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We consider the phase diagram of QCD at very high baryon density and at zero temperature in the
presence of a strong magnetic field. The state of matter at such high densities and low temperatures is
believed to be a phase known as the color-flavor locked phase which breaks color and electromagnetic
gauge invariance, leaving a linear combination of them, denoted as Uð1Þ ~em, unbroken. Of the nine quarks
(three flavors and three colors), five are neutral under this unbroken generator and four are oppositely
charged (two with a charge of þ1 and two with −1). In the presence of a magnetic field corresponding to
Uð1Þ ~em, however, the properties of the condensate change and a new phase known as the magnetic color-
flavor locked (MCFL) phase is realized. This phase breaks an approximate SUð3ÞC × SUð2ÞL × SUð2ÞR ×
Uð1ÞB ×Uð1Þ−A symmetry of the Lagrangian to SUð2ÞCþLþR × Uð1Þ ~em giving rise to six Goldstone modes,
five of which are pseudo Goldstone modes. These Goldstone modes are composed of excitations that
correspond to both neutral quarks and charged quarks. Hence it is natural to expect that the propagators of
these Goldstone modes are affected in the presence of a magnetic field, and their speed becomes
considerably anisotropic. Although this anisotropy is self-evident from symmetry arguments, it has not
been quantified yet. We calculate this anisotropy in the speed of the Goldstone modes using a Nambu–
Jona-Lasinio model type of interaction between the quarks and comment on the impact of such anisotropic
modes on transport properties of the MCFL phase.
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I. INTRODUCTION

The low energy properties of any state of matter are
primarily dictated by its lowest energy excitations. In case
of a Bose condensate these excitations are usually the
gapless Goldstone modes which arise due to the sponta-
neous breaking of continuous symmetries by the conden-
sate. This paper explores the effect of a magnetic field on
the propagation of the Goldstone modes that arise due to
the spontaneous breaking of color-flavor symmetries in a
condensed phase of matter known as the color-flavor
locked (CFL) phase in the presence of a magnetic field.
Before going into the details of what color-flavor locking
is, we can expect to predict some of the consequences of
having a magnetic field using symmetry arguments alone.
The presence of a magnetic field breaks rotational sym-
metry explicitly, and the most natural consequence of it on
the propagator of the Goldstone modes can be a difference
in the speed of the modes in a direction perpendicular to the
field compared to a direction parallel to the field. Although
the effective theory of the Goldstone modes of the CFL
phase in the presence of a magnetic field has been discussed
in some detail in [1], the effect of a magnetic field on the
speed has been commented on at a qualitative level. We
attempt to quantify the effect of the magnetic field on the

neutral Goldstone mode propagators of the color-flavor
locked phase in this paper.
To put things in context, the phase diagram of QCD at

finite baryon densities garners a lot of attention due to its
implications for the physics of compact astrophysical
objects, terrestrial nuclear experiments and heavy ion
collisions. Although considerable progress has been made
in exploring the phase diagram, some parts of it still remain
inaccessible to rigorous analytical or numerical treatment.
The region of the phase diagram that corresponds to
moderate to very high baryon densities at low temperature
is particularly relevant for the physics of compact stars, the
reason being that these stars are cold and composed mostly
of baryons. However, the regime with moderate baryon
density and low temperature is difficult to analyze due to
the following reasons. The strength of the QCD coupling
constant at low energies being large renders perturbative
calculations from first principles futile, necessitating the
use of numerical calculations on the lattice. But lattice
simulations at finite baryon density are not useful either as
the lattice algorithms involving important sampling break
down due to the sign problem [2–6]. However, there is a
region of the phase diagram, at very high baryon densities
and low temperatures, that can be dealt with analytically.
This can be explained as follows. At high density and low
temperature quarks form Fermi spheres. The physics, in
this regime of the phase diagram, is mostly dictated by the*srimoyee@umd.edu
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quarks at the Fermi surface. As the fermions at the Fermi
surface are highly energetic, they are weakly coupled,
making rigorous perturbative calculations justified. This
regime also happens to be relevant for the physics of the
core of neutron stars as the density of baryons at the core is
expected to reach asymptotically high values. The high
density regime has been explored in great detail in the past
two decades. In this regime matter was predicted to exist in
a color superconducting phase known as the “color-flavor
locked” phase using both model calculations [7–12] and
weak coupling calculations in QCD [13–17], [18–20] and
[21–23]. The term “color superconductivity” corresponds
to the Bose condensation of color-charged Cooper pairs of
two quarks at the Fermi surface. As mentioned before, at
high densities and low temperatures quarks form Fermi
spheres with a radius that depends on the baryon chemical
potential. In such a scenario, if there is an attractive color-
flavor and angular momentum channel available at the
Fermi surface giving rise to a BCS instability, two quarks at
the Fermi surface can form a Cooper pair lowering their
energies. The Cooper pairs, being bosonic excitations, form
a Bose-Einstein condensate which is not color neutral. The
gluons acquire a Meissner mass in such a condensate and
get screened. Many such color superconducting phases
with different quark pairings have been proposed for a
range of baryon densities. At asymptotically high densities
the energetically favored color superconducting phase was
found to be the color-flavor locked phase. The condensate
is not color neutral as expected and breaks both color and
Uð1Þem. However, there is a linear combination of the 8th
generator of the color SUcð3Þ and the Uð1Þem that remains
unbroken by the condensate. This linear combination is
referred to as the rotated electromagnetism and denoted by
Uð1Þ ~em. A magnetic field corresponding to this rotated
electromagnetism ( ~B) does not get screened by the con-
densate. The scenario at this point diverges markedly from
the Uð1Þem superconductivity in terrestrial metals which
shields magnetic fields completely or accommodates mag-
netic fields only inside quantized vortices. This opens up
exciting new possibilities as far as the properties of the CFL
phase in the presence of a magnetic field is concerned. But
large magnetic fields in the CFL phase are interesting not
only for theoretical reasons. There is usually a very strong
magnetic field associated with a compact star. For a neutron
star the typical fields on the surface are such that B ∼ 1012

Gauss, and for a magnetar the fields could be as large as
1016 Gauss [24–26]. For gravitationally bound stars an
upper bound on the strength of the magnetic field can be
found by comparing the energy of the gravitational field
and that of the magnetic field of the star. This bound is
around 1018 Gauss. If we consider self-bound quark stars
[27], however, this upper limit can be even higher [28].

