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Magnetized plasminos in cold and hot QED plasmas
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The complete quasiparticle spectrum of a magnetized electromagnetic plasma is systematically explored
at zero and nonzero temperatures. To this purpose, the general structure of the one-loop corrected
propagator of magnetized fermions is determined, and the dispersion relations arising from the pole of this
propagator are numerically solved. It turns out that in the lowest Landau level, where only one spin
direction is allowed, the spectrum consists of one positively (negatively) charged fermionic mode with
positive (negative) spin. In contrast, in higher Landau levels, as an indirect consequence of the double spin
degeneracy of fermions, the spectrum consists of two massless collective modes with left and right
chiralities. The mechanism through which these new collective excitations are created in a uniform
magnetic field is similar to the production mechanism of dynamical holes (plasminos) at finite temperature
and zero magnetic fields. Whereas cold magnetized plasminos appear for moderate magnetic fields and for
all positive momenta of propagating fermions, hot magnetized plasminos appear only in the limit of weak

magnetic fields and soft momenta.
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I. INTRODUCTION

Research on matter under extreme conditions has pro-
vided new insight into the physics of heavy-ion collisions
(HICs) and the astrophysics of compact stars. Extreme
conditions consist of high temperature, large density and/
or the presence of intense magnetic fields. The latter affects,
in particular, the phase diagram of quantum chromodynam-
ics (QCD), and plays a significant role in the dynamics of
relativistic fermions at zero and nonzero temperatures (for
recent reviews, see [1,2]). The phenomena driven by external
magnetic fields have also various applications in quasirela-
tivistic condensed matter systems, such as graphene and
Dirac semimetals (see [3] and the literature therein).

Most theoretical studies deal with the idealized limit of
constant and homogeneous magnetic fields. Standard field
theoretical methods thus lead to the exact solution of the
relativistic Dirac equation in a uniform magnetic field. One
of the main consequences of the presence of constant
magnetic fields is a certain dimensional reduction of the
dynamics of propagating fermions in the lowest Landau
level (LLL). The latter leads to a dynamical mass gen-
eration, and enhances the production of chiral condensates.
This phenomenon, which is known as magnetic catalysis
[4,5], modifies, in particular, the phase diagram of QCD in
the chiral and color superconductivity phase [6]. Another
effect is the appearance of certain anisotropies in the
dynamics of magnetized fermions in the longitudinal and
transverse directions with respect to the direction of the
external magnetic field. These anisotropies include those in
the neutrino emission from magnetars [7], or anisotropies
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arising in the group velocities, refraction indices and decay
constants of mesons in hot and magnetized quark matter
[8]. Recently, the anisotropy appearing in the equation of
states of magnetized quark matter is studied in [9].

A similar privileged reference frame is also defined by a
heat bath, and affects, in particular, the quasiparticle
spectrum of electromagnetic and quark-gluon plasmas at
finite temperature. Nontrivial bosonic and fermionic col-
lective excitations, such as plasmons and plasminos are
shown to be dynamically generated in hot QED and QCD
plasmas, in addition to the normal bosonic and fermionic
modes [10,11]. In particular, plasminos are known to be
collective excitations that arise as one of the poles of the
one-loop corrected fermion propagator at finite temperature
[12]. In the chiral limit, plasminos are characterized by their
negative helicity to chirality ratio, opposite to that of
normal modes. They are intensively studied in the context
of Yukawa theory, QED and QCD [13-16]. In [14], for
instance, it is shown that the contributions from plasminos
modify the transport properties of relativistic plasmas in
and out of equilibrium. They also lead to the appearance of
sharp structures (singularities and gaps) in the decay [15]
and production rates [16] of particles produced in relativ-
istic and ultrarelativistic collisions. These structures pro-
vide unique signatures for the presence of deconfined
collective quarks in the plasma of quarks and gluons.

In principle, nontrivial collective modes can also be
created in magnetized plasmas through the same mecha-
nism as the one leading to the appearance of collective
modes at finite temperature and zero magnetic fields. It is
the purpose of the present paper to look for possible
dynamical generation of fermionic excitations (plasminos)
in electromagnetic plasmas in the presence of constant
magnetic fields, and study their properties at zero and
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nonzero temperatures. Apart from various other applica-
tions, plasminos may play an important role in the physics
of HICs. Very strong magnetic fields, which, according to
recent experimental results, are believed to be created in
early stage of noncentral HICs [17] may affect, among
others, the energy dispersion of deconfined quarks. The
latter are believed to be produced in the quark-gluon plasma
in the same stage as the magnetic fields. It is therefore
important to explore the quasiparticle spectrum of the Dirac
equation in the presence of external magnetic fields at finite
temperature, and study the properties of the potentially
created collective modes under these conditions.

In this paper, we will particularly focus on the mecha-
nism of the production of plasminos in the presence of
external magnetic fields. We will, in particular, determine
the general structure of the one-loop corrected propagator
of magnetized fermions, and, following the historical path
that has led to plasminos at finite temperature [12], solve
the dispersion relations arising from the pole of this
propagator. To this purpose, we will first determine the
general structure of the tree-level fermion propagator in the
presence of a constant magnetic field by making use of
the Ritus eigenfunction method [18]. The free fermion
propagator will then be combined with the one-loop self-
energy of magnetized fermions. This will result in the
desired one-loop corrected propagator of magnetized fer-
mions. We will show that, in contrast to LLL, the dressed
fermion propagator in higher Landau levels (HLL) can be
decomposed into two parts, each of them leading to a
separate energy dispersion relation for magnetized fer-
mions. This fact, which eventually leads to the appearance
of magnetized plasminos, is an indirect consequence of the
double spin degeneracy in HLL, in contrast to LLL, which
is occupied with only one positive or negative fermion with
positive or negative spin. We will show that at finite
temperature and in the limit of weak magnetic fields,
where HLLs have also to be taken into account, the
spectrum consists of two massless collective modes with
left and right chiralities. Moreover, it can be shown that
whereas cold magnetized plasminos appear for all positive
momenta of propagating fermions and moderate magnetic
fields, hot magnetized plasminos appear only in the limit of
soft momenta and weak magnetic fields.

The organization of this paper is a follows: In Sec. II, we
will review two independent topics related to the main
subject of the paper: In Sec. Il A, we will first show how
thermal plasminos arise from the pole of the one-loop
corrected fermion propagator in the hard-thermal loop
(HTL) approximation [19]. In Sec. IIB, we will then
review the Ritus eigenfunction method [18], and present
the general structure of the free propagator of magnetized
fermions in the momentum space. The general structure of
one-loop fermion self-energy at zero and nonzero temper-
atures will be derived in Secs. III A and III B, respectively.
In Sec. III B, in particular, a certain HTL approximation in a
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constant magnetic field will be introduced, and the one-
loop fermion self-energy will be presented in terms of a
number of coefficients up to some integrations and a
summation over Landau levels. In Sec. IV, the general
structure of the one-loop corrected propagator of magnet-
ized fermions will be determined by combining the free
fermion propagator from Sec. IIB and the one-loop
fermion self-energy from Sec. III. Here, two different cases
of massive fermions in LLL and massless fermions in HLL
will be considered, and the properties of the fermionic
excitations in these two cases will be systematically
studied. In Sec. V, after numerically determining the
aforementioned coefficients, that appear in the one-loop
fermion self-energy, we will study the spectrum of the
fermionic excitations at finite (Sec. VA) and zero (Sec. V
B) temperatures. Section VI is devoted to a brief summary
of our results and a number of concluding remarks.

II. REVIEW MATERIAL

The main goal of the present paper is to determine the
spectrum of Dirac particles in a constant magnetic field at
zero and nonzero temperatures. To this purpose, and in
order to fix our notations, we will briefly review, in this
section, two independent topics related to the main subject
of this paper. In Sec. II A, we will first repeat the
computation presented in [12], and introduce the plasmino
excitations in a hot QED plasma. To do this, we will
compute the one-loop correction to the fermion self-energy
at finite temperature in a HTL approximation [20], and
eventually determine the Dirac spectrum at finite temper-
ature by solving the corresponding energy dispersion
relation. In Sec. II B, we will then briefly review the
Ritus eigenfunction method [18], and after presenting
the free propagator of magnetized fermions in the coor-
dinate space, will determine its general structure in the
momentum space. Our review will mainly base on the Ritus
eigenfunction method, presented in [21], and generalized in
[8] for a multiflavor system of charged fermions.

A. Plasminos in a hot QED plasma

In [12], the Dirac spectrum is determined for a hot QCD
plasma. In this paper, however, we will focus, for simplicity,
on the U(1) subgroup of the SU(N) gauge group. The
difference between our U(1) and the SU(N) case, discussed
in [11,12], is a certain prefactor Cr, the quadratic Casimir
constant of the fermion representation, in the corresponding
expression to the one-loop fermion self-energy. For the
Abelian U(1) gauge group, Cr = 1 and for the fundamental

representation of SU(N) gauge group, Cr = szlgl.

