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The complete quasiparticle spectrum of a magnetized electromagnetic plasma is systematically explored
at zero and nonzero temperatures. To this purpose, the general structure of the one-loop corrected
propagator of magnetized fermions is determined, and the dispersion relations arising from the pole of this
propagator are numerically solved. It turns out that in the lowest Landau level, where only one spin
direction is allowed, the spectrum consists of one positively (negatively) charged fermionic mode with
positive (negative) spin. In contrast, in higher Landau levels, as an indirect consequence of the double spin
degeneracy of fermions, the spectrum consists of two massless collective modes with left and right
chiralities. The mechanism through which these new collective excitations are created in a uniform
magnetic field is similar to the production mechanism of dynamical holes (plasminos) at finite temperature
and zero magnetic fields. Whereas cold magnetized plasminos appear for moderate magnetic fields and for
all positive momenta of propagating fermions, hot magnetized plasminos appear only in the limit of weak
magnetic fields and soft momenta.
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I. INTRODUCTION

Research on matter under extreme conditions has pro-
vided new insight into the physics of heavy-ion collisions
(HICs) and the astrophysics of compact stars. Extreme
conditions consist of high temperature, large density and/
or the presence of intense magnetic fields. The latter affects,
in particular, the phase diagram of quantum chromodynam-
ics (QCD), and plays a significant role in the dynamics of
relativistic fermions at zero and nonzero temperatures (for
recent reviews, see [1,2]). The phenomena driven by external
magnetic fields have also various applications in quasirela-
tivistic condensed matter systems, such as graphene and
Dirac semimetals (see [3] and the literature therein).
Most theoretical studies deal with the idealized limit of

constant and homogeneous magnetic fields. Standard field
theoretical methods thus lead to the exact solution of the
relativistic Dirac equation in a uniform magnetic field. One
of the main consequences of the presence of constant
magnetic fields is a certain dimensional reduction of the
dynamics of propagating fermions in the lowest Landau
level (LLL). The latter leads to a dynamical mass gen-
eration, and enhances the production of chiral condensates.
This phenomenon, which is known as magnetic catalysis
[4,5], modifies, in particular, the phase diagram of QCD in
the chiral and color superconductivity phase [6]. Another
effect is the appearance of certain anisotropies in the
dynamics of magnetized fermions in the longitudinal and
transverse directions with respect to the direction of the
external magnetic field. These anisotropies include those in
the neutrino emission from magnetars [7], or anisotropies

arising in the group velocities, refraction indices and decay
constants of mesons in hot and magnetized quark matter
[8]. Recently, the anisotropy appearing in the equation of
states of magnetized quark matter is studied in [9].
A similar privileged reference frame is also defined by a

heat bath, and affects, in particular, the quasiparticle
spectrum of electromagnetic and quark-gluon plasmas at
finite temperature. Nontrivial bosonic and fermionic col-
lective excitations, such as plasmons and plasminos are
shown to be dynamically generated in hot QED and QCD
plasmas, in addition to the normal bosonic and fermionic
modes [10,11]. In particular, plasminos are known to be
collective excitations that arise as one of the poles of the
one-loop corrected fermion propagator at finite temperature
[12]. In the chiral limit, plasminos are characterized by their
negative helicity to chirality ratio, opposite to that of
normal modes. They are intensively studied in the context
of Yukawa theory, QED and QCD [13–16]. In [14], for
instance, it is shown that the contributions from plasminos
modify the transport properties of relativistic plasmas in
and out of equilibrium. They also lead to the appearance of
sharp structures (singularities and gaps) in the decay [15]
and production rates [16] of particles produced in relativ-
istic and ultrarelativistic collisions. These structures pro-
vide unique signatures for the presence of deconfined
collective quarks in the plasma of quarks and gluons.
In principle, nontrivial collective modes can also be

created in magnetized plasmas through the same mecha-
nism as the one leading to the appearance of collective
modes at finite temperature and zero magnetic fields. It is
the purpose of the present paper to look for possible
dynamical generation of fermionic excitations (plasminos)
in electromagnetic plasmas in the presence of constant
magnetic fields, and study their properties at zero and
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nonzero temperatures. Apart from various other applica-
tions, plasminos may play an important role in the physics
of HICs. Very strong magnetic fields, which, according to
recent experimental results, are believed to be created in
early stage of noncentral HICs [17] may affect, among
others, the energy dispersion of deconfined quarks. The
latter are believed to be produced in the quark-gluon plasma
in the same stage as the magnetic fields. It is therefore
important to explore the quasiparticle spectrum of the Dirac
equation in the presence of external magnetic fields at finite
temperature, and study the properties of the potentially
created collective modes under these conditions.
In this paper, we will particularly focus on the mecha-

nism of the production of plasminos in the presence of
external magnetic fields. We will, in particular, determine
the general structure of the one-loop corrected propagator
of magnetized fermions, and, following the historical path
that has led to plasminos at finite temperature [12], solve
the dispersion relations arising from the pole of this
propagator. To this purpose, we will first determine the
general structure of the tree-level fermion propagator in the
presence of a constant magnetic field by making use of
the Ritus eigenfunction method [18]. The free fermion
propagator will then be combined with the one-loop self-
energy of magnetized fermions. This will result in the
desired one-loop corrected propagator of magnetized fer-
mions. We will show that, in contrast to LLL, the dressed
fermion propagator in higher Landau levels (HLL) can be
decomposed into two parts, each of them leading to a
separate energy dispersion relation for magnetized fer-
mions. This fact, which eventually leads to the appearance
of magnetized plasminos, is an indirect consequence of the
double spin degeneracy in HLL, in contrast to LLL, which
is occupied with only one positive or negative fermion with
positive or negative spin. We will show that at finite
temperature and in the limit of weak magnetic fields,
where HLLs have also to be taken into account, the
spectrum consists of two massless collective modes with
left and right chiralities. Moreover, it can be shown that
whereas cold magnetized plasminos appear for all positive
momenta of propagating fermions and moderate magnetic
fields, hot magnetized plasminos appear only in the limit of
soft momenta and weak magnetic fields.
The organization of this paper is a follows: In Sec. II, we

will review two independent topics related to the main
subject of the paper: In Sec. II A, we will first show how
thermal plasminos arise from the pole of the one-loop
corrected fermion propagator in the hard-thermal loop
(HTL) approximation [19]. In Sec. II B, we will then
review the Ritus eigenfunction method [18], and present
the general structure of the free propagator of magnetized
fermions in the momentum space. The general structure of
one-loop fermion self-energy at zero and nonzero temper-
atures will be derived in Secs. III A and III B, respectively.
In Sec. III B, in particular, a certain HTL approximation in a

constant magnetic field will be introduced, and the one-
loop fermion self-energy will be presented in terms of a
number of coefficients up to some integrations and a
summation over Landau levels. In Sec. IV, the general
structure of the one-loop corrected propagator of magnet-
ized fermions will be determined by combining the free
fermion propagator from Sec. II B and the one-loop
fermion self-energy from Sec. III. Here, two different cases
of massive fermions in LLL and massless fermions in HLL
will be considered, and the properties of the fermionic
excitations in these two cases will be systematically
studied. In Sec. V, after numerically determining the
aforementioned coefficients, that appear in the one-loop
fermion self-energy, we will study the spectrum of the
fermionic excitations at finite (Sec. VA) and zero (Sec. V
B) temperatures. Section VI is devoted to a brief summary
of our results and a number of concluding remarks.

II. REVIEW MATERIAL

The main goal of the present paper is to determine the
spectrum of Dirac particles in a constant magnetic field at
zero and nonzero temperatures. To this purpose, and in
order to fix our notations, we will briefly review, in this
section, two independent topics related to the main subject
of this paper. In Sec. II A, we will first repeat the
computation presented in [12], and introduce the plasmino
excitations in a hot QED plasma. To do this, we will
compute the one-loop correction to the fermion self-energy
at finite temperature in a HTL approximation [20], and
eventually determine the Dirac spectrum at finite temper-
ature by solving the corresponding energy dispersion
relation. In Sec. II B, we will then briefly review the
Ritus eigenfunction method [18], and after presenting
the free propagator of magnetized fermions in the coor-
dinate space, will determine its general structure in the
momentum space. Our review will mainly base on the Ritus
eigenfunction method, presented in [21], and generalized in
[8] for a multiflavor system of charged fermions.

A. Plasminos in a hot QED plasma

In [12], the Dirac spectrum is determined for a hot QCD
plasma. In this paper, however, we will focus, for simplicity,
on the Uð1Þ subgroup of the SUðNÞ gauge group. The
difference between our Uð1Þ and the SUðNÞ case, discussed
in [11,12], is a certain prefactor CF, the quadratic Casimir
constant of the fermion representation, in the corresponding
expression to the one-loop fermion self-energy. For the
AbelianUð1Þ gauge group, CF ¼ 1 and for the fundamental
representation of SUðNÞ gauge group, CF ¼ N2−1

2N .
Let us start by determining the one-loop fermion self-

energy of massless fermions at finite temperature.1 Having

1At high enough temperature, the mass of fermions can be
neglected.
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in mind that the interaction term of fermions and photons in
QED is given by Lint ¼ −eψ̄γμAμψ, the fermion self-
energy ΣðkÞ at finite temperature is given by (see Fig. 1)

ΣðkÞ ¼ e2T
Xþ∞

n¼−∞

Z
d3p
ð2πÞ3 Dμνðk − pÞγμSðpÞγν

¼ −2e2T
Xþ∞

n¼−∞

Z
d3p
ð2πÞ3

p
ðk − pÞ2p2

: ð2:1Þ

Here, DμνðkÞ≡ gμν

k2 and SðpÞ≡ 1
p are free photon and

fermion propagators, respectively.2 In the imaginary time
formalism, p0 is to be replaced by iωn, where ωn ≡ ð2nþ
1ÞπT is the fermionic Matsubara frequency. Since in the
presence of a hot medium, the relativistic Lorentz invari-
ance is broken by introducing the reference frame corre-
sponding to the heat bath, it is necessary to perform the
following separation between the temporal and spacial
components of ΣðkÞ:

ΣðkÞ ¼ γ0ΣtðkÞ − γ · ΣsðkÞ: ð2:2Þ

Introducing E1 ≡ jpj, E2 ≡ jp − kj, and using

Δfðp0; E1Þ≡ 1

p2
0 þ E2

1

;

Δbðk0 − p0; E2Þ≡ 1

ðk0 − p0Þ2 þ E2
2

; ð2:3Þ

the temporal and spacial components of ΣðkÞ are given by

ΣtðkÞ ¼ −2e2
Z

d3p
ð2πÞ3 I tðk;pÞ;

ΣsðkÞ ¼ −2e2
Z

d3p
ð2πÞ3 pI sðk;pÞ; ð2:4Þ

with

I t ≡ T
X∞
n¼−∞

iωnΔfðiωn; E1ÞΔbðk0 − iωn; E2Þ;

Is ≡ T
X∞
n¼−∞

Δfðiωn; E1ÞΔbðk0 − iωn; E2Þ: ð2:5Þ

Following the standard method introduced in [20], the
summation over Matsubara frequencies can be performed
by making use of

I tðk;pÞ ¼ − X
s1;s2¼�

s2
4E2

1þ fbðs2E2Þ − ffðs1E1Þ
k0 − s1E1 − s2E2

;

Isðk;pÞ ¼ −
X

s1;s2¼�

s1s2
4E1E2

1þ fbðs2E2Þ − ffðs1E1Þ
k0 − s1E1 − s2E2

:

ð2:6Þ
Here, the fermionic and bosonic distribution functions are
defined by

ffðl0Þ≡ 1

eβl0 þ 1
;

fbðl0Þ≡ 1

eβl0 − 1
; ð2:7Þ

with β≡ T−1, and l0 ¼ �j~lj for massless fermions.
Replacing the above expressions in (2.4), performing an
appropriate expansion in jkj ≪ jpj with jpj ∼ T,3 and
keeping only the leading T2 contributions from the result-
ing expressions, Σt and Σs in this HTL approximation are
given by

ΣtðkÞ ¼
m2

D

2jkj ln
�
k0 þ jkj
k0 − jkj

�
;

ΣsðkÞ ¼
m2

D

jkj
�
1 − k0

2jkj ln
�
k0 þ jkj
k0 − jkj

��
k̂: ð2:8Þ

Here, m2
D ≡ e2T2

8
is the Debye mass. To perform the

integration over p (here denoted by p), the following
integrals are used:

Z
∞

0

dppffðpÞ ¼
π2T2

6
;Z

∞

0

dppfbðpÞ ¼
π2T2

12
: ð2:9Þ

Plugging at this stage the results from (2.8) in (2.2), and
combining the resulting expression forΣðkÞwith the inverse
of the free fermion propagator, S−1ðkÞ ¼ γ0k0 − γ · k̂, we
arrive at the inverse of the one-loop corrected fermion
propagator, S−1ðkÞ ¼ S−1ðkÞ − ΣðkÞ,

FIG. 1. One-loop fermion self-energy.

2In what follows, we will denote the free and dressed fermion
propagators with S and S, respectively.