Also, higher magnetic fields are expected to exist inside
Uð1Þ ~em charged gluonic vortices [29] which arise due to
chromomagnetic instability in dense matter [30–32] in the
presence of a magnetic field. Typical magnetic field
strength in the core of magnetars may well reach the order
of the square of the CFL gap or higher and can be expected
to alter the nature of the diquark pairing of the condensate,
giving rise to a different color superconducting phase
known as the magnetic CFL or MCFL phase. The sym-
metry properties of the magnetic CFL phase are slightly
different from that of the CFL phase. To understand what
these differences are, let us first look at the symmetry
breaking patterns of the CFL phase in the absence of a
magnetic field. The standard model Lagrangian with a
baryon chemical potential has approximate SUð3Þc ×
SUð3ÞL × SUð3ÞR ×Uð1ÞB × Uð1ÞA symmetry well below
the weak scale. The condensation of the CFL phase breaks
it to SUð3ÞCþLþR, giving Meissner mass to seven of the
eight gluons. A linear combination of the 8th gluonic
generator and the generator of Uð1Þem also becomes
massive, whereas the orthogonal linear combination of
the two remains massless [Uð1Þ ~em]. The CFL phase has a
total of 10 Goldstone modes including π�; π0; K0;
K̄0; Kþ; K−; η; η0 mesons in the massless quark limit. In
addition, there is a Goldstone mode due to the breaking of
Uð1ÞB which we denote by ϕ. In order to predict the
observable consequences, if any, of the existence of a CFL
phase in the core of a neutron star, it is of utmost
importance to analyze the effective theory of these
Goldstone modes. The low energy effective theories of
these Goldstone modes were discussed in great detail in
[33–38] more than a decade ago. The effect of a Uð1Þ ~em

magnetic field ~B on these Goldstone modes, however,
remains to be explored. But in order to discuss the effects of
~B on these Goldstone modes adequately, we need to also
take into account how the pairing of the condensate and,
consequently, the symmetry properties get affected by this
magnetic field. In the presence of ~B, the aforementioned
SUð3Þc × SUð3ÞL × SUð3ÞR ×Uð1ÞB × Uð1ÞA symmetry
of the standard model Lagrangian gets explicitly broken
down to SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB × Uð1Þ−A
symmetry as four of the nine quarks are electrically charged
under this Uð1Þ ~em. The charges of the quarks are shown in
Table I. When the magnetic field is small compared to the
CFL gap, the effect of the magnetic field on the structure of
the gap is negligible and the form of the condensate is given

TABLE I. The Uð1Þ ~em charge of the quarks.

sb sg sr db dg dr ub ug ur

0 0 −1 0 0 −1 1 1 0
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by that of the CFL pairing. However, when the magnetic
field becomes comparable to the CFL gap, the form
of the quark pairing changes and the condensate breaks
SUð3Þc × SUð2ÞL × SUð2ÞR ×Uð1ÞB × Uð1Þ−A down to
SUð2ÞRþLþC ×Uð1Þ ~em [28,39,40]. The gap in the MCFL
phase was calculated for both magnetic fields that are
extremely large (μ2 ¼ ~e ~B, ∼1019 Gauss for μ ∼ 500 MeV)
[28,39,40] and for smaller magnetic fields (1019Gauss >
~e ~B > 1018 Gauss) [28]. It was also shown that if the
magnetic field is lowered further, the gap structure of the
magnetic CFL phase becomes identical to that of the CFL
phase. Four of the Goldstone modes of the CFL phase are
massive in the MCFL phase due to the explicit breaking of
some of the color- avor symmetry of the QCD Lagrangian.
These are the modes that are charged under Uð1Þ ~em and are
basically the charged pions and kaons. The MCFL phase
retains the other six Goldstone modes of the CFL phase
listed above. The effective theory of these Goldstone modes
was discussed to some extent in [1]. These six modes are
neutral under the rotated Uð1Þ ~em and are made up of either
two neutral quark excitations or two oppositely charged
quark excitations so as to keep the combined excitation
neutral. Small magnetic fields do not affect the Goldstone
mode propagation appreciably as the modes are neutral
under this Uð1Þ ~em. However, a large magnetic field ~B
should be able to resolve the internal structure of the modes
and be able to change their properties. One such effect is
encapsulated in the speeds of the Goldstone modes, and we
can quantify this effect by looking at the underlying theory
from which the effective theory of the Goldstone modes is
derived. In the presence of a magnetic field ~B, the quarks
are basically stuck in Landau levels, which not only alters
the gap structure of the MCFL phase from the CFL phase
but also causes the speeds of the neutral Goldstone modes
to be different in directions parallel to the magnetic field
compared to that perpendicular to it. The six neutral
Goldstone modes are of interest to us as being neutral;
they are massless in the presence of a magnetic field and
easy to excite at temperatures far below the gap. This means
that the low energy properties of the MCFL phase are
dictated by these neutral Goldstone modes.
The paper is organized as follows. In Sec. II we analyze

magnetic fields as high as ~e ~B∼2μ2, and in Sec. III we look
at more realistic smaller magnetic fields, followed by a
concluding section. Although ~e ~B∼2μ2 may be too high a
magnetic field to be present at the core of a compact star, it
is not ruled out and may well be within the range of realistic
magnetic fields in quark stars. Also, a mechanism was
conjectured [29] by which high magnetic fields can be
found to exist inside gluonic vortices in the CFL phase.
The mechanism is as follows. Under the rotated Uð1Þ ~em,

some of the gluons are charged. This causes the dispersion
relation of one of the polarizations of these charged gluons
to become tachyonic for high magnetic fields creating a
chromomagnetic instability. As a consequence, charged
gluons condense in a vortex state with magnetic flux tubes
inside, which correspond to stronger magnetic fields than
the magnetic field present outside the vortices. This
phenomenon is called antiscreening of the magnetic field
and can give rise to magnetic fields in the core of magnetars
that are stronger than expected otherwise. Despite the
magnetic field being too large, it is worth analyzing such
fields as the computation of the propagator for the neutral
Goldstone modes is simplified and enlightening for the
purpose of demonstrating how a similar calculation will
work for smaller magnetic fields.

II. GOLDSTONE MODE PROPAGATOR AT VERY
HIGH MAGNETIC FIELDS

Before we compute the propagators for the Goldstone
modes, the energy scales of interest need to be specified.
Here, we are interested in the neutral gapless excitations
about the MCFL condensate with momentum much smaller
compared to the gap which is much smaller than the
chemical potential in the presence of a magnetic field that
is of the order of the square of the chemical potential. This
means that the quarks occupy only the lowest Landau level.
We start with a Lagrangian with 3 colors and 3 flavors of
quarks interacting via a Nambu–Jona-Lasinio (NJL)-type
four-Fermi interaction in the color-flavor locking channel
in the presence of a Uð1Þ ~em gauge field with a baryon
chemical potential μ,

L ¼ ψ̄ði∂ þ e ~Q ~Aþ μγ0Þψ þ
X3
η¼1

G
4
ðψ̄PηψcÞðψ̄cPηψÞ

ð1Þ

where ψ ia is the quark field, with a being the flavor index
and i being the color index. Also the field ψc is the charge
conjugate of the field ψ given by ψc ¼ Cψ̄T where
C ¼ iγ2γ0. ~Aμ is the Uð1Þ ~em gauge field. For simplicity,
we restrict ourselves to the antisymmetric color-flavor
locked channel. Hence, ðPηÞia−jb ¼ iγ5ϵijηϵabη. ~Q is the
rotated Uð1Þ ~em charge of the quarks and is given by
ðþ1ÞΩþ þ ð−1ÞΩ− þ ð0ÞΩ0 where Ωþ;Ω− and Ω0 are
projectors of positively charged quarks, negatively charged
quarks and neutral quarks. We write down the operators
Ω�;Ω0 using a notation that will be explained in a few lines
subsequently:
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Ωþ ¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

; Ω− ¼

0
BBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCA

;

