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In the standard brane world models, the bulk metric ansatz is usually assumed to be factorizable in brane
and bulk coordinates. However, it is not self-evident that it is always possible to factorize the bulk metric.
Using the gradient expansion scheme, which involves the expansion of bulk quantities in terms of the
brane-to-bulk curvature ratio as a perturbative parameter, we explicitly show that metric factorizability is a
valid assumption up to second order in the perturbative expansion. We also argue from our result that the
same should be true for all orders in the perturbation scheme. We further establish that the nonlocal terms
present in the bulk gravitational field equation can be replaced by the radion field; the effective action on
the brane thereby obtained resembles the Brans-Dicke theory of gravity.
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I. INTRODUCTION

The conjecture of the existence of more than four
spacetime dimensions has serious implications in high-
energy physics. Such higher-dimensional spacetimes
appear quite naturally in the context of string theory.
There has recently been progress in this regime, especially
for theories with extra spatial dimensions. The common
perception for all these theories corresponds to the fact that
gravity can access the whole of spacetime including the
extra dimensions (together known as the bulk), while the
standard model fields are localized on a four-dimensional
submanifold (known as the brane). One of the main
motivations behind these models has been to explain the
large hierarchy between the Planck scale (MP ∼ 1018 GeV)
and the electroweak scale (mW ∼ 102 GeV).
The first such model was proposed by Arkani-Hamed

et al. [1,2]. In this model the extra dimensions were
assumed to be large, such that the five-dimensional
Planck scale differs from the four-dimensional Planck scale
by a factor of the volume of these extra dimensions. Thus,
by assuming more than one extra dimension and a large
volume (though still within experimental bounds), the
five-dimensional Planck scale can be brought down to
the four-dimensional electroweak scale. However, in this
case the extra dimensions are assumed to be flat.
From the gravitational viewpoint it is more tempting to

take the bulk geometry as warped, with the brane(s) as flat.
This was first realized in a setup proposed by Randall and
Sundrum (RS) [3], where two branes were held fixed at
orbifold fixed points with S1=Z2 symmetry. Because of
exponential warping, the Planck scale in one brane (the

Planck brane) was brought down to the electroweak scale in
the other brane, known as the visible brane. Such a warped
model was also extended to one brane with an infinitely
extended bulk [4]. In this work, however, we focus on the
two-brane warped-geometry model.
The separation between the branes in the RS model may

not be constant and needs to be stabilized. Such a stabiliza-
tion mechanism was proposed in [5,6], while the stabiliza-
tion for a time-dependent scenario was discussed in [7]. The
particle phenomenology of various matter fields in this
scenario was discussed in [8–13], with interesting conse-
quences. Recently, these ideas have also been put forward in
the context of various alternative gravity theories [14–19].
All these results depend on a crucial fact, the factoriz-

ability of metric ansatz. However, there are objections
against this assumption of factorizability; further, it is not
self-evident why the metric ansatz should be factoriz-
able [20]. In this work, we have tried to address this issue
using low-energy effective action obtained by solving the
bulk equations. The bulk equations in general are not
exactly solvable; a convenient way to handle the situation at
low energy is to expand the bulk variables in terms of the
ratio of four-dimensional curvature to bulk curvature. This
method, known as the gradient expansion method, was
developed by Kanno and Soda [21–24]. In [25] the gradient
expansion method was used up to first order to show that
the factorizable metric ansatz is valid up to linear order in
this perturbative expansion. In this work we obtain the
second-order correction to the metric in this gradient
expansion scheme, which leads to the effective action up
to second order. This also exhibits the factorizable nature,
which in turn enables us to generalize our result to include
higher-order corrections. We conclude that at any order the
metric is factorizable; thus, factorizability of the metric is a
valid assumption.
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Along with the issue of factorizability of the metric
ansatz, we also address the equivalence of this bulk-brane
system with the scalar-tensor or Brans-Dicke theory of
gravity. The solutions to bulk equations intrinsically inherit
nonlocal terms which, as we have argued, can be traded off
through the radion field. This equivalence was shown
earlier in [23] for first-order perturbative corrections
through the gradient expansion method. We have reformu-
lated the previous method and show explicitly that up to
second order of perturbative expansion, when the nonlocal
terms are eliminated, the field equation on the brane
becomes local and equivalent to that of the Brans-Dicke
theory of gravity. We also argue that this result can be
generalized to arbitrary higher orders in the perturbative
expansion. The same assertion also follows from the
effective action; i.e., the effective action can be written
explicitly in the Brans-Dicke form.
The paper is organized as follows: In Sec. II we review

the gradient expansion method and evaluate the second-
order correction to the bulk metric. Then, in Sec. III we
use the bulk metric in order to determine the effective
action and the equation of motion it corresponds to.
Along with these, we also present the criteria for
obtaining the second-order field equation from this
effective action. Finally, in Sec. IV we establish the
equivalence of this bulk-brane system with the Brans-
Dicke theory of gravity. We then conclude with a short
discussion of our results.
In this work we will set c and ℏ to unity. The Latin

indices a; b;… run over the full spacetime, while Greek
indices μ; ν;… represent the brane coordinates. The metric
signature is taken to be ð−;þ;þ;þ;þ;þÞ.