Let us start by determining the one-loop fermion self-
energy of massless fermions at finite temperature.' Having

'At high enough temperature, the mass of fermions can be
neglected.
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FIG. 1. One-loop fermion self-energy.

in mind that the interaction term of fermions and photons in
QED is given by L, = —ewy,A,y, the fermion self-
energy X(k) at finite temperature is given by (see Fig. 1)

oo 3
SR =Ty / TP p (k= )y s(p)r*

e (2r)3
+00 d3
- _zezTan/ T 21)

Here, D, (k) = 9];—2 and S(p) E{% are free photon and
fermion propagators, respectively.” In the imaginary time
formalism, p, is to be replaced by iw,, where w, = (2n +
1)zT is the fermionic Matsubara frequency. Since in the
presence of a hot medium, the relativistic Lorentz invari-
ance is broken by introducing the reference frame corre-
sponding to the heat bath, it is necessary to perform the
following separation between the temporal and spacial
components of X(k):

Z(k) = yoZ,(k) —7 - Z,(k). (2.2)
Introducing E; = |p|, E, = |p — k|, and using
Ar(po By =
7\Po> £ _p(2)+E%’
1
Ay (ko — po. Ea) = (2.3)

(ko — po)* + E3

the temporal and spacial components of X(k) are given by

5,(K) = 22 / (‘2’7’;31,@,1)),

%, (k) = —2¢2 / (‘21;:)’3 pZ

s(k.p). (2.4)

with

’In what follows, we will denote the free and dressed fermion
propagators with S and S, respectively.
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I,=T Y iAo, E\)Ay (ko — io,. Ey),

n=—0oo

I,=T Y Aplio,. E)A, (ko — i, Ey).

n=——00

(2.5)

Following the standard method introduced in [20], the
summation over Matsubara frequencies can be performed
by making use of

sy L+ fu(s2E2) = fr(s1E)
4E2 kO—S]E] _SZEZ ’

5182 L+ fp(s2Ey) — fr(s1Ey)
:t4ElE2 kO—S]E] _SZEZ ’

$1,82=

(2.6)

Here, the fermionic and bosonic distribution functions are
defined by

1
ff(fo)EW,

1

fb(KO) = Pl _ 17 (27)
with p=T7', and ¢, = :|:|2 | for massless fermions.
Replacing the above expressions in (2.4), performing an
appropriate expansion in |k| < |p| with [p|~7,> and
keeping only the leading T? contributions from the result-
ing expressions, X, and X, in this HTL approximation are
given by

2 ko + |k
5, (k) = P 1y o+ K[y
2lk| \ko — [K|

m? k ko + K|\ \ ¢
S (k) =D (120 n(20 kK. (2.
(8) |k|< 2/ “<k0—|k>> (28)

Here, m?, Eez8Tz is the Debye mass. To perform the

integration over p (here denoted by p), the following
integrals are used:

T2

A dppfs(p) = %

7272

A dppf,(p) = T

Plugging at this stage the results from (2.8) in (2.2), and
combining the resulting expression for X(k) with the inverse
of the free fermion propagator, S~' (k) = yoko — 7 - k, we
arrive at the inverse of the one-loop corrected fermion
propagator, S~! (k) = S~!(k) — Z(k),

(2.9)

*In this approximation FE, is, in particular, replaced by
E, ~ |p| — |k| cos 0, with 0 the angle between k and p.
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S71(k) = yoAy — 7 - kKA, (2.10)

with

m3, (ko + K|
Ay = ko — =2 In( -2 ,
Y “<k0—|k|>

m2 ko k0+|k|
AS:|k+D<1—ln< )) (2.11)
k| 2[k[ " \ko — [K]|

The dressed fermion propagator up to one-loop order is
therefore given by

A A

Yvo—v -k rot+7-k
S(k) = + .
2D, 2D_

(2.12)

with

D, = AyFA,, (2.13)
and Ay, from (2.11). To determine the spectrum of Dirac
particles, we set either D, = 0 or det|/S~!(k)] =0, and
arrive at two solutions Ay = A, or more explicitly at two

different energy branches for particles (p) and dynamical
holes (h) [12],

2
mp

1 z, +1
1+-—(1-— 1 P
|k|[ 3 Z’”“<zp—1>}

e -oan(z2])
(2.14)

Ep:|k‘+

where z,/, = E‘f(/‘h.“ Replacing the expression on the right-

hand side (rhs) of E;,, with

k|
E, = |[k|coth k2+|7>,
» =Kl ( K+

the dependence of dimensionless quantities ky/m, for ky =
E, and ky = E), on |k|/mp, can be determined numerically.
Two different energy branches corresponding to D, and D _
arise. They are demonstrated in Fig. 2.

In what follows, we will argue that the energy branch
arising from D, = 0 (D_ = 0) [blue (red) curve in Fig. 2]
corresponds to a particle (hole) with positive (negative)
helicity () to chirality (y) ratio. To do this, let us
determine the eigenvectors of the numerators in (2.12),

*Here, kq is replaced by E, [first expression in (2.14)] and E),
[second expression in (2.14)].
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FIG. 2 (color online). Two different energy branches, corre-
sponding to the energy dispersion relations D, = 0 of particles
(blue curve) and D_ = 0 of holes (red curve). The denominators
D, are defined in (2.13). The particles/holes, whose energy
dispersion relations are demonstrated by these two branches, have
positive/negative helicity (H) to chirality (y) ratio.

. 0 1F6 -k
N, = ‘k:( . ) 2.15
+ =70FY |46k 0 ( )

Here, 6 = (61,05, 03) are the three Pauli matrices.” For the
D, branch, N, has the following two nontrivial eigen-
vectors:

k k
W$>=<0,0 3 + K| 1)’

Tky +iky’
@ _ (ks — K|
W =(——77+-,1,0,0). 2.16
* (kl + ik, (2.16)
Defining the helicity
H==2-k, (2.17)

with £ = diag(e, ), and right-chirality (R) as well as left-
chirality (L) operators

El+75 1—vys

= , 2.18
Pe=—L p=C 218)
it turns out that W@,i =1, 2 satisfy
Pewl =wl wwl) = 4wl
powd =w?,  mw?® =—w?. (219

>To derive (2.15), we have chosen the following chiral
representation of Dirac y-matrices:

, (0 0") X (—1 0)
" \e o) T \o 1)

with ¢# = (1,6) and 6" = (1, —0).
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Having in mind that right-handed (left-handed) particles
have positive (negative) chirality, y = +1 (y = —1), the
relations in (2.19) show that fermions, whose energy
dispersion relation is given by the D, branch in Fig. 2,
have a positive helicity to chirality ratio, }—1 = +1. They are
therefore particles. Similarly, it can be shown that for D_,
the eigenvectors of A/_ are given by

wl) = (0,0 ks — |K| 1),

ki + iky’
W = <M 1,0,0), (2.20)
ky + ik,
which satisfy
Pewl) =wh W) = —wl),
PWO =w@,  HWO = 4w, (2.21)

These relations indicate that the fermionic modes, whose
energy dispersion relation is given by the D_ branch in
Fig. 2, have a negative helicity to chirality ratio, % =—1.
According to the standard terminology of relativistic
quantum mechanics, they are therefore holes. In conclu-
sion, the spectrum of Dirac particles at high enough
temperature consists of two different soft excitations with
positive and negative helicity to chirality ratio. In Sec. III,
the above HTL approximation will be used to determine the
general structure of one-loop self-energy of fermions in the
limit of soft momenta and weak magnetic fields. This will
eventually lead to hot magnetized plasminos in these limits
(see Sec. V).

B. Magnetized fermions in a cold QED plasma:
The Ritus eigenfunction method

In this section, we will solve the Dirac equation of
positively and negatively charged fermions in the presence
of an external magnetic field

(r - T19 —my )y =0, (2.22)
with H,(,q) =id, + eqAs™, and m, the fermionic mass.
Here, e > 0 is the unit electric charge, and ¢ = +£1 indicate
the positive and negative charges of Dirac fermions. The
gauge field A;* = (0,0, Bx;, 0) is chosen so that it yields a
magnetic field B, aligned in the positive third direction,
B = Be; with B > 0. In the method originally introduced
by V. 1. Ritus in [18], and generalized recently in [8,21] for
multiflavor systems, (2.22) can be solved by making use of

the ansatz y@) = E{y 5 for a Dirac fermion with charge g.

()

The Ritus eigenfunction E," then satisfies

(- EY =ES (7 ). (2.23)
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and the free Dirac spinor u;; satisfies (g, — m)u; = 0. As it
turns out, the Ritus momentum p,, is given by

(2.24)

i)p = (p0707 —Sy 2p|qu 7p3)7

where p labels the Landau levels in the external magnetic
field B, and s, = sgn(geB). The Ritus eigenfunction for
Dirac fermions with charge ¢ can be derived from (2.23)
and (2.24), and reads

Ey (x. p) = e PP ()., ps). (2.25)
where p = (py.0, p2. p3), X = (x),0, x5, x3), and
P = PO f e, pla (2.26)
with P(f) =P, and PH) = P, as well as
P.= # (2.27)

In (2.26), I1, = 1 — 6, considers the spin degeneracy in

the Landau level p (see below). For eB > 0, Pg,i) for

positively (¢ = +1) and negatively (¢ = —1) charged
particles read

P =Pt +1,PLf7, (2.28)
respectively. Here, f3 (x, p,) are given by
fr=2,(x1—¢5ps). for p =0,1,2, ...,
fr =0,  (x,—2p,). forp=1.2, ..., (2.29)

with

®,(x) = a, exp (— 2’%) H, (}) . (2.30)

q

£,=(|geB|)™"* and the normalization factor a,=
(2P p'/mt,)~ /2. In (2.30), H,(x) is the Hermite poly-
nomial of order p. Using the above results, it is easy to
determine the free propagator of Dirac fermions in the
coordinate space at zero temperature [8,21],

Sm(x’y):i / d3p3 oiP(5-)
o (27)

(9) 1
X P , =
p (X1, P2)

P, py).  (231)

P q

Here, p, and Pfl,q) for Dirac fermions with charge ¢ are
given in (2.24) and (2.26), respectively.
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In what follows, we will derive the general structure of a
free fermion propagator in the presence of a constant
magnetic field at zero temperature in the momentum space.
To do this, let us first consider the free fermion propagator
(2.31) in the coordinate space. The free fermion propagator
in the momentum space is given by performing an appro-
priate inverse Fourier transformation, where, instead of the
standard plane wave basis, the Ritus basis (2.25) is used:

S (k, k) = / d*xd*yEY (x, k)@ (x, y)ES (v, k).
(2.32)

Plugging [Ef,q) (x, k) from (2.26) on the rhs of (2.32), and
performing the integrations over X = (xg, 0, x5, x3) as well
as y = (9,0, y,,y3), we arrive first at

SOk K) = QP (k—1)SP(k),  (2.33)
with
- o 1
S (k) = Wil ——wii. (2.34)
p=0 ky, —m,
Here, WE,‘Q is defined by
—+00

W(p(Q E/ lepgaq)(Zlvkz)PEzq)(Zlvkz)- (2.35)

Using at this stage the definition of P\ from (2.26),

the properties of the projectors Pf)Pf) = Pf) and
P(iq) 73(;;]) = 0, and the integration
oo £5, £s,
dxlfl’ (xl s kZ)fn ()C] > kZ) = 5pn’ (236)

which arises from the standard integration over Hermite
polynomials

+oo
/ dxe ™ H,(x)H,(x) = 2" p'\/z5,,,  (2.37)
we arrive, after some calculation, at
Wil = [P 4 11,11,P9)5,,. (2.38)

Plugging then (2.38) in (2.3), splitting ¥ into longitudinal
and transverse parts, K = k; +k with k; =yl -k and
k, =y -k, and kj=(k,0,0,k3) and Kk, =

(0,0, —s,1/2p|geB|,0) as well as y; = (y0.0,0,y3) and
7. =(0,71,72,0), and use eventually

°In (2.39), py and u, denote p=0,3 and u = 1, 2, respectively.
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Pf)y"" = y"HP(f), Pf)y"i = y”in?), (2.39)
we obtain the free fermion propagator (2.31) in the

momentum space,

nE B—m |
n q

(2.40)

Here, I12 =11, and ng) + P9 =1 are also used. According
to (2.40), the free fermion propagator for positively and
negatively charged particles in the LLL and HLL at zero
temperature reads

For n =0 Séi)(l}) =T
1=Mq

- (2.41)
Forn#0 Si(k)=-—1—,

where the superscripts = on S;i) stand for ¢ = 1. The

appearance of the projectors P in S§ reflects the fact that in
the LLL, the charged fermions have either a positive (pos-
itively charged fermions) or a negative spin (negatively
charged fermions), while in HLL fermions a certain double
spin degeneracy occurs. In other words, in HLL positively
(negatively) charged particles have both positive and negative
spin orientations. Let us also notice that the appearance of k I

in the denominator of Séi) is related with the expected

dimensional reduction from D =4 to D =2 in the LLL
[5]. In the next section, we will derive the general structure of
the one-loop perturbative correction to the fermion self-energy
of positively and negatively charged particles for B # 0 and at
T # 0. The results will then be combined with (2.41), and lead
to the general structure of the one-loop corrected propagator of
magnetized fermions at zero and nonzero temperatures.