Ω0 ¼

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

: ð2Þ

To clarify our notation, for i ¼ �; 0, ðΩiÞia−jb is written as a 9 × 9 matrix above, where 3 × 3 combinations of 3 flavors
(a ¼ 1; 2; 3) and 3 colors (i ¼ 1; 2; 3) are denoted by the 9 rows of the matrix, and 3 × 3 combinations of 3 flavors
(b ¼ 1; 2; 3) and 3 colors (j ¼ 1; 2; 3) are denoted by the 9 columns of the matrix. G is the coupling constant with
dimension of length2. As we are interested in the bosonic excitations about the condensate, we need to introduce auxiliary
fields in the action. Remembering that we are considering pairing only in the antisymmetric channel in color and flavor, we
introduce three auxiliary fields Δ1;Δ2 and Δ3 and rewrite the action as

S ¼ −
Δ2

1 þ Δ2
2 þ Δ2

3

G
þ 1

2
TrðLogðS−1quarkÞÞ: ð3Þ

The matrix S−1quark is given by

S−1quark ¼
�
i∂ þ ~e ~Q ~Aþ μγ0 iγ5Δ−

−iðγ0γ5ðΔ−Þ†γ0Þ i∂ þ ~e ~Q ~A − μγ0

�
ð4Þ

where Δ− represents the auxiliary fields in our 9 × 9 matrix notation as

Δ− ¼

0
BBBBBBBBBBBBBBBBB@

0 0 0 0 Δ3 0 0 0 Δ2

0 0 0 −Δ3 0 0 0 0 0

0 0 0 0 0 0 −Δ2 0 0

0 −Δ3 0 0 0 0 0 0 0

Δ3 0 0 0 0 0 0 0 Δ1

0 0 0 0 0 0 0 −Δ1 0

0 0 −Δ2 0 0 0 0 0 0

0 0 0 0 0 −Δ1 0 0 0

Δ2 0 0 0 Δ1 0 0 0 0

1
CCCCCCCCCCCCCCCCCA

: ð5Þ
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We introduce an external magnetic field at this point in the
problem by assigning ~Aμ ¼ ð0; 0; ~Bx; 0Þ. The idea is to first
minimize the action of Eq. (3) with respect to the
magnitude of the auxiliary fields which gives us three
gap equations from which we can extract an estimate of the
magnitudes of the three gaps. Then we expand the action of
Eq. (3) about this minimum, to quadratic order in the
fluctuations, to obtain the leading order terms of the
effective action for the Goldstone modes. For simplicity,
we choose to work in a regime where the three gaps are
equal, i.e., Δ1 ¼ Δ2 ¼ Δ3 ≡ Δ. But in order to perform a
consistent calculation, we need to figure out where in the
QCD phase diagram (μ vs ~B) this regime is or at what value
of the magnetic field the three gaps equal each other. But
before we do that, the form of the condensate can be
simplified further by symmetry arguments. Note that as the
Lagrangian possesses SUð2ÞRþLþC global symmetry and so
does the condensate, we should have Δ1 ¼ Δ2. This is as
far as we can go before solving for the gaps explicitly using
the gap equations. To solve for the gaps we write down the
action as a function of Δ1 and Δ3,

S½Δ1;Δ3� ¼
8Δ1Δ

†
1 þ 4Δ3Δ

†
3

4G
−
1

2
TrðLogðS−1quarkÞÞ: ð6Þ

Minimizing the action of Eq. (6) with respect to Δ1 and Δ3,
we obtain the gap equations for the two gaps. The gap
equation for Δ1 is given by

dS

dΔ†
1

����
Δ1¼Δ3¼Δ

¼ 8Δ1

4G

����
Δ1¼Δ3¼Δ

−
1

2
Tr
�
Squark:

dS−1quark
dΔ†

1

�����
Δ1¼Δ3¼Δ

¼ 0 ð7Þ

and for Δ3 it is

dS

dΔ†
3

����
Δ1¼Δ3¼Δ

¼ 4Δ3

4G

����
Δ1¼Δ3¼Δ

−
1

2
Tr

�
Squark:

dS−1quark
dΔ†

3

�����
Δ1¼Δ3¼Δ

¼ 0: ð8Þ

In order to proceed further we need to evaluate Squark in
momentum space as the calculations are much simpler in it
than in position space. However, as is evident from the
position space form of S−1quark given in Eq. (4), the inverse
propagator appears to not be translationally invariant for the
charged quarks, which means that it is not diagonal in the
momentum space and we lose the advantage we had in
going to the momentum space. However, this can be
remedied by using the Landau level basis for the quarks
instead of the standard free particle basis. As the eigenstates
of a fermion in a magnetic field are given by the Landau
levels, it is natural to expect the propagator to be diagonal

in this basis. This method was first introduced by Ritus in
1972 [41]. We write down the explicit form of the quark
propagator in the Landau level basis, where l is the Landau
level index, in the Appendix in order to avoid interrupting
the thread of logic here. Note that in the Appendix we
derived the quark propagator only in the limit
Δ1 ¼ Δ2 ¼ Δ3. However, this will suffice for the purpose
of solving Eqs. (7) and (8), as both of them are to be solved
for Δ1 ¼ Δ2 ¼ Δ3. Also, we will be working in the limit of
large magnetic fields, of the order of the square of the
chemical potential, so that only the lowest Landau level is
occupied. As mentioned before, we simplify (7) and (8)
using the expression for the propagator in the Appendix
and obtain two equations for Δ. By demanding that the two
be consistent with each other, we can determine the
magnetic field as a function of the chemical potential for
which Δ1 ¼ Δ3. Simplifying (7) we get

2

G
¼ 2μ2

π2
log

�
2Λ
Δ

�
þ ~e ~B

π2
Log

�
2Λ
Δ

�
; ð9Þ

and simplifying (8) gives

1

G
¼ 2

μ2

π2
log

�
2Λ
Δ

�
: ð10Þ

Λ is the cutoff used for the divergent integrals in the gap
equation. It is worthwhile mentioning at this point that
although we introduce a sharp ultraviolet cutoff here for the
sake of clarity, the cancellation of the UV divergences in
the calculations that follow do not depend on any kind of
regularization procedure. Equations (9) and (10) can only
be consistent when ~e ~B ¼ 2μ2. This brings us to the reason
why we are considering ~e ~B∼2μ2 in the first place: because
we need both high magnetic fields ~e ~B ≥ μ2

2
and all the gaps

to be equal to simplify our calculations. The motivation is
to obtain analytic results in a regime where the effect of the
magnetic field on the Goldstone mode propagators would
be considerable. Let us introduce a matrix at this point
given by Δ̄≡ Δ−jΔ1¼Δ3¼Δ. Having obtained the strength of
the magnetic field for which the gaps are equal, let us now
try to find the propagator for the neutral Goldstone modes.
Before we do that we write them out explicitly here for
clarity. Note that the gap transforms under chiral flavor
rotation as

Δ0 ¼ eiγ
5GaαaΔ̄eiγ5ðGaÞTαa

¼ ð1þ iγ5GaαaÞΔ̄ð1þ iγ5ðGaÞTαaÞ þ…

¼ Δ̄þ iαaγ5Ma þ…; for a ¼ 1;…; 8; ð11Þ

where Ga are generators of the SUð3Þ gauge group, αa are
fields corresponding to the generators Ga and
Ma ¼ GaΔ̄þ Δ̄ðGaÞT . Similarly, under an axial Uð1Þ
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rotation, which happens to be an approximate symmetry of
the Lagrangian at high density, the condensate transforms as