II. GRADIENT EXPANSION AND
HIGHER-ORDER TERMS

The metric ansatz for the five-dimensional spacetime is
taken in Gaussian normal coordinates, where we denote the
brane coordinates by xμ and the bulk coordinate by y such
that

ds2 ¼ hμνðy; xμÞdxμdxν þ dy2: ð1Þ

Thus, the metric in general is not taken as factorizable. The
branes are assumed to be moving in the coordinate chart
where they are placed at

y ¼ ϕþðxμÞ; y ¼ ϕ−ðxμÞ; ð2Þ

and in the literature they are often quoted as moduli fields.
In order to determine the brane geometry we need to solve
the bulk equations. The form of the metric ansatz suggests
that the extrinsic curvature on y ¼ constant hypersurface
can be found through its decomposition into traceless and
trace part as

Kμν ¼ −
1

2

∂hμν
∂y ;

Kμν ¼ Σμν þ
1

4
hμνK;

K ¼ −
∂ ln ffiffiffiffiffiffi

−h
p

∂y : ð3Þ

Using these properties of extrinsic curvature in the bulk
equations lead to the equations [21–24]

∂yΣμν − KΣμν ¼ −
�
RμνðhÞ −

1

4
hμνRðhÞ

�
ð4Þ

3

4
K2 − ΣαβΣαβ ¼ RðhÞ þ 12

l2
ð5Þ

∇νΣν
μ −

3

4
∇μK ¼ 0; ð6Þ

where the covariant derivatives are with respect to the
metric hμν, and all the curvature components, i.e., Ricci
tensor and Ricci scalar, are to be determined using hμν. In
general we should first solve Eq. (4) and integrate over y to
get Σμν, and then we may solve for K from Eq. (5) to get
Kμν, which finally can be integrated to obtain hμν. However,
as the curvature components depend on hμν, this procedure
cannot, in general, be implemented. This poses a serious
problem; this can be bypassed by observing that we are
seeking a low-energy effective theory, where the brane
matter energy density can be assumed to be much smaller
compared to the bulk cosmological constant. This implies
that the four-dimensional curvature is much smaller
compared to the five-dimensional one, and the gradient
expansion scheme can be applicable [21–24].
At zeroth order, the curvature terms can be neglected in

comparison to the extrinsic curvature terms. Being isotropic
at this order, the anisotropic term Σμν vanishes. Then, the
metric at zeroth order is hμν ¼ a2ðyÞgμνðxÞ, with the
standard warp factor aðyÞ ¼ e−y=l. This iteration scheme
helps to write the metric hμν as a sum of tensors constructed
from gμν. Thus, the metric has the form of a perturbative
series expansion,

hμν ¼ a2ðyÞ½gμνðxÞ þ fμνðy; xÞ þ qμνðy; xÞ þ � � ��;
aðyÞ ¼ e−y=l; ð7Þ

where fμνðy; xÞ corresponds to leading-order correction
and qμν represents the second-order correction. After
calculating second-order corrections a pattern will emerge
from which the effective action can be determined at all
orders. We will elaborate on this at a later stage.
In a similar manner, we can expand both the extrinsic

curvature and the trace-free part as
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Kμ
ν ¼ 1

l
δμν þ Kð1Þμ

ν þ Kð2Þμ
ν þ � � � ð8Þ

Σμ
ν ¼ 0þ Σð1Þμ

ν þ Σð2Þμ
ν : ð9Þ

In the above expansion, objects with superscript (1) denote
first-order corrections, those with superscript (2) denote
second-order corrections, and so on. We briefly discuss the
first-order formulation, leading to a possible solution for
fμν, then we shall elaborate on the second-order calculation
in order to obtain the tensor qμν. These will be used later to
get the effective action.