III. ONE-LOOP SELF-ENERGY OF
MAGNETIZED FERMIONS AT ZERO
AND NONZERO TEMPERATURES

In this section, we will determine the one-loop self-
energy contribution of charged fermions in the presence of
a constant magnetic field at zero and nonzero temperatures.
In Sec. IIT A, we will first consider the zero temperature
case, and will show that the one-loop fermion self-energy,

Zf,’”(ic), has the following general structure:

=W =k (P,AY + P_AW) 4k, D@

+my(P.CY +P_cl)y, (3.1)
where the superscripts (¢) stand for positively (g = +1)
and negatively (¢ = —1) charged fermions. According to

the notations introduced in the previous section, k; =
(ko.0,0,k3) and k; = (0,0, —s,+/2n|geB],0).
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In Sec. I1II B, we will then show that at finite temperature an
additional splitting between the zero and the thlrd compo-
nents of ky occurs. The general structure of Dot )(k) in a hot
and magnetized QED plasma therefore reads

) = ko(P,AY + P_AW) 4 k5 (P, B'Y + P_BW@)
+ Kk, DD 4+ m (P.CY +P_C@). (3.2)

Let us notice that the additional splitting between the zero
and third components occurs because of broken Lorentz
invariance induced by the heat bath.

In this section, the coefficients AQ, D@ and C ! from

(3.1)and Ai), i), (@ and C(i from (3.2) will be analyti-
cally determined up to a summation over Landau levels and a
number of integrations. The latter will be then numerically
performed in Secs. VA and V B, where the spectrum of Dirac
fermions in a magnetized QED plasma will be determined at
zero and nonzero temperatures. The results will eventually be
compared with the results presented in Sec. IT A for hot QED
plasma and for vanishing magnetic fields.

A. One-loop self-energy of magnetized fermions
at zero temperature

The one-loop self-energy of magnetized fermions at zero
temperature is given by combining the free fermion
propagator (2.31), the free photon propagator D**(p’) =

% in the Feynman gauge and the corresponding vertex

—egqy" of a photon and a magnetized fermion pair,

&$p dp
iZg,q)(x =eXg? / 271)4 eiP:(3=) pip"-(x=y)
Xy”Piﬂ)(xl qz)mf’fﬁ)(m po)y 2.
(pz —m3) p"?

(3.3)

To derive the fermion self-energy in the momentum space,
we use, as in the previous section, an appropriate inverse
Fourier transformation, using the Ritus eigenfunctions E,
from (2.25),

Niqf) (x1,y15k2, p2) = —2{{5” [Pf)nffzsq (s k) £ (ers ) 7 (01 P S
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=9 (k. k) = / dxdyED (x. ) (x. y) EDT (3, K).
(3.4)

After performing the integration over x and y, we arrive at

S0k k) = 2038 (k- )=V (k). (3.5)
with
&dp d
= e QZZ/ p pl dxldy e ’P| (x1=y1)
% Nibj(xl’yﬁkz,l?z)
[(ky —py)> = PP — (ko — p2)?][p] — 2¢]qeB| — my]
(3.6)
and the numerator \ gqu) (x1,y15 ko, po) defined by
N (x93 k. pa)
= Wﬁ;q) (x15 Ky, p2) (P + mq>W%>D()’1; P2 k2) G, (3.7)
and
W%”(Zﬁfhfz) = Pfg)(zl,51)}’”135?)(21/2)- (3-8)

To evaluate the numerator N Equ) (x1,y15 ko, p2), We use the
definition of P( 9 from (2 26) the properties of 73

projectors, P 77 Pi 77 P;F = 0, the relations
from (2.39) and the f0110w1ng Dirac algebra:

DI, £ (e k) (e p2) 7 (. p2) ™ ()
FPLPYTLIA ™ (e ko) f " (00, p2)f 7 (0 p2) ™ (1 )
+ PUTL I f 0™ (x1. k) f 0 (1. p2) 2 (01 p2) ™ (91 K2))
_mq[P+ fn”(xhkz)(f;x"(xhl’z)f; (1, p2) + o f " (1 p2) 2 01 P2)) o (1K)

+ PYIL £ (x1, ko) (T f ™ (x0, pa) 2 01 p2) + £ (1 p2) £ (91 P2)) fn

yl.y, =0,
ey =rort=2
Y = =2 Y, = =2, (39)
and arrive after some computation at
"1, k2)
(k)]
(3.10)
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Plugging at this stage ./\/Equ) (x1,y15 ko, po) from (3.10) in (3.6), using 73<f> =P. and P& = P_, performing the
integration over x; and y;, and evaluating the integrals

fe= / (27)° (0] = M2) (K, —py ) — P72

_ [ 4P Py
Jf_/(z”)B(Pﬁ_Mfﬂ)((kn—Pn)z—p’i)’ (3.11)

by making use of the method introduced in the Appendix and the standard Feynman integration method, we arrive after a
lengthy but straightforward computation at [see also (3.1)]

= (k) = ky (P, AY + P_AW) + kK DY + my (P, CY +P_C9), (3.12)

with the coefficients given by

2y, 1
+):—2e2q22 / - TG (5 M, m) T (L Ky,

I’l

d? 1
A = 20282 / plnw e nIl, Gy (ks M',m') T (9. Ky),

&Ep 1
:—|—2e2q22 / an, LG (M M — 1" — 1T, ( Ky ),
‘=

d 1
9= 42022y / LG (M m) + G (s M) T, (0 ).
=

)
d2 /
:+2ezq22/ ln’f’ L [AT1G (i M" — 1,m" — 1) + nGy (M, m')|Z(p k), (3.13)
=

for positively charged particles, and

) 2.2 dzpl 1 ¥
AT = 262 Z — ¢ LG (6 M m) T (01 Ky,

d2p 1
AT = —ZequZ/ (2H)LW6_K”H5G 1M m") T (0 Ky,
2.2 d2 1 ek " " " " !
= +2e%g Z nw LG (kM m", M" — 1,m" — 1)T,(p', . k),
2.2 dzPL X
= +2e°q Z 71 IL,[¢G,(k; M, m) + 11,G, (k; M",m")|Z,(p’, . k),

dZ
—|—2ezq22/ pJ‘ 'f' HntG (ki M" —1,m" — 1) 4+ nll, G (ks M, m")|T,(p’, . Ky), (3.14)

for negatively charged particles. _a
In the above relations, k = (k(,0,0,k3), p’, =k, —p, withk; = (0,k,k,,0), M% = 2/|qeB| + m = "pi with
£, =|qeB|™'/2, and G;(k;a,p),i = 1,2 are defined by

Gi(ksa.f) =k PUL L ()P
Golksa, B.7.8) = K PUL . (0]U 25, ()], (3.15)
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where U% (k) is the confluent hypergeometric function of the second kind [22]. Moreover, we have

m = min(n,? — 1),

m' =min(n—1,7),

M = max(n,Z — 1),
M' =max(n—1,7),

m” = min(n, ?), M" = max(n,?), (3.16)
and
(0 Ky) == 1 arctan <\/4k2M2 Pk _MW)
AP LR =5 ’
2w \/4k2M2 (p/zl _ kﬁ _ M%)z Pl kﬁ + ML%
, 1 (p? — k3 — M2) \/4k2M2 —K M2 e
T k) = 5 arctan 3 5 —=In—5 (3.17)
4k \/4k2M2 _ kﬁ — M2)? pi k|| + M 2 pH

These integrals arise from /, and J, in (3.11). As aforementioned, the summation over Landau levels ¢ and the two-
dimensional integration over p’, appearing in (3.13) and (3.14) will be numerically performed in Sec. V A. At this stage, let

us only notice that in the LLL (n = 0) AtH)

The general structure of qui)

therefore given by

P (kAL +m, L),
=) =10,

K (P AY +P_AD) 4k, D + m, (P, CY

In Sec. IV, we will combine the above result from (3.18)
with the general structure of the free fermion propagator
from (2.41), and will derive the general structure of the one-
loop corrected fermion propagator for nonvanishing mag-
netic fields at zero temperature.

B. One-loop self-energy of magnetized fermions
at finite temperature

In this section, we will show that the general structure of
Zﬁf’) for B# 0 and at T # 0 is given by (3.2). We will, in
particular, determine the coefficients A(f),B(f),D(q) and

C gf) appearing in (3.2) for B # 0 and at finite temperature 7
and chemical potential p.

To start, let us consider iZSLq) from (3.6) with
N ,(,;? (x1,y15ko, po) presented in (3.10). To determine
Zs,q) at finite temperature and chemical potential, all we

have to do is to evaluate the integrals appearing in (3.11) at
finite 7' and p. We thus focus only on the integrals

T_ 2 dp3 1
fe= TZ/ MZ)((ky —

oo P||)2 —P/i)’
+
. dps Pu
JL =iT / ,
‘ n;m 27 (pf —M%)((ky —py)* —p'1)
(3.19)

D) and C) from (3.13) as well as A(Q)
for positively and negatively charged fermions in the lowest and higher Landau levels is

D) and Ci) from (3.14) vanish.

forn =0,g = +1,
forn=0,g =—

forn #0,qg = +1.