Δ0 ¼ eiγ
5α9Δ̄eiγ5α9

¼ Δ̄þ 2iα9γ5Δ̄þ…≡ Δ̄þ iα9γ5M9 þ…; ð12Þ

and under an ordinary Uð1Þ rotation

Δ0 ¼ eiα
10Δ̄eiα10 ¼ Δ̄þ 2iα10Δ̄þ…≡ Δ̄þ iα10M10 þ…

ð13Þ
Among the 10 modes Ma we need to find the neutral ones.
The neutral Goldstone modes are the ones for which

~Q:Ma þMa: ~Q ¼ 0. We find that M1;M2;M3, M8, M9

and M10 are neutral as expected and the rest are not. We
describe the computation of the propagator for α3 in some
detail here and state the result for the rest of the five as the
calculations are very similar. To proceed we first need to
rewrite the action of Eq. (3) in terms of Δ− as

S ¼ −
1

4G
Δ−

ia−jbðΔ−Þ†jb−ia þ
1

2
TrðLogðS−1quarkÞÞ: ð14Þ

Now we expand the above action about Δ− ¼ Δ̄ up to
second order in fluctuations (δΔ) to obtain the following
expression:

S½Δ� ¼ S½Δ̄� þ ∂S
∂Δ−

ia−jb

����
Δ−¼Δ̄

δΔia−jb þ
∂S

∂ðΔ−Þ†ia−jb

����
Δ−¼Δ̄

δΔ†
ia−jb þ

1

2

∂2S
∂Δ−

kd−lf∂Δ−
ia−jb

����
Δ−¼Δ̄

δΔkd−lfδΔia−jb

þ 1

2

∂2S

∂ðΔ−Þ†kd−lf∂ðΔ−Þ†ia−jb

����
Δ−¼Δ̄

δΔ†
kd−lfδΔ

†
ia−jb þ

1

2

∂2S

∂ðΔ−Þ†kd−lf∂Δ−
ia−jb

����
Δ−¼Δ̄

δΔ†
kd−lfδΔia−jb

þ 1

2

∂2S

∂Δ−
kd−lf∂ðΔ−Þ†ia−jb

����
Δ−¼Δ̄

δΔkd−lfδΔ
†
ia−jb: ð15Þ

The coefficients of the terms in the above expression which are first order in fluctuations δΔ go to zero due to the gap
equation. Also note that there is an easy trick to simplify second derivatives of the trace of logarithm of the inverse quark
propagator with respect to the gap matrix, and it is the following:

∂2TrðLogðS−1quarkÞÞ
∂Δ−

ia−jb∂Δ−
kd−lf

¼ −Tr
�
Squark

dS−1quark
∂Δ−

ia−jb
Squark

dS−1quark
∂Δ−

kd−lf

�
: ð16Þ

Although we have explicitly written out the above expression for the second derivative with respect to Δ−, similar relations
are true for second derivatives with respect to ðΔ−Þ† and mixed second derivatives with respect to Δ− and ðΔ−Þ†. Now we
set δΔ ¼ iα3γ5M3 in Eq. (15), as we are interested in the propagator of α3 and denote the part of the action that is quadratic
in α3 as S3. After using Eq. (16) and the expressions for the quark propagators for the 0th Landau level from the Appendix
and some tedious algebra, we finally get

S3½Δ� ¼ S½Δ̄� − 1

4G
3Δ2ðα3Þ2

−
Δ2ðα3Þ2

4

�Z
d4p
ð2πÞ4

�
1þ p:ðp − kÞ

jp∥p − kj
�

4ðp0ðp0 − k0Þ − 4ðjp − kj − μÞðjpj − μÞ − 4Δ2Þ
ððp0 − k0Þ2 − ðjp − kj − μÞ2 − Δ2Þðp2

0 − ðjpj − μÞ2 − Δ2Þ
�

−
Δ2ðα3Þ2

4

�Z
dp0dp3

ð2πÞ4
1

2

4π2 ~e ~B
4

16

2π

p0ðp0 − k0Þ − ðjp3 − k3j − μÞðjp3j − μÞ − Δ2

ððp0 − k0Þ2 − ðjp3 − k3j − μÞ2 − Δ2Þðp2
0 − ðjp3j − μÞ2 − Δ2Þ þO

�
k2⊥
~e ~B

��
þ… ð17Þ

In Eq. (17) we first do the p0 integral followed by the p
and p3 integrals. The three-momentum integrals and the p3

integrals are performed about the Fermi surface, jpj ∼ μ and
jp3j ∼ μ. Note that Eq. (17) has integrals which are
divergent, and we need to carefully subtract these

divergences to obtain our final result. The divergences
basically cancel with the term with the coupling constant
(G) in the denominator in Eq. (17). To see how exactly this
cancellation works we reorganize Eq. (17) in a form that is
more convenient,
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S3½Δ� ¼ S½Δ̄� − 1

4G
3Δ2ðα3Þ2 −

Z
d4p
ð2πÞ4

2Δ2ðα3Þ2
ðp0 − k0Þ2 − ðjpj − μÞ2 − Δ2

−
j~e ~B j
4π

Z
dp0dp3

ð2πÞ2
1

2

2Δ2ðα3Þ2
ðp0 − k0Þ2 − ðjp3j − μÞ2 − Δ2

þ Δ2ðα3Þ2
4

�Z
d4p
ð2πÞ4

8p0k0
ððp0 − k0Þ2 − ðjpj − μÞ2 − Δ2Þðp2

0 − ðjpj − μÞ2 − Δ2Þ
�

þ Δ2ðα3Þ2
4

�Z
dp0dp3

ð2πÞ4
1

2

4π2 ~e ~B
4

16

2π

p0k0
ððp0 − k0Þ2 − ðjp3j − μÞ2 − Δ2Þðp2

0 − ðjp3j − μÞ2 − Δ2Þ
�

−
Δ2ðα3Þ2

4

�Z
d4p
ð2πÞ4

�
1þ p:ðp − kÞ

jp∥p − kj
�

4ðp0ðp0 − k0Þ − 4ðjp − kj − μÞðjpj − μÞ − 4Δ2Þ
ððp0 − k0Þ2 − ðjp − kj − μÞ2 − Δ2Þðp2

0 − ðjpj − μÞ2 − Δ2Þ

−
Z

d4p
ð2πÞ4

8p0ðp0 − k0Þ − 8ðjpj − μÞ2 − 8Δ2

ððp0 − k0Þ2 − ðjpj − μÞ2 − Δ2Þðp2
0 − ðjpj − μÞ2 − Δ2Þ

�

−
Δ2ðα3Þ2

4

�Z
dp0dp3

ð2πÞ4
1

2

4π2 ~e ~B
4

16

2π

p0ðp0 − k0Þ − ðjp3 − k3j − μÞðjp3j − μÞ − Δ2

ððp0 − k0Þ2 − ðjp3 − k3j − μÞ2 − Δ2Þðp2
0 − ðjp3j − μÞ2 − Δ2Þ

−
Z

dp0dp3

ð2πÞ4
1

2

4π2 ~e ~B
4

16

2π

p0ðp0 − k0Þ − ðjp3j − μÞ2 − Δ2

ððp0 − k0Þ2 − ðjp3j − μÞ2 − Δ2Þðp2
0 − ðjp3j − μÞ2 − Δ2Þ

�
þ…: ð18Þ

The third and the fourth terms in Eq. (18) contain the leading divergences in the expansion jkj
μ . Now we need to use the

gap equation to cancel these divergent integrals with the second term in Eq. (18). Using the gap equation at ~e ~B∼2μ2 we can
see that

