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We address the issue of Becchi-Rouet-Stora-Tyutin (BRST) symmetry breaking in the Gribov-
Zwanziger (GZ) model, a local, renormalizable, nonperturbative approach to QCD. Explicit calculation
of several examples reveals that BRST symmetry breaking apparently afflicts the unphysical sector of the
theory, but may be unbroken where needed, in cases of physical interest. Specifically, the BRST-exact part
of the conserved energy-momentum tensor and the BRST-exact term in the Kugo-Ojima confinement
condition both have a vanishing expectation value. We analyze the origin of the breaking of BRST
symmetry in the GZ model and obtain a useful sufficient condition that determines which operators
preserve BRST. Observables of the GZ theory are required to be invariant under a certain group of
symmetries that includes not only BRST but also others. The definition of observables is thereby sharpened
and excludes all operators known to us that break BRST invariance. We take as a hypothesis that BRST
symmetry is unbroken by this class of observables. If the hypothesis holds, BRST breaking is relegated to
the unphysical sector of the GZ theory, and its physical states are obtained by the usual cohomological
BRST construction. The fact that the horizon condition and the Kugo-Ojima confinement criterion coincide
assures that color is confined in the GZ theory.
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I. INTRODUCTION

The GZ model is a nonperturbative approach to QCD
that provides a cutoff at the Gribov horizon [1] by means of
a local, renormalizable, continuum action [2,3]. For this
reason the gap equation that determines the value of a
parameter γ, the Gribov mass, is known as the “horizon
condition.” For a review, see Refs. [4,5].
It is a remarkable fact that the horizon condition and the

famous Kugo-Ojima confinement criterion [6,7] are the
identical statement,

−i
Z

ddxhðDμcÞaðxÞðDμc̄Það0Þi ¼ dðN2 − 1Þ; ð1:1Þ

where cd and c̄d are the Faddeev-Popov ghosts, ðDμÞad ¼∂μδ
ad þ gfabdAb

μ is the gauge-covariant derivative in the
adjoint representation of SUðNÞ, and Ab

μ is the gluon field
in the Landau gauge. This is promising for the confinement
problem, because the Kugo-Ojima criterion is a sufficient
condition for color confinement, and the horizon condition
assures that this condition is satisfied in the GZ approach.
Although the identity of these two conditions has been
noted for some time [8,9], its consequences have remained
obscure because the Kugo-Ojima confinement criterion

requires BRST symmetry [10] to be unbroken, whereas the
GZ vacuum breaks BRST symmetry.
This breaking is manifested by the nonzero vacuum

expectation value of a BRST-exact quantity such as

hvacjfQB; ω̄gjvaci ≠ 0; ð1:2Þ
where ω̄ is an auxiliary ghost field of GZ theory, QB is the
BRST charge, and jvaci is the vacuum state. It follows
formally that QBjvaci ≠ 0. The possibility that BRST may
be dynamically broken due to the Gribov ambiguity was
first considered by Fujikawa [11] and is discussed in
Ref. [12]. A gauge theory with dynamically broken
BRST is not standard. In perturbative Faddeev-Popov
theory, physical states jphysi are precisely characterized
by the condition QBjphysi ¼ 0, and so, according to the
standard paradigm, the vacuum of GZ theory would not be
a physical state. Clearly a different construction is required
if the GZ theory is to be consistent.
For a hint on how to proceed, consider the Ward-

Takahashi identity that expresses conservation of the
energy-momentum tensor,

h∂μTμνIðAÞi ¼
�

δI
δAb

μ
Fb
μν

�
; ð1:3Þ

where IðAÞ is any gauge-invariant functional of the gauge
connection A and the energy-momentum tensor is given by
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Tμν ¼ TYM
μν þ sΞμν: ð1:4Þ

Here

TYM
μν ≡ Fa

μλF
a
νλ −

1

4
δμνFa

κλF
a
κλ ð1:5Þ

is the Yang-Mills energy-momentum tensor of Maxwellian
form, and Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ gfabcAb
μAc

ν. This Ward
identity holds, with different Ξμν, in both the Faddeev-
Popov and GZ theories because it is a consequence of the
translation invariance of the action. In Faddeev-Popov
theory, the s-exact contribution to the Ward identity
vanishes, hsΞμνIðAÞi ¼ hs½ΞμνIðAÞ�i ¼ 0, to every order
in perturbation theory, and the Ward identity reads

h∂μTYM
μν IðAÞi ¼

�
δI
δAb

μ
Fb
μν

�
: ð1:6Þ

It involves only gauge-invariant quantities and holds in every
gauge.1 We are loath to give up this physical identity that
relies on the vanishing of the vacuum expectation value of an
s-exact quantity, hs½∂μΞμνIðAÞ�i ¼ 0, which is assuredwhen
BRSTis unbroken. SomeBRST-exact operators, sF, do have
a vanishing expectation value in GZ theory, hsFi ¼ 0, but it
can be difficult to ascertain whether or not it does for a given
sF. That generally depends on whether γ has the precise
value fixed by the (nonperturbative) horizon condition,
Eq. (1.1). However, we have verified by direct calculation
that theBRST-exact part of the energy-momentum tensor has
vanishing expectation value hsΞμνi ¼ 0 when the horizon
condition holds. We also found that, to leading order, the
BRST-exact term [see Eq. (9.18) below] in the derivation of
the Kugo-Ojima criterion [6] has a vanishing expectation
value. These results suggest that in the GZ model BRST
symmetry may be preserved precisely where it is needed,
although it fails for some unphysical expectation values such
as hsω̄i ≠ 0.
The GZ theory has auxiliary ghosts and a rich set of

unphysical symmetry generators QX that do not appear in
Faddeev-Popov theory. Requiring that all physical observ-
ables be invariant under these symmetries, ½QX; F� ¼ 0, in
addition to the BRST symmetry ½QB; F� ¼ 0, sharpens the
definition of an observable.2 We propose the hypothesis
that in the GZ theory BRST symmetry remains unbroken,
hsFi ¼ 0, for all s-exact observables sF. This relegates the
breaking of BRST symmetry to the unphysical sector of the
GZ theory and is sufficient for the familiar BRST

construction of physical states as the cohomology of the
BRST operator.
Let us briefly address some issues that have been raised

about the GZ action. It was originally derived [2,3] to
provide a cutoff at the Gribov horizon. This procedure has
been criticized because there are Gribov copies within the
Gribov horizon. However, the proposed local action has
interesting properties, such as renormalizability and renor-
malizability of the horizon condition and the coincidence of
the horizon condition with the Kugo-Ojima confinement
criterion, which make it worthy of study even if the model
should turn out to be approximate. Subsequently, the same
local action was rederived by an entirely different line of
reasoning [14]. One starts in the conventional way with an
s-exact extension of the Yang-Mills action. A redefinition
of the fields, the Maggiore-Schaden (MS) shift, then
produces the GZ action, and the horizon condition arises
as a gap equation for the new vacuum. In this approach,
BRST symmetry is spontaneously broken by the new
vacuum, instead of being explicitly, though softly, broken
by the GZ action.
The distinction arises from two different definitions of the

BRST symmetry. In the present article, we are concerned
with a BRST symmetry that is an exact, but spontaneously
broken, symmetry of the GZ action. The alternative BRST
symmetry is explicitly, though softly, broken by the GZ
action [4]. Explicit soft BRST symmetry breaking has
recently been proposed [15] as a mechanism that phenom-
enologically describes the confinement of matter. The break-
ing of BRST symmetry was recently studied numerically
[16]. An approach to the restoration of BRST symmetry is
presented in Ref. [17], following ideas in Refs. [18] and [19].
The explicit soft breaking of BRST symmetry might not be
consistent with Batalin-Vilkovisky quantization [20] (for
more recent results, see Refs. [21,22]). Spontaneous break-
ing of BRST symmetry has been questioned [23] on the
ground that it apparently goes beyond standard quantum field
theory. The issue here is that it should bemathematicallywell
defined. This point is addressed in Sec. V B of the present
work, where the GZ action is quantized in a finite, periodic
box (see Ref. [5], p. 226). The analysis at finite volumeyields
a criterion for which operators sF preserve BRST symmetry
hsFi ¼ 0 in the infinite-volume limit.
Perturbative calculations up to two loops of the GZ

action in three [24] and four [25–27] Euclidean dimensions
as well as a nonperturbative infrared analysis [28] show that
the gluon propagator of this theory vanishes at long
wavelengths. The propagators of the Faddeev-Popov
(FP) ghost and of the auxiliary fermi ghosts obtained
by solving the Dyson-Schwinger equations (DSEs) are
identical3 and have an enhanced singularity at vanishing
momentum. In the GZ theory, this is the only solution to the

1This Ward identity presumably also holds in the continuum
limit of lattice gauge theory [13], but this is difficult to show
because the translation group of the lattice is discrete, whereas the
Ward identity is a consequence of Noether’s theorem for
continuous (Lie) groups.

2In Faddeev-Popov theory, physical observables F in fact are
required to also commute with ghost number ½QN ; F� ¼ 0.

3This is a consequence of the symmetry generated by QR of
Eq. (A26).
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DSE [29] so far, and the enhancement is due to the horizon
condition. Ghost and gluon propagators with the same
infrared exponents were also found in the numerical
solution to the DSE of the FP theory [30]. This solution
to the DSE supports the Kugo-Ojima confinement scenario.
It is consistent with lattice simulations in Landau gauge
in two [31–33], but not in three and four [32–38],
dimensions.4 We do not offer a resolution of this matter
in the present article but note that the value of the ghost
dressing function at vanishing momentum is a gauge-
dependent quantity [30,44]. It parametrizes different
gauges within the family of Landau gauges. Lattice
evidence for the dependence of Landau gauge propagators
on additional constraints was obtained in Refs. [45,46].
This observation perhaps helps to resolve the discrepancy
between the far infrared behavior of the gluon and ghost
propagators in Landau gauge of the lattice and of GZ theory
for space-time dimensions d > 2.
The present article is organized as follows. For com-

pleteness and because it is not well known, the MS shift is
used to derive the GZ action in Sec. II, and the horizon
condition for the new vacuum is obtained in Sec. IV.
Section V is devoted to the analysis of BRST breaking:
BRST breaking is exhibited in Sec. VA; the GZ action is
quantized in a periodic box, and the BRST-breaking term is
expressed as an integral over the surface of the box in
Sec. V B; and a sufficient condition for an operator to
preserve BRST symmetry is derived in Sec. V C. The
physical state space of the GZ theory is constructed in
Sec. VI: observables are identified as those functionals that
commute with all phantom symmetries in Sec. VI A; in
Sec. VI B we introduce the hypothesis that BRST sym-
metry is not broken by s-exact observables; in Sec. VI C the
physical Hilbert space of the model is reconstructed from
its observables and identified with the cohomology of the
BRSToperator; in Sec. VI D the positivity of the Euclidean
inner product of physical states is established. We derive
the energy-momentum tensor of the theory in Sec. VII A,
and in Sec. VII B, we prove that the expectation value of the
s-exact part of the energy-momentum tensor vanishes. We
capitalize on this by computing the trace anomaly of the
GZ theory to one loop in Sec. VIII. The anomaly at one
loop has a finite negative value and establishes that the
vacuum with γ > 0 has lower energy density. In Sec. IX we
find that the s-exact term in the derivation of the Kugo-
Ojima equation has a vanishing vacuum expectation value.
Section X gives our summary and conclusions. The

unphysical symmetries are compiled in Appendix A.
A special case of the surface equation of Sec. V B is
considered in Appendix B. The criterion of Sec. V C is
applied in Appendix C to a simple operator that preserves
BRST symmetry when the horizon condition holds. An
alternative criterion to the surface equation is derived in
Appendix D. In Appendix E we give a second proof by
direct evaluation that hTμνi ¼ hTYM

μν i.