(3.18)
9 4P _cla ),

[
that arise from (3.11) with the standard replacement

Pn iT Z /dps

n=—oo

(3.20)

Here, py = iw,, — p with the fermionic Matsubara frequen-
cies w, = (2n + 1)zT. To compute these integrals, we will
use two different methods. First, using the method pre-
sented in [8], we will evaluate them without any approxi-
mation (see Sec. III B 1). We will then perform the HTL
approximation in a weak magnetic field, characterized by
ky < T as well as by

VeB < |p|| < ps~T, (3.21)
and determine /7 and JZ from (3.19) within this approxi-
mation for u = 0 (see Sec. III B 2).

1. First method: Exact results

Using the standard Feynman parametrization, the inte-
grals /7 and J? from (3.19) are given by

! dps (0)
T = d —8
‘ l/) x/ 2r 2(
1! dps ;=0
p— d —
l[) x/ o [70S; (@

) + 1k S (@,)]. (3.22)
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(w) as well as S’L(ﬂm)(a)) are defined by [8]

w=r Y A

n—foo

where S(Km)

+o0 I/pz m+2

Tzfz :

n=—0o0

(3.23)

with #>1 and m > 0. Moreover, w2 = p3+xp'5 —

x(1 = x)kj + (1 —x)M; with M} = 2¢|geB| +myg. To
proceed, we use
S @) = 5 (1 = Ny(@))
! 2w Y ’
0 [
5 (@) = —3 V(o). (3.24)

with Ny(w) = nj(w) +n;(0) and Ny(w) = n}(w) -
ny (w), with the fermion distribution function

1

PHYSICAL REVIEW D 92, 025006 (2015)
and the following relations for Z > 2 [8]:

1 dS;OL (@)

(0) _
St @) =3 e dw
2(0)
(0 B 1 de—1(CU)
S, (w) = -1 do (3.26)
We arrive therefore at
o, _ 1 Nio) Nio)
& (@) = 4a)3+ 40’ d*>
_ N (@)
0
8 (w) = -~ (3.27)

(9)

njf(a)) =— , (3.25) The general structure of Zn' (l~<) at finite temperature and
T 4 chemical potential is thus given by [see also (3.2)]
|
20 (k) = ko(PLAY + P_AD) 4+ k5 (P, B'Y + P_BW) 4k, D@ + m (P,C? +P_Cl), (3.28)
with the coefficients given by
A(j) = —2e2¢° f: dpy 1 e CTL,Gy (M, m) TV (') k),
v (27)2 nle! ¢ Lo
o 2.0
AY) = —262q2; / ?25;‘%6_’%1'1 Gi(is M, m )T (' Ky,
B = —2e2q2i @p) 1 e ¢,G (ks M, m)j(3)T( "LKy)
' =/ (2 7)? nz! ‘ o P
() — _n,2,2 dsz_ e g oy 7O
B = —2e°q ; (1)’ 'f' nIL,G (M, m" )T ;7 (P k),
p 1
D) :+2ezq22/ an e L, I,Gy (s M",m" . M" — 1,m" — )IL(p' . k),
() 2.2 dsz_ 1 " T/
c = 42¢%q Z/ 5@ TG (6 M, m) + Gy (ks M, ") TL (P, Ky).
(+) — 2.2 . dzpl 1 —K A " M ' \1TT (n/
CH) = 122 ; G niA® I, [nf11,Gy (i, M" — 1,m" — 1) + nG, (i M, m' )| ZE(p' k), (3.29)

for the positively charged particles, and
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_ = [dPp 1
A = —232(]22/ DL oxem, Gy (M. m) 707 (p') Ky,

o (27)2 n'e!
© d2p/ 1
AL) = 20242 Z - 121 ——e " nll,G(; M', m/)j,(fo)T(Pl’ k).
) (2z)*n'?!
® 2 ./
=) 2.2 dpy 1 _ )

B = _» e C11,G, (ks M, Ky),
. o fzo/(zn) Tt 1 M. T (B K
(=) 2,2 d2pl 1 ek 1o 7B

BC) = —2¢%q Z P niz1® G (e M m) T (B k).

d? 1
+2e2q22/ anw e I,Gy (i M, m", M" — 1,m" — 1)TL(p! k),

dZ
= +2e%q’ Z/ pL n'f' e L, [£G (ks M, m) + T1,Gy (ks M", m")|Z5(p' . Ky)).

d2
+2ezq22/ pL w *ntG (i M" — 1,m" — 1) + nll,G, (c; M, m' )| ZL(p', . k), (3.30)
n

for negatively charged particles.

In the above relations, x is again given by x = "ﬁ"; L Gi(k;a, B),i = 1,2 are defined in (3.15), and m,m’, m"

as well as M, M’ and M" are presented in (3.16). Moreover, I;(p’l, k”) and Jg)r(p’b k“),i =0, 3 are given by

T [ [
e [ [ [— 0) + 380 (0,)].
/ /dp* S9(w,). (3.31)

with Sgo)(w) and 5'(20) (w) from (3.27). Let us notice that, for 4 = 0, because of J Epo) f—g ?) ", we obtain Aiq) = Bgf) for
both g = +1and ¢ = —1. Asin the T = 0 case, the summation over Landau levels and the two-dimensional integration over
p’,, appearing in (3.29) and (3.30), as well as the integration over p; and x, appearing in (3.31), are to be numerically

performed. Here, similar to the 7 = 0 case, in the LLL (n = 0), all the coefficients Aif), Bg;), D) and C g;) for negatively

charged particles vanish. Similarly, for positively charged particles, the coefficients A, B&H) D) and C) vanish forn = 0.

The general structure of 253”

in the lowest as well as higher Landau levels is therefore given by

P (koA + 1B + m,Cl), forn=0,q = +1,
= =< o, forn=0,g=—1,
ko(P.AY + P_A@) + ky(P,BY + P_B@) + k, D@ + m,(P.CY + P_CY), forn#0,q=+1

(3.32)

In Sec. IV, we will combine these results with the general structure of the free propagator from (2.41), and will derive the
general structure of the one-loop corrected fermion propagator for nonvanishing magnetic field at finite temperature.

2. Second method: HTL approximation

In this section, we will evaluate the integrals (3.19), using the modified HTL approximation (3.21). For simplicity, we
consider the 4 = 0 case. Let us introduce, as in Sec. II A,
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E} = p3 + M2,
E5=(ps—k3)* +p'% (3.33)
and rewrite the integrals appearing in (3.19) as
IL(p' L. Ky) _l/—E (p3:p' 1. Ky),
p
(P L’kll) = l/ o : [YOH(/(P%’P kall)
—r3ps=) (3P Ky, (3:34)
with
E(f =T Z i, A (iw,, E)Ay (kg — iw,, E;),
eV =T Z As(iw,, Ey)A, (ko — i, Ey), (3.35)
similar to (25), with Af<p0,E1) and Ab(kO_vaEZ)

defined in (2.3), and E;,i = 1,2 given in (3.33). The

PHYSICAL REVIEW D 92, 025006 (2015)

with the distribution functions f;/,,(E) defined in (2.7), and
E;,i=1,2 given in (3.33). Under the modified HTL
approximation introduced in (3.21), we set

2

Mz
Eyxps+-—,
2ps3

2
k3 +p—l’

3.37
s (3.37)

E, = p3 —

and have consequently

N M2 df +(ps)
fr(E) ~ fr(ps )+2p dps

d
) = o)+ (B k) 228

El

(3.38)

Using furthermore the relation f;(—) =1 — f4(®») and

summation over Matsubara frequencies can be performed /. »(—®) = =1 — f(w), we arrive after some computation
using the same method as described in Sec. IT A. Similar to ~ at
(2.6), we therefore have
=) _ _ 52 L+ fu(s2By) = fr(s1Ey) If = iZy.
14 Sty 4E2 ko — SlEl — S2E2 ’ J; _ ikoj(fO)T + l.k3j(f3)T’ (339)
—(3) 5150 1+ fu(s2E) — fr(s1Ey)
=TT 2 AEE k—mEi—snk 09
syt HE1E2 0~ S1E1 =852k with
J
L fre_2kT o) r_ Mikszi) | 2K <) (kg + k)T —M7) Tz
7 k I, ——|[I 7] — 1 21,7 + =2 11
(p L II) 87 Tz{ 0 kﬁ [ b T f ] Tkﬁ , +15 k2 +2T2 (kﬁ) f
(GBIt )y, (8030, ]y
(kz)z f (kﬁ)z b
% [a«z R -M3) | o [—Zkap'i + MG+ ) i)
2T2 (kﬁ)Z b (kﬁ)2 b
1 T ky(p'2 — M2) M2 - MZks(p't — M2) -3
T M, 1M P1 )@ 1@ ¢ 7@ 3(P ¢
kp)=—7—=[1 I, ————""1 | ¢
..7,/» (p 1 ||) 471'T{ kﬁ [ + ] (kﬁ>2 [ + f ] 2Tkﬁ f + 2T2(k2) f
Lk g _ [PLG K — 26M3] oy ksRE(R — M) 3
ki 27 (k3)? b 2r2(ki)? P [
(2) 2 2 2 1 12\(p/2 2
1 (17 2r M2 _2) 2k < M2 [(K3+K3)(p'% — M2) -3
T/ 0 (1) (1) ¢ 32 331 ¢ 0 3)\P 1 ¢ ®3)
kj)=————=]1 I/ —=51 —1 — 1|1
Jem @k 87rT{ ks K L+ 1] A I T [ (K3)? !
LR =M N LB+ K)ET-M7) 10
ks (kj)? Tk (ki)
Pl [(K+K)®I-M7) 70, 1 [2kpT + Mz + k) e
+2T2k3 [ (kﬁ)z + 11, +? (kz) - 11,7 5. (3.40)
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In the above relations

. o dy
Ié)@f/
Zz

y_n?

n o dy

Ié/?f(Z)E/ y—,,fb/f(Y),
4

=(n o dydf,p(y)
Ii/?f(z) E/ y_"d—y’ (3.41)
with z = V;B, and
£oy) = Fr0) = — (3.42)
W= T AR R

The general structure of 2£,q)(l~c) for hot and magnetized

fermions in the above HTL approximation is therefore
given by (3.32) with the coefficients A, B, D) and
Cgf) from (3.29) as well as (3.30), and the integrals IZ,; as
well as 797 i = 1,2 given in (3.40).