3

4G
¼ −i

�Z
d4p
ð2πÞ4

2

ðp0Þ2 − ðjpj − μÞ2 − Δ2
þ j~e ~B j

4π

Z
dp0dp3

ð2πÞ2
1

2

2

ðp0Þ2 − ðjp3j − μÞ2 − Δ2

�
ð19Þ

which achieves the cancellation we were looking for, and we are left with an action for α3 given by

S3½Δ� ¼ S½Δ̄� þ Δ2ðα3Þ2
Z

d4p
ð2πÞ4

k20
ðp2

0 − ðjpj − μÞ2 − Δ2Þððp0 − k0Þ2 − ðjpj − μÞ2 − Δ2Þ

þ Δ2ðα3Þ2
Z

dp0dp3

ð2πÞ2
1

2

j~e ~B j
4π

k20
ðp2

0 − ðjp3j − μÞ2 − Δ2Þððp0 − k0Þ2 − ðjp3j − μÞ2 − Δ2Þ

−
Δ2ðα3Þ2

4

Z
d4p
ð2πÞ4

��
1þ p:ðp − kÞ

jp∥p − kj
�

4ðp0ðp0 − k0Þ − 4ðjp − kj − μÞðjpj − μÞ − 4Δ2Þ
ððp0 − k0Þ2 − ðjp − kj − μÞ2 − Δ2Þðp2

0 − ðjpj − μÞ2 − Δ2Þ

−
�
1þ p:ðp − kÞ

jp∥p − kj
�

4ðp0ðp0 − k0Þ − 4ðjpj − μÞðjpj − μÞ − 4Δ2Þ
ððp0 − k0Þ2 − ðjpj − μÞ2 − Δ2Þðp2

0 − ðjpj − μÞ2 − Δ2Þ
�

−
Δ2ðα3Þ2

4

Z
d4p
ð2πÞ4

�
p:ðp − kÞ
jp∥p − kj − 1

�
4ðp0ðp0 − k0Þ − 4ðjpj − μÞ2 − 4Δ2Þ

ððp0 − k0Þ2 − ðjpj − μÞ2 − Δ2Þðp2
0 − ðjpj − μÞ2 − Δ2Þ

− Δ2ðα3Þ2
Z

dp0dp3

2ð2πÞ2
1

2

j~e ~B j
2π

�
2p0ðp0 − k0Þ − 2ðjp3 − k3j − μÞðjp3j − μÞ − 2Δ2

ððp0 − k0Þ2 − ðjp3 − k3j − μÞ2 − Δ2Þðp2
0 − ðjp3j − μÞ2 − Δ2Þ

−
2p0ðp0 − k0Þ − 2ðjp3j − μÞ2 − 2Δ2

ððp0 − k0Þ2 − ðjp3j − μÞ2 − Δ2Þðp2
0 − ðjp3j − μÞ2 − Δ2Þ

�
þ…: ð20Þ

The above action has only finite integrals except for one term with a factor of ðp:ðp−kÞjp∥p−kj − 1Þ inside the four-momentum

integral. Although this term is divergent, it is suppressed by powers of jkj
μ and can be ignored for our purpose. If we now

expand our result in k2
0

Δ2,
k2
3

Δ2 and
jkj2
Δ2 we obtain the leading order quadratic action in α3 as
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S3½Δ� ¼ S½Δ̄� − iððα3Þ2Þμ2
4π2

�
k20 −

jkj2
3

�
−
iððα3Þ2Þj~e ~B j

16π2
ðk20 − k23Þ þ…: ð21Þ

We can perform similar calculations for the other neutral Goldstone modes 1,2,8,9,10 and find the corresponding inverse
propagators. From these expressions we can extract the speed of the six neutral Goldstone modes. If we denote the speed of
the ith excitation perpendicular and parallel to the magnetic field as vi⊥ and vi∥, respectively, we have ðviÞ2⊥ ¼ 2

9
, ðviÞ2∥ ¼ 5

9

for i ¼ 1; 2; 3; ðviÞ2⊥ ¼ 8
27
, ðviÞ2∥ ¼ 11

27
for i ¼ 8; and ðviÞ2⊥ ¼ 5

27
, ðviÞ2∥ ¼ 17

27
for i ¼ 9; 10 for the values of the magnetic field

for which ~e ~B∼2μ2.

III. LOWER MAGNETIC FIELDS

The calculation in the section above, although applicable to only ~e ~B∼2μ2, paves the way for a similar calculation in this
section for more realistic magnetic fields. In this section we discuss the propagators of the neutral Goldstone modes for
magnetic fields ~e ~B ≤ 0.3μ2. Just to clarify the separation of scales in this discussion, if the momentum scale at which we are
looking at the propagators of the Goldstone modes is denoted by k, we will be concentrating on a regime
jkj2 < Δ2 ≤ ~e ~B < 0.3μ2. This regime is such that multiple Landau levels are filled and the total number of Landau

levels occupied by the quarks is given by ½ μ2

2~e ~B
�, where ½…� denotes the greatest integer smaller than μ2

2~e ~B
. Before we delve into

the details of the effective theory in this regime, it should be noted that the effect of multiple Landau levels on the gap
equation in the presence of a magnetic field was discussed in [28]. It was found that the two gaps Δ1 and Δ3 exhibit de
Haas–van Alphen oscillations. This is a consequence of the fact that the number of occupied Landau levels changes
discontinuously as the magnetic field is varied with respect to the chemical potential. From [28] we can see that the two gaps
Δ1 and Δ3 become appreciably different from each other for ~e ~B ≥ 0.5μ2. Note that as the magnetic field is increased
further, the two gaps become equal to each other at ~e ~B∼2μ2 which is consistent with our results in the previous section. The
effect of the de Haas–van Alphen oscillation is not very significant for magnetic fields ~e ~B < 0.3μ2, and it is reasonable to
use Δ1 ¼ Δ3 in this regime. As we lower the magnetic field further this approximation becomes more accurate [28].
Although it is probably difficult to treat this problem in a regime where multiple Landau levels have to be

taken into account analytically in its full generality, it is possible to do so in the limit jkj ≪ Δ < ~e ~B, if

we were to consider only leading order terms in an expansion in jkj2
~e ~B
. In this limit we can obtain an expression

for the effective action for the Goldstone modes analogous to (17). The only difference is that in addition