II. LOCAL ACTION BY THE MS SHIFT

The Faddeev-Popov quantization of Yang-Mills theory
in the Landau gauge is defined by the Lagrangian density,

LFP ¼ LYM þ sði∂μ ˆ̄c · AμÞ

¼ 1

4
F2
μν þ i∂μb̂ · Aμ − i∂μ ˆ̄c ·Dμc; ð2:1Þ

where Fμν ¼ ∂μAν − ∂νAμ þ Aμ × Aν is the Yang-Mills
field strength. The connection Aa

μ as well as the
Nakanishi-Lautrup and Faddev-Popov ghost fields b̂a,
ca, and ˆ̄ca are all fields in the adjoint representation of
the global SUðNÞ color group. Color components are
represented by Latin superscripts. To streamline notation
we adopt the convention that X · Y ≡P

aX
aYa and

ðX × YÞa ≡P
bcgf

abcXbYc, where fabc are the suðNÞ
structure constants and g is the gauge coupling. In this
notation the gauge-covariant derivative in the adjoint
representation is DμX ¼ ∂μX þ Aμ × X.
The nilpotent BRST transformation is given by

sAμ ¼ Dμc; sc ¼ −
1

2
ðc × cÞ;

s ˆ̄c ¼ b̂; sb̂ ¼ 0 ð2:2Þ
and is readily extended to covariantly coupled matter,
with s2 ¼ 0.
A number of quartets of auxiliary ghosts ðϕB; ϕ̄B;

ωB; ω̄BÞ are introduced to localize the (otherwise nonlocal)
cutoff at the Gribov horizon [2]. The index B labels the
quartets. ϕB and ϕ̄B are a bose ghost pair, and ωB and ω̄B
are a corresponding pair of fermi ghosts. The auxiliary
ghosts are in the adjoint color representation, and the BRST
operator acts trivially on each quartet,

sϕB ¼ ωB sωB ¼ 0

sω̄B ¼ ϕ̄B sϕ̄B ¼ 0: ð2:3Þ
In GZ theory the Yang-Mills Lagrangian density is

similarly extended by an s-exact term and takes the form

L≡ LYM þ Lgf ¼ LYM þ sΨ; ð2:4Þ

where

Lgf ¼ sΨ; with Ψ≡ i∂μ ˆ̄c · Aμ þ ∂μω̄B ·DμϕB: ð2:5Þ

4The Gribov scenario is consistent with numerical calculations
in Coulomb gauge in four dimensions [39–41]. The consider-
ations concerning the Landau gauge that are reported in the
present article are expected to carry over to the GZ action in the
Coulomb gauge [42,43]. The calculation in Appendix E shows
that the s-exact part of the energy-momentum tensor Tμν ¼
TYM
μν þ sΞμν has vanishing expectation-value hsΞμνi ¼ 0. This

holds also in Coulomb gauge.
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Because Lgf is s exact, it should not change the physics.
This is seen by formally integrating out the auxiliary
ghosts: for each Faddeev-Popov determinant arising from
integrating over a pair of fermi ghosts, one obtains a
compensating inverse Faddeev-Popov determinant upon
integration of a pair of bose ghosts.
The index set of the auxiliary ghosts is written as a pair

B ¼ ðν; bÞ, where b is an index that takes values in the
adjoint representation of an suðNÞ “flavor” algebra (not to
be confused with physical flavor) and ν is interpreted as a
vector index. Thus, ϕa

B ¼ ϕa
νb and likewise for all the

auxiliary ghosts. Here the upper Latin index, a, denotes
color, and the lower, b, denotes flavor. The gauge-covariant
derivative Dμ and the suðNÞ Lie bracket continue to act on
the (upper) color index of ϕa

νb only.
The color and flavor indices of auxiliary ghosts both take

values in the adjoint representations of an suðNÞ algebra.
Among other symmetries, the Lagrangian density Lgf thus
is invariant under separate global color and flavor trans-
formations, on the upper and lower index, respectively, of
an SUðNÞ × SUðNÞ group. With these specifications, the
gauge-fixing term Lgf ¼ sΨ of the Lagrangian density
reads5

Ψ≡ i∂μ ˆ̄c · Aμ þ ∂μω̄ν ·Dμϕν;

sΨ ¼ i∂μb̂ · Aμ − i∂μ ˆ̄c ·Dμcþ ∂μϕ̄ν ·Dμϕν

− ∂μω̄ν · ðDμων þDμc × ϕνÞ: ð2:6Þ

Consider the change of variables introduced in Ref. [14],

ϕa
νbðxÞ ¼ φa

νbðxÞ − γ1=2xνδab
ϕ̄a
νbðxÞ ¼ φ̄a

νbðxÞ þ γ1=2xνδab

b̂aðxÞ ¼ baðxÞ þ iγ1=2xνfa½φ̄νðxÞ�
ˆ̄caðxÞ ¼ c̄aðxÞ þ iγ1=2xνfa½ω̄νðxÞ�; ð2:7Þ

all other fields remaining the same. Here γ is a positive
parameter of which the value will be determined shortly.
This shift of the fields breaks the SUðNÞ × SUðNÞ
color-flavor symmetry to a diagonal SUðNÞ subgroup.
Remarkably this x-dependent change of variables does
not introduce an explicit x dependence into the Lagrangian
density which, in terms of the shifted fields, is given by

Lðφ; φ̄; b; c̄; γÞ ¼ Lðϕ; ϕ̄; b̂; ˆ̄cÞ ¼ 1

4
F2
μν þ sΨ;

with Ψ≡ i∂μc̄ · Aμ þ ∂μω̄ν ·Dμφν − γ1=2TrDμω̄μ;

Lgf ¼ sΨ ¼ i∂μb · Aμ − i∂μc̄ ·Dμcþ ∂μφ̄ν ·Dμφν

− ∂μω̄ν · ðDμων þDμc × φνÞ
þ γ1=2Tr½Dμðφμ − φ̄μÞ −Dμc × ω̄μ�
− γdðN2 − 1Þ: ð2:8Þ

By Eq. (2.7), the BRST operator acts on the new fields
according to

sAa
μ ¼ ðDμcÞa sca ¼ −

1

2
ðc × cÞa

sc̄a ¼ ba sba ¼ 0

sφa
μb ¼ ωa

μb sωa
μb ¼ 0

sω̄a
μb ¼ φ̄a

μb þ γ1=2xμδab sφ̄a
μb ¼ 0: ð2:9Þ

III. POINCARÉ ALGEBRA

The generator of a space-time translation of the unshifted
fields is given by

Pν ¼
Z

ddxpν ð3:1Þ

pν¼ ∂νAμ ·
δ

δAμ
þ∂νb̂ ·

δ

δb̂
þ∂νc ·

δ

δc
þ∂ν ˆ̄c ·

δ

δ ˆ̄c
þ∂νϕμ ·

δ

δϕμ

þ∂νϕ̄μ ·
δ

δϕ̄μ
þ∂νωμ ·

δ

δωμ
þ∂νω̄μ ·

δ

δω̄μ
; ð3:2Þ

as one sees by inspection. In the unshifted action, Eq. (2.6),
the unshifted auxiliary ghosts, such as ϕa

μb ¼ ϕa
B, may be

transformed under Lorentz transformation either as scalars
or as vectors because both are symmetries of the action. To
be definite, we choose scalars and accordingly

Mλμ ¼
Z

ddx

�
xλpμ − xμpλ þ Aμ

δ

δAλ
− Aλ

δ

δAμ

�
: ð3:3Þ

The last term affects the Lorentz transformation on the
vector indices of Aν. These operators satisfy the Poincaré
commutation relations

½Pμ;Pν� ¼ 0; ½Mλμ;Pν� ¼ δλνPμ − δμνPλ ð3:4Þ

½Mλμ;Mστ� ¼ δλσMμτ − δμσMλτ − δλτMμσ þ δμτMλσ:

ð3:5Þ

They are manifest symmetries of the action Eq. (2.6) which
is expressed in terms of the unshifted fields,

5In the following the dot product is extended to include a
summation over flavor when appropriate, X · Y ≡P

abX
a
bY

a
b. We

also introduce the diagonal trace TrX ≡P
aX

a
a and denote

the adjoint component of an auxiliary ghost in the diagonal
suðNÞ subalgebra by fa½X�≡P

bcgf
abcXb

c.
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½Pμ; S� ¼ ½Mλμ; S� ¼ 0: ð3:6Þ

Moreover they commute with the BRST charge,

½QB;Pν� ¼ ½QB;Mλμ� ¼ 0; ð3:7Þ

where

QB ¼
Z

ddx

�
Dμc ·

δ

δAμ
−
1

2
ðc × cÞ · δ

δc
þ b̂ ·

δ

δ ˆ̄c

þ ωμ ·
δ

δϕμ
þ ϕ̄μ ·

δ

δω̄μ

�
: ð3:8Þ

Altogether Pν and Mλμ have all the properties desired of
physical Poincaré generators.6

IV. VARIATIONAL VACUUM

We look for a vacuum in which the new fields have
vanishing expectation value,

hφa
μbðxÞi ¼ hφ̄a

μbðxÞi ¼ 0; ð4:1Þ
and thus are well behaved at x ¼ ∞. There should not be a
new free parameter γ in QCD. To determine γ we recall that
the quantum effective action ΓðΦ̂Þ is stationary at the
vacuum configuration,

δΓ ¼
Z

ddx
δΓðΦ̂Þ
δΦ̂iðxÞ

δΦ̂iðxÞ ¼ 0; ð4:2Þ

for arbitrary infinitesimal variations δΦ̂iðxÞ. Here Φ̂iðxÞ is
the set of all the original elementary fields, and their
variation is unconstrained in that it need not vanish for
jxj → ∞. In Eq. (2.7), the change of variables, which we
write as Φ̂ ¼ Φ̂ðΦ; γÞ, replaces the original unconstrained
fields Φ̂iðxÞ by new fields ΦjðxÞ that vanish at large jxj and
a variational parameter γ. Infinitesimal variations δΦ̂ of the
old unconstrained fields amount to variations δΦ of the new
constrained fields and variations δγ of the parameter γ. The
new classical vacuum should be a minimum of the quantum
effective action and is determined by the condition that the
transformed quantum effective action ΓðΦ; γÞ ¼ ΓðΦ̂Þ be
stationary under these variations

δΓðΦ; γÞ ¼
Z

ddx
δΓðΦ; γÞ
δΦi

δΦi þ
∂ΓðΦ; γÞ

∂γ δγ ¼ 0: ð4:3Þ

The quantum effective action ΓðΦ; γÞ can be calculated
from LðΦ; γÞ. For a stationary point at Φi ¼ 0, Eq. (4.3)
reduces to the condition

0 ¼ ∂Γ
∂γ ¼ −

∂W
∂γ ¼

�∂S
∂γ

�
; ð4:4Þ

where W is the free energy and S ¼ SYM þ R
ddxsΨ. By

Eq. (2.8), the explicit form of Eq. (4.4) becomes

1

2
γ1=2hTrðDμðφμ− φ̄μÞ−Dμc× ω̄μÞi¼ γdðN2−1Þ; ð4:5Þ

where the Euclidean space-time volume has been factored
out. In Sec. VIII we will see that the vacuum with γ > 0 is
energetically favored.
We establish that the term in c − ω̄ of Eq. (4.5) does not

contribute.7 The c − ω̄ propagator in fact vanishes for any
fixed gauge field Aa

μðxÞ,

hcðxÞω̄ðyÞiA ¼ 0; ð4:6Þ

where the restricted expectation value in the background A
is calculated by integrating over all fields except the gauge
connection A. Equation (4.6) is a consequence of the
phantom symmetry generated by the charge QR;μa given
in Eq. (A26). Assuming this phantom symmetry is not
spontaneously broken by the new vacuum, we have

0 ¼ h½QR;μc; cbðxÞc̄aðyÞ�iA ¼ ihcbðxÞω̄a
μcð0ÞiA; ð4:7Þ

which gives Eq. (4.6). Dropping the (vanishing) c − ω̄ term
in Eq. (4.5) and integrating out all the fields except the
(transverse) gauge connection, one obtains

Z
ddyhDðxÞab

μ DðyÞac
μ ðM−1Þbcðx; y;AÞi ¼ dðN2 − 1Þ: ð4:8Þ

Here, M ≡ −Dμ∂μ is the Faddeev-Popov operator.
This equation is equivalent to Eq. (1.1) because
iðM−1Þabðx; yÞ ¼ hcaðxÞc̄bðyÞi is the ghost propagator.
Equation (4.5) determines γ or, more precisely, the ratio
γ=Λ4

QCD. The equivalent Eq. (4.8) was originally derived
[2,3] as the (horizon) condition that ensures positivity of the
functional measure.

V. ANALYSIS OF BRST BREAKING

A. BRST lost

The vacuum appears to break BRST symmetry sponta-
neously, for from Eq. (2.9) we have

hsω̄a
μbi ¼ hφ̄a

μ þ γ1=2xμδabi ¼ γ1=2xμδab: ð5:1Þ

If we assume the existence of a well-defined BRST
charge QB that effects the s-operation, fQB;ω̄a

μbg¼sω̄a
μb,

and a vacuum state jvaci, the expectation value
6The action (2.8) is also invariant under Poincaré transforma-

tions of the shifted fields. They define a second Poincaré
symmetry algebra [47].