IV. GENERAL STRUCTURE OF THE
DRESSED PROPAGATOR OF HOT
AND MAGNETIZED FERMIONS

In (2.41), the free propagator of magnetized fermions is
presented in the momentum space. The general structure of
the one-loop self-energy of these fermions at finite temper-
ature is presented in (3.32). In this section, we will combine
these two results, and determine the one-loop corrected
propagator of hot and magnetized fermions up to one-loop

level. The case T = 0 will be then considered as a special

case of the T # 0 case, because by comparing 25,‘1) from

(3.18) for T = 0 with (3.32) for T # 0, it turns out that =
for T=0 can be determined from (3.32) by setting

B(f> = Ai”, i.e. by removing the anisotropy in the com-
ponents of ky = (k,0,0,k3), appearing in (3.32) in
comparison to (3.18) for n = 0 and n # 0. In this section,
we are not interested in the numerical values of the
coefficients. Our main goal is to use the general structure
of the dressed propagator of hot and magnetized fermions,
and, performing an analysis similar to what is presented in
Sec. IT A, to determine the properties of possible excitations
arising from the poles of this propagator.

To start, let us therefore consider the series expansion of
the full fermion propagator in the momentum space

S;q) (/;) i

Sy =59 (k) + SO WSD + .. (41)

Truncating this series after the one-loop contribution in the
second term on the rhs, and using (2.41) as well as (3.32),

we arrive at the general structure of S,(,q) of magnetized

PHYSICAL REVIEW D 92, 025006 (2015)

fermions at 7 # 0 in the lowest (n = 0) and higher (n # 0)
Landau levels up to one-loop level,

P, _ _
m forn=0,g=+I1,
s n=0g=-1 @
m forn #0,q = +1,

where

509 = koA + k3B + m €
=9 = ky(PLAY + P_AW) 4+ ky(P, B + P_BY)
+ Kk, DD +m (P,C?Y +P_c), (4.3)

are obtained from (3.32). At T = 0, S\ is given by (4.2)
and (4.3) with Bgf) = Agf) for ¢ = &1. The poles of the

fermion propagator (4.2) can be determined by computing
det(l7{|| —mq—i(()+)), for n :0,q:+],

0= det(k —m,),
det(k~n —my— Zz(zq))’

forn=0,g=—1, (44)

forn #0,qg = £1.

This will be done numerically in Sec. VA for T # 0 (hot
magnetized QED plasma), and in Sec. V B for T = 0 (cold
magnetized QED plasma). To study the properties of
possible excitations arising from the pole of the dressed
fermion propagator, let us consider Sff’) from (4.2).
Defining

' =my (14 7).

d) = 54\ 2n|qeB|(1 — D), (4.5)
Silq) for n =0 and n # 0 can be simplified as’
P u(j)f ;b(f) L'Erﬂ
» (ro D@ o) for g = +1,
S = . ‘;c (4.6)
Prlivkplstn) - for g = -1,

0

with

"The y-matrices in the Dirac representation are given by

(10> (06) (01)
"o —1) T e o) BT o)

and X = diag(e, 6).
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D(()+) = a(++)2 . b(++)2 + cf)z,
Dy =k} —m2, (4.7)
and
(@)
- ) (&
sy =28 @8
Dy (k)
with the numerator®
NE;I) = 70(6(1(1)P+ + Cgfi)p_) + },zcg@
+73(CPP, +COP)
+(C 7072 + C¥ 7273 + Cv07273) 25
+CP, P, (4.9)

and the denominator

DY = 4@ 1 24@2 (@l 4 pla)ple)

(4.10)

In (4.9), the coefficients Cl(.q), i=1,...,10 are given by

(’1)(a(q)2 — ple 2)
) (a?” - cqﬁ
cg‘” = (d@ +c@e ‘ >+ b<q>b$’> a+ a4
C(tz) = b(q)(b(q)z —al92 2) d)?,
C()E ()(b() (+ 2) 42,
= (c'Wa! q)ag_q>)d<q>

3 = (b9 — b)),
¢ = (@b — ap?)d®,
C(9 = cgf)( — bl — @2y — 9 g2
C(l%> = c(_‘f)(a+>2 - I’9<f7>2 - cﬁf)z) - cf)d(’f)z. (4.11)

In what follows, we will determine the eigenvalues and

eigenvectors of the numerators of S
cases:

for two special

*Here, the relations P, +P_ =1 and P, —
used.

P_=2%; are

PHYSICAL REVIEW D 92, 025006 (2015)
Case 1: n=0,9==x1,m, #0,
Case 2: n#0,9g==+1,m, =0.

A. Case 1: Properties of massive and positively charged
fermionic excitations in LLL

Let us consider the one-loop corrected propagator of
positively charged massive fermions in the LLL from (4.6)

) 4 _ bt 4 ()
SE)Jr)(k) — P (y0a+ Di/-:) +C+ ), (412)
0

with the coefficients given in (4.5) and the denominator
DE)J’) given in (4.7). The eigenvectors of the numerator of
5(()+) are

:moon
Wi = (0,1,0,0).
1
Wng) 7b(+) (a(Jj) (+) b( ) O,biir),()),
+

1
vl =@ d P b0 b0, (@3)

+)

(
+

with the eigenvalues

0.0 - a7 ) 1 fa 7).

(4.14)
The eigenvectors from (4.13) satisfy
Pyt =yl or Y = -yl
Pyt =yt ozt =yt
Poys” =i or T =yl
Pt =l or it = 4yl (4.15)
From the above four eigenvectors only l//,(-+),i = 3,4 are

acceptable. They correspond to positively charged fermions
with positive spins (spin up) in the LLL.

B. Case 1: Properties of massive and negatively charged
fermionic excitations in LLL

According to (4.6), the one-loop corrected propagator of
negatively charged and massive fermions does not receive
any contribution from the one-loop fermion self-energy

P_(roko — v3ks +my)

S5 (k) = —
0

(4.16)
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Here, D((f) is given in (4.7). The eigenvectors of the
numerator of 8(()_) are

wl? =(0,0,1,0),
s = (1.0,0,0).
"4

= ko, 0,1),
O = L0, —lky| = k. 0.1 4.17
Yy _k3(, | ||| 0s Y )’ ( )
with the eigenvalues
The eigenvectors from (4.17) satisfy
Pyl =y or Sl =yl
Py =i, o Swb) =4yl
Pyl =yl or Tyl =yl
Py =wl or Sl =yl (4.19)

Similar to the previous case, only wg_),i = 3,4 corre-
sponding to negatively charged fermions with negative

spins (spin down) in the LLL, are acceptable. In contrast to

the case discussed in Sec. IT A, y/m

= 3,4andy/l(._>,z =
3,4 are neither eigenvalues of the helicity nor those of the
chirality operators. These operators are defined in (2.17)

and (2.18), respectively.

C. Case 2: Properties of massless fermionic
excitations in HLL

The one-loop corrected fermion self-energy of massless
fermions for n # 0 and ¢ = £1 is given by (4.8)—(4.11)

(q)

with ¢” = 0. To study the properties of possible fermionic

excitations, let us simplify Sﬁ,q), in analogy to the results
presented in Sec. IL A, as

(k) 00 Tmog 4
with the numerators
N = p[Po(@?) = b9) + P_(a + )] = 247, P
+73[P. (@) — b@) = P_(a? + b)),
N = p[P.(a + bl >>+P (@ = b =24y, P,
—13[P (a9 + b9) = P_(a = b)), (421)
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and the denominators

DO — (D 4 b( ) (a9 Fb9)) — d@)2,

e = (af (4.22)

Nontrivial eigenvectors of the numerators A <Lq) and N 5;1)
are given by

VL = (1,0,0,0),

VL (0,1,0,0), (4.23)
and

VR (0,0,1,0),

VR (0,0,0,1), (4.24)

respectively. They have trivial eigenvalues, and satisfy

POVE=VE and TV = 4V
P VE=VE and VI =-VE
PrVE=VR  and Z; VR = 4VR
PrVE=VE —and Z3VEF =-VX (4.25)

As yet the above results (4.23)—(4.25) are independent of
the choice of electric charges ¢. They are valid for both
positively and negatively charged particles, and can thus be
summarized as

D@:{V‘L with ¢ = +1,53 = &1, = —1,

EUAVE with g =—1,83 = %1,y = —1,
VR with g = +1,53 = £1,y = +1,

Dﬁ?:{ 1w 3 “ (4.26)
VB with g = —1,55 = £1,5 = +1,

Here, s; and y denote the eigenvalues of the spin and
chirality operators, X3 and Py /¢, respectively. Let us notice
that the appearance of two energy branches, arising from

the poles of two denominators D(Lq) and Dgeq) in (4.20), can
be regarded as an evidence of the appearance of additional
fermionic excitations. In the next section, we will study the
spectrum of Dirac particles at finite temperature and for
nonvanishing magnetic fields. We will show that, in the
limit of soft momenta and weak magnetic fields, new
excitations appear, which will be referred to as hot and
magnetized plasminos, in analogy to the excitations appear-
ing at finite 7" and vanishing B.

V. NUMERICAL RESULTS

In this section, we will numerically solve the energy
dispersion relations ansmg from the one-loop corrected
fermion propagator, S , for a number of special cases. In

Sec. VA, we will first consider S,(f’) at nonzero T and B in
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the lowest (n =0) and higher (n # 0) Landau levels,
separately. We will focus on both the massive and massless
case. In Sec. V B, we will then determine the spectrum of
massive fermions in a cold and magnetized electromagnetic
plasma.

A. Plasminos in a hot and magnetized QED plasma

In the previous section, we have analytically determined
the general structure of the one-loop corrected fermion
propagator S ,(,q> in the lowest and higher Landau levels. For
n=0,SY is given in (4.6), and for n # 0 in (4.8)~(4.11)
as well as in (4.20)—(4.22) for the special case of massless
fermions. Except for negatively charged fermions in the
LLL, the one-loop corrected fermion propagator is, in
particular, given in terms of nontrivial coefficients

al? b\? 9 and d@, which are defined in (4.5), and

are given in terms of the coefficients A?,Bﬂf), Cgf) and

D9 arising from the one-loop self-energy of charged
fermions. In Sec. III B, we have analytically determined

A?,B?,Cf) and D9 at finite 7 and B, using two
different methods: In Sec. III B 1, the exact expressions
of these coefficients at finite 7 and for nonvanishing B are

presented in (3.29) and (3.30), with IZJ and j(ff)T,i =0,3
from (3.31), and in Sec. III B 2, they are evaluated using a
HTL approximation in a weak magnetic field, and are given
by the same (3.29) and (3.30), with ZZ and 77, i = 0,3
from (3.40).