to a term like − Δ2ðα3Þ2
4

½R dp0dp3

ð2πÞ4
1
2
4π2 ~e ~B

4
16
2π

p0ðp0−k0Þ−ðjp3−k3j−μÞðjp3j−μÞ−Δ2

ððp0−k0Þ2−ðjp3−k3j−μÞ2−Δ2Þðp2
0
−ðjp3j−μÞ2−Δ2Þ þOðk2⊥

~e ~B
Þ� as in (17), we also have

− Δ2ðα3Þ2
4

½R dp0dp3

ð2πÞ4
4π2 ~e ~B

4
16
2π

Plmax
l¼1

p0ðp0−k0Þ−ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp3−k3j2þ2j~e ~B jl

p
−μÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp3j2þ2~e ~B l

p
−μÞ−Δ2

ððp0−k0Þ2−ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp3−k3j2þ2~e ~B l

p
−μÞ2−Δ2Þðp2

0
−ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp3j2þ2~e ~B l

p
−μÞ2−Δ2Þ

þOðk2⊥
~e ~B
Þ� where l is the Landau level

index. The p3 integrals in this additional term, which corresponds to l ≠ 0, are to be performed around
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
∼ μ

instead of jp3j ∼ μ. After subtracting the divergences as before and computing the integrals and the sums, we end up with
expressions for the speeds of the Goldstone modes along the magnetic field and perpendicular to the field. Here we state the
results only, as the manipulations involved are very similar to the ones described in the previous section. The speed of the
three modes α1; α2; α3 parallel to the magnetic field is given by

v2∥ð~e ~BÞ ¼
μ2

12
þ j~e ~B j

16
þ j~e ~B j

16

2
ffiffiffiffiffiffiffiffiffi
2j~e ~B j

p
μ Re

h
i
h
Hζ

h
− 1

2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
− 1

2
; 1 − μ2

2j~e ~B j

iii
μ2

4
þ j~e ~B j

16
þ j~e ~B j

16
2μffiffiffiffiffiffiffiffiffi
2j~e ~B j

p Re
h
ð−iÞ

h
Hζ

h
1
2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
1
2
; 1 − μ2

2j~e ~B j

iii ð22Þ

and

v2⊥ð~e ~BÞ ¼
μ2

12

μ2

4
þ j~e ~B j

16
þ j~e ~B j

16
2μffiffiffiffiffiffiffiffiffi
2j~e ~B j

p Re
h
ð−iÞ

h
Hζ

h
1
2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
1
2
; 1 − μ2

2j~e ~B j

iii ð23Þ

where Hζ is the Hurwitz zeta function. Similarly for α8 we have
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v2∥ð~e ~BÞ ¼
μ2

9
þ j~e ~B j

48
þ j~e ~B j

48

2
ffiffiffiffiffiffiffiffiffi
2j~e ~B j

p
μ Re

h
i
h
Hζ

h
− 1

2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
− 1

2
; 1 − μ2

2j~e ~B j

iii
μ2

3
þ j~e ~B j

48
þ j~e ~B j

48
2μffiffiffiffiffiffiffiffiffi
2j~e ~B j

p Re
h
ð−iÞ

h
Hζ

h
1
2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
1
2
; 1 − μ2

2j~e ~B j

iii ð24Þ

and

v2⊥ð~e ~BÞ ¼
μ2

9

μ2

3
þ j~e ~B j

48
þ j~e ~B j

48
2μffiffiffiffiffiffiffiffiffi
2j~e ~B j

p Re
h
ð−iÞ

h
Hζ

h
1
2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
1
2
; 1 − μ2

2j~e ~B j

iii ð25Þ

and for α9 and α10

v2∥ð~e ~BÞ ¼
5μ2

18
þ j~e ~B j

3
þ j~e ~B j

3

2
ffiffiffiffiffiffiffiffiffi
2j~e ~B j

p
μ Re

h
i½Hζ

h
− 1

2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
− 1

2
; 1 − μ2

2j~e ~B j

iii
5μ2

6
þ j~e ~B j

3
þ j~e ~B j

3
2μffiffiffiffiffiffiffiffiffi
2j~e ~B j

p Re
h
ð−iÞ½Hζ

h
1
2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
1
2
; 1 − μ2

2j~e ~B j

iii ð26Þ

and

v2⊥ð~e ~BÞ ¼
5μ2

18

5μ2

6
þ j~e ~B j

3
þ j~e ~B j

3
2μffiffiffiffiffiffiffiffiffi
2j~e ~B j

p Re
h
ð−iÞ½Hζ

h
1
2
; 1 − μ2

2j~e ~B j þ
h

μ2

2j~e ~B j

ii
−Hζ

h
1
2
; 1 − μ2

2j~e ~B j

iii : ð27Þ

Although the above expressions are valid for most of
jkj < ~e ~B < 0.3μ2, the regime of validity of the above

expressions is restricted by ðμ2 − ½ μ2

2~e ~B
�2~e ~BÞ ≥ ξΔ2 and

ðð1þ ½ μ2

2~e ~B
�Þ2~e ~B−μ2Þ ≥ ξΔ2 where ξ is a number of order

one but greater than 1. We plot the expressions for v⊥ and
v∥ for all six neutral Goldstone modes as a function of the
magnetic field in Fig. 1. The empty regions in the curves

correspond to a regime where ðμ2 − ½ μ2

2~e ~B
�2~e ~BÞ ≤ ξΔ2 and

(a) (b)

(c)

FIG. 1 (color online). Panel (a) shows speed in directions parallel and perpendicular to the magnetic fields for the mesonic modes 1,2,3
as a function of ~e ~B, whereas panel (b) shows speed in directions parallel and perpendicular to the magnetic fields for the 8th mesonic
mode as a function of ~e ~B. Panel (c) is a similar plot showing the speeds of modes 9 and 10.
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ðð1þ ½ μ2

2~e ~B
�Þ2~e ~B−μ2Þ ≤ ξΔ2 and the above expressions are

not valid. In order to determine the regions to be excluded
in the plot due to the reason mentioned above we have
taken Δ ∼ 0.1μ. Although it seems from the regions plotted
in Fig. 1 that the speed continues to drop to zero as

½ μ2

2j~e ~B j�2j~e ~B j → μ2 in the regions we have not plotted in the

figure, this is not the behavior in reality. It is an artifact of
how we computed the integrals for the topmost Landau

level (l ¼ lmax ¼ ½ μ2

2j~e ~B j�) in our calculation. The finite p3

integrals corresponding to the topmost Landau level were

performed from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2j~e ~B jlmax

q
− μ ¼ −∞ toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2j~e ~B jlmax

q
− μ ¼ ∞, which is a reasonable

thing to do when ðμ2 − ½ μ2

2~e ~B
�2~e ~BÞ ≥ ξΔ2 and

ðð1þ ½ μ2

2~e ~B
�Þ2~e ~B−μ2Þ ≥ ξΔ2 as the integrands involved

go to zero as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2j~e ~B jlmax

q
− μ > Δ. In regions

ðμ2 − ½ μ2

2~e ~B
�2~e ~BÞ ≤ ξΔ2 and ðð1þ ½ μ2

2~e ~B
�Þ2~e ~B−μ2Þ ≤ ξΔ2

the lower limit of integrals for the topmost Landau level

should be p3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 2j~e ~B jlmax

q
. The implication of this

for Fig. 1 seems to be that as the magnetic field is increased,
the curve for the speed for lmax ¼ l0 first decreases as μ2

2~e ~B
→

l0 as shown in Fig. 1 and then increases over a region of
∼ξΔ2 about a point where μ2

2~e ~B
¼ l0, which is not captured in

Fig. 1, to meet the curve for the speed for lmax ¼ l0 − 1.

