (35) takes the canonical form ωα ¼
dXi

α ∧ dYα
i for all of the particles. Thus, the associated

Liouville volume becomes ω3N ¼ d3NX ∧ d3NY, which
induces a uniform probability distribution over the set of
microstates. But, it is important to note that ðXi

α; Yα
i Þ are

different from the standard canonical ones ðQi
α; Pα

i Þ which
are defined in relations (8) and (11). Indeed, while
ðQi

α; Pα
i Þ are the positions and momenta of the particles

by definition, ðXi
α; Yα

i Þ cannot be interpreted as the posi-
tions and momenta of the particles. Also, the noncanonical
Snyder Liouville volume (37) reduces to the standard
canonical one (11) in the limit of κ → ∞ and the nonca-
nonical variables ðqiα; pα

i Þ then coincide with standard
canonical variables ðQi

α; Pα
i Þ in this limit. However, the

canonical variables ðXi
α; Yα

i Þ are obtained through a
Darboux transformation and the functional form of the
Hamiltonian function will be modified (compared with the
standard functional form) in this chart as HðX; YÞ since the
dynamical equation (12) will be satisfied in a chart-
independent manner.
Substituting the Liouville volume (37) in the relation

(27), the total partition function will be

Z ¼ 1

N!

Z
ΓS

exp½−Hðq; pÞ=T�Q
N
α¼1ð1þ ðpα=κÞ2Þ d

3Nqd3Np: ð38Þ

Since the Snyder Liouville volume (37) is decomposed
similar to the relation (7), for the noninteracting systems in
which the total Hamiltonian function also decomposes as
the relation (15), one can rewrite the total partition function
(38) in terms of the single-particle partition function.
Taking the decomposition (15) into account and substitut-
ing the volume (37) into relation (38), the total partition
function can be rewritten in the form of the relation (29) as

Z ¼ 1

N!

YN
α¼1

�Z
Γα

exp½−Hαðqα; pαÞ=T�
½1þ ðpα=κÞ2� d3qαd3pα

�

¼ 1

N!
Z1

N; ð39Þ

where we have defined the single-particle partition
function as
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Z1 ¼
Z
R3

d3q1

Z
S3
d3p1

exp½−H1ðq1; p1Þ=T�
ð1þ ðp1=κÞ2Þ ; ð40Þ

and we have also assumed that the Hamiltonian func-
tions are the same for all of the particles. Then, all the
thermodynamical properties of a system can be deduced
from the total partition function (38) or (39) in which, as we
have mentioned in the pervious section, the Gibbs factor
1=N! is considered for the nonlocalized systems such as the
ideal gas, and it should then be removed for the localized
systems such as the harmonic oscillator which is the subject
of the next subsection.

B. Thermodynamics of 3D harmonic oscillator

Now let us consider a system of N independent and
similar three-dimensional harmonic oscillators. Since the
oscillators are assumed to be independent, the relations (5)
and (15) will be satisfied and one then can implement the
relation (39) in order to obtain the partition function of the
system. The Hamiltonian of the three-dimensional simple

harmonic oscillator is given by H1ðq; pÞ ¼ p2

2m þ 1
2
mσ2q2,

where m is the mass of the oscillator, σ is the frequency,
p2 ¼ p2

x þ p2
y þ p2

z , and q2 ¼ x2 þ y2 þ z2. Substituting
this Hamiltonian into the relation (40) gives the following
single-particle partition function:

Z1 ¼
κ2T2

mℏ3σ3

�
1 −

ffiffiffi
π

p
κffiffiffiffiffiffiffiffiffiffi

2mT
p erfc

�
κffiffiffiffiffiffiffiffiffiffi
2mT

p
�
exp

�
κ2

2mT

��
:

ð41Þ

At the high temperature regime, the second term in the
right-hand side of the above relation is negligible. Under
this condition the dominant contribution is due to the first
term and the partition function is approximated by
Z1 ≈ κ2T2

mℏ3σ3. This shows that in the domain of the high
temperature, the number of degrees of freedom will be
reduced since the partition function is proportional to ∼T2

rather than the standard one which is proportional to ∼T3.
We will show this feature in a more precise manner in this
subsection. The total partition function can be obtained
from the relation (39) as

Z ¼ Z1
N; ð42Þ

where the Gibbs factor 1=N! is dropped since the
oscillators are localized. Substituting the single-particle
partition function (41) into this relation, the total partition
function for N three-dimensional harmonic oscillators can
be obtained from which one is able to study the thermo-
dynamical behavior of the system in Snyder space.
However, before doing this task, it is useful to consider
the limit κffiffiffiffiffiffiffi

2mT
p ≫ 1 which is related to the first order

corrections that would arise from the minimal length

effects. This limit also allows us to compare our result
with the full quantum partition function. In this limit, we

may use the relation erfcðxÞ ¼ e−x
2ffiffi

π
p

x

P∞
n¼0ð−1Þn ð2n−1Þ!!

ð2x2Þn , to
arrive at the following asymptotic expression for the
partition function,

Z1 ¼
�
T
ℏσ

�
3
�
1þ

X∞
n¼1

ð−1Þn ð2nþ 1Þ!!
ð2Θ2Þn

�
; ð43Þ

in which we have defined the dimensionless variable
Θ≡ κffiffiffiffiffiffiffi

2mT
p . In order to obtain the quantum partition func-

tion, one should solve the Hamiltonian eigenvalue problem
in Snyder space, which is not an easy task at all since the
Schrödinger equation takes a complicated form in this
setup. However, in the context of the generalized uncer-
tainty principle the problem of a D-dimensional harmonic
is exactly solved [44] and the results are applicable also for
the Snyder algebra (34) as a particular case. The energy
eigenvalues for a three-dimensional harmonic oscillator in
Snyder space are given by

Enl ¼ ℏσ

"�
nþ 3

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
mℏσ
2κ2

�
2

s

þmℏσ
2κ2

��
nþ 3

2

�
2

−
�
lðlþ 1Þ þ 3

4

��#
; ð44Þ

where n ¼ 0; 1; 2;…, and 0 ≤ l ≤ n and also we have
considered relevant parameter identification to rewrite the
result of the Ref. [44] in our notation and units. The
associated quantum partition function then will be obtained
from the definition (23) as

Z1 ¼
X∞
n¼0

Xn
l¼0

exp

�
−
Enl

T

�
: ð45Þ

The above summation cannot be evaluated analytically.
However, in Ref. [35], it is shown that up to the first order
of approximation, in the limit of Θ ¼ κffiffiffiffiffiffiffi

2mT
p ≫ 1, it leads to

Z1 ¼ ð TℏσÞ3ð1 − 3
2
Θ−2Þ þO½Θ−4�, which is nothing other

than the first term in the summation (43). This coincidence
shows that the quantum partition function (45) correctly
leads to the semiclassical partition function (41) up to the
first order of approximation at the high temperature regime.
It also reveals the advantages of semiclassical approxima-
tion (24) in the sense that although there is not an analytical
solution for the case of full quantum partition function (45),
the relation (41) provides an analytical expression for
the high temperatures. Therefore, in dealing with the
statistical considerations of the physical systems in the
presence of a minimal length, since one is usually interested
in the high temperature regime (such as early Universe
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thermodynamics), the usage of the semiclassical approxi-
mation seems to be quite reasonable.
Substituting the single-particle partition function (41)

into the relation (42) gives the total partition function. The
internal energy then can be obtained from the standard
definition U ¼ T2ð∂ lnZ∂T ÞN as