In order to explore the spectrum of fermionic excitations
from the poles of SS{” in the lowest and higher Landau

levels, the coefficients Agg), B(iq), C(f) and D9 are the first
to be determined as functions of &k, and k5. To do this, we
have numerically evaluated the integration over p’ |, x and
p3 appearing in (3.29)—(3.31), as well as the integration
over y appearing in I, I,/ ¢ and L,/f from (3.41) for a large
number of fixed k; and k3. The summation over Landau
levels appearing in (3.29)—(3.30) has also been performed
numerically. In this way, it was possible to find the best fits

for Agf), Bgf), C(iq) and D9 as functions of ky and k3. We
have then considered the fermion propa§ators in LLL
(n=0) and HLL (n=1) separately, and solved
the energy dispersion relations, arising from the poles of
the propagators. In what follows, we will only report the
corresponding numerical results for a number of spe-
cial cases.

1. Special case: T #0, n =0 for m; # 0 and m; = 0

Let us start with the dispersion relation of a massive
and positively charged fermion in the LLL. It can be

obtained by numerically solving det(f(” —m, — ZSH) =0

For HLL, we considered only the n = 1 case. All n > 1 cases
can be evaluated in a similar way.
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FIG. 3 (color online). (a) The exact k3 /T dependence of k,/T
for positively (thick blue curve) and negatively (red thin curve)
charged fermions in the LLL (n = 0) for b = ¢B/T? =5 and
& =m,/T = 0.25, in the regime k3/T > 0.2, which arises from
(5.1) for ¢ = +1 and (5.2) for ¢ = —1. (b) The HTL-approxi-
mated k3/T dependence of k,/T for positively (thick blue curve)
and negatively (thin red curve) charged fermions in the LLL
(n=0) for b=%=05 and &= 7¢=0.25, in the regime
ky/T < 0.2.

from (4.4) or D\ (k) = 0 with D" from (4.7). In both
cases, it reads

KB —al 21— B —m2(14 2 =0
(5.1)

As concerns the negatively charged massive fermions, the
corresponding dispersion relation arises from Df)_) =0,

k§ = k3 + m32. (5.2)
Here, the definition of D(()f) from (4.7) is used. The
numerical results are demonstrated in Fig. 3. In Fig. 3(a),
the k3/T dependence of k/T is plotted for positively (thick
blue curve) and negatively (thin red curve) charged massive
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fermions in the LLL (n=0) for b=eB/T?>=35,
&=m,/T = 0.25 and in the regime k3/T > 0.2."° To do

this, we have used (3.29) with ZZ and j(,f)T, i =0,3 from
(3.31), and numerically determined the dependence of
A(f), B(:) and Cf), appearing in (5.1), on k, and k;.
This results in the thick blue curve in Fig. 3(a). The thin red
curve in Fig. 3(a) is the positive energy branch of the
dispersion relation of negatively charged massive fermions
from (5.2) for b = 5 and & = 0.25."" The regime k;/T <

0.2 is then explored using A(f), B(:) and C(f) from (3.29)

with ZZ and 7" i = 0,3 from (3.40) for b = 0.5 and
& = 0.25. In this regime the HTL approximation described
in Sec. III B might be reliable. Similar to Fig. 3(a), the thick
blue and thin red curves correspond to the positive energy
branches of the dispersion relations (5.1) and (5.2),
respectively. Let us notice at this stage, that according to
the results from (4.15) and (4.19), and the subsequent
descriptions, the blue and red curves in Fig. 3 are the energy
dispersion relations of positively and negatively charged
massive fermions with positive and negative spins.

Comparing the energies of fermions with positive and
negative spins from Fig. 3(a) (exact results) with the
corresponding energies of these fermions from Fig. 3(b)
(HTL-approximated results), it turns out that in the regime
ks/T > 0.2, their T-scaled energies, ky/T, increase with
increasing k3/7, while in the regime k3/T < 0.2, the
energy of fermions with positive spins (thick blue curve)
decreases with increasing k5 /7, in contrast to the energy of
fermions with negative spins (thin red curve).

Performing the above analysis for the case of massless
fermions in the LLL, it turns out that the small difference
between the energies of fermions with positive and negative
spins, appearing in Fig. 3(a), disappears in the limit of
vanishing fermionic mass. This can be observed in
Fig. 4(a), where the exact k3/T dependence of ky/T is
plotted for n =0, »=0.5 and £ =0 in the regime
ks/T > 0.2. Here, the energy dispersion relations

RU—AP—KB1-B?=0.  (53)
for positively charged fermions, and
@ = . (54)

for negatively charged fermions, are used. In the regime
k3/T < 0.2, however, the qualitative behavior of the k3 /T
dependence of k,/T for massless fermions is similar to the
corresponding results for the massive fermions [see the

At finite temperature, the free parameter eB and m, are
scaled with T.

"The negative energy branches of the energy dispersion
relations are not plotted in the figures demonstrated in this
section.
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FIG. 4 (color online). (a) The exact k3/T dependence of
ko/T for positively (blue curve) and negatively (red squares)
charged fermions in the LLL (n = 0) for b = ¢B/T? = 0.5 and
& =m,/T = 0,in the regime k3 /T > 0.2, which arises from (5.3)
for ¢ = +1 and (5.4) for ¢ = —1. (b) The HTL-approximated
ks/T dependence of ky/T for positively (thick blue curve) and
negatively (thin red curve) charged fermions in the LLL (n = 0)
for b=eB/T*=0.5 and &=m,/T =0, in the regime
ky/T < 0.2.

plots in Fig. 4(b) and compare them with the plots in
Fig. 3(b)]. Let us notice that, although the fermionic
excitations, whose energy dispersion relations are plotted
in Fig. 4(b), are massless, their rest masses (for k3/7 = 0)
are nonzero [see, in particular, the rest mass of the
positively charged massless fermion from Fig. 4(b)].
This effect is related to the magnetic catalysis [5], which
is characterized by a dynamical generation of mass in the
presence of a very strong magnetic field, where the system is
dominated by the LLL. As it is well known, the dynamical
mass arises from perturbative corrections to the fermion
propagator. According to the same argument, the fact that
the negatively charged massless fermions have a zero rest
mass [see the thin red curve in Fig. 4(b)] is therefore related
to the fact that these particles do not receive any contribution
from the one-loop self-energy in the LLL.
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2. Special case: T #0, n =1 and m; =0

The one-loop corrected fermion self-energy of massless
fermions in HLL is analytically computed in the previous
section [see (4.20)—(4.22)]. In this case, in analogy to the
case of vanishing magnetic fields, described in Sec. Il A,

two denominators D(Lq/)R appear for each ¢ = +1 and g =

—1 in (4.20). We therefore expect two different energy
branches for each g. The energy branch arising from

D<L"> = 0 corresponds to left-handed positively or nega-

tively charged particles, possessing both spin orientations.

Similarly, the energy branch arising from ’Dg;” = 0 corre-

sponds to right-handed positively or negatively charged
particles with positive and negative spins. The explicit
expressions for the energy dispersion relations of these
particles are given by

[ko(1 — AW) + ks(1 — BY9)]
x [ko(1 =A%) — k3 (1 — BY)] — 2n|geB|(1 — D))
=0, (5.5)

and

[ko(1 = AY) — k3(1 — BL)]
x [ko(1 = AY) + ks (1 = BY)] — 2ngeB|(1 — D@)?
=0. (5.6)

They arise from D\’ = 0 and D}’ = 0, with D(L@)R defined

in (4.22). To solve these relations, let us first consider
the coefficients Aiq) , Biq) and D@ from (3.29) for ¢ = +1

and (3.30) for ¢ = —1 with Z7 as well as j(ff)T,i =0,3
from (3.31). This yields the exact k3/T dependence
of ko/T for massless left- and right-handed fermions.
For n=1,b=eB/T*=5¢=m,/T =0, the results
are demonstrated in Figs. 5(a) and 5(b), in the regime
k3/T > 0.2. They correspond to ¢ = +1 and ¢ = —1,
respectively. As it turns out, there is no difference between

the solutions of D(L+) = 0 (blue curve) and Dg) =0 (red
square) for positively charged particles. Similarly, the k3 /T
dependences of ky/T for negatively charged left- (blue
curve) and right-handed (red-square) massless fermions are
identical.

To compare the energy dispersion relations of massive
fermions for ¢ = +1 and g = —1, we have plotted in Fig. 6
the exact k3 /T dependence of k,/T for massless left- [panel
(a)] and right-handed [panel (b)] fermions. Thick blue and

thin red curves denote the solutions of D(;/;e =0 and

DE}Q =0, for n=1,b=5 and £=0 in the regime
k3/T >0.2. As it turns out, the energy increases with
increasing k3/T > 0.2. Moreover, the energies of
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FIG. 5 (color online). The exact k3/T dependence of k,/T for
(a) positively and (b) negatively charged fermions forn = 1,b =
eB/T?> =5 and £ =m,/T =0 in the regime k3/T > 0.2. The
results arise from the dispersion relations (5.5) and (5.6) for left-
and right-handed massless fermions. Blue curves and red squares

(+)

denote the solutions of D; ’ = 0 and D;ﬂ = 0, respectively.

negatively charged left- and right-handed massless fermions
are smaller than their positively charged counterparts.
The regime k3/T < 0.2 is explored in Fig. 7, where the
HTL-approximated solutions of the energy dispersion
relations (5.5) for left-handed and (5.6) for right-handed
massless fermions are demonstrated. To determine these

solutions, the coefficients Agf) , Bgf) and D9 from (3.29)
and (3.30) with the HTL-approximated Z7 as well as

J ;’)T, i = 0,3 from (3.40) are used. They are first numeri-
cally computed as functions of ky and k3 for n = 1,b =
eB/T?> =05 and &= 0. Plugging then the resulting
expressions in (5.5) and (5.6), these energy dispersion
relations are numerically solved. The thick blue and thin
red curves in Figs. 7(a) and 7(b) denote the solutions of

Df =0 and Dﬁei) = 0, respectively. As it turns out, in the
regime k3 < 0.087, the energy branches for the left-
and right-handed positively [Fig. 7(a)] and negatively
[Fig. 7(b)] charged massless fermions are split up, in
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FIG. 6 (color online). The exact k5/T dependence of k,/T for
(a) left-handed and (b) right-handed fermions. Thick blue and

thin red curves denote the solutions of DH) =0and D(

) —
L/R Lk =0,
for positively and negatively charged particles ¢ = 1 for n =
1,b=eB/T? =5and £ = m,/T = 0 in the regime k3/T > 0.2.

contrast to the results for k3 > 0.087 from Figs. 7 and 8,
where it is shown that left- and right-handed massless
fermions have the same energies. In Fig. 8, we have used
the above HTL approximation to determine the k3/T
dependence of ky/T for left- and right-handed massless
fermions in the regime k;/T > 0.2. Here, we have chosen
the same free parameters, n = 1,0 = 0.5 and £ =0, as in
Fig. 7. The blue curves and red squares in Fig. 8 denote the

solutions of D(Li) =0 and Dﬁﬁ =0, respectively. The
results from Fig. 8 coincide qualitatively with the results
from Fig. 5, where the exact solutions of (5.5) and (5.6) are
demonstrated for n =1,b =5 and £ =0 in the same
ky/T > 0.2 regime.