3In this approximation E2 is, in particular, replaced by
E2 ≈ jpj − jkj cos θ, with θ the angle between k and p.
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S−1ðkÞ ¼ γ0A0 − γ · k̂As; ð2:10Þ

with

A0 ¼ k0 − m2
D

2jkj ln
�
k0 þ jkj
k0 − jkj

�
;

As ¼ jkj þm2
D

jkj
�
1 − k0

2jkj ln
�
k0 þ jkj
k0 − jkj

��
: ð2:11Þ

The dressed fermion propagator up to one-loop order is
therefore given by

SðkÞ ¼ γ0 − γ · k̂
2Dþ

þ γ0 þ γ · k̂
2D−

; ð2:12Þ

with

D� ≡ A0∓As; ð2:13Þ

and A0=s from (2.11). To determine the spectrum of Dirac
particles, we set either D� ¼ 0 or det½S−1ðkÞ� ¼ 0, and
arrive at two solutions A0 ¼ �As, or more explicitly at two
different energy branches for particles (p) and dynamical
holes (h) [12],

Ep ¼ jkj þm2
D

jkj
�
1þ 1

2
ð1 − zpÞ ln

�
zp þ 1

zp − 1

��
;

Eh ¼ −
�
jkj þm2

D

jkj
�
1 − 1

2
ð1þ zhÞ ln

�
zh þ 1

zh − 1

���
;

ð2:14Þ

where zp=h ≡ Ep=h

jkj .
4 Replacing the expression on the right-

hand side (rhs) of Eh with

Eh ¼ jkj coth
�
k2 þ jkj

jkj þ Eh

�
;

the dependence of dimensionless quantities k0=mD for k0 ¼
Ep and k0 ¼ Eh on jkj=mD can be determined numerically.
Two different energy branches corresponding toDþ andD−
arise. They are demonstrated in Fig. 2.
In what follows, we will argue that the energy branch

arising from Dþ ¼ 0 (D− ¼ 0) [blue (red) curve in Fig. 2]
corresponds to a particle (hole) with positive (negative)
helicity (H) to chirality (χ) ratio. To do this, let us
determine the eigenvectors of the numerators in (2.12),

N � ≡ γ0∓γ · k̂ ¼
�

0 1∓σ · k̂

1� σ · k̂ 0

�
: ð2:15Þ

Here, σ ¼ ðσ1; σ2; σ3Þ are the three Pauli matrices.5 For the
Dþ branch, N þ has the following two nontrivial eigen-
vectors:

Wð1Þ
þ ¼

�
0; 0;

k3 þ jkj
k1 þ ik2

; 1

�
;

Wð2Þ
þ ¼

�
k3 − jkj
k1 þ ik2

; 1; 0; 0

�
: ð2:16Þ

Defining the helicity

H ¼ Σ · k̂; ð2:17Þ

with Σ≡ diagðσ; σÞ, and right-chirality (R) as well as left-
chirality (L) operators

PR ≡ 1þ γ5
2

; PL ≡ 1 − γ5
2

; ð2:18Þ

it turns out that WðiÞ
þ ; i ¼ 1; 2 satisfy

PRW
ð1Þ
þ ¼ Wð1Þ

þ ; HWð1Þ
þ ¼ þWð1Þ

þ ;

PLW
ð2Þ
þ ¼ Wð2Þ

þ ; HWð2Þ
þ ¼ −Wð2Þ

þ : ð2:19Þ

D

D

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

k mD

k 0
m

D

FIG. 2 (color online). Two different energy branches, corre-
sponding to the energy dispersion relations Dþ ¼ 0 of particles
(blue curve) and D− ¼ 0 of holes (red curve). The denominators
D� are defined in (2.13). The particles/holes, whose energy
dispersion relations are demonstrated by these two branches, have
positive/negative helicity (H) to chirality (χ) ratio.

4Here, k0 is replaced by Ep [first expression in (2.14)] and Eh
[second expression in (2.14)].

5To derive (2.15), we have chosen the following chiral
representation of Dirac γ-matrices:

γμ ¼
�

0 σμ

σ̄μ 0

�
; γ5 ¼

�−1 0

0 1

�
;

with σμ ¼ ð1; σÞ and σ̄μ ¼ ð1;−σÞ.
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Having in mind that right-handed (left-handed) particles
have positive (negative) chirality, χ ¼ þ1 (χ ¼ −1), the
relations in (2.19) show that fermions, whose energy
dispersion relation is given by the Dþ branch in Fig. 2,
have a positive helicity to chirality ratio, Hχ ¼ þ1. They are
therefore particles. Similarly, it can be shown that for D−,
the eigenvectors of N − are given by

Wð1Þ− ¼
�
0; 0;

k3 − jkj
k1 þ ik2

; 1

�
;

Wð2Þ− ¼
�
k3 þ jkj
k1 þ ik2

; 1; 0; 0
�
; ð2:20Þ

which satisfy

PRWð1Þ− ¼ Wð1Þ− ; HWð1Þ− ¼ −Wð1Þ− ;

PLWð2Þ− ¼ Wð2Þ− ; HWð2Þ− ¼ þWð2Þ
þ : ð2:21Þ

These relations indicate that the fermionic modes, whose
energy dispersion relation is given by the D− branch in
Fig. 2, have a negative helicity to chirality ratio, H

χ ¼ −1.
According to the standard terminology of relativistic
quantum mechanics, they are therefore holes. In conclu-
sion, the spectrum of Dirac particles at high enough
temperature consists of two different soft excitations with
positive and negative helicity to chirality ratio. In Sec. III,
the above HTL approximation will be used to determine the
general structure of one-loop self-energy of fermions in the
limit of soft momenta and weak magnetic fields. This will
eventually lead to hot magnetized plasminos in these limits
(see Sec. V).

B. Magnetized fermions in a cold QED plasma:
The Ritus eigenfunction method

In this section, we will solve the Dirac equation of
positively and negatively charged fermions in the presence
of an external magnetic field

ðγ · ΠðqÞ −mqÞψ ¼ 0; ð2:22Þ

with ΠðqÞ
μ ≡ i∂μ þ eqAext

μ , and mq the fermionic mass.
Here, e > 0 is the unit electric charge, and q ¼ �1 indicate
the positive and negative charges of Dirac fermions. The
gauge field Aext

μ ¼ ð0; 0; Bx1; 0Þ is chosen so that it yields a
magnetic field B, aligned in the positive third direction,
B ¼ Be3 with B > 0. In the method originally introduced
by V. I. Ritus in [18], and generalized recently in [8,21] for
multiflavor systems, (2.22) can be solved by making use of

the ansatz ψ ðqÞ ¼ EðqÞ
p u ~p for a Dirac fermion with charge q.

The Ritus eigenfunction EðqÞ
p then satisfies

ðγ · ΠÞEðqÞ
p ¼ EðqÞ

p ðγ · ~ppÞ; ð2:23Þ

and the free Dirac spinor u ~p satisfies ðp~p −mÞu ~p ¼ 0. As it
turns out, the Ritus momentum ~pp is given by

~pp ≡ ðp0; 0;−sq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjqeBj

p
; p3Þ; ð2:24Þ

where p labels the Landau levels in the external magnetic
field B, and sq ≡ sgnðqeBÞ. The Ritus eigenfunction for
Dirac fermions with charge q can be derived from (2.23)
and (2.24), and reads

EðqÞ
p ðx; pÞ ¼ e−ip̄·x̄PðqÞ

p ðx1; p2Þ; ð2:25Þ

where p̄≡ ðp0; 0; p2; p3Þ, x̄≡ ðx0; 0; x2; x3Þ, and

PðqÞ
p ≡ PðqÞ

þ f
þsq
p þ ΠpPðqÞ− f

−sq
p ; ð2:26Þ

with Pð�Þ
þ ¼ P� and Pð�Þ− ¼ P∓, as well as

P� ≡ 1� iγ1γ2
2

: ð2:27Þ

In (2.26), Πp ≡ 1 − δp0 considers the spin degeneracy in

the Landau level p (see below). For eB > 0, Pð�Þ
p for

positively (q ¼ þ1) and negatively (q ¼ −1) charged
particles read

Pð�Þ
p ¼ P�f�p þ ΠpP∓f∓p ; ð2:28Þ

respectively. Here, f�p ðx1; p2Þ are given by

fþp ¼ Φpðx1 − l2
qp2Þ; for p ¼ 0; 1; 2;…;

f−p ¼ Φp−1ðx1 − l2
qp2Þ; for p ¼ 1; 2;…; ð2:29Þ

with

ΦpðxÞ≡ ap exp

�
− x2

2l2
q

�
Hp

�
x
lq

�
; ð2:30Þ

lq ≡ ðjqeBjÞ−1=2 and the normalization factor ap≡
ð2pp! ffiffiffi

π
p

lqÞ−1=2. In (2.30), HpðxÞ is the Hermite poly-
nomial of order p. Using the above results, it is easy to
determine the free propagator of Dirac fermions in the
coordinate space at zero temperature [8,21],

SðqÞðx; yÞ ¼
X∞
p¼0

Z
d3p̄
ð2πÞ3 e

ip̄·ðx̄−ȳÞ

× PðqÞ
p ðx1; p2Þ

1

~pp −mq
PðqÞ
p ðy1; p2Þ: ð2:31Þ

Here, ~pp and PðqÞ
p for Dirac fermions with charge q are

given in (2.24) and (2.26), respectively.
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In what follows, we will derive the general structure of a
free fermion propagator in the presence of a constant
magnetic field at zero temperature in the momentum space.
To do this, let us first consider the free fermion propagator
(2.31) in the coordinate space. The free fermion propagator
in the momentum space is given by performing an appro-
priate inverse Fourier transformation, where, instead of the
standard plane wave basis, the Ritus basis (2.25) is used:

SðqÞn ðk; k0Þ ¼
Z

d4xd4yEðqÞ
n ðx; kÞSðqÞðx; yÞEðqÞ†

n ðy; k0Þ:

ð2:32Þ

Plugging EðqÞ
n ðx; kÞ from (2.26) on the rhs of (2.32), and

performing the integrations over x̄ ¼ ðx0; 0; x2; x3Þ as well
as ȳ ¼ ðy0; 0; y2; y3Þ, we arrive first at

SðqÞn ðk; k0Þ ¼ ð2πÞ3δ3ðk̄ − k̄0ÞSðqÞn ð~kÞ; ð2:33Þ

with

SðqÞn ð~kÞ ¼
X∞
p¼0

WðqÞ
pn

1

~kp −mq

WðqÞ
pn : ð2:34Þ

Here, WðqÞ
pn is defined by

WðqÞ
pn ≡

Z þ∞

−∞
dz1P

ðqÞ
p ðz1; k2ÞPðqÞ

n ðz1; k2Þ: ð2:35Þ

Using at this stage the definition of PðqÞ
p from (2.26),

the properties of the projectors PðqÞ
� PðqÞ

� ¼ PðqÞ
� and

PðqÞ
� PðqÞ∓ ¼ 0, and the integrationZ þ∞

−∞
dx1f

�sq
p ðx1; k2Þf�sq

n ðx1; k2Þ ¼ δpn; ð2:36Þ

which arises from the standard integration over Hermite
polynomialsZ þ∞

−∞
dxe−x2HpðxÞHnðxÞ ¼ 2pp!

ffiffiffi
π

p
δpn; ð2:37Þ

we arrive, after some calculation, at

WðqÞ
pn ¼ ½PðqÞ

þ þ ΠpΠnPðqÞ− �δpn: ð2:38Þ

Plugging then (2.38) in (2.3), splitting ~k into longitudinal
and transverse parts, ~k ¼ ~k∥ þ ~k⊥ with ~k∥ ≡ γ∥ · k∥ and
~k⊥ ≡ γ⊥ · ~k⊥, and k∥ ≡ ðk0; 0; 0; k3Þ and ~k⊥ ¼
ð0; 0;−sq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjqeBjp

; 0Þ as well as γ∥ ≡ ðγ0; 0; 0; γ3Þ and
γ⊥≡ð0;γ1;γ2;0Þ, and use eventually 6

PðqÞ
� γμ∥ ¼ γμ∥PðqÞ

� ; PðqÞ
� γμ⊥ ¼ γμ⊥PðqÞ∓ ; ð2:39Þ

we obtain the free fermion propagator (2.31) in the
momentum space,

SðqÞn ð~kÞ ¼ ðPðqÞ
þ þ ΠnPðqÞ− Þð ~k∥ þmqÞ þ Πn

~k⊥
~k2n −m2

q

: ð2:40Þ

Here,Π2
n ¼Πn andP

ðqÞ
þ þPðqÞ− ¼ 1 are also used. According

to (2.40), the free fermion propagator for positively and
negatively charged particles in the LLL and HLL at zero
temperature reads

8<
:

For n ¼ 0 Sð�Þ
0 ð~kÞ ¼ P�

~
k∥−mq

;

For n ≠ 0 Sð�Þ
n ð~kÞ ¼ 1

~
kn−mq

;
ð2:41Þ

where the superscripts � on Sð�Þ
n stand for q ¼ �1. The

appearance of the projectorsP� in S�0 reflects the fact that in
the LLL, the charged fermions have either a positive (pos-
itively charged fermions) or a negative spin (negatively
charged fermions), while in HLL fermions a certain double
spin degeneracy occurs. In other words, in HLL positively
(negatively) charged particles have both positive and negative
spin orientations. Let us also notice that the appearance of ~k∥

in the denominator of Sð�Þ
0 is related with the expected

dimensional reduction from D ¼ 4 to D ¼ 2 in the LLL
[5]. In the next section, wewill derive the general structure of
theone-loopperturbativecorrection to the fermionself-energy
of positively and negatively charged particles forB ≠ 0 and at
T ≠ 0. The resultswill thenbe combinedwith (2.41), and lead
to thegeneral structureof theone-loopcorrectedpropagatorof
magnetized fermions at zero and nonzero temperatures.