A. First order

The first-order equations are obtained by considering

terms in which Kð1Þμ
ν and Σð1Þμ

ν appear once in the
expressions. For example, K2 ¼ ð16=l2Þ þ ð8=lÞKð1Þ,
where we have used the result that at zeroth order
Kð0Þ ¼ ð4=lÞ. Similar considerations apply to Σμ

ν as well,
with the fact that at zeroth order it vanishes. Thus, the bulk
equations at first order take the forms [21–24]

∂yΣ
ð1Þμ
ν − ð4=lÞΣð1Þμ

ν ¼ −
�
Rð1Þμ
ν ðhÞ − 1

4
δμνRð1ÞðhÞ

�
ð10Þ

6

l
Kð1Þ ¼ Rð1ÞðhÞ ð11Þ

∇νΣν
ð1Þμ −

3

4
∇μKð1Þ ¼ 0: ð12Þ

Here, the covariant derivatives are with respect to the metric
gμν, and Rð1ÞðhÞ imply the Ricci scalar calculated using
a2ðyÞgμν. Similar conclusions can be reached for the Ricci
tensor as well. For this reason, we will henceforth provide
the curvature components with respect to the metric gμν
only, with a2ðyÞ taken out. This reduces the first-order
equation (11) to the form

Kð1Þ ¼ l
6a2

RðgÞ: ð13Þ

Similarly, integrating over y in Eq. (10) leads to the first-
order traceless part of the extrinsic curvature as

Σð1Þμ
ν ¼ l

2a2

�
Rμ
νðgÞ − 1

4
δμνRðgÞ

�
þ 1

a4
χμνðxÞ ð14Þ

χμμ ¼ 0; ∇μχ
μ
ν ¼ 0; ð15Þ

where in Eq. (14) χνμ is an arbitrary constant of integration,
which, due to the traceless property of Σμ

ν and Eq. (12),
satisfies the last two relations in Eq. (15). From now on,
we will drop the argument of curvature components for
notational convenience; every curvature component will be

assumed to be constructed from gμν. Then, from Σð1Þμ
ν given

in Eq. (14) and Kð1Þ provided in Eq. (13), we can construct

Kð1Þμ
ν ; this, after integration over the y coordinate, leads to

the corrected metric up to first order as

fμνðy; xÞ ¼ −
l2

2a2

�
Rμν −

1

6
gμνR

�
−

l
2a4

χμνðxÞ þ CμνðxÞ:

ð16Þ

Here Cμν is a constant of integration. Using this, the first-
order corrected metric hμν turns out to have the following
expression:

hμν ¼ a2ðyÞ
�
gμν −

l2

2a2

�
Rμν −

1

6
gμνR

�

−
l
2a4

χμνðxÞ þ CμνðxÞ
�
: ð17Þ

As an aside, wewould like to point out a particular situation
in which one of the arbitrary constants can be obtained
uniquely and our result reduces to that derived in [22]. This
condition amounts to fixing the brane positions. Thus, if we
assume that the branes are fixed at y ¼ 0 and y ¼ π,
respectively, and impose the boundary condition that
hμνðy ¼ 0; xÞ ¼ gμν, then we have

CμνðxÞ ¼ ðl2=2Þ½Rμν − ð1=6ÞgμνR� þ ðl=2ÞχμνðxÞ: ð18Þ

Thus, in this particular situation with the above boundary
condition, we obtain the first-order correction as

fμνðy; xÞ ¼
l2

2

�
1 −

1

a2

��
Rμν −

1

6
gμνR

�

þ l
2

�
1 −

1

a4

�
χμνðxÞ: ð19Þ

Note that this matches exactly with the one obtained in
[22]. However, in this work we want to keep the brane
positions variable; thus we will work with Eq. (17), which
differs from the choice in [22]. Having obtained the metric
with the firs- order correction term included, we now
proceed to calculate the second-order correction in greater
detail.

B. Second order

At second order the bulk equations contain a single
power of second-order objects, a double power of first-
order objects, and so on. For example, at second order our

expression would include only Σð1Þμ
ν , but we can have terms

like Kð1Þμ
ν Σð1Þμ

ν . Thus at second order the bulk equations
Eqs. (4)–(6) reduce to the following forms [21–24]:
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∂yΣ
ð2Þμ
ν −

4

l
Σð2Þμ
ν ¼ −

�
Rð2Þμ
ν −

1

4
Rð2Þδμν

�
þ Kð1ÞΣð1Þμ

ν

ð20Þ

Kð2Þ ¼ l
6

�
−
3

4
ðKð1ÞÞ2 þ Σð1Þα

β Σð1Þβ
α þ Rð2Þ

�
ð21Þ

∂yKð2Þ −
2

l
Kð2Þ ¼ 1

4
ðKð1ÞÞ2 þ Σð1Þμ

ν Σð1Þν
μ : ð22Þ

In order to obtain the Ricci tensor and scalar at second order
we should use the metric corrected up to the first order, i.e.,
the result provided in Eq. (17). Thus, in the second order we
have the following expression:

Rð2Þα
β −

1

4
δαβR

ð2Þ ¼ l2

2a4

�
Rα
μR

μ
β −

1

6
RRα

β −
1

4
δαβ

�
Rμ
νRν

μ −
1

6
R2

�
−
1

2
ð∇μ∇βRμα þ∇μ∇αRμ

βÞ

þ 1

3
∇α∇βRþ 1

2
□Rα

β −
1

12
δαβ□R

�

−
l
2a6

�
1

2
∇μ∇βχ

μα þ 1

2
∇μ∇αχμβ −

1

2
□χαβ

�
þ 1

4a8

�
χαμχ

μ
β −

1

4
δαβχ

μνχμν

�

þ 1

a2

�
1

2
∇μ∇βCμα þ 1

2
∇μ∇αCμ

β −
1

2
∇α∇βC

μ
μ −

1

2
□Cα

β þ
1

l2
Cα
μC

μ
β

−
1

4
δαβ

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð23Þ

In order to arrive at the above expression, we have used the following result that at second order the curvature tensor can be
obtained in the local inertial frame and can be written in terms of derivatives of the metric. In the local inertial frame this
amounts to δRα

β ¼ ð1=2Þ½∇μ∇βδgμα þ∇μ∇αδgμβ −∇β∇αδgμμ −□δgαβ�. Using δgμν ¼ fμν from Eq. (17), we readily obtain
most of the terms in the above expression, and others come from quadratic combinations. From Eq. (23) we arrive at the
expression for Ricci scalar at second order as

Rð2Þ ¼ l2

2a4

�
Rμ
νRν

μ −
1

6
R2

�
þ 1

4a8
χμνχμν þ

1

a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

�
: ð24Þ

Note that our expression is different from the one obtained in [22], because in [22] the fixed brane assumption was invoked.
As we are interested in the factorizability of the metric ansatz, we have kept the brane positions arbitrary.
Now using Eq. (21) with the help of the Ricci scalar at second order and Σμ

ν at first order, the trace of the extrinsic
curvature at second order turns out to be

Kð2Þ ¼ l
6

�
−
3

4
ðKð1ÞÞ2 þ Σð1Þα

β Σð1Þβ
α þ Rð2Þ

�

¼ l3

8a4

�
Rα
βR

β
α −

2

9
R2

�
þ 5l
24a8

χμνχμν þ
l
6a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

�
: ð25Þ

The traceless part of the extrinsic curvature can be obtained by integrating Eq. (20) over the extra coordinate, which leads to
the following expression:

Σð2Þα
β ¼ −

l2y
2a4

Sαβ þ
l2

4a6

�
1

2
∇μ∇βχ

μα þ 1

2
∇μ∇αχμβ −

1

2
□χαβ

�
−

l
16a8

�
χαμχ

μ
β −

1

4
δαβχ

μνχμν

�

þ l
2a2

�
1

2
∇μ∇βCμα þ 1

2
∇μ∇αCμ

β −
1

2
∇α∇βC

μ
μ −

1

2
□Cα

β þ
1

l2
Cα
μC

μ
β

−
1

4
δαβ

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
þ l3

a4
tαβðxÞ; ð26Þ

where for convenience we have defined a second-rank tensor Sαβ as [21–24]
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Sαβ ¼ RαμR
μ
β −

1

3
RRαβ −

1

4
gαβ

�
RμνRμν −

1

3
R2

�

−
1

2
ð∇μ∇βR

μ
α þ∇μ∇αR

μ
βÞ þ

1

3
∇α∇βRþ 1

2
□Rαβ −

1

12
gαβ□R: ð27Þ

Note that the tensor Sμν is transverse and traceless along with all the other terms containing χμν and C
μ
ν , thanks to Eq. (15). In

the expression for Σð2Þμ
ν , tμν is an arbitrary integration constant, just like χ

μ
ν in the first order. This tensor satisfies the following

properties:

tαα ¼ 0; ∇αtαμ ¼ 0: ð28Þ
The traceless nature of tμν follows from the fact thatΣð2Þμ

ν is also traceless. Then,we can obtain the extrinsic curvature at second

order asKð2Þα
β ¼ Σð2Þα

β þ ð1=4ÞδμνKð2Þ. Thus the second-order correction to hμν can be obtained from the differential equation,