Let us notice at this stage, that the appearance of two
different energy branches in Fig. 7 is in great resemblance
with the appearance of two energy branches for fermionic
particle and plasmino excitations at finite temperature and
zero magnetic fields. The latter case is discussed in Sec. II
A, where it was shown that two energy branches in Fig. 2
correspond to fermionic excitations with positive (particle)
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FIG. 7 (color online). The HTL-approximated k;/7T depend-
ence of ky/T for (a) positively and (b) negatively charged
fermions for n=1,b=eB/T?> =05 and &= my/T =0 in
the regime k3/T < 0.2. The results arise from the dispersion
relations (5.5) and (5.6) for left- and right-handed massless
fermions. Thick blue and thin red curves denote the solutions

()

of ’D<Li) =0 and Dy’ =0, respectively.

and negative (plasmino) helicity to chirality ratios. At finite
temperature and for nonzero magnetic fields, discussed in
the present section, however, the massless fermionic
excitations, whose energy dispersions are demonstrated
in Fig. 7, are, in contrast to the ordinary particle and
plasmino modes at finite 7', eigenstates of the chirality and
the spin operators, P; /z and X3 (see Sec. IV for a proof).
Despite this difference, and because of the similarity
between the production mechanism of new excitations in
the case of nonvanishing 7 and B with the mechanism
leading to particle and plasmino excitations at finite 7" and
zero B, the new excitations will be referred to as hot
magnetized plasminos. The crucial point is that, according
to our findings, they seem to appear only in the limit of soft
momenta k; < T and weak magnetic fields eB < T2,
where a HTL approximation is reliable, and where apart
from LLL, higher Landau levels are to be taken into
account.
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FIG. 8 (color online). The HTL-approximated k;/7T depend-
ence of ko/T for (a) positively and (b) negatively charged
fermions for n=1,b=eB/T* =05 and £ =m,/T =0 in
the regime k3/T > 0.2. The results arise from the dispersion
relations (5.5) and (5.6) for left- and right-handed massless
fermions. Thick blue curves and red squares denote the solutions

of Déi) =0 and Dgf) = 0, respectively.

In the rest of this section, we will show that similar
excitations appear at zero temperature and for nonvanishing
moderate magnetic fields.

B. Plasminos in a cold and magnetized QED plasma

As we have described in the previous section, according
to the notations used in the present paper, the zero
temperature case can be regarded as a special case of
the finite temperature case. This is because of the similarity/
difference between the general structure of one-loop self-
energy of fermions at zero and nonzero temperatures from
(3.18) and (3.32). Thus, in the zero temperature case, the
one-loop corrected propagator of fermions in the presence
of a constant magnetic field is, as before, given by
(4.6)—(4.7) for n = 0 and (4.8)—(4.11) for n > 1. The only
difference with the finite temperature case is that the

coefficients af),bg),c(f) and d9, appearing in these
equations, are to be redefined as

PHYSICAL REVIEW D 92, 025006 (2015)
a(f) = ko(1 —A(f)),
9 = k(1 ~ A,
ciq) =m,(1+ Cgf)),

d9 = 54\ 2n|gqeB|(1 — D),

with Agg), Cf) and D% presented in (3.13) for ¢ = +1 and
(3.14) for g = —1. Similar to what is performed in the
previous section, we have determined numerically the latter
coefficients for a large number of &, and k3. In this way, we
were able to find the best fits for Agf), C(iq) and D9 as
functions of k, and k3. Plugging then the corresponding

(5.7)

expressions in ai’) , b(iq), cgf) and d'9 from (5.7), we have
numerically solved the energy dispersion relations for cold
fermions in a magnetized QED plasma. In what follows, we
will separately consider two different cases of n = 0 and
n =1 for massive fermions, and will present the k3/m,

dependence of k/m, for b = eB/m2 = 5."

1. Special case: T = 0.n = O,mq #0

According to the definitions of D((f) and Dé_) from (4.7)

with aiq) ,bgf),c(f) from (5.7), the energy dispersion

relations of positively and negatively charged massive
fermions are given by

B —AD? =K1~ A —m2(1 4 €I =0, (58)
and

k§ = k3 +m32, (5.9)
respectively.

In Fig. 9, we have plotted the k3;/m, dependence of
ko/m, for these fermions. As we have argued in Sec. IV,
two energy branches, appearing in this figure, correspond
to positively charged fermions with positive spin (thick
blue curve) and negatively charged fermions with negative
spin (thin red curve). Since fermions with negative charges
receive no one-loop self-energy correction in the LLL, their
dispersion relation is identical with the dispersion relation
of free fermions with k,/m, =1 for k3 = O (see the thin
red curve in Fig. 9). On the other hand, as in the finite
temperature case, the fact that the rest mass of positively
charged fermions ky/m, > 1 is related with the dynamical
creation of mass in the presence of strong magnetic fields,
where the system is dominated by LLL. As it turns out from
Fig. 9, for each fixed k3/m,, the energy of positively
charged fermions is larger than the energy of their neg-
atively charged counterparts. This is also related with the

"2At zero temperature, the free parameter ¢B is scaled with the
fermionic mass m, instead of with the temperature 7.
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FIG. 9 (color online). The k3/m, dependence of ky/m, for
positively charged (thick blue curve) and negatively charged
(thin red curve) massive fermions in the LLL (n =0) for
b=eB/ mé = 5. They arise from the dispersion relations (5.8)
for ¢ = +1 and (5.9) for g = —1.

same phenomenon of dynamical mass generation through
the mechanism of magnetic catalysis [5].

2. Special case: T =0.n = 1m, #0

As aforementioned the one-loop corrected propagator of
massive fermions in HLL is given in (4.8)—(4.11). To
determine the energy dispersion relations of these fermions
at zero temperature, we have to solve det(k, —m, —

22‘1)) = 0 from (4.4). Alternatively, we can find the roots

of the denominator DY from (4.10) with a(f),b(f),cin

given in (5.7). Here, the denominator Dfﬁ

function in d(‘f), can be decomposed as

, being a quartic

Dy = DYDY, (5.10)
with
DY = (@2 -4\, =12 (511
and
d\ % = AD + (A@2 4 B@)1/2,
d* = A0 — (A@2 4 B@))1/2, (5.12)

The functions A@ and BY in (5.12) are defined by

Al = agf)a(_") - b(f)b@ - c(f)c@,

B@) = _(a(f)z _plo2 (4)2)(a(q)2 _

vo=ct bl — (92),

7 (5.13)

with a?,b?,c? from (5.7). The one-loop corrected
fermion propagator in HLL is therefore given by
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FIG. 10 (color online). The k3/m, dependence of ky/m, for
(a) positively and (b) negatively charged massive fermions for
n=1land b = eB/ mg = 5. The results arise from the dispersion
relations (5.15) corresponding to D(li> = 0 (thick blue curves)

and Dgi) = 0 (thin red curves).

B MS[‘]) k MgllZ) T
SO (k) = - ) | = ) (5.14)
D"(k) Dy

with MY = (d(lq)2 — dg‘m)—lf\/if” and NP defined in
(4.9). The energy dispersion relations, corresponding to
the above two denominators, arise from DE") =0,i=1,2,
and read

d 02 — g\ = o,

d 02 — g% =0, (5.15)

with d@ from (5.7) and d\*),i = 1,2 from (4.12).

In Fig. 10, we have numerically determined the k3/m,
dependence of ky/m, for n =1 and b = eB/mé =35 as
well as for ¢ = 41 [Fig. 10(a)] and ¢ = —1 [Fig. 10(b)].

The thick blue and thin red curves in Fig. 10 denote the

()

solutions for D}’ = 0 and D(Zi) = 0, respectively. Here, in
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analogy to the finite temperature case, described in
Sec. IT A, two separate energy branches appear for pos-
itively and negatively charged particles. Their appearance is
an indirect consequence of double spin degeneracy in HLL,
in contrast to LLL, where the fermions have, depending on
their charges, either positive or negative spins (see Fig. 9).

Because of the similarity between the mechanism lead-
ing to two energy branches in Fig. 2 at finite 7 and zero B,
with the case discussed in the present section at zero 7" and
nonzero B, the new fermionic excitations whose energy
dispersions are demonstrated in Fig. 10 are referred to as
cold magnetized plasminos. Let us notice at this stage, that,
whereas hot magnetized plasminos appear only in the limit
of soft momenta k3 <« 7" and weak magnetic fields eB <«
T? (see Figs. 7 and 8), as described in Sec. VA, cold
magnetized plasminos appear in the presence of moderate
magnetic fields for all positive momenta k5, and even in the
massive case.”

VI. SUMMARY AND CONCLUSIONS

Plasminos are known to be collective excitations that
appear in addition to normal fermionic modes in QED and
QCD plasmas at finite temperature. Historically, they are
shown to arise as one of the poles of the one-loop corrected
fermion propagator at finite temperature 7. The latter is
shown to consist of two poles leading to two different energy
dispersion relations. In the limit of vanishing fermionic mass
and for small enough momenta of propagating fermions &,
i.e. for |k| <« T, these energy dispersion relations belong to
two fermionic modes with positive energies but opposite
helicity to chirality ratios. The dynamical creation of addi-
tional collective modes in hot plasmas can be brought in
close relation to the broken Lorentz invariance, induced by
the preferred reference frame defined by the heat bath.