III. ONE-LOOP SELF-ENERGY OF
MAGNETIZED FERMIONS AT ZERO
AND NONZERO TEMPERATURES

In this section, we will determine the one-loop self-
energy contribution of charged fermions in the presence of
a constant magnetic field at zero and nonzero temperatures.
In Sec. III A, we will first consider the zero temperature
case, and will show that the one-loop fermion self-energy,

ΣðqÞ
n ð~kÞ, has the following general structure:

ΣðqÞ
n ¼ ~k∥ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ ~k⊥DðqÞ

þmqðPþC
ðqÞ
þ þ P−CðqÞ− Þ; ð3:1Þ

where the superscripts ðqÞ stand for positively (q ¼ þ1)
and negatively (q ¼ −1) charged fermions. According to
the notations introduced in the previous section, k∥ ¼
ðk0; 0; 0; k3Þ and ~k⊥ ¼ ð0; 0;−sq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqeBjp

; 0Þ.6In (2.39), μ∥ and μ⊥ denote μ¼0;3 and μ ¼ 1; 2, respectively.
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InSec. III B,wewill then showthat at finite temperature an
additional splitting between the zero and the third compo-
nents of k∥ occurs. The general structure of Σ

ðqÞ
n ð~kÞ in a hot

and magnetized QED plasma therefore reads

ΣðqÞ
n ¼ k0ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ k3ðPþB

ðqÞ
þ þ P−BðqÞ− Þ

þ ~k⊥DðqÞ þmqðPþC
ðqÞ
þ þ P−CðqÞ− Þ: ð3:2Þ

Let us notice that the additional splitting between the zero
and third components occurs because of broken Lorentz
invariance induced by the heat bath.
In this section, the coefficients AðqÞ

� ; DðqÞ and CðqÞ
� from

(3.1) and AðqÞ
� ; BðqÞ

� ; DðqÞ and CðqÞ
� from (3.2) will be analyti-

cally determined up to a summation over Landau levels and a
number of integrations. The latter will be then numerically
performed in Secs. VA andVB, where the spectrum of Dirac
fermions in a magnetized QED plasma will be determined at
zero and nonzero temperatures. The results will eventually be
compared with the results presented in Sec. II A for hot QED
plasma and for vanishing magnetic fields.

A. One-loop self-energy of magnetized fermions
at zero temperature

The one-loop self-energy of magnetized fermions at zero
temperature is given by combining the free fermion
propagator (2.31), the free photon propagator Dμνðp0Þ ¼
gμν

p02 in the Feynman gauge and the corresponding vertex

−eqγμ of a photon and a magnetized fermion pair,

iΣðqÞ
n ðx; yÞ ¼ e2q2

X∞
l¼0

Z
d3p̄
ð2πÞ3

d4p0

ð2πÞ4 e
ip̄·ðx̄−ȳÞeip0·ðx−yÞ

× γμPðqÞ
l ðx1; q2Þ

ðp~l þmqÞ
ð ~p2

l −m2
qÞ
PðqÞ
l ðy1; p2Þγν

gμν
p02 :

ð3:3Þ

To derive the fermion self-energy in the momentum space,
we use, as in the previous section, an appropriate inverse
Fourier transformation, using the Ritus eigenfunctions En
from (2.25),

ΣðqÞ
n ðk; k0Þ ¼

Z
d4xd4yEðqÞ

n ðx; kÞΣðqÞ
n ðx; yÞEðqÞ†ðy; k0Þ:

ð3:4Þ

After performing the integration over x̄ and ȳ, we arrive at

ΣðqÞ
n ðk; k0Þ ¼ ð2πÞ3δ3ðk̄ − k̄0ÞΣðqÞ

n ð~kÞ; ð3:5Þ

with

iΣðqÞ
n ð~kÞ

¼ e2q2
X∞
l¼0

Z
d3p̄
ð2πÞ3

dp0
1

2π
dx1dy1e−ip

0
1
ðx1−y1Þ

×
N ðqÞ

nl ðx1; y1; k2; p2Þ
½ðk∥ − p∥Þ2 − p02

1 − ðk2 − p2Þ2�½p2
∥ − 2ljqeBj −m2

q�
;

ð3:6Þ

and the numerator N ðqÞ
nl ðx1; y1; k2; p2Þ defined by

N ðqÞ
nl ðx1; y1; k2; p2Þ

≡WμðqÞ
nl ðx1; k2; p2Þð ~pl þmqÞWðqÞν

ln ðy1;p2; k2Þgμν; ð3:7Þ

and

WðqÞμ
mn ðz1;l1;l2Þ≡ PðqÞ

m ðz1;l1ÞγμPðqÞ
n ðz1;l2Þ: ð3:8Þ

To evaluate the numerator N ðqÞ
nl ðx1; y1; k2; p2Þ, we use the

definition of PðqÞ
n from (2.26), the properties of PðqÞ

�
projectors, PðqÞ

� PðqÞ
� ¼ PðqÞ

� and PðqÞ
� PðqÞ∓ ¼ 0, the relations

from (2.39) and the following Dirac algebra:

γ∥ · γ⊥ ¼ 0;

γ∥ · γ∥ ¼ γ⊥ · γ⊥ ¼ 2;

γμ∥γαγμ∥ ¼ −2γα⊥ ; γμ⊥γαγμ⊥ ¼ −2γα∥ ; ð3:9Þ

and arrive after some computation at

N ðqÞ
nl ðx1; y1; k2; p2Þ ¼ −2f ~p∥½PðqÞ

þ Πlf
þsq
n ðx1; k2Þf−sql ðx1; p2Þf−sql ðy1; p2Þfþsq

n ðy1; k2Þ
þ PðqÞ− Πnf

−sq
n ðx1; k2Þfþsq

l ðx1; p2Þfþsq
l ðy1; p2Þf−sqn ðy1; k2Þ�

þ ~p⊥½PðqÞ
þ ΠnΠlf

−sq
n ðx1; k2Þf−sql ðx1; p2Þfþsq

l ðy1; p2Þfþsq
n ðy1; k2Þ

þ PðqÞ− ΠnΠlf
þsq
n ðx1; k2Þfþsq

l ðx1; p2Þf−sql ðy1; p2Þf−sqn ðy1; k2Þ�
−mq½PðqÞ

þ f
þsq
n ðx1; k2Þðfþsq

l ðx1; p2Þfþsq
l ðy1; p2Þ þ Πlf

−sq
l ðx1; p2Þf−sql ðy1; p2ÞÞfþsq

n ðy1; k2Þ
þ PðqÞ− Πnf

−sq
n ðx1; k2ÞðΠlf

−sq
l ðx1; p2Þf−sql ðy1; p2Þ þ f

þsq
l ðx1; p2Þfþsq

l ðy1; p2ÞÞf−sqn ðy1; k2Þ�g:
ð3:10Þ
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Plugging at this stage N ðqÞ
nl ðx1; y1; k2; p2Þ from (3.10) in (3.6), using Pð�Þ

þ ¼ P� and Pð�Þ− ¼ P∓, performing the
integration over x1 and y1, and evaluating the integrals

Il ≡
Z

d2p∥

ð2πÞ3
1

ðp2
∥ −M2

lÞððk∥ − p∥Þ2 − p02⊥Þ
;

Jl ≡
Z

d2p∥

ð2πÞ3
~p∥

ðp2
∥ −M2

lÞððk∥ − p∥Þ2 − p02⊥Þ
; ð3:11Þ

by making use of the method introduced in the Appendix and the standard Feynman integration method, we arrive after a
lengthy but straightforward computation at [see also (3.1)]

ΣðqÞ
n ð~kÞ ¼ ~k∥ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ ~k⊥DðqÞ þmqðPþC

ðqÞ
þ þ P−CðqÞ− Þ; ð3:12Þ

with the coefficients given by

AðþÞ
þ ¼ −2e2q2X∞

l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠlG1ðκ;M;mÞJ lðp0⊥;k∥Þ;

AðþÞ− ¼ −2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κnΠnG1ðκ;M0; m0ÞJ lðp0⊥;k∥Þ;

DðþÞ ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnΠlG2ðκ;M00; m00;M00 − 1; m00 − 1ÞIlðp0⊥;k∥Þ;

CðþÞ
þ ¼ þ2e2q2

X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κ½lΠlG1ðκ;M;mÞ þ G1ðκ;M00; m00Þ�Ilðp0⊥;k∥Þ;

CðþÞ− ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κΠn½nlΠlG1ðκ;M00 − 1; m00 − 1Þ þ nG1ðκ;M0; m0Þ�Ilðp0⊥;k∥Þ; ð3:13Þ

for positively charged particles, and

Að−Þ
þ ¼ −2e2q2X∞

l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnG1ðκ;M;mÞJ lðp0⊥;k∥Þ;

Að−Þ− ¼ −2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κnΠlG1ðκ;M0; m0ÞJ lðp0⊥;k∥Þ;

Dð−Þ ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnΠlG2ðκ;M00; m00;M00 − 1; m00 − 1ÞIlðp0⊥;k∥Þ;

Cð−Þ
þ ¼ þ2e2q2

X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κΠn½lG1ðκ;M;mÞ þ ΠlG1ðκ;M00; m00Þ�Ilðp0⊥;k∥Þ;

Cð−Þ− ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κ½nlG1ðκ;M00 − 1; m00 − 1Þ þ nΠlG1ðκ;M0; m0Þ�Ilðp0⊥;k∥Þ; ð3:14Þ

for negatively charged particles.
In the above relations, k∥ ¼ ðk0; 0; 0; k3Þ, p0⊥ ≡ k⊥ − p⊥ with k⊥ ¼ ð0; k1; k2; 0Þ, M2

l ≡ 2ljqeBj þm2
q, κ≡ l2

qp02⊥
2

with
lq ¼ jqeBj−1=2, and Giðκ; α; βÞ; i ¼ 1; 2 are defined by

G1ðκ; α; βÞ≡ κα−β½U−β
α−βþ1ðκÞ�2;

G2ðκ; α; β; γ; δÞ ¼ κα−β½U−β
α−βþ1ðκÞ�½U−δ

γ−δþ1ðκÞ�; ð3:15Þ
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where Ub
aðκÞ is the confluent hypergeometric function of the second kind [22]. Moreover, we have

m ¼ minðn;l − 1Þ; M ¼ maxðn;l − 1Þ;
m0 ¼ minðn − 1;lÞ; M0 ¼ maxðn − 1;lÞ;
m00 ¼ minðn;lÞ; M00 ¼ maxðn;lÞ; ð3:16Þ

and

Ilðp0⊥;k∥Þ≡ 1

2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2

∥M
2
l − ðp02⊥ − k2

∥ −M2
lÞ2

q arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2

∥M
2
l − ðp02⊥ − k2

∥ −M2
lÞ2

q
p02⊥ − k2

∥ þM2
l

!
;

J lðp0⊥;k∥Þ≡ 1

4πk2⊥

8<
:− ðp02⊥ − k2

∥ −M2
lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k2
∥M

2
l − ðp02⊥ − k2

∥ −M2
lÞ2

q arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2

∥M
2
l − ðp02⊥ − k2

∥ −M2
lÞ2

q
p02⊥ − k2

∥ þM2
l

!
− 1

2
ln
M2

l

p02⊥

9=
;: ð3:17Þ

These integrals arise from Il and Jl in (3.11). As aforementioned, the summation over Landau levels l and the two-
dimensional integration over p0⊥ appearing in (3.13) and (3.14) will be numerically performed in Sec. VA. At this stage, let

us only notice that in the LLL (n ¼ 0) AðþÞ− ; DðþÞ and CðþÞ− from (3.13) as well as Að−Þ
� ; Dð−Þ and Cð−Þ

� from (3.14) vanish.

The general structure of Σð�Þ
n for positively and negatively charged fermions in the lowest and higher Landau levels is

therefore given by

ΣðqÞ
n ¼

8>><
>>:

Pþð ~k∥A
ðþÞ
þ þmqC

ðþÞ
þ Þ; for n ¼ 0; q ¼ þ1;

0; for n ¼ 0; q ¼ −1;
~k∥ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ ~k⊥DðqÞ þmqðPþC

ðqÞ
þ þ P−CðqÞ− Þ; for n ≠ 0; q ¼ �1.

ð3:18Þ

In Sec. IV, we will combine the above result from (3.18)
with the general structure of the free fermion propagator
from (2.41), and will derive the general structure of the one-
loop corrected fermion propagator for nonvanishing mag-
netic fields at zero temperature.

B. One-loop self-energy of magnetized fermions
at finite temperature

In this section, we will show that the general structure of

ΣðqÞ
n for B ≠ 0 and at T ≠ 0 is given by (3.2). We will, in

particular, determine the coefficients AðqÞ
� ; BðqÞ

� ; DðqÞ and

CðqÞ
� appearing in (3.2) for B ≠ 0 and at finite temperature T

and chemical potential μ.
To start, let us consider iΣðqÞ

n from (3.6) with

N ðqÞ
nl ðx1; y1; k2; p2Þ presented in (3.10). To determine

ΣðqÞ
n at finite temperature and chemical potential, all we

have to do is to evaluate the integrals appearing in (3.11) at
finite T and μ. We thus focus only on the integrals

ITl ¼ iT
Xþ∞

n¼−∞

Z
dp3

2π

1

ðp2
∥ −M2

lÞððk∥ − p∥Þ2 − p02⊥Þ
;

JTl ¼ iT
Xþ∞

n¼−∞

Z
dp3

2π

~p∥

ðp2
∥ −M2

lÞððk∥ − p∥Þ2 − p02⊥Þ
;

ð3:19Þ

that arise from (3.11) with the standard replacement

Z
d2p∥

ð2πÞ2 → iT
Xþ∞

n¼−∞

Z
dp3

2π
: ð3:20Þ

Here, p0 ¼ iωn − μ with the fermionic Matsubara frequen-
cies ωn ¼ ð2nþ 1ÞπT. To compute these integrals, we will
use two different methods. First, using the method pre-
sented in [8], we will evaluate them without any approxi-
mation (see Sec. III B 1). We will then perform the HTL
approximation in a weak magnetic field, characterized by
k3 ≪ T as well as by

ffiffiffiffiffiffi
eB

p
≪ jp0⊥j ≪ p3 ∼ T; ð3:21Þ

and determine ITl and JTl from (3.19) within this approxi-
mation for μ ¼ 0 (see Sec. III B 2).