−
1

2
∂yh

ð2Þ
αβ ¼−

l2y
2a4

Sαβþ
l3

a4
tαβþ

l3

32a4
gαβ

�
RμνRμν−

2

9
R2

�
þ l2

4a6

�
1

2
∇μ∇βχ

μ
αþ1

2
∇μ∇αχ

μ
β−

1

2
□χαβ

�

−
l

16a8

�
χαμχ

μ
β−

1

4
gαβχμνχμν

�
þ l
2a2

�
1

2
∇μ∇βC

μ
αþ1

2
∇μ∇αC

μ
β−

1

2
∇α∇βC

μ
μ−

1

2
□Cαβþ

1

l2
CαμC

μ
β

−
1

4
gαβ

�
1

l2
CμνCμνþ∇μ∇νCμν−□Cμ

μ

��
þ1

4
gαβ

�
5l
24a8

χμνχμνþ
l
6a2

�
1

l2
CμνCμνþ∇μ∇αCμα−□Cμ

μ

��
: ð29Þ

This expression can be integrated to obtain the second-order correction to the metric as

qαβ ¼
�
l3y
4a4

−
l4

16a4

�
Sμν −

l4

2a4
tμνðxÞ −

l4

64a4
gμν

�
RαβRαβ −

1

3
R2

�
þ BμνðxÞ

−
l3

12a6

�
1

2
∇μ∇βχ

μ
α þ 1

2
∇μ∇αχ

μ
β −

1

2
□χαβ

�
þ l2

64a8

�
χαμχ

μ
β −

1

4
gαβχμνχμν

�

−
l2

2a2

�
1

2
∇μ∇βC

μ
α þ 1

2
∇μ∇αC

μ
β −

1

2
∇α∇βC

μ
μ −

1

2
□Cαβ þ

1

l2
CαμC

μ
β −

1

4
gαβ

�
1

l2
CμνCμν þ∇μ∇νCμν −□Cμ

μ

��

−
1

4
gαβ

�
5l2

96a8
χμνχμν þ

l2

6a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð30Þ

We can now add these zeroth-order, first-order, and second-order corrections in order to obtain the expression for hμν up to
second order as

hμν ¼ a2ðyÞ
�
gμν −

l2

2a2

�
Rμν −

1

6
gμνR

�
−

l
2a4

χμνðxÞ þ CμνðxÞ þ
�
l3y
4a4

−
l4

16a4

�
Sμν −

l4

2a4
tμνðxÞ

−
l4

64a4
gμν

�
RαβRαβ −

1

3
R2

�
þ BμνðxÞ −

l3

12a6

�
1

2
∇μ∇βχ

μ
α þ 1

2
∇μ∇αχ

μ
β −

1

2
□χαβ

�
þ l2

64a8

�
χαμχ

μ
β −

1

4
gαβχμνχμν

�

−
l2

2a2

�
1

2
∇μ∇βC

μ
α þ 1

2
∇μ∇αC

μ
β −

1

2
∇α∇βC

μ
μ −

1

2
□Cαβ þ

1

l2
CαμC

μ
β −

1

4
gαβ

�
1

l2
CμνCμν þ∇μ∇νCμν −□Cμ

μ

��

−
1

4
gαβ

�
5l2

96a8
χμνχμν þ

l2

6a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

���
; ð31Þ

where Bμν is again a constant of integration. Thus, having
obtained the metric hμν which includes corrections up to
second order, we now calculate the effective action con-
structed out of it.
As an aside, we would like to point out that the same

procedure can be applied, in principle, to any arbitrary
order in this gradient expansion scheme. Below we

summarize the key steps of this procedure: (i) Given a
solution correct up to ðn − 1Þth order in this perturbative
scheme, we first need to calculate the Ricci tensor RðnÞ

αβ and
Ricci scalar RðnÞ at the nth order. (ii) Then, we need to use
the Ricci scalar at nth order and Σα

β and K at lower orders to
obtain KðnÞ. (iii) We then have to integrate over the extra
coordinate the differential equation for ΣðnÞ

αβ in order to get
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σαβ at nth order. (iv) Finally, we have to construct KðnÞ
αβ and

integrate over the extra coordinate in order to obtain the
metric corrected up to nth order.
It should be noted that second-order corrections were

calculated in [22], but with two assumptions: (i) the brane
positions were fixed and (ii) quadratic terms in χμν could be
neglected. However, in this work, we have kept our analysis
completely general by relaxing both the assumptions; i.e.,
branes are not assumed to be fixed and quadratic correc-
tions to χμν and Cν

μ terms are kept.

III. EFFECTIVE ACTION

In this section we will determine the four-dimensional
effective action corrected up to second order in the
gradient expansion scheme. For that, we need the

following pieces: (i) the bulk action Sbulk, (ii) the action
for each of the branes represented by S�, and finally
(iii) the Gibbons-Hawking counterterm SGH. Note
that in [25] the effective action was derived up to first
order in the perturbative expansion to validate the
metric factorizability. However, in this work, we general-
ize the analysis to second order in the gradient expansion
scheme with variable brane positions. From the final
structure, it becomes clear that the metric factorizability
should hold at all orders in the gradient expansion
scheme.
In order to determine the effective action we need to

evaluate the determinant of hμν. For this purpose, we will
use Eq. (7) and the following expression for the
determinant:

h ¼ 1

24
ϵαβμνϵγδρσhαγhβδhμρhνσ

¼ a8

24
ϵαβμνϵγδρσðgαγ þ fαγ þ qαγÞðgβδ þ fβδ þ qβδÞðgμρ þ fμρ þ qμρÞðgνσ þ fνσ þ qνσÞ