7Perturbatively, this is due to the absence of a ω − c̄ term in the
GZ action.
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hvacjfQB; ω̄a
μbðxÞgjvaci ≠ 0 formally implies that

QBjvaci ≠ 0. Here, QB is the BRST charge that in terms
of the original fields is given in Eq. (3.8) and in terms of the
new fields is given by

QB ¼
Z

ddx

�
Dμc ·

δ

δAμ
−
1

2
ðc×cÞ · δ

δc
þb ·

δ

δc̄
þωμ ·

δ

δφμ

þ φ̄μ ·
δ

δω̄μ
þ γ1=2xμTr

δ

δω̄μ

�
: ð5:2Þ

This follows from Eq. (2.7), which implies that the partial
derivatives transform according to

δ

δϕa
μb

→
δ

δφa
μb

δ

δϕ̄a
μb

→
δ

δφ̄a
μb

− iγ1=2xμfabc
δ

δbc

δ

δωa
μb

→
δ

δωa
μb

δ

δω̄a
μb

→
δ

δω̄a
μb

− iγ1=2xμfabc
δ

δc̄c

δ

δb̂a
→

δ

δba
δ

δ ˆ̄ca
→

δ

δc̄a
: ð5:3Þ

B. Surface equation

The spontaneous breaking of BRST symmetry in
Eq. (5.1) is puzzling at first for the action S is BRST
invariant, sS ¼ 0. The breaking therefore takes the form

Z
dΦs½ω̄a

μb expð−SÞ� ≠ 0; ð5:4Þ

where s is the fermionic derivative given by Eq. (5.2),
whereas the integral of any well-defined fermionic deriva-
tive should vanish,

R
dΦsGðΦÞ ¼ 0, as one sees in a mode

expansion.
To resolve this paradox, we quantize in a finite volume

Ld. We impose periodic boundary conditions in every
Euclidean direction μ, Φðxμ þ LÞ ¼ ΦðxμÞ, on all fields,
Φ ¼ ðA; c; c̄; b;φ; φ̄;ω; ω̄Þ, that appear in the shifted action
of Eq. (2.8). The operator s, introduced in Eq. (2.9), is no
longer well defined because the function xμ is not periodic.
We instead introduce an operator sL that is compatible with
the periodic boundary conditions and defines the s-operator
when the boundary recedes to infinity.
To this end, we introduce the periodic sawtooth function,

hðxμÞ ¼ xμ; for − L=2 < xμ < L=2

hð�L=2Þ ¼ 0; hðxμ þ LÞ ¼ hðxμÞ; ð5:5Þ

which agrees with the linear function xμ for −L=2 < xμ <
L=2 and has the derivative

∂νhðxμÞ ¼ δμν

�
1 −

L
2
δðxμ − L=2Þ − L

2
δðxμ þ L=2Þ

�
for

− L=2 ≤ xμ ≤ L=2: ð5:6Þ

The sawtooth has a vertical stroke of length L that we have
placed at the boundary of the interval. At the end of the day,
we shall take the infinite-volume limit L → ∞.
Let us now define an operator sL that is consistent with

the periodic boundary conditions of which the action on the
fields is

sLω̄a
μbðxÞ ¼ φ̄a

μbðxÞ þ γ1=2hðxμÞδab
sLΦðxÞ ¼ sΦðxÞ for Φ ≠ ω̄: ð5:7Þ

sL is nilpotent, s2L ¼ 0. Although not a symmetry of the
action, sLS ≠ 0, this fermionic derivative has the advantage
of being well defined. At interior points y of the quantiza-
tion volume, the local Lagrangian density satisfies
sLðyÞ ¼ 0, so only the vertical stroke of the sawtooth
contributes to sLS ¼ ðsL − sÞS, which by Eq. (2.8) gives

sLS¼ γ1=2
L
2

Xd
μ¼1

X
σ¼�

Z
xμ¼σL=2

dSμTr½DμωμþDμc×φμ�ðxÞ;

ð5:8Þ

where the integral extends over the surfaces at xμ ¼ �L=2.
The breaking of sLS is expressed here as an integral over
the boundary of the elementary hypercube.
Due to this explicit breaking, it is not true that hsLFi

vanishes for every operator F. Instead, we have

Z
dΦsL½F expð−SÞ� ¼ 0 ð5:9Þ

because the integral of a well-defined fermionic derivative
vanishes. This gives

hsLFi ¼ hFsLSi: ð5:10Þ

Suppose F is concentrated at points y that are in the interior
of the quantization volume jyj < L=2, well away from the
vertical stroke of the sawtooth function. In this case,8

sLFðyÞ ¼ sFðyÞ jyμj < L=2: ð5:11Þ

This gives

hsFðyÞi ¼ hFðyÞsLSi; ð5:12Þ

and with Eq. (5.8), one obtains, for jyμj < L=2,

8For simplicity, we take F ¼ FðyÞ to be concentrated at a
single point y.
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hsFðyÞi ¼ γ1=2
L
2

Xd
μ¼1

X
σ¼�

Z
xμ¼σL=2

dSμhFðyÞ

× Tr½Dμωμ þDμc × φμ�ðxÞi: ð5:13Þ

The breaking of BRST symmetry at a point y in the interior
of the quantization volume is expressed here as an integral
at the surfaces with xμ ¼ �L=2. In Appendix B, we verify
Eq. (5.13) by explicit calculation for the special case
F ¼ ω̄a

μb. An alternative expression for hsFi is provided
in Appendix D.

C. Sufficient condition for an operator to preserve
BRST symmetry

We say an s-exact operator sF breaks (or preserves)
BRST symmetry if its vacuum expectation value is non-
zero, hsFi ≠ 0 (or zero). For functionals F of physical
interest, we will need to determine whether hsFi ¼ 0.
Although this is not true for certain operators, as for
instance ω̄a

μb, it is true that hsFi ¼ 0 for a large class of
local operators F. From the surface equation, we deduce a
simple sufficient condition which assures that hsFi ¼ 0.
Consider the correlator CμðxÞ defined by7,

Cμðx − yÞ≡ hχμðxÞFðyÞi; ð5:14Þ

where

χμðxÞ≡ sTrDμφμðxÞ ðno sum over μÞ
¼ TrðDμωμ þDμc × φμÞðxÞ: ð5:15Þ

Sufficient condition theorem—If Cμðx − yÞ satisfies,

lim
jxj→∞

jxjdCμðx − yÞ ¼ 0; for all directions μ; ð5:16Þ

where d is the dimension of Euclidean space-time, then
hsFðyÞi ¼ 0 in the infinite volume limit. This condition
requires the falloff of the correlator hχμðxÞFðyÞi to be
sufficiently rapid at large separation.
The proof is immediate. Since the surface of the

integration volume at xμ ¼ OðL=2Þ is of order OðLd−1Þ,
we deduce from Eqs. (5.13) and (5.16) that

hsFðyÞi ¼ γ1=2
X
μ

OðLdCμðL=2ÞÞ !L→∞
0: ð5:17Þ

VI. BRST CONSTRUCTION OF THE
PHYSICAL STATES

A. Definition of observables

We have seen in Sec. V B that the BRST symmetry is
spontaneously broken in the infinite-volume limit because
hsFi ≠ 0 for some operators, such as sω̄a

μb. It would not be

satisfactory if this occurred for an operator sF in the
class of observables. For example, as discussed in the
Introduction, one would like to replace the energy-
momentum tensor Tμν ¼ TYM

μν þ sΞμν by the Yang-Mills
energy-momentum tensor TYM

μν in physical Ward identities.
There is a number of unphysical ghosts and also a rich

class of symmetry transformations, with generators QY ,
that act on ghost degrees of freedom only. The index Y here
specifies the ghost symmetry. For example, there is an
obvious SUðNÞ symmetry that acts on the lower (flavor)
index of the unshifted auxiliary ghost fields according to
½Qc; ϕ̄a

μb� ¼ fbcdϕ̄a
μd, etc., where the conserved charge Qc

generates the symmetry.9 How do the ghost symmetries
help characterize observables?
A physical observable G of a gauge theory depends on

gauge-invariant degrees of freedom only, as for example
G ¼ GðF2

μν; ψ̄ψÞ, where ψ is the quark field. It therefore
commutes with all generators QY of ghost symmetries,

½QY;GðF2
μν; ψ̄ψÞ� ¼ 0: ð6:1Þ

Requiring observables of GZ theory to commute with all
ghost symmetry generators QY serves to ensure that the
class of observables is not larger than it should be in a
gauge theory without infringing on any gauge-invariant
functional. Of course, we also require observables G to be
BRST invariant ½QB;G� ¼ 0.
Accordingly, the classWphys of Euclidean observables of

GZ theory is defined by

Wphys ≡ fG∶½QB;G� ¼ ½QY;G� ¼ 0;

for all ghost symmetries QYg; ð6:2Þ

where G ¼ GðΦÞ is a local polynomial in the elementary
Euclidean fields Φi ¼ ðA; c; c̄; b;φ; φ̄;ω; ω̄Þ. An immedi-
ate consequence of this definition is that, by the Jacobi
identity, all graded commutators, QZ ¼ ½QB;QY ��, of QB
with a ghost symmetry QY also generate symmetries of the
observables, ½QZ;G�� ¼ 0, and we may equivalently define
the class of observables by

Wphys ≡ fG∶½QX;G� ¼ 0; for all QX ∈ Fg; ð6:3Þ

where F is the set of generators in the closed algebra
containingQB and the ghost chargesQY . The setF is given
in Eq. (A35). Since these symmetries leave all observables
invariant, they cannot be observed, and we call them
phantom symmetries.

9The symmetries of the unshifted action are easily recognized,
and all symmetries of the unshifted action are symmetries of the
shifted action when expressed in terms of the shifted fields. The
charge Qc, written in terms of the shifted fields, is the linear
combination Qa ¼ 1

2

P
μbcf

abcQF;μμbc of charges QF;μμbc defined
in Eq. (A32) of Appendix A.
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The generators of phantom symmetries in terms of
shifted fields are collected in Appendix A. The set F
includes the BRST charge QB and the ghost number QN ,
but the closed algebra of unphysical charges in the GZ
theory is much larger. Note that the generator of (unbroken)
rigid color transformations, Qa

C ¼ ½QB;Qa
G�, is part of a

BRST doublet, where Qa
C and Qa

G are given by Eqs. (A20)
and (A19). This is a feature of Landau gauge [48] and not
peculiar to the GZ theory. The global color charge QC is
thus the BRST variation of a ghost symmetry and is
included in the closed algebra of phantom symmetries F,

F ¼ fQXg ¼ fQB;QC;QYg; ð6:4Þ

where QX is the set of all phantom symmetries, QY is the
set of symmetries that act on the ghost variables only, and
QC generates global color transformations. Observables in
this sense are color singlets.

B. BRST regained

The annoying operator sω̄, with hsω̄i ≠ 0, is excluded
from the class Wphys of observables because, among other
phantom symmetries, ½Qφ̄;μ; sω̄a

νb� ¼ δabδμν ≠ 0, whereQφ̄;μ
is the phantom symmetry generator of Eq. (A8). In fact, the
condition that ½QX; sY� ¼ 0 for all phantom symmetriesQX
is quite restrictive for s-exact observablesG ¼ sY, as a look
at Appendix A reveals. However,Wphys does include some
s-exact observables such as sΨ given in Eq. (2.8) because,
by definition, phantom symmetries are symmetries of the
Lagrangian density. As shown below, the s-exact part of the
energy-momentum tensor, Tμν ¼ TYM

μnu þ sΞμν is another.
If the expectation value of every s-exact functional in

Wphys vanishes (hsYi ¼ 0 for sY ∈ Wphys), the physical
state space reconstructed from the correlators hGðΦÞi with
GðΦÞ ∈ Wphys would enjoy an unbroken BRST symmetry.
Although we cannot prove that this is the case, neither have
we found evidence to the contrary. The example of
Appendix C shows that the class of BRST-exact functionals
with a vanishing expectation value is in fact not limited to
Wphys. However, in many cases, it is difficult to verify
whether hsΣi vanishes or not, because this generally
depends on the nonperturbative horizon condition.
Where we could do the calculation, we found that the
expectation values of the s-exact parts of the energy-
momentum tensor and of the Lagrangian as well as (to
leading order) the s-exact term in the Kugo-Ojima equation
indeed vanish courtesy of the horizon condition. In view of
the above considerations, we shall take the following as a
hypothesis.
Hypothesis—BRST symmetry is not broken by s-exact

observables,

hsYi ¼ 0 for all sY ∈ Wphys; ð6:5Þ

where Wphys is the set of observables defined in Eq. (6.2).