1. First method: Exact results

Using the standard Feynman parametrization, the inte-
grals ITl and JTl from (3.19) are given by

ITl ¼ i
Z

1

0

dx
Z

dp3

2π
Sð0Þ
2 ðωxÞ;

JTl ¼ i
Z

1

0

dx
Z

dp3

2π
½γ0S̄ð0Þ

2 ðωxÞ þ x ~k∥S
ð0Þ
2 ðωxÞ�; ð3:22Þ
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where SðmÞ
l ðωÞ as well as S̄ðmÞ

l ðωÞ are defined by [8]

SðmÞ
l ðωÞ≡ T

Xþ∞

n¼−∞
ðl2

0Þm
ðl2

0 − ω2Þl ;

S̄ðmÞ
l ðωÞ≡ T

Xþ∞

n¼−∞
ðl2

0Þmþ1
2

ðl2
0 − ω2Þl ; ð3:23Þ

with l ≥ 1 and m ≥ 0. Moreover, ω2
x ≡ p2

3 þ xp02⊥ −
xð1 − xÞk2

∥ þ ð1 − xÞM2
l with M2

l ¼ 2ljqeBj þm2
q. To

proceed, we use

Sð0Þ
1 ðωÞ ¼ 1

2ω
ð1 − NfðωÞÞ;

S̄ð0Þ
1 ðωÞ ¼ −

1

2
N̄fðωÞ; ð3:24Þ

with NfðωÞ ¼ nþf ðωÞ þ n−f ðωÞ and N̄fðωÞ ¼ nþf ðωÞ−
n−f ðωÞ, with the fermion distribution function

n�f ðωÞ ¼
1

eβðω∓μÞ þ 1
; ð3:25Þ

and the following relations for l ≥ 2 [8]:

Sð0Þ
l ðωÞ ¼ 1

2ðl − 1Þω
dSð0Þ

l−1ðωÞ
dω

;

S̄ð0Þ
l ðωÞ ¼ 1

2ðl − 1Þω
dS̄ð0Þ

l−1ðωÞ
dω

: ð3:26Þ

We arrive therefore at

Sð0Þ
2 ðωÞ ¼ − 1

4ω3
þ NfðωÞ

4ω3
− N0

fðωÞ
4ω2

;

S̄ð0Þ
2 ðωÞ ¼ −

N̄0
fðωÞ
4ω

: ð3:27Þ

The general structure of ΣðqÞ
n ð~kÞ at finite temperature and

chemical potential is thus given by [see also (3.2)]

ΣðqÞ
n ð~kÞ ¼ k0ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ k3ðPþB

ðqÞ
þ þ P−BðqÞ− Þ þ ~k⊥DðqÞ þmqðPþC

ðqÞ
þ þ P−CðqÞ− Þ; ð3:28Þ

with the coefficients given by

AðþÞ
þ ¼ −2e2q2X∞

l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠlG1ðκ;M;mÞJ ð0ÞT

l ðp0⊥;k∥Þ;

AðþÞ− ¼ −2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κnΠnG1ðκ;M0; m0ÞJ ð0ÞT

l ðp0⊥;k∥Þ;

BðþÞ
þ ¼ −2e2q2

X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠlG1ðκ;M;mÞJ ð3ÞT

l ðp0⊥;k∥Þ;

BðþÞ− ¼ −2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κnΠnG1ðκ;M0; m0ÞJ ð3ÞT

l ðp0⊥;k∥Þ;

DðþÞ ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnΠlG2ðκ;M00; m00;M00 − 1; m00 − 1ÞIT

lðp0⊥;k∥Þ;

CðþÞ
þ ¼ þ2e2q2

X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κ½lΠlG1ðκ;M;mÞ þ G1ðκ;M00; m00Þ�IT

lðp0⊥;k∥Þ;

CðþÞ− ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κΠn½nlΠlG1ðκ;M00 − 1; m00 − 1Þ þ nG1ðκ;M0; m0Þ�IT

lðp0⊥;k∥Þ; ð3:29Þ

for the positively charged particles, and
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Að−Þ
þ ¼ −2e2q2X∞

l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnG1ðκ;M;mÞJ ð0ÞT

l ðp0⊥;k∥Þ;

Að−Þ− ¼ −2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κnΠlG1ðκ;M0; m0ÞJ ð0ÞT

l ðp0⊥;k∥Þ;

Bð−Þ
þ ¼ −2e2q2

X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnG1ðκ;M;mÞJ ð3ÞT

l ðp0⊥;k∥Þ;

Bð−Þ− ¼ −2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κnΠlG1ðκ;M0; m0ÞJ ð3ÞT

l ðp0⊥;k∥Þ;

Dð−Þ ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κlΠnΠlG2ðκ;M00; m00;M00 − 1; m00 − 1ÞIT

lðp0⊥;k∥Þ;

Cð−Þ
þ ¼ þ2e2q2

X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κΠn½lG1ðκ;M;mÞ þ ΠlG1ðκ;M00; m00Þ�IT

lðp0⊥;k∥Þ;

Cð−Þ− ¼ þ2e2q2
X∞
l¼0

Z
d2p0⊥
ð2πÞ2

1

n!l!
e−κ½nlG1ðκ;M00 − 1; m00 − 1Þ þ nΠlG1ðκ;M0; m0Þ�IT

lðp0⊥;k∥Þ; ð3:30Þ

for negatively charged particles.
In the above relations, κ is again given by κ ¼ l2qp02⊥

2
, Giðκ; α; βÞ; i ¼ 1; 2 are defined in (3.15), and m;m0; m00

as well as M;M0 and M00 are presented in (3.16). Moreover, IT
lðp0⊥;k∥Þ and J ðiÞT

l ðp0⊥;k∥Þ; i ¼ 0; 3 are given by

IT
l ≡

Z
1

0

dx
Z

dp3

2π
Sð0Þ
2 ðωxÞ;

J ð0ÞT
l ≡

Z
1

0

dx
Z

dp3

2π

�
1

k0
S̄ð0Þ
2 ðωxÞ þ xSð0Þ

2 ðωxÞ
�
;

J ð3ÞT
l ≡

Z
1

0

dx
Z

dp3

2π
xSð0Þ

2 ðωxÞ; ð3:31Þ

with Sð0Þ
2 ðωÞ and S̄ð0Þ

2 ðωÞ from (3.27). Let us notice that, for μ ¼ 0, because of J ð0ÞT
l ¼ J ð3ÞT

l , we obtain AðqÞ
� ¼ BðqÞ

� for
both q ¼ þ1 and q ¼ −1. As in the T ¼ 0 case, the summation over Landau levels and the two-dimensional integration over
p0⊥, appearing in (3.29) and (3.30), as well as the integration over p3 and x, appearing in (3.31), are to be numerically

performed. Here, similar to the T ¼ 0 case, in the LLL (n ¼ 0), all the coefficients Að−Þ
� ; Bð−Þ

� ; Dð−Þ and Cð−Þ
� for negatively

chargedparticlesvanish.Similarly, for positivelychargedparticles, thecoefficientsAðþÞ− ; BðþÞ− ; DðþÞ andCðþÞ− vanish forn ¼ 0.

The general structure of Σð�Þ
n in the lowest as well as higher Landau levels is therefore given by

ΣðqÞ
n ¼

8>><
>>:

Pþðk0AðþÞ
þ þ k3B

ðþÞ
þ þmqC

ðþÞ
þ Þ; for n ¼ 0; q ¼ þ1;

0; for n ¼ 0; q ¼ −1;
k0ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ k3ðPþB

ðqÞ
þ þ P−BðqÞ− Þ þ ~k⊥DðqÞ þmqðPþC

ðqÞ
þ þ P−CðqÞ− Þ; for n ≠ 0; q ¼ �1.

ð3:32Þ

In Sec. IV, we will combine these results with the general structure of the free propagator from (2.41), and will derive the
general structure of the one-loop corrected fermion propagator for nonvanishing magnetic field at finite temperature.

2. Second method: HTL approximation

In this section, we will evaluate the integrals (3.19), using the modified HTL approximation (3.21). For simplicity, we
consider the μ ¼ 0 case. Let us introduce, as in Sec. II A,
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E2
1 ≡ p2

3 þM2
l;

E2
2 ≡ ðp3 − k3Þ2 þ p02⊥; ð3:33Þ

and rewrite the integrals appearing in (3.19) as

ITlðp0⊥;k∥Þ ¼ i
Z

dp3

2π
Ξð3Þ
l ðp3;p0⊥;k∥Þ;

JTlðp0⊥;k∥Þ ¼ i
Z

dp3

2π
½γ0Ξð0Þ

l ðp3;p0⊥;k∥Þ

− γ3p3Ξ
ð3Þ
l ðp3;p0⊥;k∥Þ�; ð3:34Þ

with

Ξð0Þ
l ≡ T

Xþ∞

n¼−∞
iωnΔfðiωn; E1ÞΔbðk0 − iωn; E2Þ;

Ξð3Þ
l ≡ T

Xþ∞

n¼−∞
Δfðiωn; E1ÞΔbðk0 − iωn; E2Þ; ð3:35Þ

similar to (2.5), with Δfðp0; E1Þ and Δbðk0 − p0; E2Þ
defined in (2.3), and Ei; i ¼ 1; 2 given in (3.33). The
summation over Matsubara frequencies can be performed
using the same method as described in Sec. II A. Similar to
(2.6), we therefore have

Ξð0Þ
l ¼ − X

s1;s2¼�

s2
4E2

1þ fbðs2E2Þ − ffðs1E1Þ
k0 − s1E1 − s2E2

;

Ξð3Þ
l ¼ −

X
s1;s2¼�

s1s2
4E1E2

1þ fbðs2E2Þ − ffðs1E1Þ
k0 − s1E1 − s2E2

; ð3:36Þ

with the distribution functions ff=bðEÞ defined in (2.7), and
Ei; i ¼ 1; 2 given in (3.33). Under the modified HTL
approximation introduced in (3.21), we set

E1 ≈ p3 þ
M2

l

2p3

;

E2 ≈ p3 − k3 þ
p02⊥
2p3

; ð3:37Þ

and have consequently

ffðE1Þ ≈ ffðp3Þ þ
M2

l

2p3

dffðp3Þ
dp3

;

fbðE2Þ ≈ fbðp3Þ þ
�
p02⊥
2p3

− k3

�
dfbðp3Þ
dp3

: ð3:38Þ

Using furthermore the relation ffð−ωÞ ¼ 1 − ffðωÞ and
fbð−ωÞ ¼ −1 − fbðωÞ, we arrive after some computation
at

ITl ¼ iIT
l ;

JTl ¼ ik0J
ð0ÞT
l þ ik3J

ð3ÞT
l ; ð3:39Þ

with

IT
lðp0⊥;k∥Þ ¼

1

8πT2

�
Ið3Þ0 − 2k3T

k2
∥

½Ið2Þb þ Ið2Þf � −M2
lk3

Tk2
∥
Īð3Þf þ 2k23

k2
∥
Īð2Þb þ M2

l

2T2

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

− 1

�
Īð4Þf

þ
�ðk20 þ k23Þðp02⊥ −M2

lÞ
ðk2

∥Þ2
− 1

�
Ið3Þf þ

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

þ 1

�
Ið3Þb

þ p02⊥
2T2

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

þ 1

�
Īð4Þb þ k3

T

�−2k20p02⊥ þM2
lðk20 þ k23Þ

ðk2
∥Þ2

− 1

�
Īð3Þb

�
;

J ð0ÞT
l ðp0⊥;k∥Þ ¼

1

4πT

�
− T
k2
∥
½Ið1Þb þ Ið1Þf � þ k3ðp02⊥ −M2

lÞ
ðk2

∥Þ2
½Ið2Þb þ Ið2Þf � − M2

l

2Tk2
∥
Īð2Þf þM2

lk3ðp02⊥ −M2
lÞ

2T2ðk2
∥Þ2

Īð3Þf

þ k3
k2
∥
Īð1Þb −

�
p02⊥ðk20 þ k23Þ − 2k23M

2
l

2Tðk2
∥Þ2

�
Īð2Þb þ k3p02⊥ðp02⊥ −M2

lÞ
2T2ðk2

∥Þ2
Īð3Þb

�
;

J ð3ÞT
l ðp0⊥;k∥Þ ¼

1

8πT

�
Ið2Þ0

k3
− 2T
k2
∥
½Ið1Þb þ Ið1Þf � − M2

l

Tk2
∥
Īð2Þf þ 2k3

k2
∥
Īð1Þb þ M2

l

2T2k3

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

− 1

�
Īð3Þf

þ 1

k3

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

− 1

�
Ið2Þf þ 1

k3

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

þ 1

�
Ið2Þb

þ p02⊥
2T2k3

�ðk20 þ k23Þðp02⊥ −M2
lÞ

ðk2
∥Þ2

þ 1

�
Īð3Þb þ 1

T

�−2k20p02⊥ þM2
lðk20 þ k23Þ

ðk2
∥Þ2

− 1

�
Īð2Þb

�
: ð3:40Þ

N. SADOOGHI AND F. TAGHINAVAZ PHYSICAL REVIEW D 92, 025006 (2015)

025006-12



In the above relations

IðnÞ0 ðzÞ≡
Z

∞

z

dy
yn

;

IðnÞb=fðzÞ≡
Z

∞

z

dy
yn

fb=fðyÞ;

ĪðnÞb=fðzÞ≡
Z

∞

z

dy
yn

dfb=fðyÞ
dy

; ð3:41Þ

with z≡ ffiffiffiffi
eB

p
T , and

fbðyÞ ¼
1

ey − 1
; ffðyÞ ¼

1

ey þ 1
: ð3:42Þ

The general structure of ΣðqÞ
n ð~kÞ for hot and magnetized

fermions in the above HTL approximation is therefore

given by (3.32) with the coefficients AðqÞ
� ; BðqÞ

� ; DðqÞ and

CðqÞ
� from (3.29) as well as (3.30), and the integrals IT

l as

well as J ðiÞT
l ; i ¼ 1; 2 given in (3.40).