U ¼ 3NT
2

�
1þ 1

3
ð1 − ffiffiffi

π
p

Θerfc½Θ�eΘ2Þ−1 − Θ2

�
: ð46Þ

In Fig. 1 we have plotted the internal energy versus
temperature in comparison with its nondeformed

counterpart. The specific heat can also be deduced from
the definition CV ¼ ð∂U∂TÞV which leads to a somehow
cumbersome expression.
An interesting feature here is the reduction of the

number of degrees of freedom in Snyder space.
According to the well-known equipartition theorem of
energy, for the Hamiltonians of the form H1ðq; pÞ ¼
p2

2m þ 1
2
mσ2q2, each of the 6 degrees of freedom makes a

contribution of 1
2
T towards the internal energy. Thus one

may consider 2U
NT as the number of degrees of freedom for

each three-dimensional harmonic oscillator. In Fig. 2 the
number of degrees of freedom for each three-dimensional
harmonic oscillator is plotted. As this figure shows, the
number of degrees of freedom will be reduced from 6 to
4 in Snyder space. This may be compared with the
statistical mechanics of the ideal gases considered in
Ref. [45] in which the same result is obtained. However,
we would like to emphasize that the reduction of the
number of degrees of freedom for the case of ideal gas
can be interpreted as an effective dimensional reduction
of the space at the high temperature regime which is a
common feature of quantum gravity proposals [46] and
also phenomenological approaches to the minimal length
conjecture [47].
Considering the limit Θ ¼ κffiffiffiffiffiffiffi

2mT
p ≫ 1 is useful at least

for two reasons. First, we see that the modified thermo-
dynamical relations recover the standard results at the
sufficiently low temperature regime when the minimal
length effect are negligible (correspondence principle).
Second, one can estimate the magnitude of the order of
the quantum gravity corrections to the thermodynamical
quantities which may potentially lead to observable
effects. In this limit, the series in the relation (43)
converges and one can use it to obtain all the minimal
length (quantum gravity) corrections to the internal
energy and specific heat. Substituting the relation (43)
into (42) and then using the definition U ¼ T2ð∂ lnZ∂T ÞN , it
is easy to show that the internal energy in the limit of
Θ ≫ 1 will be

U
U0

¼ 1þ 2

3

X∞
n¼1

ð−1Þn nð2nþ 1Þ!!
ð2Θ2Þn ; ð47Þ

where U0 ¼ 3NT is the internal energy for the standard
nondeformed N independent three-dimensional harmonic
oscillators. In this limit, the specific heat can be also
obtained by substituting the above relation into the
definition CV ¼ ð∂U∂TÞV , which gives

CV

C0V

¼ 1þ 2

3

X∞
n¼1

ð−1Þn nðnþ 1Þð2nþ 1Þ!!
ð2Θ2Þn ; ð48Þ

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T

2

4

6

8

U

N

Snyder deformed
Non deformed

FIG. 1 (color online). Internal energy versus temperature is
plotted. The solid and dashed lines represent the internal energy
for the Snyder-deformed and nondeformed cases, respectively.
The deviation from the standard case arises at the high temper-
ature regime when the minimal length effects dominate. The
figure is plotted for m ¼ 1 ¼ κ.

0 10 20 30 40 50
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2
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10

2 U

NT
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Non deformed

FIG. 2 (color online). The number of degrees of freedom versus
temperature. As it is clear from the figure, in Snyder space the
number of degrees of freedom for a three-dimensional harmonic
oscillator is reduced from 6 to 4 at the high temperature regime.
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where C0V
¼ ð∂U0∂T ÞV ¼ 3N is the specific heat of the

corresponding nondeformed case.
As is clear from the relations (47) and (48), the first

minimal length (quantum gravity) corrections to the inter-
nal energy and specific heat of the harmonic oscillator are
of the order of Θ−2. To estimate the magnitude of the order
of these corrections, consider the vibrational oscillations of
a carbon monoxide molecule which may be modeled with
the oscillators of mass m ≈ 10−26 kg and frequency
σ ≈ 1015 Hz. With this numerical value for the mass and
also considering κ ¼ Oð1ÞTPl ∼ 1019 GeV and T ∼ 1 TeV,
we get Θ ∼ 1017. Therefore, the first minimal length
corrections to the internal energy and specific heat of
the harmonic oscillator in Snyder space are of the order of
Θ−2 ∼ 10−34, which is too small to be experimentally
detected for the accessible energy scales.