C. BRST cohomology and physical states

Provided the hypothesis holds, BRST symmetry is
unbroken by the observables, and all conditions for
reconstructing the physical space of a gauge theory are
satisfied in the GZ model.10 We suppose that the vacuum
expectation values hFðΦÞi of all local polynomials FðΦÞ
are given, and the physical Euclidean state space will be
reconstructed from these correlators.
Physical observables form a vector space under addition:

if F1 and F2 ∈ Wphys, then F¼ c1F1þc2F2 ∈Wphys.
This vector space is provided with an inner product,

hFjGi≡ hF†Gi for F;G ∈ Wphys; ð6:6Þ

where the Hermitian conjugate of the fields is given by11

A† ¼ A†; b† ¼ −b; c† ¼ c; c̄† ¼ −c̄;

φ† ¼ φ; φ̄† ¼ φ̄; ω† ¼ ω; ω̄† ¼ ω̄: ð6:7Þ

We define a (Euclidean) prephysical state to be an observ-
able F ∈ Wphys which, to emphasize its vector property, we
also designate by jFi. Prephysical states that are s exact
jsΞi form a linear subspace W0 ⊂ Wphys,

W0 ≡ fsY∶sY ∈ Wphysg: ð6:8Þ

Lemma—Every prephysical state in W0 is orthogonal to
all prephysical states

hFjsYi ¼ 0 for all F ∈ Wphys and sY ∈ W0: ð6:9Þ

The above hypothesis indeed implies that

hFjsYi ¼ hF†sYi ¼ hsðF†YÞi ¼ 0; ð6:10Þ

where we have used the fact that Wphys is closed
under Hermitian conjugation and multiplication, so
F†sY∈Wphys, and that sF† ¼ 0 for F† ∈ Wphys. Thus,
W0 is a null subspace of Wphys.
In the following section, we show that the Euclidean

inner product is positive, and we define the (Euclidean)
physical Hilbert space to be the completion in the norm of
the quotient space,

Hphys ¼ Wphys=W0: ð6:11Þ

Physical states are thereby associated to the BRST coho-
mology and are equivalence classes jfGgi of prephysical
states of the form jGþ sXi, whereG; sX ∈ Wphys, andG is
not s-exact G ≠ sY.

10BRST symmetry holds order by order in FP theory, but it
is a hypothesis that it remains unbroken nonperturbatively.

11The minus signs could be avoided by the replacements
ib ¼ b0; ic̄ ¼ c̄0.
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The BRST operator acts trivially on the unshifted
auxiliary ghosts in Eq. (2.3), and the cohomology of the
GZ theory therefore is the same as that of Faddeev-Popov
theory. The proofs in Refs. [49,50] that the cohomology is
free of the unshifted BRST doublets carry over to the
shifted fields because the MS shift is an invertible linear
transformation of the doublets. Consequently, every equiv-
alence class fGg has a representative GðAÞ that is a gauge-
invariant functional of the gauge connection A only:

GðAÞ ∈ fGg; and sGðAÞ ¼ 0: ð6:12Þ

D. Positivity of the Euclidean inner product

The Euclidean inner product on the space of physical
states is defined by

hFjGi ¼
R
dΦ expð−SÞF†GR
dΦ expð−SÞ : ð6:13Þ

It is essential that this inner product be non-negative for
F ¼ G. This is precisely what the GZ action was designed
[2] to do, as we now recall.
The original motivation for the present approach was to

impose a cutoff at the Gribov horizon because every gauge
orbit passes inside the Gribov region [51]. That led directly
to the nonlocal action (6.15) which can be reexpressed as
the local GZ action. In the present article, we have followed
the alternative derivation of the GZ action [14], which is
based on the MS shift (2.7) and makes no reference to
eliminating Gribov copies. In this approach, the shifted
fields themselves may be said to cut the functional integral
off at the Gribov horizon, in the sense that the cutoff factor
exp½−γHðAÞ� that appears in (6.15), below, has an essential
singularity as the Gribov horizon is approached from the
inside and vanishes there together with all its derivatives,
Eq. (6.20). Any Green’s function which is evaluated
analytically, for example in a diagrammatic expansion,
will only receive contributions from the interior of the
Gribov region. The theory is no longer defined outside this
region.
By Eq. (6.12), we may choose as representative of any

physical state a (gauge-invariant) functional that depends
on the connection A only, F ¼ FðAÞ and G ¼ GðAÞ. One
then can integrate out the Lagrange multiplier field b. This
imposes the gauge condition and restricts the functional
integral to transverse connections, ∂ · A ¼ 0, for which the
Faddeev-Popov operator MðAÞ is Hermitian. Next, one
integrates out the Faddeev-Popov ghosts, which gives
the Faddeev-Popov determinant det½MðAÞ� ¼ Q

n
0λnðAÞ,

where λnðAÞ are the eigenvalues of MðAÞ and the prime
indicates that the trivial null eigenvalues due to rigid gauge
transformations are to be excluded. This determinant is
positive inside the Gribov region by definition, for that is
the region where all (nontrivial) eigenvalues are positive.

We finally integrate out the auxiliary ghosts by Gaussian
integration. This results in a cutoff factor, exp½−γHðAÞ�,
where

HðAÞ≡ g2
Z

ddxddyfabcAb
μðxÞðM−1Þcdðx; yÞfaedAe

μðyÞ

ð6:14Þ

is the “horizon function” and ðM−1Þcdðx; yÞ is the kernel of
the inverse Faddeev-Popov operator. Only the A-integration
remains,

hFjGi ¼ N
Z
∂·A¼0

dA det½MðAÞ� exp½−γHðAÞ�F�ðAÞGðAÞ:

ð6:15Þ

It was shown in Ref. [2], by an argument similar to the
proof of the equivalence of the microcanonical and canoni-
cal ensembles in statistical mechanics, that a sharp cutoff at
the boundary of the Gribov region Ω is equivalent to the
cutoff factor exp½−γHðAÞ�, provided that γ has the value
determined by the horizon condition of Eq. (4.8). Thus, the
Euclidean inner product is equivalent to

hFjGi ¼ N
Z
Ω
dA det½MðAÞ�F�ðAÞGðAÞ: ð6:16Þ

This is a positive inner product, hFjFi ≥ 0, on the physical
space of (gauge-invariant) functionals. The calculations
reported in the present article indicate that BRST may be
preserved in the physical sector and that the GZ action may
provide a consistent quantization of a gauge theory when
the horizon condition holds.
In this context, the behavior of the cutoff function

exp½−γHðAÞ� as the Gribov horizon is approached is of
interest. For a given configuration of the transverse gauge
field A, the spectral representation of the inverse Faddeev-
Popov operator in terms of eigenfunctions and eigenvalues,

ðM−1ðAÞÞabðx; yÞ ¼
X0

n

uanðx;AÞubnðy;AÞ
λnðAÞ

; ð6:17Þ

gives

exp½−γHðAÞ� ¼ exp

�
−γ

X0

n

c2nðAÞ
λnðAÞ

�
; ð6:18Þ

where c2nðAÞ ¼
P

μac
2
nμaðAÞ, with amplitudes

cnμa ¼
Z

ddxðAμ × unÞa: ð6:19Þ

The (nontrivial) eigenvalues λnðAÞ are positive when A is in
the interior of the Gribov region Ω, and the lowest non-
trivial eigenvalue approaches zero, λ0ðAÞ → 0þ, as A
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approaches the Gribov horizon A → ∂Ω. For configura-
tions near the Gribov horizon, HðAÞ ∼ c20ðAÞ=λ0ðAÞ. The
cutoff function thus has an essential singularity as the
Gribov horizon is approached, where it vanishes, together
with all its derivatives,

lim
A→∂Ω exp½−γHðAÞ� ∼ lim

λ0→0
exp½−γc20=λ0� ¼ 0: ð6:20Þ

This analysis suggests that the cutoff function exp½−γHðAÞ�
cuts off the integral at the Gribov horizon for any positive
value of γ. However, only the value of γ selected by the
horizon condition of Eq. (4.8) may preserve the BRST
symmetry of the physical space, as we demonstrate below.

VII. NONTRIVIAL TEST: THE
ENERGY-MOMENTUM TENSOR

A. Derivation of the energy-momentum tensor

In Faddeev-Popov theory, the energy-momentum
tensor is

TFP
μν ¼ TYM

μν þ sði∂μc̄ · Aν þ i∂νc̄ · Aμ − δμνi∂λc̄ · AλÞ;
ð7:1Þ

with TYM
μν given by Eq. (1.5). It is symmetric, TFP

μν ¼TFP
νμ , and

conserved, ∂μTFP
μν ¼ 0, modulo the equations of motion.

To obtain the energy-momentum tensor of the GZ theory,
we consider the action of Eq. (2.4) written in terms of
unshifted fields, Φ̂, without specifying the index set B.
Treating the auxiliary ghosts as scalar fields, we follow
standard procedure and write the action S ¼ SðΦ̂; gÞ on a
Riemannian background with metric gμν. The internal
phantom symmetry generators QX of Appendix A, includ-
ing the BRST charge QB, are also symmetries of the
action on an arbitrary Riemannian background,12

½QX;SðΦ̂;gÞ�¼0. It follows that they are symmetries of
the functional derivative Tμν ¼ δSðΦ̂; gÞ=δgμν which is the
energy-momentum tensor ½QX; Tμν� ¼ 0. The symmetric,
conserved energy-momentum tensor corresponding to the
action of Eq. (2.4) one obtains in this manner has the form

Tμν ¼ TYM
μν þ sΞμν; ð7:2Þ

where

Ξμν ¼ i∂μ ˆ̄c · Aν þ ∂μω̄B ·DνϕB þ ½μ ↔ ν� − δμνΨ; ð7:3Þ

with Ψ is given in Eq. (2.5). The Yang-Mills energy-
momentum tensor is separately invariant under all phantom
symmetries, which implies that sΞμν ∈ Wphys as well,

½QX; sΞμν� ¼ 0; ð7:4Þ

for all QX, including QB. We shall express Ξμν in terms of
the shifted fields that are well defined at large jxj. Let us
first reintroduce the index set B ¼ ðb; κÞ to be a flavor
index b and (in flat space) a Lorentz index κ,

Ξμν ¼ ½i∂μ ˆ̄c · Aν þ ∂μω̄κ ·Dνϕκ� þ ½μ ↔ ν�
− δμνði∂λc̄ · Aλ þ ∂λω̄κ ·DλϕκÞ: ð7:5Þ

Since nothing was done but give a name to the index set, the
tensor Tμν remains symmetric and conserved.
Next, one performs the MS shift of Eq. (2.7). It

again works its magic and gives coordinate-independent
tensors,

Ξμν ¼ ½i∂μc̄ ·Aνþ∂μω̄κ ·Dνφκ− γ1=2TrDμω̄ν�þ ½μ↔ ν�
−δμνði∂λc̄ ·Aλþ∂λω̄κ ·Dλφκ− γ1=2TrDλω̄λÞ ð7:6Þ

sΞμν ¼ ½i∂μb · Aν − i∂μc̄ ·Dνcþ ∂μφ̄κ ·Dνφκ

− ∂μω̄κ · ðDνωκ þDνc × φκÞ
þ γ1=2TrðDμφν −Dμφ̄ν −Dμc × ω̄νÞ
− γðN2 − 1Þδμν� þ ½μ ↔ ν� − δμνLgf ; ð7:7Þ

where c̄; b;φ, and φ̄ are the shifted fields. Here, s is the
BRSToperator that acts on the shifted fields as in Eq. (2.9).
It is a symmetry of the Lagrangian density L of Eq. (2.8).
Because the MS shift is but a change of variables, Tμν

remains conserved, modulo the equations of motion.