IV. GENERAL STRUCTURE OF THE
DRESSED PROPAGATOR OF HOT
AND MAGNETIZED FERMIONS

In (2.41), the free propagator of magnetized fermions is
presented in the momentum space. The general structure of
the one-loop self-energy of these fermions at finite temper-
ature is presented in (3.32). In this section, we will combine
these two results, and determine the one-loop corrected
propagator of hot and magnetized fermions up to one-loop
level. The case T ¼ 0 will be then considered as a special

case of the T ≠ 0 case, because by comparing ΣðqÞ
n from

(3.18) for T ¼ 0 with (3.32) for T ≠ 0, it turns out that ΣðqÞ
n

for T ¼ 0 can be determined from (3.32) by setting

BðqÞ
� ¼ AðqÞ

� , i.e. by removing the anisotropy in the com-
ponents of k∥ ¼ ðk0; 0; 0; k3Þ, appearing in (3.32) in
comparison to (3.18) for n ¼ 0 and n ≠ 0. In this section,
we are not interested in the numerical values of the
coefficients. Our main goal is to use the general structure
of the dressed propagator of hot and magnetized fermions,
and, performing an analysis similar to what is presented in
Sec. II A, to determine the properties of possible excitations
arising from the poles of this propagator.
To start, let us therefore consider the series expansion of

the full fermion propagator in the momentum space

SðqÞ
n ð~kÞ,

SðqÞ
n ð~kÞ ¼ SðqÞn ð~kÞ þ SðqÞn ð~kÞΣðqÞ

n SðqÞn þ � � � : ð4:1Þ

Truncating this series after the one-loop contribution in the
second term on the rhs, and using (2.41) as well as (3.32),

we arrive at the general structure of SðqÞ
n of magnetized

fermions at T ≠ 0 in the lowest (n ¼ 0) and higher (n ≠ 0)
Landau levels up to one-loop level,

SðqÞ
n ¼

8>>>>><
>>>>>:

Pþ
~
k∥−mq− ~ΣðþÞ

0

; for n ¼ 0; q ¼ þ1;

P−
~
k∥−mq

; for n ¼ 0; q ¼ −1;
1

~
kn−mq−ΣðqÞ

n

; for n ≠ 0; q ¼ �1;

ð4:2Þ

where

~ΣðþÞ
0 ≡ k0A

ðþÞ
þ þ k3B

ðþÞ
þ þmqC

ðþÞ
þ ;

ΣðqÞ
n ≡ k0ðPþA

ðqÞ
þ þ P−AðqÞ− Þ þ k3ðPþB

ðqÞ
þ þ P−BðqÞ− Þ

þ ~k⊥DðqÞ þmqðPþC
ðqÞ
þ þ P−CðqÞ− Þ; ð4:3Þ

are obtained from (3.32). At T ¼ 0, SðqÞ
n is given by (4.2)

and (4.3) with BðqÞ
� ¼ AðqÞ

� for q ¼ �1. The poles of the
fermion propagator (4.2) can be determined by computing

0 ¼

8>><
>>:

detð ~k∥ −mq − ~ΣðþÞ
0 Þ; for n ¼ 0; q ¼ þ1;

detð ~k∥ −mqÞ; for n ¼ 0; q ¼ −1;
detð ~kn −mq − ΣðqÞ

n Þ; for n ≠ 0; q ¼ �1.

ð4:4Þ

This will be done numerically in Sec. VA for T ≠ 0 (hot
magnetized QED plasma), and in Sec. V B for T ¼ 0 (cold
magnetized QED plasma). To study the properties of
possible excitations arising from the pole of the dressed

fermion propagator, let us consider SðqÞ
n from (4.2).

Defining

aðqÞ� ≡ k0ð1 − AðqÞ
� Þ;

bðqÞ� ≡ k3ð1 − BðqÞ
� Þ;

cðqÞ� ≡mqð1þ CðqÞ
� Þ;

dðqÞ ≡ sq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqeBj

p
ð1 −DðqÞÞ; ð4:5Þ

SðqÞ
n for n ¼ 0 and n ≠ 0 can be simplified as7

SðqÞ
0 ¼

8>><
>>:

Pþðγ0aðþÞ
þ −γ3bðþÞ

þ þcðþÞ
þ Þ

DðþÞ
0

; for q ¼ þ1;

P−ðγ0k0−γ3k3þmqÞ
Dð−Þ

0

; for q ¼ −1;
ð4:6Þ

with

7The γ-matrices in the Dirac representation are given by

γ0 ¼
�
1 0

0 −1
�
; γ ¼

�
0 σ

−σ 0

�
; γ5 ¼

�
0 1

1 0

�
;

and Σ ¼ diagðσ; σÞ.
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DðþÞ
0 ≡ aðþÞ2

þ − bðþÞ2
þ þ cðþÞ2

þ ;

Dð−Þ
0 ≡ k2

∥ −m2
q; ð4:7Þ

and

SðqÞ
n ð~kÞ ¼ N ðqÞ

n ð~kÞ
DðqÞ

n ð~kÞ
; ð4:8Þ

with the numerator8

N ðqÞ
n ≡ γ0ðCðqÞ1 Pþ þ CðqÞ2 P−Þ þ γ2C

ðqÞ
3

þ γ3ðCðqÞ4 Pþ þ CðqÞ5 P−Þ
þ ðCðqÞ6 γ0γ2 þ CðqÞ7 γ2γ3 þ CðqÞ8 γ0γ2γ3ÞΣ3

þ CðqÞ9 Pþ þ CðqÞ10 P−; ð4:9Þ

and the denominator

DðqÞ
n ≡ dðqÞ4 þ 2dðqÞ2ðcðqÞ− cðqÞþ þ bðqÞ− bðqÞþ − aðqÞ− aðqÞþ Þ

þ ðaðqÞ2− − bðqÞ2− − cðqÞ2− ÞðaðqÞ2þ − bðqÞ2þ − cðqÞ2þ Þ:
ð4:10Þ

In (4.9), the coefficients CðqÞi ; i ¼ 1;…; 10 are given by

CðqÞ1 ≡ aðqÞþ ðaðqÞ2− − bðqÞ2− − cðqÞ2− Þ − aðqÞ− dðqÞ2;

CðqÞ2 ≡ aðqÞ− ðaðqÞ2þ − bðqÞ2þ − cðqÞ2þ Þ − aðqÞþ dðqÞ2;

CðqÞ3 ≡ ðdðqÞ2 þ cðqÞ− cðqÞþ þ bðqÞ− bðqÞþ − aðqÞ− aðqÞþ ÞdðqÞ;
CðqÞ4 ≡ bðqÞþ ðbðqÞ2− − aðqÞ2− − cðqÞ2− Þ þ bðqÞ− dðqÞ2;

CðqÞ5 ≡ bðqÞ− ðbðqÞ2þ − aðqÞ2þ − cðqÞ2þ Þ þ bðqÞþ dðqÞ2;

CðqÞ6 ≡ ðcðqÞþ aðqÞ− − cðqÞ− aðqÞþ ÞdðqÞ;
CðqÞ7 ≡ ðcðqÞþ bðqÞ− − cðqÞ− bðqÞþ ÞdðqÞ;
CðqÞ8 ≡ ðaðqÞþ bðqÞ− − aðqÞ− bðqÞþ ÞdðqÞ;
CðqÞ9 ≡ cðqÞþ ðaðqÞ2− − bðqÞ2− − cðqÞ2− Þ − cðqÞ− dðqÞ2;

CðqÞ10 ≡ cðqÞ− ðaðqÞ2þ − bðqÞ2þ − cðqÞ2þ Þ − cðqÞþ dðqÞ2: ð4:11Þ

In what follows, we will determine the eigenvalues and

eigenvectors of the numerators of SðqÞ
n for two special

cases:

Case 1∶ n ¼ 0; q ¼ �1; mq ≠ 0;

Case 2∶ n ≠ 0; q ¼ �1; mq ¼ 0:

A. Case 1: Properties of massive and positively charged
fermionic excitations in LLL

Let us consider the one-loop corrected propagator of
positively charged massive fermions in the LLL from (4.6)

SðþÞ
0 ð~kÞ ¼ Pþðγ0aðþÞ

þ − γ3b
ðþÞ
þ þ cðþÞ

þ Þ
DðþÞ

0

; ð4:12Þ

with the coefficients given in (4.5) and the denominator

DðþÞ
0 given in (4.7). The eigenvectors of the numerator of

SðþÞ
0 are

ψ ðþÞ
1 ¼ ð0; 0; 0; 1Þ;

ψ ðþÞ
2 ¼ ð0; 1; 0; 0Þ;

ψ ðþÞ
3 ¼ 1

bðþÞ
þ

ðaðþÞ
þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðþÞ2
þ − bðþÞ2

þ

q
; 0; bðþÞ

þ ; 0Þ;

ψ ðþÞ
4 ¼ 1

bðþÞ
þ

ðaðþÞ
þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðþÞ2
þ − bðþÞ2

þ

q
; 0; bðþÞ

þ ; 0Þ; ð4:13Þ

with the eigenvalues�
0; 0; cðþÞ

þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðþÞ2
þ − bðþÞ2

þ

q
; cðþÞ

þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðþÞ2
þ − bðþÞ2

þ

q �
:

ð4:14Þ

The eigenvectors from (4.13) satisfy

P−ψ
ðþÞ
1 ¼ ψ ðþÞ

1 ; or Σ3ψ
ðþÞ
1 ¼ −ψ ðþÞ

1 ;

P−ψ
ðþÞ
2 ¼ ψ ðþÞ

2 ; or Σ3ψ
ðþÞ
2 ¼ −ψ ðþÞ

2 ;

Pþψ
ðþÞ
3 ¼ ψ ðþÞ

3 ; or Σ3ψ
ðþÞ
3 ¼ þψ ðþÞ

3 ;

Pþψ
ðþÞ
4 ¼ ψ ðþÞ

4 ; or Σ3ψ
ðþÞ
4 ¼ þψ ðþÞ

4 : ð4:15Þ

From the above four eigenvectors only ψ ðþÞ
i ; i ¼ 3; 4 are

acceptable. They correspond to positively charged fermions
with positive spins (spin up) in the LLL.

B. Case 1: Properties of massive and negatively charged
fermionic excitations in LLL

According to (4.6), the one-loop corrected propagator of
negatively charged and massive fermions does not receive
any contribution from the one-loop fermion self-energy

Sð−Þ
0 ð~kÞ ¼ P−ðγ0k0 − γ3k3 þmqÞ

Dð−Þ
0

: ð4:16Þ8Here, the relations Pþ þ P− ¼ 1 and Pþ − P− ¼ Σ3 are
used.
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Here, Dð−Þ
0 is given in (4.7). The eigenvectors of the

numerator of Sð−Þ
0 are

ψ ð−Þ
1 ¼ ð0; 0; 1; 0Þ;

ψ ð−Þ
2 ¼ ð1; 0; 0; 0Þ;

ψ ð−Þ
3 ¼ 1

k3
ð0; jk∥j − k0; 0; 1Þ;

ψ ð−Þ
4 ¼ 1

k3
ð0;−jk∥j − k0; 0; 1Þ; ð4:17Þ

with the eigenvalues

f0; 0; mq − jk∥j; mq þ jk∥jg: ð4:18Þ

The eigenvectors from (4.17) satisfy

Pþψ
ð−Þ
1 ¼ ψ ð−Þ

1 ; or Σ3ψ
ð−Þ
1 ¼ þψ ð−Þ

1 ;

Pþψ
ð−Þ
2 ¼ ψ ð−Þ

2 ; or Σ3ψ
ð−Þ
2 ¼ þψ ð−Þ

2 ;

P−ψ
ð−Þ
3 ¼ ψ ð−Þ

3 ; or Σ3ψ
ð−Þ
3 ¼ −ψ ð−Þ

3 ;

P−ψ
ð−Þ
4 ¼ ψ ð−Þ

4 ; or Σ3ψ
ð−Þ
4 ¼ −ψ ð−Þ

4 : ð4:19Þ

Similar to the previous case, only ψ ð−Þ
i ; i ¼ 3; 4 corre-

sponding to negatively charged fermions with negative
spins (spin down) in the LLL, are acceptable. In contrast to

the case discussed in Sec. II A, ψ ðþÞ
i ; i ¼ 3; 4 and ψ ð−Þ

i ; i ¼
3; 4 are neither eigenvalues of the helicity nor those of the
chirality operators. These operators are defined in (2.17)
and (2.18), respectively.