¼ a8

24
ϵαβμνϵγδρσðgαγgβδgμρgνσ þ 4fαγgβδgμρgνσ þ 6fαγfβδgμρgνσ þ 4qαγgβδgμρgνσÞ

¼ a8

24
½ϵαβμνϵγδρσgαγgβδgμρgνσ − 4fαβϵαγμνϵ

βγμν − 6fαβf
γ
δϵαγμνϵ

βδμν − 4qαβϵαγμνϵ
βγμν�

¼ a8

24
g½24þ 24fμμ þ 24qαα þ 12ðfμμfαα − fμνfμνÞ�

¼ a8g

�
1 −

l2

6a2
R −

l4

16a4
ð3RαβRαβ − R2Þ − 17l2

96a8
χμνχ

μν

−
l2

6a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

�
þ
�
Cþ Bþ 1

2
C2 −

1

2
CμnuCμν

��
; ð32Þ

where we have used the following identities:

ϵαβμν ¼ −ϵαβμν ð33Þ

ϵαβμνϵγβμν ¼ −6δαγ ð34Þ

ϵαβμνϵγρμν ¼ −2ðδαγ δβρ − δαρδ
β
γ Þ: ð35Þ

Then, we obtain

ffiffiffiffiffiffiffi
−G

p
¼

ffiffiffiffiffiffi
−h

p
¼ a4

ffiffiffiffiffiffi
−g

p �
1 −

l2

6a2
R −

l4

16a4
ð3RαβRαβ − R2Þ − 17l2

96a8
χμνχ

μν

−
l2

6a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

�
þ
�
Cþ Bþ 1

2
C2 −

1

2
CμnuCμν

��
1=2

¼ a4
ffiffiffiffiffiffi
−g

p �
1 −

l2

12a2
R −

l4

32a4

�
3RαβRαβ −

8

9
R2

�
−

17l2

192a8
χμνχ

μν

−
l2

12a2

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

���
1þ 1

2

�
Cþ Bþ 1

2
C2 −

1

2
CμnuCμν

��
: ð36Þ
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Note that all the terms on the last line in the second
bracket do not have an effect on the effective action.
Thus, following [25], we could neglect this term. How-
ever, there are two crucial differences from the analysis
presented in [25]: (i) we have incorporated second-order
corrections to the effective action, while in [25] only
first-order corrections were considered, and (b) we have

kept both integration constants χμν and Cμν, in contrast
to [25].
Having obtained the bulk metric, it is now trivial to

calculate the bulk action, with second-order correction terms
included. For that purpose we substitute the determinantffiffiffiffiffiffi
−h

p
, which includes second-order corrections, to the bulk

action.With this factor included in the bulk actionwe arrive at

Sbulk ¼
1

2κ2

Z
d5x

ffiffiffiffiffiffiffi
−G

p �
Rþ 12

l2

�

¼ −
8

κ2l2

Z
d4x

ffiffiffiffiffiffi
−g

p �
l
4
ða4þ − a4−Þ −

l3R
24

ða2þ − a2−Þ þ
l4

32
ðϕþ − ϕ−Þ

�
3Rα

βR
β
α −

8

9
R2

�

þ 17l2

768

�
1

a4þ
−

1

a4−

�
χμνχ

μν −
l3

24
ða2þ − a2−Þ

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
; ð37Þ

where ϕþ and ϕ− are the respective brane positions defined through Eq. (2). We have defined the warp factor a2 at the
position of the branes ϕþ and ϕ− as a2þ and a2−, respectively. In order to arrive at the second line, we have used the result for
bulk Ricci scalar as R ¼ −20=l2. The next thing to calculate is the action corresponding to the brane tension. For this we
require the induced metric on each brane, with the following expression:

g�αβðy ¼ ϕ�; xÞ ¼ a2�½gαβðxÞ þ fαβðϕ�; xÞ þ qαβðϕ�; xÞ� þ ∂αϕ�∂βϕ�: ð38Þ

Then, the determinant of the induced metric turns out to have the following expression:

ffiffiffiffiffiffiffiffiffi
−g�

p ¼ a4�
ffiffiffiffiffiffi
−g

p �
1þ 1

a2�
∂μϕ�∂μϕ� −

l2

6a2�
R −

l4

16a4�
ð3RαβRαβ − R2Þ − 17l2

96a8�
χμνχ

μν

−
l2

6a2�

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
1=2

¼ a4�
ffiffiffiffiffiffi
−g

p �
1þ 1

2a2�
∂μϕ�∂μϕ� −

l2

12a2�
R −

l4

32a4�

�
3RαβRαβ −

8

9
R2

�
−

17l2

192a8�
χμνχ

μν

−
l2

12a2�

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð39Þ

With the help of the above equation, the action on the two branes can be written as