IV. CONCLUSION

In the last two sections we analyzed the propagator for
the neutral Goldstone modes of the color-flavor locked
phase in the presence of a magnetic field for both high
magnetic fields ~e ~B∼2μ2 and more realistic moderate
magnetic fields Δ2 ≤ ~e ~B ≤ 0.3μ2. We found that the
speeds of these modes differ considerably from their values
in the absence of a magnetic field found in the weak

coupling limit
ffiffi
1
3

q
, for the range of the magnetic field we

are considering here. There are a couple of improvements
that can be made to our calculations here. The first one is
for the regime ~e ~B∼2μ2. The magnetic field in this regime
is so high that only the lowest Landau level is filled. This
may imply that the magnetic field should already be
probing the vacuum which can lead to the condensation
of the chiral condensate (q̄q). This phenomenon at zero
density is known as “magnetic catalysis” [42–47], [48–52],
[53–56]. This is likely to have an impact on the magnitude
of the MCFL gap. If this is the case, then the mesonic
excitations will involve quark-antiquark quantum numbers
like mesons at zero density along with the diquark quantum
numbers considered here. This will in turn add corrections

to the anisotropy in the speed of the neutral mesonic
excitations that we found here. Also, our calculation at
~e ~B∼2μ2 involves gaps Δ1 ¼ Δ3 ¼ Δ which is why
although we can accurately (barring the corrections coming
from the presence of a chiral condensate) predict the
anisotropy in the speed of the Goldstone modes at
~e ~B ¼ 2μ2, we lose information regarding how this
anisotropy changes as a function of ~e ~B

μ2
around the point

~e ~B ¼ 2μ2. In order to recover this information the calcu-
lation for the propagators of the Goldstone modes needs to
be carried out in its full generality using gaps that are
unequal or Δ1 ≠ Δ3. This is not very important at lower
magnetic fields ~e ~B < 0.3μ2 as the two gaps are close to
each other in magnitude in that regime. However, for large
magnetic fields 2~e ~B > μ2 this is important as the gaps
become vastly different [28] as the magnetic field is

increased from ~e ~B∼ μ2

2
onwards, except for the point

~e ~B∼2μ2. A more detailed calculation including the effect
of magnetic catalysis and with unequal gapsΔ1 andΔ3 will
improve the accuracy of this calculation and will also give
us a prediction of how the anisotropy in the speed of the
Goldstone modes changes as the magnetic field is varied in
this regime of very high magnetic field.
As seen in Fig. 1 the speed of the Goldstone modes not

only differs considerably from the standard weak coupling
value of 1ffiffi

3
p that is found in the absence of a magnetic field

but also undergoes de Haas–van Alphen oscillations with

increasing magnetic field for fields ~e ~B < μ2

2
. These could

have observable consequences for the transport properties
of the core of a magnetar. The biggest contribution to the
neutrino emissivity of the CFL phase comes from the decay
of the pseudo Goldstone modes or the scattering of the
Goldstone modes into neutrinos. The anisotropy found in
the speed of the Goldstone modes here could significantly
alter the neutrino emissivity parallel to the magnetic field
compared to that perpendicular to it. Also, the oscillations
observed in the speed could introduce oscillatory behavior
in the neutrino emissivity which could be relevant for a
magnetar going through stellar evolution. It was found in
[28] that during its stellar evolution, a magnetar with a CFL
core could go through several successive phase transitions
which would induce discontinuous changes in the induced
magnetic field in the core. This could translate into
observable effects in the cooling due to the oscillatory
nature of the neutrino emission.
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APPENDIX

The Landau level basis has been explained in great detail
in [39,57]. Here we outline the basic steps to find the quark
propagator for the problem at hand. We only need to find
the propagator in the limit Δ1 ¼ Δ3. In its current form
neither Δ− nor its square is diagonal. However, our
calculations become a lot simpler if the square of the

gap matrix is diagonal in the basis we are working in. After
we find such a basis for Δ−jΔ1¼Δ3

the condensate in this
new basis is given by

Δ0 ¼ VðΔ−jΔ1¼Δ3
ÞVt ðA1Þ

where V is the matrix given by

V ¼

0
BBBBBBBBBBBBBBBBBB@

−
ffiffi
2
3

q
0 0 0 1ffiffi

6
p 0 0 0 1ffiffi

6
p

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1ffiffi
2

p 0 0 0 − 1ffiffi
2

p

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
1ffiffi
3

p 0 0 0 1ffiffi
3

p 0 0 0 1ffiffi
3

p

1
CCCCCCCCCCCCCCCCCCA

ðA2Þ

and Δ0 is

Δ0 ¼

0
BBBBBBBBBBBBBBBB@

−Δ 0 0 0 0 0 0 0 0

0 0 0 −Δ 0 0 0 0 0

0 0 0 0 0 0 −Δ 0 0

0 −Δ 0 0 0 0 0 0 0

0 0 0 0 −Δ 0 0 0 0

0 0 0 0 0 0 0 −Δ 0

0 0 −Δ 0 0 0 0 0 0

0 0 0 0 0 −Δ 0 0 0

0 0 0 0 0 0 0 0 2Δ

1
CCCCCCCCCCCCCCCCA

ðA3Þ

with Δ1 ¼ Δ3 ¼ Δ. We need to evaluate the quark propagator in order to proceed. The quark propagator and its inverse are
2 × 2 matrices in Gorkov space,

Squark ¼
 
S11quark S12quark

S21quark S22quark

!
: ðA4Þ

S11quark, S
12
quark, S

21
quark, S

22
quark are all 9 × 9matrices in color-flavor space. The inverse quark propagator ðSquarkÞ−1 is diagonal in

the Landau level basis and can be expressed as

ððSquarkÞ−1Þ11 ¼ ððp0 þ μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 þ μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 þ μÞγ0 − p3γ3ÞΩ0;

ðA5Þ

ððSquarkÞ−1Þ22 ¼ ððp0 − μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 − μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 − μÞγ0 − p3γ3ÞΩ0;

ðA6Þ
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ððSquarkÞ−1Þ12 ¼ iγ5Δ0 ≡ Δ0
c ðA7Þ

and

ððSquarkÞ−1Þ21 ¼ γ0ð−iγ5Δ0Þγ0 ≡ ~Δ0
c: ðA8Þ

We have defined two matrices Δ0
c and ~Δ0

c as we need them for convenience later in this appendix. We need to invert S−1quark to
get the quark propagator Squark in the Landau level basis. The inverses of the elements of Squark are given by

ðS11quarkÞ−1 ¼ ððp0 þ μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 þ μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 þ μÞγ0 − p3γ3ÞΩ0

− ðiγ5Δ0Þ½ððp0 − μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 − μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ

þ ððp0 − μÞγ0 − p3γ3ÞΩ0�−1ðγ0ð−iγ5ÞðΔ0Þ†γ0Þ;
ðA9Þ

ðS22quarkÞ−1 ¼ ððp0 − μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 − μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 − μÞγ0 − p3γ3ÞΩ0