B. Test of the hypothesis

We shall show that

hTμνi ¼ hTYM
μν i: ð7:8Þ

This may be somewhat surprising because the new vacuum
breaks the symmetry of the bose and fermi ghosts which
are transformed into each other by the BRST operator. We
give here a proof that relies on the sufficient condition of
Sec. V C. In Appendix E, we provide a more direct, but
perhaps less intuitive, alternative proof that uses the
equations of motion. Both methods require that the horizon
condition of Eq. (1.1) be satisfied.
We evaluate the vacuum expectation value hsΞμνi

of the BRST-exact part of Tμν ¼ TYM
μν þ sΞμν. Exploiting

Euclidean rotational symmetry, one has hsΞμνi ¼
δμνhsΞλλi=d, with hsΞμμi ¼ ð2 − dÞhsΨi, where Ψ is given
in Eq. (2.8). We rearrange the derivative and obtain

hsΨi ¼ hsΨ0i þ hsΨ00i ð7:9Þ

hsΨ0i ¼ hs∂μ½ic̄ · Aμ þ ∂μω̄ν · φν�i ð7:10Þ

12The generators of Appendix A are given for arbitrary values
of γ. One obtains the generators for the unshifted variables at
γ ¼ 0. At γ ¼ 0, none of the phantom symmetry generators is
explicitly coordinate dependent.
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hsΨ00i ¼ hs½−ic̄ · ∂μAμ −Dμ∂μω̄ν · φν − γ1=2TrDμω̄μ�i.
ð7:11Þ

Due to translation invariance, we have h∂μFi ¼ 0 for any
local field F that satisfies ½Pμ; F� ¼ ∂μF. We cannot quite
use this argument to argue that hsΨ0i vanishes because
sω̄a

μb ¼ φ̄a
μb þ xμγ1=2δab depends explicitly on x. This is the

only term that could contribute to hsΨ0i in a translationally
invariant vacuum, and thus

hsΨ0i ¼ γ1=2h∂μTrφμi ¼ 0: ð7:12Þ

To apply the criterion of Eq. (5.16) to hsΨ00i, we estimate
the correlator

CλðxÞ¼ hTrðDλωλþDλc×φλÞðxÞðic̄ ·∂μAμþDμ∂μω̄ν ·φν

þ γ1=2TrDμω̄μÞð0Þi ð7:13Þ

(no sum on λ) at large jxj. We use the equation of motion of
b to set ∂μAμ ¼ 0 and the previous result of Eq. (4.6) that
hcðxÞω̄ðyÞiA ¼ 0. It follows that the term in c vanishes in
Eq. (7.13), and we need only consider the asymptotic
behavior of

CλðxÞ ¼ hTrDλωλðxÞðDμ∂μω̄ν · φν þ γ1=2TrDμω̄μÞ�ð0Þi:
ð7:14Þ

Integrating out the ghosts at fixed A, one has

ωa
λbðxÞω̄c

μdðyÞ → −ðM−1Þacðx; y;AÞδbdδλμ; ð7:15Þ

which leads to

CλðxÞ ¼ hDðxÞab
λ δdðxÞφa

λbð0Þ
− γ1=2DðxÞab

λ DðyÞac
λ ðM−1Þbcðx; 0Þi: ð7:16Þ

The first term vanishes because for jxj ¼ OðLÞ, δdðxÞ ¼ 0.
One thus finds

CλðxÞ ¼ −γ1=2hDðxÞab
λ DðyÞac

λ ðM−1Þbcðx; yÞijy¼0: ð7:17Þ

The asymptotic behavior for large jxj of this correlator was
obtained in Appendix C, and the sufficient condition of
Sec. V C implies that hsΞμνi ¼ hsΨi ¼ 0. We thus could
verify the hypothesis that BRST-exact observables have a
vanishing expectation value for this case and conclude that
Eq. (7.8) indeed holds in the GZ theory.

VIII. TREE-LEVEL EVALUATION OF THE
TRACE ANOMALY

Having found that hTμνi ¼ hTYM
μν i in the GZ theory, it

makes sense to calculate the trace anomaly [52] of hTYM
μν i.

With m4 ¼ 2Ng2γ, the tree-level contibution to the trace
anomaly in the GZ theory is given by

A¼hTYM
μμ i¼4−d

4
hðFb

μνÞ2i

¼4−d
4

hð∂μAb
ν −∂νAb

μÞ2i

¼1

2
ðN2−1Þð4−dÞðd−1Þ

Z
ddk
ð2πÞd

ðk2Þ2
ðk2Þ2þm4

¼1

2
ðN2−1Þð4−dÞðd−1Þ

Z
ddk
ð2πÞd

�
1−

m4

ðk2Þ2þm4

�

¼−
1

2
ðN2−1Þð4−dÞðd−1Þ

Z
ddk
ð2πÞd

m4

ðk2Þ2þm4
; ð8:1Þ

where we have subtracted the contribution at the trivial
vacuum with m ¼ 0.13 We have

Z
ddk
ð2πÞd

m4

ðk2Þ2 þm4
¼ m2

2i

Z
ddk
ð2πÞd

�
1

k2 − im2
− cc

�

¼ m2

2i

Z
ddk
ð2πÞd

�
1

2

Z
∞

0

dα exp

�
−
1

2
ðk2 − im2Þα

�
− cc

�

¼ m2

2i
1

ð2πÞd=2
�
1

2

Z
∞

0

dαα−d=2 exp

�
−
�
ϵ −

1

2
im2

�
α

�
− cc

�

¼ 1

ð2πÞd=2
m2

i
Γð3 − d=2Þ

ð2 − dÞð4 − dÞ
�
ðϵ − im2=2Þ−1þd=2 − cc

�
: ð8:2Þ

The factor 4 − d in the denominator cancels the factor 4 − d in the coefficient of A, and in the limit d → 4 of four-
dimensional space-time, we obtain for the trace anomaly the finite result

13With dimensional regularization, the m ¼ 0 term vanishes in any case.
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A ¼ −ðN2 − 1Þ 3m4

4ð2πÞ2 : ð8:3Þ

Note that the anomaly comes entirely from TYM
μμ . The tree-

level contribution of the GZ theory gives the correct sign
for the anomaly and implies that γ > 0 lowers the vacuum
energy density.
We may approximate the physical value of m4 ¼ 2Ng2γ

by comparison with QCD sum rule estimates [53]. For a
pure SUðN ¼ 3Þ gauge theory, the one-loop contribution to
the anomaly is

A ¼ −
3m4

2π2
: ð8:4Þ

The expression of the anomaly in terms of the nonpertur-
bative gluon condensate is [52]

A ¼ βðgÞ
2g

h∶ðFa
λμÞ2∶i !g

2→0
−

β0g2

2ð4πÞ2 h∶ðF
a
λμÞ2∶i; ð8:5Þ

where β0 ¼ 11N=3. The estimate of the nonperturbative
gluon condensate by QCD sum-rules in Ref. [53] implies

A ¼ − lim
g2→0

11g2

2ð4πÞ2 h∶ðF
a
λμÞ2∶i ¼ −

11

8

αs
π
h∶ðFa

λμÞ2∶i

∼ −
11

8
0.012 GeV4: ð8:6Þ

Comparison with Eq. (8.4) then gives the one-loop estimate

m4 ¼ 2π2

3

11

8
0.012 GeV4 ð8:7Þ

or

m ¼ 574 MeV; ð8:8Þ

a not unreasonable value for the constituent gluon
mass. The trace anomaly is a renormalization group
invariant (physical) quantity, and Eq. (8.4) thus implies
that the Gribov parameter is nonperturbative, with γ ∼
π2A=3Ng2 ¼ Oð1=g2Þ at weak coupling.

IX. KUGO-OJIMA CONFINEMENT
CRITERION AND BRST

The color charge, defined in Eq. (A20), satisfies
½Qa

C;Q
b
C� ¼ fabdQd

C. In Faddeev-Popov theory, the
Landau gauge is special in that the color charge is the
anticommutator of the BRST charge, QB, with another
symmetry generator [48],

fQB;Qa
Gg ¼ Qa

C: ð9:1Þ

Equation (9.1) also holds in the GZ theory with the charge
Qa

G given in Eq. (A19).Qa
G shifts the Faddeev-Popov ghost

field by a constant, fQa
G; c

bðxÞg ¼ δab. If QB and Qc
G were

well defined, which they are not, and if physical states were
to satisfy QBjFi ¼ 0, Eq. (9.1) would prove color confine-
ment, for one has that 0 ¼ hFjfQB;Qa

GgjFi ¼ hFjQa
CjFi

for all physical states jFi. The missing parts of this
argument are the subject of the Kugo and Ojima confine-
ment criterion [6,7]. We extend here, and review for
completeness, the analysis in Ref. [9] of the Kugo-
Ojima confinement criterion [6,7] and the GZ action.
Consider the gluonic equation of motion,

δS
δAμ

¼ −DνFνμ þ i∂μbþ i∂μc̄ × c

− ∂μφ̄ × φþ ∂μω̄ × ω − ð∂μω̄Þ × φ

− γ1=2f½ω̄μ� × cþ γ1=2f½φμ − φ̄μ�; ð9:2Þ

where all summed indices have been suppressed and both
sides of the equation are in the adjoint representation of
global color. Contractions with structure constants in the
(upper) color and (lower) flavor indices are denoted by

ðΨ ×ΩÞa ¼ gfacdΨc
μbΩd

μb ð9:3Þ

and

ðΨ ~×ΩÞa ¼ gfacdΨb
μcΩb

μd: ð9:4Þ

The GZ action is invariant under global color transforma-
tion δϑa under which A; c; c̄; b transform in the usual way
and the auxiliary fields transform in the diagonal subgroup,

δΨa
μb ¼ ðΨμb × δϑÞa þ ðΨa

μ ~×δϑÞa; ð9:5Þ

for any Ψa
μb ∈ fφa

μb; φ̄
a
μb;ω

a
μb; ω̄

a
μbg. The corresponding

conserved Noether color current in the adjoint representa-
tion is given by

jμ ¼ Aλ × Fλμ þ Aμ × ib − i∂μc̄ × cþ ic̄ ×Dμc

þ ∂μφ̄ × φþ ∂μφ̄ ~×φ − φ̄ ×Dμφ

− φ̄ ~×Dμφ − ∂μω̄ × ω − ∂μω̄ ~×ω

þ ω̄ × ðDμωþDμc × φÞ þ ω̄ ~×ðDμωþDμc × φÞ
þ ð∂μω̄ × φÞ × cþ γ1=2f½ω̄μ� × c: ð9:6Þ

This allows us to express Eq. (9.2) in terms of the color
current and a BRST exact contribution,

δS
δAμ

¼ −∂νFνμ − jμ þ sχ̄μ; ð9:7Þ

where

MARTIN SCHADEN AND DANIEL ZWANZIGER PHYSICAL REVIEW D 92, 025001 (2015)

025001-12



χ̄μ ¼ iDμc̄ − ω̄ ×Dμφ − ω̄ ~×Dμφþ ∂μω̄ ~×φ − γ1=2f½ω̄μ�
ð9:8Þ

sχ̄μ ¼ iDμbþ γ1=2f½φμ − φ̄μ�
þ ic̄ ×Dμc − φ̄ ×Dμφ − φ̄ ~×Dμφþ ∂μφ̄ ~×φ

þ ω̄ × ðDμωþDμc × φÞ
þ ω̄ ~×ðDμωþDμc × φÞ − ∂μω̄ ~×ω: ð9:9Þ

The gluonic quantum equation of motion follows,

δabδμσδðx−yÞ¼
�
Aa
σðyÞ

δS
δAb

μðxÞ
�

¼−hAa
σðyÞð∂νFb

νμþjbμÞðxÞiþhAa
σðyÞsχ̄bμðxÞi:

ð9:10Þ

We could complete the Kugo-Ojima argument for
color confinement if the s-exact expectation value
hs½Aa

σðyÞχ̄bμðxÞ�i vanishes, as it would if BRST symmetry
is preserved. Temporarily assuming this is the case, we
rewrite Eq. (9.10) in the form

δabδμσδðx − yÞ ¼
�
Aa
σðyÞ

δS
δAb

μ
ðxÞ

�

¼ −hAa
σðyÞð∂νFb

νμ þ jbμÞðxÞi
− hðsAÞaσðyÞχ̄bμðxÞi: ð9:11Þ

Upon Fourier transformation (FT ), Eq. (9.11) reads

δabδμσ ¼ δabTσμfðp2Þ þ δab½Lσμ − Tσμuðp2Þ�
− hAa

σjbμiFT ðpÞ; ð9:12Þ

where Lσμ ¼ pσpμ=p2, Tσμ ¼ δσμ − Lσμ, and the functions
fðp2Þ and uðp2Þ are defined by

− hAa
σðyÞ∂νFb

νμðxÞiFT ¼ δabTσμfðp2Þ ð9:13aÞ

−hðDσcÞaðyÞχ̄bμðxÞiFT ¼ δab½Lσμ − Tσμuðp2Þ�: ð9:13bÞ

If these functions satisfy

fð0Þ ¼ 0 and uð0Þ ¼ −1; ð9:14Þ

the first term in Eq. (9.12) vanishes in the infrared,
hAa

σ∂νFb
νμiFT jp¼0

¼ 0, and the second contribution
saturates Eq. (9.12) in the infrared, hðDσcÞaχ̄bμiFT jp¼0

¼
−δabδμν. It follows that the matrix element with the color
current also vanishes in the infrared, hAa

σjbμiFT jp¼0
¼ 0.

Thus, if (9.14) holds, none of these terms has a massless
particle pole, and there is no long range color field. Color is
confined in a phase where the current matrix element
hAμðxÞjμðyÞi vanishes for p2 → 0.