C. Case 2: Properties of massless fermionic
excitations in HLL

The one-loop corrected fermion self-energy of massless
fermions for n ≠ 0 and q ¼ �1 is given by (4.8)–(4.11)
with cðqÞ� ¼ 0. To study the properties of possible fermionic

excitations, let us simplify SðqÞ
n , in analogy to the results

presented in Sec. II A, as

SðqÞ
n ð~kÞ ¼ N ðqÞ

L ð~kÞ
2DðqÞ

L ð~kÞ
þ N ðqÞ

R ð~kÞ
2DðqÞ

R ð~kÞ
; ð4:20Þ

with the numerators

N ðqÞ
L ¼ γ0½PþðaðqÞ− − bðqÞ− Þ þ P−ðaðqÞþ þ bðqÞþ Þ� − 2dðqÞγ2PR

þ γ3½PþðaðqÞ− − bðqÞ− Þ − P−ðaðqÞþ þ bðqÞþ Þ�;
N ðqÞ

R ¼ γ0½PþðaðqÞ− þ bðqÞ− Þ þ P−ðaðqÞþ − bðqÞþ Þ� − 2dðqÞγ2PL

− γ3½PþðaðqÞ− þ bðqÞ− Þ − P−ðaðqÞþ − bðqÞþ Þ�; ð4:21Þ

and the denominators

DðqÞ
L=R ≡ ðaðqÞþ � bðqÞþ ÞðaðqÞ− ∓bðqÞ− Þ − dðqÞ2: ð4:22Þ

Nontrivial eigenvectors of the numerators N ðqÞ
L and N ðqÞ

R
are given by

VL
1 ¼ ð1; 0; 0; 0Þ;

VL
2 ¼ ð0; 1; 0; 0Þ; ð4:23Þ

and

VR
1 ¼ ð0; 0; 1; 0Þ;

VR
2 ¼ ð0; 0; 0; 1Þ; ð4:24Þ

respectively. They have trivial eigenvalues, and satisfy

PLVL
1 ¼ VL

1 ; and Σ3VL
1 ¼ þVL

1 ;

PLVL
2 ¼ VL

2 ; and Σ3VL
2 ¼ −VL

2 ;

PRVR
1 ¼ VR

1 ; and Σ3VR
1 ¼ þVR

1 ;

PRVR
2 ¼ VR

2 ; and Σ3VR
2 ¼ −VR

2 : ð4:25Þ

As yet the above results (4.23)–(4.25) are independent of
the choice of electric charges q. They are valid for both
positively and negatively charged particles, and can thus be
summarized as

DðqÞ
L ∶
�
VL
1 with q ¼ þ1; s3 ¼ �1; χ ¼ −1;

VL
2 with q ¼ −1; s3 ¼ �1; χ ¼ −1;

DðqÞ
R ∶
�
VR
1 with q ¼ þ1; s3 ¼ �1; χ ¼ þ1;

VR
2 with q ¼ −1; s3 ¼ �1; χ ¼ þ1;

ð4:26Þ

Here, s3 and χ denote the eigenvalues of the spin and
chirality operators, Σ3 and PL=R, respectively. Let us notice
that the appearance of two energy branches, arising from

the poles of two denominators DðqÞ
L and DðqÞ

R in (4.20), can
be regarded as an evidence of the appearance of additional
fermionic excitations. In the next section, we will study the
spectrum of Dirac particles at finite temperature and for
nonvanishing magnetic fields. We will show that, in the
limit of soft momenta and weak magnetic fields, new
excitations appear, which will be referred to as hot and
magnetized plasminos, in analogy to the excitations appear-
ing at finite T and vanishing B.

V. NUMERICAL RESULTS

In this section, we will numerically solve the energy
dispersion relations arising from the one-loop corrected
fermion propagator, SðqÞ

n , for a number of special cases. In

Sec. VA, we will first consider SðqÞ
n at nonzero T and B in
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the lowest (n ¼ 0) and higher (n ≠ 0) Landau levels,
separately. We will focus on both the massive and massless
case. In Sec. V B, we will then determine the spectrum of
massive fermions in a cold and magnetized electromagnetic
plasma.

A. Plasminos in a hot and magnetized QED plasma

In the previous section, we have analytically determined
the general structure of the one-loop corrected fermion
propagator SðqÞ

n in the lowest and higher Landau levels. For

n ¼ 0, SðqÞ
n is given in (4.6), and for n ≠ 0 in (4.8)–(4.11)

as well as in (4.20)–(4.22) for the special case of massless
fermions. Except for negatively charged fermions in the
LLL, the one-loop corrected fermion propagator is, in
particular, given in terms of nontrivial coefficients

aðqÞ� ; bðqÞ� ; cðqÞ� and dðqÞ, which are defined in (4.5), and

are given in terms of the coefficients AðqÞ
� ; BðqÞ

� ; CðqÞ
� and

DðqÞ, arising from the one-loop self-energy of charged
fermions. In Sec. III B, we have analytically determined

AðqÞ
� ; BðqÞ

� ; CðqÞ
� and DðqÞ at finite T and B, using two

different methods: In Sec. III B 1, the exact expressions
of these coefficients at finite T and for nonvanishing B are

presented in (3.29) and (3.30), with IT
l and J ðiÞT

l ; i ¼ 0; 3
from (3.31), and in Sec. III B 2, they are evaluated using a
HTL approximation in a weak magnetic field, and are given

by the same (3.29) and (3.30), with IT
l and J ðiÞT

l ; i ¼ 0; 3
from (3.40).
In order to explore the spectrum of fermionic excitations

from the poles of SðqÞ
n in the lowest and higher Landau

levels, the coefficients AðqÞ
� ; BðqÞ

� ; CðqÞ
� and DðqÞ are the first

to be determined as functions of k0 and k3. To do this, we
have numerically evaluated the integration over p0⊥; x and
p3 appearing in (3.29)–(3.31), as well as the integration
over y appearing in I0; Ib=f and Īb=f from (3.41) for a large
number of fixed k0 and k3. The summation over Landau
levels appearing in (3.29)–(3.30) has also been performed
numerically. In this way, it was possible to find the best fits

for AðqÞ
� ; BðqÞ

� ; CðqÞ
� and DðqÞ as functions of k0 and k3. We

have then considered the fermion propagators in LLL
(n ¼ 0) and HLL (n ¼ 1) separately,9 and solved
the energy dispersion relations, arising from the poles of
the propagators. In what follows, we will only report the
corresponding numerical results for a number of spe-
cial cases.

1. Special case: T ≠ 0, n ¼ 0 for mq ≠ 0 and mq ¼ 0

Let us start with the dispersion relation of a massive
and positively charged fermion in the LLL. It can be
obtained by numerically solving detðk~∥ −mq − ~ΣðþÞ

0 Þ ¼ 0

from (4.4) or DðþÞ
0 ð~kÞ ¼ 0 with DðþÞ

0 from (4.7). In both
cases, it reads

k20ð1 − AðþÞ
þ Þ2 − k23ð1 − BðþÞ

þ Þ2 −m2
qð1þ CðþÞ

þ Þ2 ¼ 0.

ð5:1Þ

As concerns the negatively charged massive fermions, the

corresponding dispersion relation arises from Dð−Þ
0 ¼ 0,

k20 ¼ k23 þm2
q: ð5:2Þ

Here, the definition of Dð−Þ
0 from (4.7) is used. The

numerical results are demonstrated in Fig. 3. In Fig. 3(a),
the k3=T dependence of k0=T is plotted for positively (thick
blue curve) and negatively (thin red curve) charged massive
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(a) T 0, n 0, b 5, 0.25
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(b) T 0, n 0, b 0.5, 0.25

FIG. 3 (color online). (a) The exact k3=T dependence of k0=T
for positively (thick blue curve) and negatively (red thin curve)
charged fermions in the LLL (n ¼ 0) for b ¼ eB=T2 ¼ 5 and
ξ ¼ mq=T ¼ 0.25, in the regime k3=T ≥ 0.2, which arises from
(5.1) for q ¼ þ1 and (5.2) for q ¼ −1. (b) The HTL-approxi-
mated k3=T dependence of k0=T for positively (thick blue curve)
and negatively (thin red curve) charged fermions in the LLL
(n ¼ 0) for b ¼ eB

T2 ¼ 0.5 and ξ ¼ mq

T ¼ 0.25, in the regime
k3=T < 0.2.

9For HLL, we considered only the n ¼ 1 case. All n ≥ 1 cases
can be evaluated in a similar way.
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fermions in the LLL (n ¼ 0) for b≡ eB=T2 ¼ 5,
ξ≡mq=T ¼ 0.25 and in the regime k3=T > 0.2.10 To do

this, we have used (3.29) with IT
l and J ðiÞT

l ; i ¼ 0; 3 from
(3.31), and numerically determined the dependence of

AðþÞ
þ ; BðþÞ

þ and CðþÞ
þ , appearing in (5.1), on k0 and k3.

This results in the thick blue curve in Fig. 3(a). The thin red
curve in Fig. 3(a) is the positive energy branch of the
dispersion relation of negatively charged massive fermions
from (5.2) for b ¼ 5 and ξ ¼ 0.25.11 The regime k3=T <

0.2 is then explored using AðþÞ
þ ; BðþÞ

þ and CðþÞ
þ from (3.29)

with IT
l and J ðiÞT

l ; i ¼ 0; 3 from (3.40) for b ¼ 0.5 and
ξ ¼ 0.25. In this regime the HTL approximation described
in Sec. III B might be reliable. Similar to Fig. 3(a), the thick
blue and thin red curves correspond to the positive energy
branches of the dispersion relations (5.1) and (5.2),
respectively. Let us notice at this stage, that according to
the results from (4.15) and (4.19), and the subsequent
descriptions, the blue and red curves in Fig. 3 are the energy
dispersion relations of positively and negatively charged
massive fermions with positive and negative spins.
Comparing the energies of fermions with positive and

negative spins from Fig. 3(a) (exact results) with the
corresponding energies of these fermions from Fig. 3(b)
(HTL-approximated results), it turns out that in the regime
k3=T ≥ 0.2, their T-scaled energies, k0=T, increase with
increasing k3=T, while in the regime k3=T < 0.2, the
energy of fermions with positive spins (thick blue curve)
decreases with increasing k3=T, in contrast to the energy of
fermions with negative spins (thin red curve).
Performing the above analysis for the case of massless

fermions in the LLL, it turns out that the small difference
between the energies of fermions with positive and negative
spins, appearing in Fig. 3(a), disappears in the limit of
vanishing fermionic mass. This can be observed in
Fig. 4(a), where the exact k3=T dependence of k0=T is
plotted for n ¼ 0, b ¼ 0.5 and ξ ¼ 0 in the regime
k3=T ≥ 0.2. Here, the energy dispersion relations

k20ð1 − Aþ
þÞ2 − k23ð1 − Bþ

þÞ2 ¼ 0; ð5:3Þ

for positively charged fermions, and

k20 ¼ k23; ð5:4Þ

for negatively charged fermions, are used. In the regime
k3=T < 0.2, however, the qualitative behavior of the k3=T
dependence of k0=T for massless fermions is similar to the
corresponding results for the massive fermions [see the

plots in Fig. 4(b) and compare them with the plots in
Fig. 3(b)]. Let us notice that, although the fermionic
excitations, whose energy dispersion relations are plotted
in Fig. 4(b), are massless, their rest masses (for k3=T ¼ 0)
are nonzero [see, in particular, the rest mass of the
positively charged massless fermion from Fig. 4(b)].
This effect is related to the magnetic catalysis [5], which
is characterized by a dynamical generation of mass in the
presence of a very strongmagnetic field, where the system is
dominated by the LLL. As it is well known, the dynamical
mass arises from perturbative corrections to the fermion
propagator. According to the same argument, the fact that
the negatively charged massless fermions have a zero rest
mass [see the thin red curve in Fig. 4(b)] is therefore related
to the fact that these particles do not receive any contribution
from the one-loop self-energy in the LLL.
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FIG. 4 (color online). (a) The exact k3=T dependence of
k0=T for positively (blue curve) and negatively (red squares)
charged fermions in the LLL (n ¼ 0) for b ¼ eB=T2 ¼ 0.5 and
ξ ¼ mq=T ¼ 0, in the regime k3=T ≥ 0.2, which arises from (5.3)
for q ¼ þ1 and (5.4) for q ¼ −1. (b) The HTL-approximated
k3=T dependence of k0=T for positively (thick blue curve) and
negatively (thin red curve) charged fermions in the LLL (n ¼ 0)
for b ¼ eB=T2 ¼ 0.5 and ξ ¼ mq=T ¼ 0, in the regime
k3=T < 0.2.

10At finite temperature, the free parameter eB and mq are
scaled with T.

11The negative energy branches of the energy dispersion
relations are not plotted in the figures demonstrated in this
section.
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2. Special case: T ≠ 0, n ¼ 1 and mq ¼ 0

The one-loop corrected fermion self-energy of massless
fermions in HLL is analytically computed in the previous
section [see (4.20)–(4.22)]. In this case, in analogy to the
case of vanishing magnetic fields, described in Sec. II A,

two denominators DðqÞ
L=R appear for each q ¼ þ1 and q ¼

−1 in (4.20). We therefore expect two different energy
branches for each q. The energy branch arising from

DðqÞ
L ¼ 0 corresponds to left-handed positively or nega-

tively charged particles, possessing both spin orientations.