V. SUMMARY

Appearance of the Hamiltonian systems with non-
trivial structure in the context of phenomenological
quantum gravity candidates, such as the doubly special
relativity theories with deformed noncommutative phase
spaces, naively suggests the revision of the statistical
mechanics formalism. In the first step, we have for-
mulated the statistical mechanics of a general
Hamiltonian system in a covariant (chart-independent)
manner by means of the symplectic geometry. The
results show that the two properties of the phase space,
as a symplectic manifold, play distinguished roles in
statistical consideration of a system: The topology of the
phase space as a global property and the local form of
the symplectic structure that determines the geometry of
the phase space. For a topologically trivial phase space
with the canonical symplectic structure, the standard
statistical mechanics emerges as it is expected. The
subtleties arise when the phase space has nontrivial
topology or geometry such as the phase spaces with
curved momentum space and noncommutative structure.
The topology of the phase space turns out to be related
to the total number of microstates; for instance, the
number of accessible microstates will be finite for a
system with compact phase space. The symplectic
structure also affects the probability distribution of
the microstates. The canonical form of the symplectic
structure in terms of the positions and momenta of the
particles plays an important role in the standard stat-
istical mechanics. It induces a uniform probability
distribution over the microstates by defining a uniform
measure on the corresponding phase space. However,
the noncommutative phase space always provides a
noncanonical symplectic structure in terms of the
positions and momenta of the particles and the prob-
ability distribution then will be nonuniform. This is a
general result for the phase spaces with noncanonical

(noncommutative) structure which can be immediately
realized from the covariant formulation of the phase
space. We implemented the covariant formalism in order
to study the statistical mechanics in Snyder noncom-
mutative space as an explicit example of a phase space
with nontrivial topology and geometry. We obtained the
associated partition function from which all the thermo-
dynamical properties of the system can be obtained. As
a particular example, we obtained the partition function
for the three-dimensional harmonic oscillator and we
have shown that our result is in good agreement with
that which arises from the full quantum consideration at
the high temperature regime. While there is no analyti-
cal expression for the full quantum partition function of
the harmonic oscillator in Snyder space, the semiclass-
ical approximation provides an analytical partition
function which is applicable at the high temperature
regime. Using the obtained partition function, we have
studied the thermodynamical properties of the system of
harmonic oscillators in Snyder space and our analysis
shows that the number of microstates will be drastically
reduced in this setup due to the existence of a minimal
length. This result justifies our general claim for the
deformed spaces which take into account a minimal
length scale. Apart from the details of the models which
deal with a universal minimal length such as the
noncommutative spaces, doubly special relativity theo-
ries, the generalized uncertainty principle, and polymer
quantization, the covariant formalism reveals the main
role of the minimal length in statistical mechanics: The
microstates with higher energy or momenta are less
probable when there is a minimal length scale for the
system. Also, we calculated the quantum gravity cor-
rections to the internal energy and specific heat of a
system of harmonic oscillators. We estimated the order
of magnitude of the first minimal length corrections
which are of the order of 10−34 for both of the internal
energy and specific heat. The equilibrium as an essential
criterion for the statistical system is also considered in
the Appendix by means of the dynamically invariant
Liouville volume which enters in the definition of the
Gibbs entropy and partition function of the statistical
system.