According to Eq. (4.6), the c − ω̄ propagator at fixed A
vanishes. From Eqs. (9.8) and (9.13b), we then obtain

− hðDσcÞaðyÞðiDμc̄ÞbðxÞiFT

¼ −hðDσcÞaðyÞχ̄bμðxÞiFT ¼ δab½Lσμ − Tσμuðp2Þ�:
ð9:15Þ

Summing Eq. (9.15) over directions and color, we have

− i
Z

ddx expð−ip · xÞhðDμcÞaðxÞðDμc̄Það0Þi

¼ ðN2 − 1Þðð1 − dÞuðp2Þ þ 1Þ: ð9:16Þ

The horizon condition of Eq. (1.1) implies that this
expression should equal dðN2 − 1Þ at p2 ¼ 0, or14 that
uð0Þ ¼ −1.
We are not in a position to evaluate the condition fð0Þ ¼ 0

exactly. However, we can evaluate it at tree level, with
the result

p2hAa
σðyÞAb

μðxÞiFT ¼ δabTσμ
ðp2Þ2

ðp2Þ2 þm4
; ð9:17Þ

wherem4 ¼ 2Ncg2γ is theQCDmass related to the tree-level
trace anomaly of Eq. (8.3). This vanishes at p ¼ 0, and thus
both conditions of Eq. (9.14) are satisfied, and with them the
Kugo-Ojima confinement criterion.
Quite strikingly, both criteria of Eq. (9.14) for a con-

fining phase hold already at tree level in the GZ theory.
Perturbative calculations to one- and two-loop order in
three [24] and four [25–27] Euclidean dimensions as well
as a nonperturbative infrared analysis [28] of the GZ action
show that in the infrared the gluon propagator remains
suppressed and the ghost propagator diverges more
strongly than a massless pole [28,29,54]. This infrared
behavior agrees with the original Kugo-Ojima scenario [7].
Till now, we have left in abeyance whether BRST is

preserved in this instance, that is whether hsðAa
σχ̄

b
μÞi ¼ 0.

Note that the fields A and χ̄ are not observables, so our
hypothesis that BRST symmetry is unbroken in the
physical space is of no avail. However, we can check by
direct calculation whether

0 ¼ hsðAa
σðyÞχ̄bμðxÞÞi ¼ hAa

σðyÞsðχ̄bμðxÞÞi þ hsAa
σðyÞχ̄bμðxÞi

ð9:18Þ

14The horizon condition controls the asymptotic behavior of
hðDμcÞaðxÞðDνc̄Þbð0Þi which, according to Eq. (C6), falls off at
large x more rapidly than 1=jxjd. The canonical dimension of this
correlator is 1=jxjd, so the horizon condition implies that this
correlator is of shorter range than canonical. This leads to a ghost
propagator hcðxÞc̄ðyÞi that is of longer range than canonical
[6,7].
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holds where it is needed, namely in the infrared limit. In the
infrared, the second term is given exactly in Eq. (9.13b) due
to the horizon condition, hsAa

σχ̄
b
μiFT jp¼0

¼ −δabδμν. We
may evaluate the longitudinal part of the first term
h∂σAa

σðyÞsðχ̄bμðxÞÞi, using the equation of motion of the
b field, with the result hAa

σsχ̄bμilongitudinalFT ¼ δabpσpμ=p2, so
the longitudinal part of the identity is satisfied exactly. We
cannot currently evaluate the transverse part of the first
term exactly and do so only at tree level. Only the second
term of Eq. (9.9) gives a transverse contribution at tree
level,15 hAa

σsχ̄bμitransverseFT ¼ gγ1=2fbdehAa
σðyÞðφ − φ̄ÞdμeðxÞi.

With the propagator,

hAa
σðxÞðφb

μc− φ̄b
μcÞðyÞiFT ¼2gγ1=2fabc

Tσμ

ðp2Þ2þm4
; ð9:19Þ

the transverse part of the first correlator in Eq. (9.18) at tree
level is

hAa
σ sχ̄bμitransverseFT ¼ δabTσμ

m4

ðp2Þ2 þm4
!p¼0

δabTσμ: ð9:20Þ

It follows that, to leading order,

hs½Aa
μðxÞχ̄bνðyÞ�iFT jp→0

¼ 0: ð9:21Þ

This is another instance where the BRST symmetry of the
GZ theory appears to be preserved where needed. Although
the hypothesis of Eq. (6B) is of little use because
s½Aa

μðxÞχ̄bνðyÞ� ∉ Wphys, this s-exact correlator apparently
vanishes in the infrared and implies color confinement in
the GZ theory á la Kugo and Ojima.

X. CONCLUSION

BRST symmetry plays a central role in continuum gauge
theory. It is used to define the physical space, to derive
physical Ward identities like that satisfied by the energy-
momentum tensor, to obtain the Kugo-Ojima confinement
criterion, etc. These familiar features of standard QCD are
jeopardized in the GZ model by the nonvanishing vacuum
expectation value of some s-exact operators, hsXi ≠ 0,
which implies that BRST symmetry is spontaneously
broken. We addressed this problem here.
Our starting point was the analysis of spontaneous

breaking of BRST in the GZ theory. To better define the
theory, the GZ action was quantized on a finite volume with
periodic boundary conditions that break the BRST sym-
metry explicitly. In Eq. (5.13), the BRST breaking was
expressed as an integral over the surface of the quantization
volume of a certain correlator. From this expression, we
derived in Eq. (5.16) a sufficient condition for the

expectation value of a BRST-exact functional to vanish
when the boundary recedes to infinity.
The GZ model exhibits a large class of unphysical

symmetries that act on its ghost fields only. All physical
observables are invariant under these symmetries of the
ghost fields as well as the BRST symmetry. This sharpens
the notion of an observable in the GZ theory. The definition
of the space of observables Wphys given in Eq. (6.2)
relegates to the unphysical sector of the theory all cases
of BRST symmetry breaking we examined. For a working
hypothesis, we therefore propose that BRST symmetry is
preserved in the space Wphys of observables, that is,
hsXi ¼ 0, for all s-exact operators sX ∈ Wphys. This
hypothesis was found to be sufficient for reconstructing
the physical Hilbert space from the observable correlators.
We derived the energy-momentum tensor Tμν ¼

TYM
μν þ sΞμν of the GZ theory and verified the hypothesis

for this case by proving that its BRST-exact part is an
observable with vanishing expectation value, hsΞμνi ¼ 0.
The horizon condition was essential for this result. The
tree-level contribution to the trace anomaly hTμμi ¼ hTYM

μμ i
subsequently obtained in Eq. (8.3) is finite and provides a
reasonable estimate of the Gribov mass parameter. The sign
of the trace anomaly indicates that the vacuum with a
positive Gribov mass has lower energy density. In contrast
to Faddeev-Popov theory, the GZ theory satisfies the
Kugo-Ojima criteria for color confinement already at
tree level.
Several questions remain. One would like to prove the

hypothesis that BRST is preserved by the physical observ-
ables. Though not strictly necessary, one also might wish to
identify a larger class of s-exact operators of which the
expectation value vanishes. One such instance is found in
Appendix C, another in the derivation of the Kugo-Ojima
confinement criterion. One would like to know if BRST is
preserved in other, similar instances. Currently this is not
easy to verify because BRST was generally found to be
preserved by certain functionals only when the nonpertur-
bative horizon condition is satisfied exactly. The question
of reflection positivity needed to establish nonperturbative
unitarity also has not been addressed by the present article.
We would like to point out certain parallels in the

construction of the Faddeev-Popov and the GZ theories.
The Faddeev-Popov ghosts are introduced to localize the
otherwise nonlocal Faddeev-Popov determinant. They not
only bring new, unphysical, degrees of freedom into the
theory but also a new symmetry, the BRST symmetry. The
unphysical degrees of freedom of the Faddeev-Popov
ghosts are excluded from the physical space by requiring
that observables be BRST invariant. The auxiliary ghosts of
the GZ model were introduced to similarly localize the
nonlocal cutoff at the Gribov horizon. Like the Faddeev-
Popov ghosts, they bring new unphysical degrees of free-
dom into the theory but also new symmetries, the ghost
symmetries. The new, unphysical degrees of freedom of the

15It contributes at tree level because the trace anomaly of
Eq. (8.3) implies that g2γ ∼ Λ4

QCD.
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auxiliary ghosts are excluded from the physical space by
requiring observables to be invariant not only under the
BRST symmetry but also under all ghost symmetries.
Although many questions remain, we are impressed by

the consistency of the present construction of the physical
state space of GZ theory and of the results obtained. It is
particularly intriguing that the BRST symmetry is pre-
served in cases of physical interest only if the horizon
condition is satisfied. Our results suggest that the sponta-
neous breaking of the BRST symmetry may be relegated to
the unphysical sector and that the BRST-symmetry pre-
serving physical sector may provide a consistent non-
perturbative quantization of gauge theories.
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APPENDIX A: PHANTOM SYMMETRIES
AND THEIR GENERATORS

By definition, Eq. (6.2) or (6.3), phantom symmetries are
unobservable symmetries of the theory, and every observ-
able commutes with all phantom charges. Phantom sym-
metries nevertheless are a crucial part of the theory. They
provide the framework and govern the dynamics and
structure of the local quantum field theory but, like the
trusses of some buildings, remain invisible.
We denote charges and generators of phantom sym-

metries by QX, with the subscript X identifying the
symmetry. Here, we collect and give a short overview
over the complete set of phantom symmetries of the GZ
theory.16

The most prominent and important of the phantom
symmetries is the BRST symmetry. It is a nilpotent
symmetry generated by the fermionic charge QB given
in Eq. (5.2). All observables are expected to be BRST
invariant. Although it governs the structure and renorma-
lizability of the theory, the BRST symmetry fundamentally
is an unobservable symmetry of a gauge theory and thus its
most prominent phantom (symmetry).
Nilpotency means that the BRST charge anticommutes

with itself,

fQB;QBg ¼ 0; ðA1Þ

as can be verified using Eq. (5.2). Together with the ghost
number, QN , this symmetry forms a BRST doublet [see
Eq. (A2) below]. All other phantom symmetries are BRST
doublets as well. We also classify phantom symmetries by

the irreducible representation of the rigid color group
generated by the charges Qa

C defined in Eq. (A20) below.

1. Color-singlet phantom symmetries

Generators of color-singlet phantom symmetries com-
mute with all color charges Qa

C of Eq. (A20). The first of
these is the BRST symmetry. The ghost number extended
to include the auxiliary ghosts is another,

QN ≡
Z

ddx

�
c ·

δ

δc
− c̄ ·

δ

δc̄
þωμ ·

δ

δωμ
− ω̄μ ·

δ

δω̄μ

�
: ðA2Þ

Since ½QN ; QB� ¼ QB, these two symmetries form a BRST
doublet ðQN ; QBÞ.
In Faddeev-Popov theory in the Landau gauge, BRST

and anti-BRST and an SL(2,R) symmetry that includes the
ghost number as one of its generators [55–57] exhaust the
color-singlet phantom symmetries. Although the GZ model
implements the Landau gauge, this theory remarkably does
not appear to possess an anti-BRST symmetry. The analog
of the SL(2,R) generator with ghost number −2 of
Faddeev-Popov theory is similarly missing. However, the
[in Faddeev-Popov theory SL(2,R)] charge

Qþ ≡ fQB;Qcbg ¼
Z

ddxc ·
δ

δc̄
−
1

2
ðc × cÞ · δ

δb
; ðA3Þ

with

Qcb ≡
Z

ddxc ·
δ

δb
; ðA4Þ

is readily verified to also generate a symmetry of the GZ
action that changes the ghost number by 2. ðQcb; QþÞ is a
BRST doublet. Interestingly and contrary to all other
BRST- doublets, Qcb is an on-shell symmetry of the GZ
action that holds only for transverse gauge field
configurations.
The model in addition exhibits a number of color-singlet

phantom symmetries without analog in Faddeev-Popov
theory. One of these counts the net number of auxiliary
fields,

Qaux ≡
Z

ddx

�
φ̄μ ·

δ

δφ̄μ
− φμ ·

δ

δφμ
þ ω̄μ ·

δ

δω̄μ
− ωμ ·

δ

δωμ

þγ1=2xμTr

�
δ

δφ̄μ
þ δ

δφμ
þ iφ̄μ ×

δ

δb
þ iω̄μ ×

δ

δc̄

��
:

ðA5Þ

The terms proportional to γ1=2 arise from the shift of
Eq. (2.7) [also see Eq. (5.3)]. The charge Qaux is BRST
exact,

Qaux ¼ fQB;QTg; ðA6Þ
16For γ ¼ 0, some of these were previously used in Ref. [14] to

prove renormalizability of the GZ theory.
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with

QT ≡
Z

ddx

�
ω̄μ ·

δ

δφ̄μ
− φμ ·

δ

δωμ

þ γ1=2xμTr

�
δ

δωμ
þ iω̄μ ×

δ

δb

��
; ðA7Þ

and ðQT;QauxÞ is a BRST doublet of scalar color-singlet
charges. Note thatQT is a nilpotent scalar charge with ghost
number −1 but does not (anti)commute with QB and thus
does not qualify as an anti-BRST generator. However, its
cohomology does not include auxiliary fields [49,50],
which are simple doublets under the grading of Qaux.
Reconstruction of the physical space of the theory thus
could be viewed as an equivariant one: on the cohomology
of QT , QB is unbroken and equivalent to the BRST charge
of Faddeev-Popov theory. Its cohomology in the sector
with vanishing ghost number is thus the gauge-invariant
functionals only.
The invariance of the Lagrangian density, Eq. (2.8), with

respect to the variation δφ̄a
μb ¼ ϵ̄μδ

a
b with ∂νϵ̄μ ¼ 0 is

another new phantom symmetry. This shift by a constant
color-singlet vector is generated by