Similarly, the energy branch arising from DðqÞ
R ¼ 0 corre-

sponds to right-handed positively or negatively charged
particles with positive and negative spins. The explicit
expressions for the energy dispersion relations of these
particles are given by

½k0ð1 − AðqÞ− Þ þ k3ð1 − BðqÞ− Þ�
× ½k0ð1 − AðqÞ

þ Þ − k3ð1 − BðqÞ
þ Þ� − 2njqeBjð1 −DðqÞÞ2

¼ 0; ð5:5Þ

and

½k0ð1 − AðqÞ− Þ − k3ð1 − BðqÞ− Þ�
× ½k0ð1 − AðqÞ

þ Þ þ k3ð1 − BðqÞ
þ Þ� − 2njqeBjð1 −DðqÞÞ2

¼ 0: ð5:6Þ

They arise from DðqÞ
L ¼ 0 and DðqÞ

R ¼ 0, with DðqÞ
L=R defined

in (4.22). To solve these relations, let us first consider

the coefficients AðqÞ
� ; BðqÞ

� and DðqÞ from (3.29) for q ¼ þ1

and (3.30) for q ¼ −1 with IT
l as well as J ðiÞT

l ; i ¼ 0; 3
from (3.31). This yields the exact k3=T dependence
of k0=T for massless left- and right-handed fermions.
For n ¼ 1; b ¼ eB=T2 ¼ 5; ξ ¼ mq=T ¼ 0, the results
are demonstrated in Figs. 5(a) and 5(b), in the regime
k3=T ≥ 0.2. They correspond to q ¼ þ1 and q ¼ −1,
respectively. As it turns out, there is no difference between

the solutions of DðþÞ
L ¼ 0 (blue curve) and DðþÞ

R ¼ 0 (red
square) for positively charged particles. Similarly, the k3=T
dependences of k0=T for negatively charged left- (blue
curve) and right-handed (red-square) massless fermions are
identical.
To compare the energy dispersion relations of massive

fermions for q ¼ þ1 and q ¼ −1, we have plotted in Fig. 6
the exact k3=T dependence of k0=T for massless left- [panel
(a)] and right-handed [panel (b)] fermions. Thick blue and

thin red curves denote the solutions of DðþÞ
L=R ¼ 0 and

Dð−Þ
L=R ¼ 0, for n ¼ 1; b ¼ 5 and ξ ¼ 0 in the regime

k3=T ≥ 0.2. As it turns out, the energy increases with
increasing k3=T ≥ 0.2. Moreover, the energies of

negatively charged left- and right-handedmassless fermions
are smaller than their positively charged counterparts.
The regime k3=T < 0.2 is explored in Fig. 7, where the

HTL-approximated solutions of the energy dispersion
relations (5.5) for left-handed and (5.6) for right-handed
massless fermions are demonstrated. To determine these

solutions, the coefficients AðqÞ
� ; BðqÞ

� and DðqÞ from (3.29)
and (3.30) with the HTL-approximated IT

l as well as

J ðiÞT
l ; i ¼ 0; 3 from (3.40) are used. They are first numeri-

cally computed as functions of k0 and k3 for n ¼ 1; b ¼
eB=T2 ¼ 0.5 and ξ ¼ 0. Plugging then the resulting
expressions in (5.5) and (5.6), these energy dispersion
relations are numerically solved. The thick blue and thin
red curves in Figs. 7(a) and 7(b) denote the solutions of

D�
L ¼ 0 and Dð�Þ

R ¼ 0, respectively. As it turns out, in the
regime k3 < 0.08T, the energy branches for the left-
and right-handed positively [Fig. 7(a)] and negatively
[Fig. 7(b)] charged massless fermions are split up, in
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FIG. 5 (color online). The exact k3=T dependence of k0=T for
(a) positively and (b) negatively charged fermions for n ¼ 1; b ¼
eB=T2 ¼ 5 and ξ ¼ mq=T ¼ 0 in the regime k3=T ≥ 0.2. The
results arise from the dispersion relations (5.5) and (5.6) for left-
and right-handed massless fermions. Blue curves and red squares

denote the solutions of Dð�Þ
L ¼ 0 and Dð�Þ

R ¼ 0, respectively.
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contrast to the results for k3 > 0.08T from Figs. 7 and 8,
where it is shown that left- and right-handed massless
fermions have the same energies. In Fig. 8, we have used
the above HTL approximation to determine the k3=T
dependence of k0=T for left- and right-handed massless
fermions in the regime k3=T > 0.2. Here, we have chosen
the same free parameters, n ¼ 1; b ¼ 0.5 and ξ ¼ 0, as in
Fig. 7. The blue curves and red squares in Fig. 8 denote the

solutions of Dð�Þ
L ¼ 0 and Dð�Þ

R ¼ 0, respectively. The
results from Fig. 8 coincide qualitatively with the results
from Fig. 5, where the exact solutions of (5.5) and (5.6) are
demonstrated for n ¼ 1; b ¼ 5 and ξ ¼ 0 in the same
k3=T > 0.2 regime.
Let us notice at this stage, that the appearance of two

different energy branches in Fig. 7 is in great resemblance
with the appearance of two energy branches for fermionic
particle and plasmino excitations at finite temperature and
zero magnetic fields. The latter case is discussed in Sec. II
A, where it was shown that two energy branches in Fig. 2
correspond to fermionic excitations with positive (particle)

and negative (plasmino) helicity to chirality ratios. At finite
temperature and for nonzero magnetic fields, discussed in
the present section, however, the massless fermionic
excitations, whose energy dispersions are demonstrated
in Fig. 7, are, in contrast to the ordinary particle and
plasmino modes at finite T, eigenstates of the chirality and
the spin operators, PL=R and Σ3 (see Sec. IV for a proof).
Despite this difference, and because of the similarity
between the production mechanism of new excitations in
the case of nonvanishing T and B with the mechanism
leading to particle and plasmino excitations at finite T and
zero B, the new excitations will be referred to as hot
magnetized plasminos. The crucial point is that, according
to our findings, they seem to appear only in the limit of soft
momenta k3 ≪ T and weak magnetic fields eB ≪ T2,
where a HTL approximation is reliable, and where apart
from LLL, higher Landau levels are to be taken into
account.
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FIG. 7 (color online). The HTL-approximated k3=T depend-
ence of k0=T for (a) positively and (b) negatively charged
fermions for n ¼ 1; b ¼ eB=T2 ¼ 0.5 and ξ ¼ mq=T ¼ 0 in
the regime k3=T < 0.2. The results arise from the dispersion
relations (5.5) and (5.6) for left- and right-handed massless
fermions. Thick blue and thin red curves denote the solutions

of Dð�Þ
L ¼ 0 and Dð�Þ

R ¼ 0, respectively.
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FIG. 6 (color online). The exact k3=T dependence of k0=T for
(a) left-handed and (b) right-handed fermions. Thick blue and

thin red curves denote the solutions of DðþÞ
L=R ¼ 0 and Dð−Þ

L=R ¼ 0,

for positively and negatively charged particles q ¼ �1 for n ¼
1; b ¼ eB=T2 ¼ 5 and ξ ¼ mq=T ¼ 0 in the regime k3=T ≥ 0.2.
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In the rest of this section, we will show that similar
excitations appear at zero temperature and for nonvanishing
moderate magnetic fields.

B. Plasminos in a cold and magnetized QED plasma

As we have described in the previous section, according
to the notations used in the present paper, the zero
temperature case can be regarded as a special case of
the finite temperature case. This is because of the similarity/
difference between the general structure of one-loop self-
energy of fermions at zero and nonzero temperatures from
(3.18) and (3.32). Thus, in the zero temperature case, the
one-loop corrected propagator of fermions in the presence
of a constant magnetic field is, as before, given by
(4.6)–(4.7) for n ¼ 0 and (4.8)–(4.11) for n ≥ 1. The only
difference with the finite temperature case is that the

coefficients aðqÞ� ; bðqÞ� ; cðqÞ� and dðqÞ, appearing in these
equations, are to be redefined as

aðqÞ� ≡ k0ð1 − AðqÞ
� Þ;

bðqÞ� ≡ k3ð1 − AðqÞ
� Þ;

cðqÞ� ≡mqð1þ CðqÞ
� Þ;

dðqÞ ≡ sq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njqeBj

p
ð1 −DðqÞÞ; ð5:7Þ

with AðqÞ
� ; CðqÞ

� andDðqÞ presented in (3.13) for q ¼ þ1 and
(3.14) for q ¼ −1. Similar to what is performed in the
previous section, we have determined numerically the latter
coefficients for a large number of k0 and k3. In this way, we

were able to find the best fits for AðqÞ
� ; CðqÞ

� and DðqÞ as
functions of k0 and k3. Plugging then the corresponding

expressions in aðqÞ� ; bðqÞ� ; cðqÞ� and dðqÞ from (5.7), we have
numerically solved the energy dispersion relations for cold
fermions in a magnetized QED plasma. In what follows, we
will separately consider two different cases of n ¼ 0 and
n ¼ 1 for massive fermions, and will present the k3=mq

dependence of k0=mq for b≡ eB=m2
q ¼ 5.12

1. Special case: T ¼ 0;n ¼ 0;mq ≠ 0

According to the definitions of DðþÞ
0 and Dð−Þ

0 from (4.7)

with aðqÞ� ; bðqÞ� ; cðqÞ� from (5.7), the energy dispersion
relations of positively and negatively charged massive
fermions are given by

k20ð1 − Aþ
þÞ2 − k23ð1 − Aþ

þÞ2 −m2
qð1þ Cþ

þÞ2 ¼ 0; ð5:8Þ

and

k20 ¼ k23 þm2
q; ð5:9Þ

respectively.
In Fig. 9, we have plotted the k3=mq dependence of

k0=mq for these fermions. As we have argued in Sec. IV,
two energy branches, appearing in this figure, correspond
to positively charged fermions with positive spin (thick
blue curve) and negatively charged fermions with negative
spin (thin red curve). Since fermions with negative charges
receive no one-loop self-energy correction in the LLL, their
dispersion relation is identical with the dispersion relation
of free fermions with k0=mq ¼ 1 for k3 ¼ 0 (see the thin
red curve in Fig. 9). On the other hand, as in the finite
temperature case, the fact that the rest mass of positively
charged fermions k0=mq > 1 is related with the dynamical
creation of mass in the presence of strong magnetic fields,
where the system is dominated by LLL. As it turns out from
Fig. 9, for each fixed k3=mq, the energy of positively
charged fermions is larger than the energy of their neg-
atively charged counterparts. This is also related with the
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FIG. 8 (color online). The HTL-approximated k3=T depend-
ence of k0=T for (a) positively and (b) negatively charged
fermions for n ¼ 1; b ¼ eB=T2 ¼ 0.5 and ξ ¼ mq=T ¼ 0 in
the regime k3=T ≥ 0.2. The results arise from the dispersion
relations (5.5) and (5.6) for left- and right-handed massless
fermions. Thick blue curves and red squares denote the solutions

of Dð�Þ
L ¼ 0 and Dð�Þ

R ¼ 0, respectively.

12At zero temperature, the free parameter eB is scaled with the
fermionic mass mq instead of with the temperature T.
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same phenomenon of dynamical mass generation through
the mechanism of magnetic catalysis [5].

2. Special case: T ¼ 0;n ¼ 1;mq ≠ 0

As aforementioned the one-loop corrected propagator of
massive fermions in HLL is given in (4.8)–(4.11). To
determine the energy dispersion relations of these fermions
at zero temperature, we have to solve detð ~kn −mq −
ΣðqÞ
n Þ ¼ 0 from (4.4). Alternatively, we can find the roots

of the denominator DðqÞ
n from (4.10) with aðqÞ� ; bðqÞ� ; cðqÞ�

given in (5.7). Here, the denominator DðqÞ
n , being a quartic

function in dðqÞ, can be decomposed as

DðqÞ
n ¼ DðqÞ

1 DðqÞ
2 ; ð5:10Þ

with

DðqÞ
i ≡ ðdðqÞ2 − dðqÞ2i Þ; i ¼ 1; 2; ð5:11Þ

and

dðqÞ21 ≡AðqÞ þ ðAðqÞ2 þ BðqÞÞ1=2;
dðqÞ22 ≡AðqÞ − ðAðqÞ2 þ BðqÞÞ1=2: ð5:12Þ

The functions AðqÞ and BðqÞ in (5.12) are defined by

AðqÞ ≡ aðqÞþ aðqÞ− − bðqÞþ bðqÞ− − cðqÞþ cðqÞ− ;

BðqÞ ≡ −ðaðqÞ2þ − bðqÞ2þ − cðqÞ2þ ÞðaðqÞ2− − bðqÞ2− − cðqÞ2− Þ;
ð5:13Þ

with aðqÞ� ; bðqÞ� ; cðqÞ� from (5.7). The one-loop corrected
fermion propagator in HLL is therefore given by

SðqÞ
n ð~kÞ ¼ MðqÞ

n ð~kÞ
DðqÞ

1 ð~kÞ
þMðqÞ

n ð~kÞ
DðqÞ

2 ð~kÞ
; ð5:14Þ

with MðqÞ
n ≡ ðdðqÞ21 − dðqÞ22 Þ−1N ðqÞ

n and N ðkÞ
n defined in

(4.9). The energy dispersion relations, corresponding to

the above two denominators, arise from DðqÞ
i ¼ 0; i ¼ 1; 2,

and read

dðqÞ2 − dðqÞ21 ¼ 0;

dðqÞ2 − dðqÞ22 ¼ 0; ð5:15Þ

with dðqÞ from (5.7) and dðqÞi ; i ¼ 1; 2 from (4.12).
In Fig. 10, we have numerically determined the k3=mq

dependence of k0=mq, for n ¼ 1 and b ¼ eB=m2
q ¼ 5 as

well as for q ¼ þ1 [Fig. 10(a)] and q ¼ −1 [Fig. 10(b)].
The thick blue and thin red curves in Fig. 10 denote the

solutions for Dð�Þ
1 ¼ 0 and Dð�Þ

2 ¼ 0, respectively. Here, in
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FIG. 9 (color online). The k3=mq dependence of k0=mq for
positively charged (thick blue curve) and negatively charged
(thin red curve) massive fermions in the LLL (n ¼ 0) for
b ¼ eB=m2

q ¼ 5. They arise from the dispersion relations (5.8)
for q ¼ þ1 and (5.9) for q ¼ −1.
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FIG. 10 (color online). The k3=mq dependence of k0=mq for
(a) positively and (b) negatively charged massive fermions for
n ¼ 1 and b ¼ eB=m2

q ¼ 5. The results arise from the dispersion

relations (5.15) corresponding to Dð�Þ
1 ¼ 0 (thick blue curves)

and Dð�Þ
2 ¼ 0 (thin red curves).
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analogy to the finite temperature case, described in
Sec. II A, two separate energy branches appear for pos-
itively and negatively charged particles. Their appearance is
an indirect consequence of double spin degeneracy in HLL,
in contrast to LLL, where the fermions have, depending on
their charges, either positive or negative spins (see Fig. 9).
Because of the similarity between the mechanism lead-

ing to two energy branches in Fig. 2 at finite T and zero B,
with the case discussed in the present section at zero T and
nonzero B, the new fermionic excitations whose energy
dispersions are demonstrated in Fig. 10 are referred to as
cold magnetized plasminos. Let us notice at this stage, that,
whereas hot magnetized plasminos appear only in the limit
of soft momenta k3 ≪ T and weak magnetic fields eB ≪
T2 (see Figs. 7 and 8), as described in Sec. VA, cold
magnetized plasminos appear in the presence of moderate
magnetic fields for all positive momenta k3, and even in the
massive case.13