− ðγ0ð−iγ5ÞΔ0†γ0Þ½ððp0 þ μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 þ μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ−

þ ððp0 þ μÞγ0 − p3γ3ÞΩ0�−1ðiγ5Δ0Þ; ðA10Þ

ðS12quarkÞ−1 ¼ −½½ððp0 þ μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 þ μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 þ μÞγ0 − p3γ3ÞΩ0�

−1

× ðiγ5Δ0ÞS22�−1
ðA11Þ

and

ðS21quarkÞ−1 ¼ −½½ððp0 − μÞγ0 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩ− þ ððp0 − μÞγ0 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
γ2 − p3γ3ÞΩþ þ ððp0 − μÞγ0 − p3γ3ÞΩ0�

−1

× ðγ0ð−iγ5ÞΔ0†γ0ÞS11�−1:
ðA12Þ

To write out the different components of Squark explicitly, we need to define the following projectors in the massless quark
limit,

Λ�
ðþÞ ¼

1

2

�
1� γ0ðγ3p3 þ γ2

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q �
ðA13Þ

and

Λ�
ð−Þ ¼

1

2

�
1� γ0ðγ3p3 − γ2

ffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B l

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q �
: ðA14Þ

From this point onwards we refer to Squark as S. We write the diagonal terms of the propagator in Gorkov space in terms of
these projectors as

ðS11Þ11−11 ¼ S1112−12 ¼ S1121−21 ¼ S1122−22 ¼
ðp0 − jp̄j − μÞγ0Λþ

p2
0 − ðjp̄j þ μÞ2 − Δ2

þ ðp0 þ jp̄j − μÞγ0Λ−

p2
0 − ðjp̄j − μÞ2 − Δ2

; ðA15Þ

SRIMOYEE SEN PHYSICAL REVIEW D 92, 025004 (2015)

025004-12



S1113−13 ¼ S1123−23 ¼
�
p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
− μ
	
γ0Λþ

−

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
þ μ
	
2
− Δ2

þ
�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
− μ
	
γ0Λ−

−

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
− μ
	
2
− Δ2

; ðA16Þ

S1131−31 ¼ S1132−32 ¼
�
p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
− μ
	
γ0Λþ

þ

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
þ μ
	
2
− Δ2

þ
�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
− μ
	
γ0Λ−þ

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
− μ
	
2
− Δ2

; ðA17Þ

S1133−33 ¼
ðp0 − jp̄j − μÞγ0Λþ

p2
0 − ðjp̄j þ μÞ2 − 4Δ2

þ ðp0 þ jp̄j − μÞγ0Λ−

p2
0 − ðjp̄j − μÞ2 − 4Δ2

; ðA18Þ

and

S2211−11 ¼ S2212−12 ¼ S2221−21 ¼ S2222−22 ¼
ðp0 − jp̄j þ μÞγ0Λþ

p2
0 − ðjp̄j − μÞ2 − Δ2

þ ðp0 þ jp̄j þ μÞγ0Λ−

p2
0 − ðjp̄j þ μÞ2 − Δ2

; ðA19Þ

S2213−13 ¼ S2223−23 ¼
�
p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
þ μ
	
γ0Λþ

þ

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
− μ
	
2
− Δ2

þ
�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
þ μ
	
γ0Λ−þ

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
þ μ
	
2
− Δ2

; ðA20Þ

S2231−31 ¼ S2232−32 ¼
�
p0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
þ μ
	
γ0Λþ

−

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
− μ
	
2
− Δ2

þ
�
p0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ 2~e ~B l

q
þ μ
	
γ0Λ−

−

p2
0 −
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
3 þ 2~e ~B l

q
þ μ
	
2
− Δ2

; ðA21Þ

S2233−33 ¼
ðp0 − jp̄j þ μÞγ0Λþ

p2
0 − ðjp̄j − μÞ2 − 4Δ2

þ ðp0 þ jp̄j þ μÞγ0Λ−

p2
0 − ðjp̄j þ μÞ2 − 4Δ2

ðA22Þ

where the upper indices on S are Gorkov indices and lower ones are color-flavor indices. To write down the expressions for
S12 and S21 with some clarity, we need to define the following:

ðZ22Þ−1 ≡ γ0Λþ

p0 þ jp̄j − μ
þ γ0Λ−

p0 − jp̄j − μ
; ðA23Þ

ðM22Þ−1 ≡ γ0Λþ
−

p0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
− μ

þ γ0Λ−
−

p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
− μ

; ðA24Þ

ðP22Þ−1 ≡ γ0Λþ
þ

p0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
− μ

þ γ0Λ−þ

p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
− μ

; ðA25Þ

ðZ11Þ−1 ≡ γ0Λþ

p0 þ jp̄j þ μ
þ γ0Λ−

p0 − jp̄j þ μ
; ðA26Þ

ðM11Þ−1 ≡ γ0Λþ
−

p0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
þ μ

þ γ0Λ−
−

p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
þ μ

; ðA27Þ

ðP11Þ−1 ≡ γ0Λþ
þ

p0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
þ μ

þ γ0Λ−þ

p0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~e ~B lþ p2

3

q
þ μ

: ðA28Þ
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S21 and S12 can be written in terms of these newly defined quantities as

S21 ¼ −ððS−1Þ22Þ−1ðγ0ð−iγ5ÞΔ0†γ0ÞS11 ðA29Þ

¼ −

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

−ðZ22Þ−1 ~Δ0
cS1111 0 0 0 0 0 0 0 0

0 0 0 −ðZ22Þ−1 ~Δ0
cS1121 0 0 0 0 0

0 0 0 0 0 0 −ðP22Þ−1 ~Δ0
cS1131 0 0

0 −ðZ22Þ−1 ~Δ0
cS1112 0 0 0 0 0 0 0

0 0 0 0 −ðZ22Þ−1 ~Δ0
cS1122 0 0 0 0

0 0 0 0 0 0 0 −ðP22Þ−1 ~Δ0
cS1132 0

0 0 −ðM22Þ−1 ~Δ0
cS1113 0 0 0 0 0 0

0 0 0 0 0 −ðM22Þ−1 ~Δ0
cS1123 0 0 0

0 0 0 0 0 0 0 0 2ðZ22Þ−1 ~Δ0
cS1133

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

ðA30Þ

and

S12 ¼ −ððS−1Þ22Þ−1ðiγ5Δ0ÞS11 ðA31Þ

¼ −

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

−ðZ11Þ−1Δ0
cS2211 0 0 0 0 0 0 0 0

0 0 0 −ðZ11Þ−1Δ0
cS2221 0 0 0 0 0

0 0 0 0 0 0 −ðM11Þ−1Δ0
cS2231 0 0

0 −ðZ11Þ−1Δ0
cS2212 0 0 0 0 0 0 0

0 0 0 0 −ðZ11Þ−1Δ0
cS2222 0 0 0 0

0 0 0 0 0 0 0 −ðM11Þ−1Δ0
cS2232 0

0 0 −ðP11Þ−1Δ0
cS2213 0 0 0 0 0 0

0 0 0 0 0 −ðP11Þ−1Δ0
cS2223 0 0 0

0 0 0 0 0 0 0 0 2ðZ11Þ−1Δ0
cS2233

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðA32Þ

where Sabij stands for Sabij−ij.
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