Qφ̄;μ ≡
Z

ddxTr
δ

δφ̄μ
: ðA8Þ

The commutator of Qφ̄;μ with the BRST charge QB of
Eq. (5.2) gives an associated phantom symmetry generated
by

Qω̄;μ ¼ −sQφ̄;μ ¼ −½QB;Qφ̄;μ�≡
Z

ddxTr
δ

δω̄μ
; ðA9Þ

and ðQφ̄;μ; Qω̄;μÞ are a BRST doublet of color-singlet
charges. Note that invariance of observables under QB
and Qω̄;μ implies their invariance under QB þ aμQω̄;μ for
an arbitrary constant vector aμ. The choice of origin in the
definition of the BRST charge QB in Eq. (5.2) is thus of no
import for operators that commute with the phantom sym-
metry generator Qω̄;μ.
At transverse configurations, ∂μAμ ¼ 0, the GZ action of

Eq. (2.8) by inspection also is invariant with respect to the
shift δωa

μb ¼ ϵμδ
a
b. This color-singlet phantom symmetry is

generated by the charge

Qω;μ ≡
Z

ddxqμ; ðA10Þ

with the density

qμ ≡ Tr

�
δ

δωμ
þ iω̄μ ×

δ

δb

�
: ðA11Þ

The BRST variation of Qω;μ is

Qφ;μ ¼ sQω;μ ¼ fQB;Qω;μg≡
Z

ddxpμ; ðA12Þ

with the density

pμ ¼ sqμ ¼ Tr

�
δ

δφμ
þ iφ̄μ ×

δ

δb
þ iω̄μ ×

δ

δc̄

�
: ðA13Þ

ðQω;μ; Qφ;μÞ is thus another BRST doublet of color-singlet
phantom generators.
Finally, at γ ¼ 0, Lgf evidently is invariant under the

internal symmetry δωa
μb ¼ ϵμνφ

a
νb; δφ̄

a
μb ¼ ϵμνω̄

a
νb with anti-

symmetric ϵμν ¼ −ϵνμ that rotates anticommuting and
commuting auxiliary fields into each other. This phantom
(super)symmetry persists for γ > 0 in an extended form
generated by17

QN;μν ≡
Z

ddx

�
φν ·

δ

δωμ
þ ω̄ν ·

δ

δφ̄μ
þ γ1=2xμqν

�
− ½μ↔ ν�:

ðA14Þ

The BRST variation of QN;μν gives the generators of an
internal SOð4Þ symmetry of the auxiliary ghost,

QM;μν ¼ fQB;QN;μνg

≡
Z

ddx

�
sμν þ γ1=2xμ

�
pν − Tr

δ

δφ̄ν

��
− ½μ ↔ ν�;

ðA15Þ

with densities

sμν ≡ φν ·
δ

δφμ
þ φ̄ν ·

δ

δφ̄μ
þ ων ·

δ

δωμ
þ ω̄ν ·

δ

δω̄μ
ðA16Þ

and pμ given in Eq. (A13).
These color-singlet phantom symmetry generators form

a closed algebra. They appear to exhaust the color-singlet
phantom symmetries of the GZ theory. Like QB, many are
spontaneously broken, for example

h½Qω̄;ν; ω̄a
μb�i ¼ δμνδ

a
b: ðA17Þ

2. Color-adjoint phantom symmetries

Faddeev-Popov theory in Landau gauge and GZ theory
share the remarkable property [48], that the color charge
QC is BRST exact. With the BRST charge of Eq. (5.2), we
have that [14]

Qa
C ¼ fQB;Qa

Gg; ðA18Þ

where

17The symmetries of the theory are most easily found in terms
of the unshifted variables by inspection of the unshifted
Lagrangian, Eqs. (2.4) and (2.5), where they are manifest (γ¼0).
They may then be expressed in terms of the shifted variables.
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QG ≡
Z

ddx

�
−

δ

δc
þ c̄ ×

δ

δb
þ φμa ×

δ

δωμa
þ ω̄μa ×

δ

δφ̄μa
þ φa

μ ~×
δ

δωa
μ
þ ω̄a

μ ~×
δ

δφ̄a
μ

�
; ðA19Þ

and the generator of rigid color rotations, QC, of the GZ theory is [9,14]

QC ≡
Z

ddx

�
Aμ ×

δ

δAμ
þ c ×

δ

δc
þ c̄ ×

δ

δc̄
þ b ×

δ

δb
þ φμa ×

δ

δφμa
þ φ̄μa ×

δ

δφ̄μa

þ ωμa ×
δ

δωμa
þ ω̄μa ×

δ

δω̄μa
þ φa

μ ~×
δ

δφa
μ
þ φ̄a

μ ~×
δ

δφ̄a
μ
þ ωa

μ ~×
δ

δωa
μ
þ ω̄a

μ ~×
δ

δω̄a
μ

�
: ðA20Þ

These generators of an unbroken diagonalSUðNÞ symmetry are the sumof the charges,QK , of theSUðNÞ symmetry of rigid
color rotations and of the SUðNÞ subgroup of flavor symmetry generators given in Eq. (A32),

Qa
C ¼ Qa

K þ 1

2
gfabcQF;μμbc; ðA21Þ

with

Qa
K ≡

Z
ddx

��
Aμ ×

δ

δAμ
þ c ×

δ

δc
þ c̄ ×

δ

δc̄
þ b ×

δ

δb
þ φμb ×

δ

δφμb
þ φ̄μb ×

δ

δφ̄μb
þ ωμb ×

δ

δωμb
þ ω̄μb ×

δ

δω̄μb

�
a

− gγ1=2xμfabc
��

iφ̄μc ×
δ

δb
þ iω̄μc ×

δ

δc̄

�
b
þ δ

δφ̄b
μc
þ δ

δφb
μc

�
− ig2γNx2

δ

δba

�
: ðA22Þ

Note that the symmetry of rigid color rotations, generated
by QK, by itself is spontaneously broken, whereas the
diagonal group that includes flavor rotations generated by
QC remains unbroken.
As for QC, the charges QG may be decomposed,

Qa
G ¼ Qa

J þ
1

2
gfabcQE;μμbc; ðA23Þ

with

QJ ≡
Z

ddx

�
−

δ

δc
þ c̄ ×

δ

δb
þ φμa ×

δ

δωμa

þ ω̄μa ×
δ

δφ̄μa
− gγ1=2fabcxμ

�
δ

δωμc
þ iω̄μc ×

δ

δb

�
b
�
:

ðA24Þ
The generatorsQK andQJ for γ ¼ 0 were used in Ref. [14]
to show renormalizability of the theory.
The nilpotent BRSToperatorQB thus commutes with the

generators Qa
C, and the pairs ðQa

G;Q
a
CÞ and ðQa

J;Q
a
KÞ are

BRST doublets. The phantom charges of Eqs. (A19) and
(A20) form adjoint multiplets,

½Qa
C;Q

b
C� ¼ fabcQc

C;

½Qa
C;Q

b
G� ¼ fabcQc

G;

½Qa
G;Q

b
G� ¼ 0: ðA25Þ

The GZ theory in addition possesses a set of phantom
symmetries in the adjoint that mix auxiliary vector ghosts

with FP ghosts. Inspection of Lgf in Eq. (2.8) reveals the
invariance, δc̄a ¼ iεμbω̄a

μb; δω
a
μb ¼ εμbca. This phantom

symmetry is generated by the charges,

QR;μa ≡
Z

ddx

�
c ·

δ

δωμa
þ iω̄μa ·

δ

δc̄

�
; ðA26Þ

of vanishing ghost number. Commuting with the BRST
generator QB reveals another set of phantom generators in
the adjoint representation,

QS;μa ≡ −½QB;QR;μa�

¼
Z

ddx

�
1

2
ðc × cÞ · δ

δωμa
þ c ·

δ

δφμa

− iφ̄μa ·
δ

δc̄
− iγ1=2xμ

δ

δc̄a

�
; ðA27Þ

which are readily verified to commute with the GZ action
of Eq. (2.8).
QR;μa, defined in Eq. (A26), is one of the more

interesting unbroken phantom symmetries. It is due to
the absence of a vertex containing c̄ and ω in Lgf and
implies that any operator with a positive number of FP
ghosts #c − #c̄ has a vanishing expectation value. This is
true at fixed A, after integrating out the ghost fields, as is
explained following Eq. (4.6). In particular, the hcω̄iA-
propagator for a fixed A field vanishes in the GZ theory. We
believe that QC;QN , and QR;μa are the only phantom
symmetries that are not broken spontaneously.
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Another doublet of adjoint phantom symmetries is found
by (anti)commuting these generators with color-singlet
phantoms. This closes the subalgebra with the additional
commutation relations,

fQω̄;μ; QR;νg ¼ −½Qφ̄;μ; QS;ν� ¼ iδμνQc̄

¼ −iδμν½QB;QNL� ¼ δμν½Qþ; QG�; ðA28Þ

and the adjoint phantom charges,

Qa
NL ≡

Z
ddx

δ

δba
and Qa

c̄ ≡
Z

ddx
δ

δc̄a
: ðA29Þ

It is worth noting in this context thatQa
G;Q

a
NL as well asQ

a
c̄

generate broken symmetries even in Faddeev-Popov theory
in the Landau gauge, since

hfQa
G; c

bðxÞgi ¼ hfQa
c̄; c̄

bðxÞgi
¼ hfQa

NL; b
bðxÞgi ¼ δab ≠ 0: ðA30Þ

The corresponding Goldstone zero modes do not
couple to observables and are often ignored (see, however,

Refs. [58–60]). That Qω̄;ν is the charge of a broken
symmetry due to Eq. (A17), in this sense, is not
extraordinary.
For SUðN > 2Þ, there are four more adjoint multiplets of

BRST doublets, ðQEA
;QFA

Þ, ðQES
;QFS

Þ, ðQUA
;QVA

Þ, and
ðQUS

;QVS
Þ, using the symmetric combinations.

3. Additional phantom symmetries

At γ ¼ 0, the GZ theory is invariant under an internal
UðdðN2 − 1ÞÞ symmetry of the auxiliary fields that acts on
pairs B ¼ ðμ; bÞ of “vector-flavor” indices and transforms
fermionic into bosonic ghosts and vice versa. For γ > 0,
these symmetries are generated by

QE;μνab ≡
Z

ddx

�
ω̄νb ·

δ

δφ̄μa
− φμa ·

δ

δωνb

þ γ1=2xμ

�
δ

δωνb
þ iω̄νb ×

δ

δb

�
a
�
: ðA31Þ

The BRST variation of these charges is

QF;μνab ≡ fQB;QE;μνabg ¼
Z

ddx

�
φ̄νb ·

δ

δφ̄μa
− φμa ·

δ

δφνb
þ ω̄νb ·

δ

δω̄μa
− ωμa ·

δ

δωνb

þ γ1=2xν
δ

δφ̄b
μa

þ γ1=2xμ

�
δ

δφνb
þ iφ̄νb ×

δ

δb
þ iω̄νb ×

δ

δc̄

�
a
þ iγxμxνgfabc

δ

δbc

�
: ðA32Þ

An additional BRST doublet is revealed by translating xμ → xμ þ aμ in Eq. (A31) and Eq. (A32) by an arbitrary constant
vector,

Qa
U;νb ≡ ½QR;νb; Qa

G� ¼
Z

ddx

�
δ

δωνb
þ iω̄νb ×

δ

δb

�
a

Qa
V;νb ≡ fQB;Qa

U;νbg ¼
Z

ddx

��
δ

δφνb
þ iφ̄νb ×

δ

δb
þ iω̄νb ×

δ

δc̄

�
a
þ iγ1=2xνgfabc

δ

δbc

�
: ðA33Þ

Note that these charges are needed to close the algebra.
Some of the color-singlet components of these phantom

charges we already encountered in Eqs. (A5), (A7), (A10),
(A12), (A14), (A15), (A10), (A12), and (A8). There are
additional symmetric and traceless color-singlet charges
which we do not separately enumerate here.
The structure constants fabc and dabc project on the

additional phantom charges in the adjoint representation
mentioned at the end of Sec. A 2,

Qa
EA;μν

¼ fabcQE;μνbc Qa
ES;μν

¼ dabcQE;μνbc

Qa
FA;μν

¼ fabcQF;μνbc Qa
FS;μν

¼ dabcQF;μνbc

Qa
UA;μ

¼ fabcQb
U;μc Qa

US;μ
¼ dabcQb

U;μc

Qa
VA;μ

¼ fabcQb
V;μc Qa

VS;μ
¼ dabcQb

V;μc: ðA34Þ

For an SUð3Þ gauge theory, one can further project
ðQE;QFÞ and ðQU;QVÞ onto two 10 and one 27multiplets.
We refrain here from doing so because these higher
irreducible representations of phantom symmetries depend
on the gauge group, and we have no explicit use for them.