S� ¼ ∓ 6

κ2l

Z
d4x

ffiffiffiffiffiffiffiffiffi
−g�

p

¼ ∓ 6

κ2l

Z
d4x

ffiffiffiffiffiffi
−g

p �
a4� þ 1

2
a2�ð∂μϕ�∂μϕ�Þ −

l2

12
Ra2� −

l4

32

�
3Rα

βR
β
α −

8

9
R2

�
−

17l2

192a4�
χμνχ

μν

−
l2

12
a2�

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð40Þ

Then, simple addition of the two actions Sþ and S− leads to

Sþ þ S− ¼ −
6

κ2l

Z
d4x

ffiffiffiffiffiffi
−g

p ½ða4þ − a4−Þ þ
1

2
ða2þ∂μϕþ∂μϕþ − a2−∂μϕ−∂μϕ−Þ −

l2

12
Rða2þ − a2−Þ

−
17l2

192

�
1

a4þ
−

1

a4−

�
χμνχ

μν −
l2

12
ða2þ − a2−Þ

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

�
�: ð41Þ
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Finally, we need to calculate the counterterm provided by Gibbons and Hawking. For that we need to calculate the extrinsic
curvature or, more importantly, its trace. The extrinsic curvature is defined as [25]

Kμν ¼ na

�� ∂2xa

∂ξμξν
�
þ Γa

bc
∂xb
∂ξμ

∂xc
∂ξν

�
; ð42Þ

where na is the vector normal to the brane and the required Christoffel symbols are

Γy
μν ¼ a2

l
ðgμν þ fμν þ qμνÞ −

a2

2
ð∂yfμν þ ∂yqμνÞ ð43Þ

Γα
yμ ¼ −

1

l
δαμ þ

1

2
gαβð∂yfαβ þ ∂yqαβÞ: ð44Þ

Then, the extrinsic curvature turns out to be

K�
μν ¼ ny

�
∇μ∇νϕ� þ 2

l
∂μϕ�∂νϕ� þ a2�

l

�
gμν þ fμν þ qμν −

l
2
∂yfμν −

l
2
∂yqμν

��
; ð45Þ

the trace of which has the following expression:

K� ¼ ny

�
4

l
þ 1

a2�
□ϕ� þ 1

la2�
∂μϕ�∂μϕ� þ l

6a2�
R −

l3

8a4�

�
RμνRμν −

1

9
R2

�

−
7l

24a8�
χμνχ

μν þ l
6a2�

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð46Þ

The action corresponding to the Gibbon-Hawking counterterm has the expression

SGH ¼ 2

κ2

Z
d4x

ffiffiffiffiffiffiffiffiffi−gþ
p

Kþ −
2

κ2

Z
d4x

ffiffiffiffiffiffiffiffiffi
−g−

p
K−

¼ 2

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
4

l
ða4þ − a4−Þ −

l
6
Rða2þ − a2−Þ þ

3

l
ða2þ∂μϕþ∂μϕþ − a2−∂μϕ−∂μϕ−Þ

−
31l
48

�
1

a4þ
−

1

a4−

�
χμνχ

μν −
l
6
ða2þ − a2−Þ

�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð47Þ

Thus, substitution of the bulk action, brane tension, and Gibbon-Hawking counterterm leads to the complete four-
dimensional effective action, which has the expression

Stot ¼ Sbulk þ Sþ þ S− þ SGH

¼ l
2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ða2þ − a2−ÞRþ 6

l2
ða2þ∂μϕþ∂μϕþ − a2−∂μϕ−∂μϕ−Þ

−
l
2
ðϕþ − ϕ−Þ

�
3Rα

βR
β
α −

8

9
R2

�
−
15

8

�
1

a4þ
−

1

a4−

�
χμνχ

μν þ ða2þ − a2−Þ
�
1

l2
CμνCμν þ∇μ∇αCμα −□Cμ

μ

��
: ð48Þ

Note that if we had dropped all the second-order terms, we
would arrive at the result obtained in [25]. However, since
we have worked with branes with variable position and kept
terms up to second order, this provides a direct generali-
zation of the results obtained in [25]. The nice separation of
terms into an extradimensional part and a brane part shows
the validity of the factorizable metric ansatz up to second
order (it had been shown only up to first order in [25]).
Indeed, we could do more from the above action. The

structure suggests that the third-order terms would be
associated with a−2, the fourth-order terms would be
connected to a−4, and so on. Thus, the nth-order term
would be associated with a a−2ðn−2Þ term. These terms
would be independent of the part that depends on the brane
coordinates. Thus, the effective action when third-order
corrections are incorporated would contain terms like
RαμRμνRα

ν × ða−2þ − a−2− Þ and χαμχ
μβχαβða−8þ − a−8− Þ. All

these terms will appear with the extradimensional part
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separated from the terms dependent on the brane coordi-
nates. Moreover, it should be noted that only the difference
of the various powers of warp factors between the two
branes enters the picture. From this, we could conclude that
the effective action would be factorizable at all orders and
only the difference between these moduli fields appears in
the effective action.