A uniform magnetic field aligned in a fixed direction
defines also a similar privileged reference frame. One of the
consequences of such a frame is the appearance of certain
anisotropies in the dynamics of fermions in the longitudinal
and transverse directions with respect to the direction of
the external magnetic field. Another consequence is the
appearance of nontrivial collective modes in the spectrum
of Dirac fermions in the presence of such a constant
magnetic field. In the present paper, we explored the
quasiparticle spectrum of cold and hot QED plasma, by
evaluating the general structure of the one-loop corrected
propagator of magnetized fermions at zero and nonzero
temperatures, and looking for its poles.

To this purpose, we first determined in Sec. IIB the
general structure of the free fermion propagator S;q) for
positively (¢ = +1) and negatively (¢ = —1) charged

“Moderate magnetic fields are necessary, because in a strong
magnetic field the fermionic system is solely dominated by the
LLL, where, according to our previous arguments, no splitting
occurs.
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fermions in the presence of a constant magnetic field B.
In the momentum space, the free propagator is, in particu-
lar, given in terms of the Ritus momentum l~<n, where n
labels the Landau levels [see (2.41) for a free fermion
propagator in the momentum space]. As it turns out,
whereas HLL with n # 0 are characterized by a double
spin degeneracy, in the LLL with n = 0, the magnetized
fermions have either positive or negative spins. This fact
plays an important role in determining the correct spectrum
of Dirac fermions in a constant magnetic field.

In Sec. III, we then determined the general structure of the
one-loop self-energy of magnetized fermions, ZEF), at zero
and nonzero temperatures. The main results are presented in
(3.18) for T =0 and in (3.32) for 7 # 0. A comparison
between these two expressions shows that the isotropy
between the components of the longitudinal momentum
k= (k.0,0, k3) at zero temperature is removed at finite

temperature. This is because of the aforementioned breaking

of Lorentz invariance at finite 7. We computed 2&,”)

=£1 in terms of certain coefficients, Ai’), Bi’), C(f> and D'9),
and determined these coefficients separately for 7 = 0 and
T # 0 up to a number of integrations and a summation over
Landau levels. To explore the Dirac spectrum for soft
momenta k3 << 7" and in the limit of weak magnetic fields
eB < T?, we also evaluated the above coefficients in a HTL
expansion in a weak magnetic field.

The one-loop corrected propagator of magnetized fer-
mions S E,q) is then determined by combining the free fermion

propagator S E,q) and the one-loop fermion self-energy = in

the standard way (see Sec. IV). Here, we have not distin-
guished between the zero and the finite temperature case.
The main results are presented in (4.6)—(4.7) for n = 0 and
in (4.8)—(4.11) for n # 0. We considered two special cases
(n=0,my; #0) as well as (n#0,m,=0), and deter-
mined the spectrum of fermionic modes by computing the

for g =

eigenvectors of the numerators of ng’). We showed that they
are, in particular, eigenvectors of X3 = diag(o3, 63), defined
by the third Pauli matrix ¢5. Hence, in the LLL, the spectrum
consists of positively (negatively) charged fermions with
positive (negative) spins, while in HLL the expected double
spin degeneracy occurs. In addition, massless fermions
with 7 # 0 turned out to have well-defined left (negative)
or right (positive) chiralities, as is described in (4.26), but
they are not eigenstates of the helicity operator, in contrast to
the standard 7 # 0 and B = 0 case. In the massless case, the

general structure of S\ in HLL is presented in (4.20)
(4.22). The appearance of two denominators D; and Dy, in
(4.20) leads to two different energy branches, similar to the
case of T # 0 and B = 0 [see (2.12)], although the corre-
sponding collective modes have different properties.

In Sec. V, we numerically determined the energy
dispersion relations of these magnetized collective modes
at zero and nonzero temperatures. In Sec. VA, we con-
sidered first the case of T # 0 and B # 0, and determined the
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ks/T dependence of ky/T in two different regimes of
k3/T < 0.2 (soft momenta) and k3/7T > 0.2 (hard
momenta). To solve the energy dispersion relations arising
from the poles of the corresponding propagators, we numeri-
cally determined the above-mentioned -coefficients

A@,B(f),cgf) and D9 in these two regimes, for fixed
values of eB/T? and for massive as well as massless
fermions. In the LLL, only one energy branch arises in
the whole regime of k3/7. It belongs to positively or
negatively charged fermions with positive or negative spins.
In contrast, according to the results from Fig. 7, additional
excitations, referred to as hot magnetized plasminos, appear
in HLL, where left- and right-handed fermions have both
positive and negative spins. In the limit of weak magnetic
fields eB < T? and soft momenta k3 < T, these collective
modes have different energies, while for larger values of
k3 /T they seem to have the same energy dispersions. This is
in contrast to the results arising for nonzero B and zero T,
discussed in Sec. V B. In this case, the results for » = 0 and
m, # 0 are qualitatively the same as in the finite temperature
case. For n # 0, however, cold magnetized plasminos appear
in the presence of moderate magnetic fields and for all
positive momenta k3, even in the massive case (see Fig. 10).

Let us finally notice that the group velocities of propa-
gating collective modes can be determined from their energy
dispersion relations for (7 # 0,B # 0), and might have
applications, e.g., in the physics of heavy-ion collisions.
At finite 7" and zero B, the appearance of a minimum at some
finite value of the momentum in the energy dispersion of
plasminos leads to a vanishing group velocity for the
collective modes. The latter has been interpreted as the
appearance of van Hove singularities [23], e.g. in the low
mass dilepton production rate in the QCD plasma [24]. The
sharp structures arising in this quantity are known to provide
a unique signature for the presence of deconfined collective
quarks in the quark-gluon plasma [19]. It would be interest-
ing to determine the dilepton production rate at high
temperature and in the presence of moderate background
magnetic fields. These are believed to be produced in early
stages of heavy-ion collisions [17], and because of certain
medium effects that are assumed to be approximately time
independent [25]. We will postpone these kinds of phenom-
enological studies to our future publications.
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APPENDIX: A USEFUL FORMULA

In this appendix, we will compute the integral

+o0 .
L, , Z/ dxje ™ Pufr(xy, ko) ff(x1, pa). (AD)

0
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Here, according to (2.29),

(Xl —f2k2)2 X1 —Lﬂzkz
b = - d H .
fn (xl» kZ) ay exp( Zfé n fq ’

(A2)

with ¢, = |geB|™"/? and a, = (2"n!\/znt,)"'/%. To this
purpose, we use the following representation of the Hermite

polynomial H,(x):
n! f dt
=— e
2mi | !
arising directly from

tn
e H2z — ZEH”(Z)

n

Hn (Z) 7t2+2tz’

(A3)

(A4)

Plugging (A3) in (Al), we arrive first at

a,ayn!t! dt du
Iy = o

~2(k2+p2)
% ef(teruz)e*2fq(tk2+up2)e—” +—

2(1+u)

2

—x
+oo —+x; (ky+pr+=7——ip})
x/ dx e’ ! .

o]

(AS)

The integration over x; can be performed by quadratically
completing the square, and performing the resulting
Gaussian integration over x;. This results in

121 2 2
_ G ENELy i i )
o (27i)?

Xjnf(k27p2’p/1)’ (A6)
with
dr d . o
Jnf = %tnﬂuf:t]e2tu+tfq(p2—k2—lpl)+ufq(k2—p2—lpl)' (A7)

To determine J,,, we will perform the integral first over
t and then over u. Then, integrating first over u and
then over 7, and comparing the two resulting expressions,
we will eventually arrive at the generalized formula
for J,,0(ka, P2, PY)-

The integration over ¢ in (A7) can be performed using the
Cauchy formula

dt 27i d"
_ 1) = —
%t"“ F(@) n! dz"

which leads to

F(2)lo- (A8)

dt 27i
f tVH'l etA(”) ES FAn(M) (Ag)
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Setting  A(u) =2u+ £,(p, — k, —ip}), plugging the
resulting expression in (A7), using the binomial series
identity

Qu+4(p2—ky—ip))"

=3 Jewr

and eventually replacing e*‘s(k2—P2=iP\) with

(Pz—kz—lpl)) e (AIO)

wormpamip) _ N~ W (ka —py—ip})
e(kz P2 PI)ZZ j' 1 ) (A]])
=0 :
we arrive first at
2ri 2y T+
Joe = i
~any ()
x (pa—ky —ip})" " (ky — py — ip})/
du
x j{ S (A12)
Integrating then over u,
du .
%W = 27”6r+j,f’ (Al?’)
we obtain
(2mi)* , .
e == o €5 (P = ko = i)' (ko = po = ipy)’
X Kye(ka. pa. py). (A14)
with
Kp=z27"U", 1 (2), (A15)

and z = "%‘2{ [(ky — p2)? + p'3]. Here, U%(z2) is the confluent
hypergeometric function of the second kind [22], defined
by
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Ust, (v >Eg<—1>m(j) (7)o

Let us now consider (A7), and check what would happen
if we computed J,, by integrating first over u and then
over ¢. In the above case, where the integration over u is
performed after the integration over ¢, we have, according
to (A13), £ =r+j. For j >0, arising from (A12), we
get therefore £ > r. On the other hand, it is clear from
(A12) that r < n. Combining these results, we arrive at
n < ¢. This fixes the upper limit in the summation over r,
which is given by n equal to min(n,¢). If we computed
J,» by integrating first over u and then over ¢, we would
arrive at a summation over r from r =0 to r = ¢, and,
according to the above argument, £ would be equal to
min(n, £). In other words, the most general expression
for J,, is given by (Al4) with n and 7 replaced by
m = min(n,¢) and M = max(n,?). If we now plug this
expression for J,, in (A6), then the most general
expression for [,, reads

(A16)

P
ferM —ip| (k2+p2)7"

Inf - mM
X (py—ky —ipy)"(ky — pr — ip/l)M
X €2z U 0 (2), (A17)
where A, = (2"nle)71?, 7= %21 [(ky = p2)* + P'1l,

m = min(n, ) and M = max(n, ). In Sec. III, the above
relation will be used to evaluate the integration over x;
and y, in (3.6) with N,(;)(x],y];kz,pz) from (3.10).
Here, we present only the result for one typical combi-
nation,

1

We_z MU (D),

I, 1Inf | = (A18)

with z = %Z’[(kg —p2)?+p'3, m=min(n,#—1) and
M = max(n, —1). All the other integrals appearing

in (3.6) with \/ ﬁqu) from (3.7) are performed in the same
way.
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