4. Some comments on phantom symmetries

The set F of 2dþ3þ2ðdþ2ÞðN2−1Þþ2dðdþ1Þ×
ðN2−1Þ2 linearly independent generators,

F ¼ fQB;QN ; Qþ; Qφ̄;μ; Qω̄;μ; Qa
G;Q

a
C;Q

a
NL; Q

a
c̄;

QR;μa; QS;μa; QE;μνab; QF;μνab; Qa
U;μb; Q

a
V;μbg; ðA35Þ

forms a closed algebra of unphysical charges. This set
seems to exhausts all phantom symmetry generators of the
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GZ theory. For SUð3Þ and four-dimensional space-time, the
model thus has an algebra of 2667 phantom charges.
Faddeev-Popov theory in the Landau gauge by contrast
has a mere 37 phantom generators [BRST, anti-BRST, the
SL(2,R), as well as ghost number and the analogs of
Qa

G;Q
a
C;Q

a
c̄ , and Qa

NL]. But the GZ model also includes
4dðN2 − 1Þ2 or 1024 more unphysical fields than Faddeev-
Popov theory.
If we consider ðQN ; QBÞ a doublet, all phantom gen-

erators come in BRST doublets.18 Phantom symmetries
therefore should be unphysical and unobservable [49,50].
Remarkably, the color charge of the model is part of a
BRST doublet, yet another indication that color may not be
observable [6,9].
In general, it is a daunting algebraic task to determine

whether an operator F is invariant under all the phantom
symmetries of Eq. (A35) and belongs to the set Wphys
defined in Eq. (6.2). Verifying the UðdðN2 − 1ÞÞ symmetry
that rotates the auxiliary ghosts into each other can be
helpful in this regard.
That phantom symmetries are BRST doublets can also

be exploited. The Jacobi identity implies invariance under
the generator ½QX;QY � if an operator is invariant under the
symmetries QX and QY separately. To establish whether an
operator F is in Wphys, one thus needs only to show that F
commutes with the set of charges,

~F¼fQþ;QB;QN ;Qφ̄;μ;Qa
G;Q

a
NL;QR;μa;QE;μνabg; ðA36Þ

the (graded) commutators of which generate the whole
algebra of phantom charges. Note that the subsets
fQþg; fQBg; fQN ; Qφ̄;μ; Qa

NL; QR;μag; fQa
G;QE;μνabg of

~F, with ghost numbers 2; 1; 0;−1 respectively, are sets
of mutually (anti)commuting charges.
All the phantom symmetries associated with charges in

~F except (possibly) those generated by the ghost number
QN , global color Qa

C, Qþ, and QR;μa, are spontaneously
broken in the GZ theory. However, like the phantom
symmetries themselves, this breaking is hidden, and the
corresponding Goldstone excitations are unobservable.

APPENDIX B: CHECK OF THE
SURFACE EQUATION

Let us verify that Eq. (5.13) holds for the case
F ¼ ω̄a

μbðyÞ. We must verify

hsω̄a
μbðyÞi ¼ γ1=2

L
2

Xd
μ¼1

X
σ¼�

Z
xμ¼σL=2

dSμ

× hTrðDνων þDνc × φνÞðxÞω̄a
μbðyÞi: ðB1Þ

We integrate out the ghost fields, keepingA fixed, and obtain

hωc
νdðxÞω̄a

μbðyÞiA ¼ −ðM−1Þcaðx; y;AÞδμνδdb
hcdðxÞω̄a

μbðyÞiA ¼ 0; ðB2Þ

where M−1 is the inverse of the Faddeev-Popov operator,
with kernel ðM−1Þbcðx; y;AÞ. This gives

hsω̄a
μbðyÞi ¼ −γ1=2

L
2

Xd
μ¼1

X
σ¼�

Z
xμ¼σL=2

dSμ

× hðDμM−1Þbaðx; y;AÞi: ðB3Þ

By symmetries of the periodic hypercube, we have

hðDμM−1Þbaðx; y;AÞi ¼ 1

Ld

X
p

fμðpÞe−ip·ðx−yÞδba; ðB4Þ

where pμ ¼ 2πnμ=L and the nμ are integers and where
fμðpÞ → pμfðp2Þ in the infinite-volume limit.Bydefinition,
the ghost propagator satisfies

∂μðDμM−1Þbaðx; y;AÞ ¼ −δd0ðx − yÞδba; ðB5Þ

where

δd0ðx − yÞ ¼ 1

Ld

X0

p

e−ip·ðx−yÞ ¼ δdðx − yÞ − 1

Ld : ðB6Þ

The prime on the summation means that the term p ¼ 0 is
omitted because the constant modes are the trivial null space
of ∂μ. This gives

hðDμM−1Þbaðx; y;AÞi

¼ 1

Ld

�X0

p

ð−ipμÞ
p2

e−ip·ðx−yÞ þ aμ

�
δba; ðB7Þ

whereaμ is an arbitrary constant thatwemay set to 0.We thus
find

hsω̄a
μbðyÞi ¼ −γ1=2δab

L
2

Xd
μ¼1

X
σ¼�

Z
xμ¼σL=2

dSμ

×
1

Ld

�X0

p

ð−ipμÞ
p2

e−ip·ðx−yÞ
�
: ðB8Þ

Integrating over the d − 1-dimensional surfaces at xμ ¼
�L=2 sets p⊥ ¼ 0 and gives

hsω̄a
μbðyÞi ¼ γ1=2δab

�X0

pμ

i
pμ

e−ipμðL=2−yμÞ
�
; ðB9Þ

where we used that e−ipμðL=2−yμÞ ¼ e−ipμð−L=2−yμÞ. The sum
over modes in Eq. (B9) is readily verified to be the Fourier
representation of the periodic sawtooth function,

18Although Qcb of Eq. (A4) does not generate a symmetry of
the action, ðQcb; QþÞ algebraically are a BRST doublet.
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hðyμÞ≡
X
n≠0

ð−1Þn iL
2πn

e2πinyμ=L ¼ yμ for jyμj < L=2:

ðB10Þ

We thus have verified that

hsω̄a
μbðyÞi ¼ γ1=2δabyμ for jyμj < L=2; ðB11Þ

which in the limit L → ∞ agrees with Eq. (5.1) for all
finite jyj.

APPENDIX C: THE CRITERION
IMPLIES hsDμω̄νbi ¼ 0

As an example that will be useful in the accompanying
article [47], we apply the criterion (5.16) to the operator
sDμω̄

a
νb. We need to estimate the asymptotic behavior of

Ca
bλμνðx − yÞ ¼ hTrðDλωλ þ ðDλcÞ × φλÞðxÞðDμω̄νbÞaðyÞi

ðno sum on λÞ; ðC1Þ
for large jxj. Assuming that the phantom symmetry
generated byQR;μa defined in Eq. (A26) remains unbroken,
the term in c does not contribute by Eq. (4.6), and so

Ca
bλμνðx − yÞ ¼ hTrðDλωλÞðxÞðDμω̄νbÞaðyÞi: ðC2Þ

The same symmetry further implies that

0 ¼ h½QR;νb;TrðDλωλÞðxÞðDμc̄ÞaðyÞ�i
¼ δλνhðDλcÞbðxÞðDμc̄ÞaðyÞi
þ ihTrðDλωλÞðxÞðDμω̄νbÞaðyÞi: ðC3Þ

This symmetry therefore implies that

Ca
bλμνðx − yÞ ¼ −iδνλhðDλcÞbðxÞðDμc̄ÞaðyÞi: ðC4Þ

The large jxj behavior of the correlator in Eq. (C4) is
constrained by the horizon condition (1.1), which reads

X
aμ

Z
ddxCa

aλμμðx − yÞ ¼ ðN2 − 1Þ: ðC5Þ

The horizon condition thus controls the asymptotic behav-
ior of the correlator Ca

bλμνðxÞ of Eq. (C2) and implies that
the criterion of (5.16) is satisfied. The integral of Eq. (C5)
generally does not converge if the criterion of Eq. (5.16) is
not fulfilled. Assuming for instance that this correlation
function has a power behavior at large x,

Ca
bλμνðxÞ ¼ Oð1=jxjpÞ; ðC6Þ

we obtain p > d for the integral to converge. Thus,
provided the horizon condition holds, we conclude that

hsðDμω̄νbÞai ¼ 0: ðC7Þ
Note that sðDμω̄νbÞa is not in the space Wphys of observ-
ables defined in Eq. (6.3) because it is not invariant under
the symmetry generated by QM;μν of Eq. (A15) and several
other phantom symmetries. The class of s-exact operators
of which the expectation value vanishes is thus not limited
to the invariant ones in Wphys.

APPENDIX D: ALTERNATIVE EXPRESSION
FOR hsFi

With Eq. (5.6), Eq. (5.13) may be written

hsFðyÞi ¼ γ1=2L
Z

ddx
Xd
μ¼1

½1 − ∂μhðxμÞ�hFðyÞTrðDμωμ þDμc × φμÞðxÞi; ðD1Þ

and from Eq. (2.8), we also have that

δab
δS

δω̄a
νbðxÞ

¼ ∂μTrðDμων þDμc × φνÞðxÞ; ðD2Þ

which by partial integration gives

hsFðyÞi¼ γ1=2
Z

ddx

�
FðyÞTr

�
sDμφμðxÞþhðxμÞ

δS
δω̄μðxÞ

��
¼ γ1=2

Z
ddx

�
hFðyÞsTrDμφμðxÞiþhðxμÞ

�
δFðyÞ
δω̄a

μaðxÞ
��

:

ðD3Þ
The sawtooth function of Eq. (5.5) has the Fourier expansion

hðxμÞ ¼ i
X
n≠0

ð−1Þneipnxμ=pn; ðD4Þ

with pn ¼ 2πn=L, and n is an integer. The first term in Eq. (D3) is thus the contribution of the zero mode, whereas the
second contains contributions from nonzero modes only. In deriving this expression, we used that nonzero modes may be
written as the derivative of a periodic function, whereas the constant zero mode cannot.
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APPENDIX E: ALTERNATIVE PROOF
THAT hTμνi ¼ hTYM

μν i
We shall show that the BRST-exact part of the energy-

momentum tensor has a vanishing expectation value,

hsΞμνi ¼ 0: ðE1Þ

The proof holds on an infinite or finite periodic hypercubic
space-time. By Lorentz invariance, we have hsΞμνi ¼
δμνhsΞλλi=dÞ, where hsΞμμi ¼ ð2 − dÞhsΨi.
It is thus sufficient to show that hsΨi ¼ 0, where sΨ is

given in (2.8).
We use the horizon condition (4.5) in Eq. (2.8) and

obtain for the s-exact part of the trace

hsΨi ¼ hi∂μb · Aμ − i∂μc̄ · ðDμcÞ þ ∂μφ̄ν · ðDμφνÞ

− ∂μω̄ν · ½Dμων þDμc × φν� þ
1

2
γ1=2Tr½Dμðφ − φ̄Þμ − ðDμcÞ × ω̄μ�i; ðE2Þ

where we have divided by the Euclidean volume. We may integrate by parts without a boundary contribution because of
translation invariance and obtain

hsΨi ¼
�
−ib · ∂μAμ þ ic̄ · ∂μDμc −

1

2
φ̄ν · ð∂μDμφνÞ þ

1

2
γ1=2Trφ̄ν × Aν

−
1

2
φν · ½Dμ∂μφ̄ν þDμc × ∂μω̄ν� −

1

2
γ1=2Trφν × Aν

þ 1

2
ω̄ν · ∂μ½Dμων þDμc × φν� −

1

2
γ1=2Trω̄ν ×Dνc −

1

2
ων · ðDμ∂μω̄νÞ

�
: ðE3Þ

We now use the equations of motion to write this as

hsΨi ¼ −
Z

dΦ

�
b ·

δ

δb
þ c̄ ·

δ

δc̄a
þ 1

2
φ̄ν ·

δ

δφ̄ν
þ 1

2
φν ·

δ

δφν
þ 1

2
ω̄ν ·

δ

δω̄ν
þ 1

2
ων ·

δ

δων

�
expð−SÞ: ðE4Þ

We now do a functional integral by parts and obtain

hsΨi ¼ δdð0Þ
�
ðN2 − 1Þð1 − 1Þ þ dðN2 − 1Þ2

�
1

2
þ 1

2
−
1

2
−
1

2

��
¼ 0; ðE5Þ

which vanishes because of the opposite statistics of fermions and bosons. This result can also be verified at tree level.
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