VI. SUMMARY AND CONCLUSIONS

Plasminos are known to be collective excitations that
appear in addition to normal fermionic modes in QED and
QCD plasmas at finite temperature. Historically, they are
shown to arise as one of the poles of the one-loop corrected
fermion propagator at finite temperature T. The latter is
shown to consist of two poles leading to two different energy
dispersion relations. In the limit of vanishing fermionic mass
and for small enough momenta of propagating fermions k,
i.e. for jkj ≪ T, these energy dispersion relations belong to
two fermionic modes with positive energies but opposite
helicity to chirality ratios. The dynamical creation of addi-
tional collective modes in hot plasmas can be brought in
close relation to the broken Lorentz invariance, induced by
the preferred reference frame defined by the heat bath.
A uniform magnetic field aligned in a fixed direction

defines also a similar privileged reference frame. One of the
consequences of such a frame is the appearance of certain
anisotropies in the dynamics of fermions in the longitudinal
and transverse directions with respect to the direction of
the external magnetic field. Another consequence is the
appearance of nontrivial collective modes in the spectrum
of Dirac fermions in the presence of such a constant
magnetic field. In the present paper, we explored the
quasiparticle spectrum of cold and hot QED plasma, by
evaluating the general structure of the one-loop corrected
propagator of magnetized fermions at zero and nonzero
temperatures, and looking for its poles.
To this purpose, we first determined in Sec. II B the

general structure of the free fermion propagator SðqÞn for
positively (q ¼ þ1) and negatively (q ¼ −1) charged

fermions in the presence of a constant magnetic field B.
In the momentum space, the free propagator is, in particu-
lar, given in terms of the Ritus momentum ~kn, where n
labels the Landau levels [see (2.41) for a free fermion
propagator in the momentum space]. As it turns out,
whereas HLL with n ≠ 0 are characterized by a double
spin degeneracy, in the LLL with n ¼ 0, the magnetized
fermions have either positive or negative spins. This fact
plays an important role in determining the correct spectrum
of Dirac fermions in a constant magnetic field.
In Sec. III, we then determined the general structure of the

one-loop self-energy of magnetized fermions, ΣðqÞ
n , at zero

and nonzero temperatures. The main results are presented in
(3.18) for T ¼ 0 and in (3.32) for T ≠ 0. A comparison
between these two expressions shows that the isotropy
between the components of the longitudinal momentum
k∥ ¼ ðk0; 0; 0; k3Þ at zero temperature is removed at finite
temperature. This is because of the aforementioned breaking

of Lorentz invariance at finite T. We computed ΣðqÞ
n for q ¼

�1 in terms of certain coefficients, AðqÞ
� ; BðqÞ

� ; CðqÞ
� andDðqÞ,

and determined these coefficients separately for T ¼ 0 and
T ≠ 0 up to a number of integrations and a summation over
Landau levels. To explore the Dirac spectrum for soft
momenta k3 ≪ T and in the limit of weak magnetic fields
eB ≪ T2, we also evaluated the above coefficients in a HTL
expansion in a weak magnetic field.
The one-loop corrected propagator of magnetized fer-

mions SðqÞ
n is then determined by combining the free fermion

propagator SðqÞn and the one-loop fermion self-energy ΣðqÞ
n in

the standard way (see Sec. IV). Here, we have not distin-
guished between the zero and the finite temperature case.
The main results are presented in (4.6)–(4.7) for n ¼ 0 and
in (4.8)–(4.11) for n ≠ 0. We considered two special cases
ðn ¼ 0; mq ≠ 0Þ as well as ðn ≠ 0; mq ¼ 0Þ, and deter-
mined the spectrum of fermionic modes by computing the

eigenvectors of the numerators of SðqÞ
n . We showed that they

are, in particular, eigenvectors of Σ3 ¼ diagðσ3; σ3Þ, defined
by the third Pauli matrix σ3. Hence, in the LLL, the spectrum
consists of positively (negatively) charged fermions with
positive (negative) spins, while in HLL the expected double
spin degeneracy occurs. In addition, massless fermions
with n ≠ 0 turned out to have well-defined left (negative)
or right (positive) chiralities, as is described in (4.26), but
they are not eigenstates of the helicity operator, in contrast to
the standard T ≠ 0 and B ¼ 0 case. In the massless case, the

general structure of SðqÞ
n in HLL is presented in (4.20)–

(4.22). The appearance of two denominators DL and DR in
(4.20) leads to two different energy branches, similar to the
case of T ≠ 0 and B ¼ 0 [see (2.12)], although the corre-
sponding collective modes have different properties.
In Sec. V, we numerically determined the energy

dispersion relations of these magnetized collective modes
at zero and nonzero temperatures. In Sec. VA, we con-
sidered first the case of T ≠ 0 and B ≠ 0, and determined the

13Moderate magnetic fields are necessary, because in a strong
magnetic field the fermionic system is solely dominated by the
LLL, where, according to our previous arguments, no splitting
occurs.
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k3=T dependence of k0=T in two different regimes of
k3=T < 0.2 (soft momenta) and k3=T > 0.2 (hard
momenta). To solve the energy dispersion relations arising
from the poles of the corresponding propagators, we numeri-
cally determined the above-mentioned coefficients

AðqÞ
� ; BðqÞ

� ; CðqÞ
� and DðqÞ in these two regimes, for fixed

values of eB=T2 and for massive as well as massless
fermions. In the LLL, only one energy branch arises in
the whole regime of k3=T. It belongs to positively or
negatively charged fermions with positive or negative spins.
In contrast, according to the results from Fig. 7, additional
excitations, referred to as hot magnetized plasminos, appear
in HLL, where left- and right-handed fermions have both
positive and negative spins. In the limit of weak magnetic
fields eB ≪ T2 and soft momenta k3 ≪ T, these collective
modes have different energies, while for larger values of
k3=T they seem to have the same energy dispersions. This is
in contrast to the results arising for nonzero B and zero T,
discussed in Sec. V B. In this case, the results for n ¼ 0 and
mq ≠ 0 are qualitatively the same as in the finite temperature
case. For n ≠ 0, however, cold magnetized plasminos appear
in the presence of moderate magnetic fields and for all
positive momenta k3, even in the massive case (see Fig. 10).
Let us finally notice that the group velocities of propa-

gating collective modes can be determined from their energy
dispersion relations for ðT ≠ 0; B ≠ 0Þ, and might have
applications, e.g., in the physics of heavy-ion collisions.
At finite T and zeroB, the appearance of a minimum at some
finite value of the momentum in the energy dispersion of
plasminos leads to a vanishing group velocity for the
collective modes. The latter has been interpreted as the
appearance of van Hove singularities [23], e.g. in the low
mass dilepton production rate in the QCD plasma [24]. The
sharp structures arising in this quantity are known to provide
a unique signature for the presence of deconfined collective
quarks in the quark-gluon plasma [19]. It would be interest-
ing to determine the dilepton production rate at high
temperature and in the presence of moderate background
magnetic fields. These are believed to be produced in early
stages of heavy-ion collisions [17], and because of certain
medium effects that are assumed to be approximately time
independent [25]. We will postpone these kinds of phenom-
enological studies to our future publications.
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APPENDIX: A USEFUL FORMULA

In this appendix, we will compute the integral

In;l ¼
Z þ∞

−∞
dx1e−ip

0x1fþn ðx1; k2Þfþl ðx1; p2Þ: ðA1Þ

Here, according to (2.29),

fþn ðx1; k2Þ ¼ an exp

�
− ðx1 − l2

qk2Þ2
2l2

q

�
Hn

�
x1 − l2

qk2
lq

�
;

ðA2Þ

with lq ¼ jqeBj−1=2 and an ¼ ð2nn! ffiffiffi
π

p
lqÞ−1=2. To this

purpose, we use the following representation of the Hermite
polynomial HnðxÞ:

HnðzÞ ¼
n!
2πi

I
dt
tnþ1

e−t2þ2tz; ðA3Þ

arising directly from

e−t2þ2tz ¼
X
n

tn

n!
HnðzÞ: ðA4Þ

Plugging (A3) in (A1), we arrive first at

In;l ¼ analn!l!
ð2πiÞ2

I
dt
tnþ1

du
ulþ1

× e−ðt2þu2Þe−2lqðtk2þup2Þe
−l2qðk22þp2

2
Þ

2

×
Z þ∞

−∞
dx1e

−x2
1

l2q
þx1ðk2þp2þ2ðtþuÞ

lq
−ip0

1
Þ
: ðA5Þ

The integration over x1 can be performed by quadratically
completing the square, and performing the resulting
Gaussian integration over x1. This results in

In;l ¼ analn!l!
ffiffiffi
π

p
lq

ð2πiÞ2 e−½ðk2−p2Þ2þp02
1
�l
2
q
4 e−ip0

1
ðk2þp2Þ

l2q
2

× Jnlðk2; p2; p0
1Þ; ðA6Þ

with

Jnl ≡
I

dt
tnþ1

du
ulþ1

e2tuþtlqðp2−k2−ip0
1
Þþulqðk2−p2−ip0

1
Þ: ðA7Þ

To determine Jnl, we will perform the integral first over
t and then over u. Then, integrating first over u and
then over t, and comparing the two resulting expressions,
we will eventually arrive at the generalized formula
for Jnlðk2; p2; p0

1Þ.
The integration over t in (A7) can be performed using the

Cauchy formulaI
dt
tnþ1

F ðtÞ ¼ 2πi
n!

dn

dzn
F ðzÞjz¼0; ðA8Þ

which leads to I
dt
tnþ1

etAðuÞ ¼ 2πi
n!

AnðuÞ: ðA9Þ
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Setting AðuÞ≡ 2uþ lqðp2 − k2 − ip0
1Þ, plugging the

resulting expression in (A7), using the binomial series
identity

ð2uþ lqðp2 − k2 − ip0
1ÞÞn

¼
Xn
r¼0

�
n

r

�
ð2uÞrðlqðp2 − k2 − ip0

1ÞÞn−r; ðA10Þ

and eventually replacing eulqðk2−p2−ip0
1
Þ with

euðk2−p2−ip0
1
Þ ¼

X∞
j¼0

ujðk2 − p2 − ip0
1Þj

j!
; ðA11Þ

we arrive first at

Jnl ¼ 2πi
n!

Xn
r¼0

X∞
j¼0

2rln−rþj
q

j!

�
n

r

�

× ðp2 − k2 − ip0
1Þn−rðk2 − p2 − ip0

1Þj

×
I

du
ul−r−jþ1

: ðA12Þ

Integrating then over u,I
du

ul−r−jþ1
¼ 2πiδrþj;l; ðA13Þ

we obtain

Jnl ¼ ð2πiÞ2
n!l!

lnþl
q ðp2 − k2 − ip0

1Þnðk2 − p2 − ip0
1Þl

× Knlðk2; p2; p0
1Þ; ðA14Þ

with

Knl ¼ z−nU−n
l−nþ1ðzÞ; ðA15Þ

and z≡ l2q
2
½ðk2 − p2Þ2 þ p02

1�. Here, Ub
aðzÞ is the confluent

hypergeometric function of the second kind [22], defined
by

U−a
b−aþ1ðxÞ≡

Xa
j¼0

ð−1Þjj!
�
a

j

��
b

j

�
xa−j: ðA16Þ

Let us now consider (A7), and check what would happen
if we computed Jnl by integrating first over u and then
over t. In the above case, where the integration over u is
performed after the integration over t, we have, according
to (A13), l ¼ rþ j. For j ≥ 0, arising from (A12), we
get therefore l ≥ r. On the other hand, it is clear from
(A12) that r ≤ n. Combining these results, we arrive at
n ≤ l. This fixes the upper limit in the summation over r,
which is given by n equal to minðn;lÞ. If we computed
Jnl by integrating first over u and then over t, we would
arrive at a summation over r from r ¼ 0 to r ¼ l, and,
according to the above argument, l would be equal to
minðn;lÞ. In other words, the most general expression
for Jnl is given by (A14) with n and l replaced by
m≡minðn;lÞ and M≡maxðn;lÞ. If we now plug this
expression for Jnl in (A6), then the most general
expression for Inl reads

In;l ¼ AmMlmþM
q e−ip0

1
ðk2þp2Þ

l2q
2

× ðp2 − k2 − ip0
1Þmðk2 − p2 − ip0

1ÞM
× e−z

2z−mU−m
M−mþ1ðzÞ; ðA17Þ

where Anl ¼ ð2nþln!l!Þ−1=2, z ¼ l2q
2
½ðk2 − p2Þ2 þ p02

1�,
m ¼ minðn;lÞ and M ¼ maxðn;lÞ. In Sec. III, the above
relation will be used to evaluate the integration over x1
and y1 in (3.6) with N ðqÞ

nl ðx1; y1; k2; p2Þ from (3.10).
Here, we present only the result for one typical combi-
nation,

In;l−1I†n;l−1 ¼
1

n!ðl − 1Þ! e
−zzM−m½U−m

M−mþ1ðzÞ�2; ðA18Þ

with z ¼ l2q
2
½ðk2 − p2Þ2 þ p02

1�, m ¼ minðn;l − 1Þ and
M ¼ maxðn;l − 1Þ. All the other integrals appearing

in (3.6) with N ðqÞ
nl from (3.7) are performed in the same

way.
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