APPENDIX: EQUILIBRIUM

1. Statistical independence

Relation (28) can be seen as a particular case in which
the system is divided into statically independent sub-
systems, and subsystems were taken to be the particles
themselves. It is clear that the statistical independence
between particles will be spoiled for a system in which
the particles interact with each other. However, when the
system is in equilibrium, one can still divide it into M
macroscopic subsystems (1 ≪ M ≪ N) which are
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statistically independent. In this respect, the total phase
space Γ and the associated symplectic structure ω will be

Γ ¼ Γ1 × � � � × ΓM; ω ¼
XM
A¼1

ωA: ðA1Þ

The corresponding Liouville volume is then given by

ω3N ¼ ðω1Þ3n1 ∧ … ∧ ðωMÞ3nM ; ðA2Þ

where nA is the number of particles of the subsystems
and is assumed to be sufficiently large ðnA ≫ 1Þ to
guarantee that the subsystems are macroscopic. The
statistical independence of the subsystems is then defined
as

ρω3N ¼ ρ1ðω1Þ3n1 ∧ … ∧ ρMðωMÞ3nM : ðA3Þ

This criterion is usually employed as an intrinsic char-
acterization of an equilibrium probability distribution
[48]. Indeed, the system is in equilibrium if components
of the system are in relative equilibrium with respect to
each other. Based on this internal definition of the
equilibrium, the Gibbs state can be understood as an
equilibrium state as follows. Consider the total
Hamiltonian function of the system as

H ¼
XM
A¼1

HA; ðA4Þ

where fHAg are the Hamiltonian functions of the M
macroscopic subsystems and we also disregard the
interaction between subsystems based on the fact that
the relative number of particles which take part in the
interactions is negligible compared to nA. So, using the
relations (26), (A1), and (A4), the Gibbs state turns out to
be an equilibrium state based on (A3). Additionally, it is
straightforward to show that

½xA
H;x

B
H� ¼ 0; ðA5Þ

which is the criterion for the kinematical and dynamical
separability of the subsystems. The relation (A5) then can
be viewed as the equilibrium criterion when the system is
in a Gibbs state.
Note that the decomposition (A4) holds only over not-

too-long intervals of time since the effects of interaction of
the subsystems will eventually be dominated even if such

interactions are too weak such as the universal gravitational
effects [49].

2. Liouville equation

Another more common definition for the equilibrium
statistical state of the system is

∂ρe
∂t ¼ 0; ðA6Þ

in which ρe denotes the density that corresponds to the
equilibrium state. The fact that the Gibbs state is an
equilibrium state then will be justified through the
Liouville equation

d
dt

ðρω3NÞ ¼
� ∂
∂tþ LxH

�
ðρω3NÞ ¼ 0; ðA7Þ

in which the Liouville theorem (19) is used. The Liouville
equation should be satisfied by any statistical state as
well as Gibbs one and it is, indeed, the necessary require-
ment for the consistent probabilistic interpretation of ρ.
Using the fact that LxHρ ¼ xHρ ¼ fρ; Hg, the Liouville
equation (A7) can be rewritten in the more well-known
form

∂ρ
∂t þ fρ; Hg ¼ 0: ðA8Þ

From the relation (26), it is clear that fρc; Hg ¼ 0, and the
Gibbs state then satisfies the relation ∂ρc=∂t ¼ 0, which
shows that it is indeed an equilibrium state through the
definition (A6).
If we use the Liouville equation (A7) and consider the

fact that the Liouville volume ω3N does not change
explicitly with time, it turns out that

dS
dt

¼ −
1

N!

� ∂
∂tþ LxH

�Z
Γ
ρ ln ρω3N

¼ 1

N!

Z
Γ
ρLxHω

3N ¼ 0; ðA9Þ

which shows that the fine-grained entropy (25) does not
change with time as expected for closed systems. The
above relation and the Liouville equation (A7) guarantee
that the number of microstates does not change through
the dynamical evolution of the system, which makes the
statistical formulation a consistent setup to give the
thermodynamical properties in any ensemble.
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