In order to understand the effective action in greater
detail, we vary the action with respect to gμν with the
assumption of a fixed brane; i.e., ϕþ and ϕ− are assumed to
be independent of xμ. Then, the equation of motion in
the absence of any matter field obtained from arbitrary
variation of Stot with respect to gμν turns out to be
(neglecting the Cμ

ν terms)

l
2κ2

ða2þ − a2−Þ ×
�
Rμν −

1

2
gμνR

�
−

l2

4κ2
ðϕþ − ϕ−Þ

�
6RμαRα

ν −
16

9
RRμν −

1

2
gμν

�
3RαβRαβ −

8

9
R2

�

þ 16

9
∇μ∇νR − 6∇α∇μRα

ν þ 3∇α∇αRμν −
1

2
gμν

�
3∇α∇βRαβ −

16

9
□R

��

−
15l
16κ2

�
1

a4þ
−

1

a4−

��
2χμαχ

α
ν −

1

2
gμνχαβχαβ

�
¼ 0: ð49Þ

However, this equation contains higher-order derivatives of
the metric, and it has nonlocal terms originating from the
tensor χμν. In order to avoid the appearance of any ghost
field, these higher derivative terms must vanish along with
some suitable choice for this field χμν . For the proper choice
of χμν , this condition yields the following equation:

2∇μ∇νR − 6∇α∇μRα
ν þ 3∇α∇αRμν

−
1

2
gμνð3∇α∇βRαβ − 2□RÞ ¼ 0: ð50Þ

The interesting aspect of this equation is that the trace part
leads to ∇μ∇νGμν ¼ 0, which is automatically satisfied by
the Bianchi identity. Thus, the action Stot with Eq. (50)
imposed represents a higher-order gravity theory. It would
be interesting to investigate possible spherically symmetric
solutions, solar system tests, and the nature of gravitational
waves originating from this action. This is a work in
progress and will be presented elsewhere.

IV. EQUIVALENCE WITH
SCALAR-TENSOR GRAVITY

In first order we have two arbitrary constants, CμνðxÞ and
χμνðxÞ, both of which are independent of the extra
coordinate and are dependent on the brane coordinates.
Let us exploit these two tensors and obtain some simplified
results. First, we can use Cμν such that fμνðy ¼ ϕþ; xÞ ¼ 0.
This can be seen explicitly from Eq. (16), which under the
above condition reduces to the following form:

fμνðy ¼ ϕþ; xÞ ¼ −
l2

2a2þ

�
Rμν −

1

6
gμνR

�

−
l

2a4þ
χμνðxÞ þ CμνðxÞ ¼ 0: ð51Þ

It may be noted that we cannot use χμν to set
fμνðy ¼ ϕ−; xÞ ¼ 0. In order to achieve this, we need
the arbitrary constant χμν to satisfy

fμνðy ¼ ϕ−; xÞ ¼
l2

2

�
1

a2þ
−

1

a2−

��
Rμν −

1

6
gμνR

�

þ l
2

�
1

a4þ
−

1

a4−

�
χμνðxÞ ¼ 0; ð52Þ

which cannot be achieved due to the tracelessness of χμν.
Thus, rather than working along this line, we can impose
another (single) boundary condition, a2þfμνðy ¼ ϕþ; xÞ ¼
a2−fμνðy ¼ ϕ−; xÞ. The equation satisfied by χμν now turns
out to be

ða2þ − a2−ÞCμν ¼
l
2

�
1

a2þ
−

1

a2−

�
χμν; ð53Þ

which can always be satisfied by properly choosing the
arbitrary tensor Cμν to be traceless.
Then, in a similar manner, we can use tμν and Bμν to set

a2þqμνðy ¼ ϕþ; xÞ ¼ a2−qμνðy ¼ ϕ−; xÞ such that (ignoring
the arbitrary tensors χμν and Cμν)

Sμν ×

��
l3y
4a2þ

−
l4

16a2þ

�
−
�
l3y
4a2−

−
l4

16a2−

��
−
�

l4

2a2þ
−

l4

2a2−

�
tμνðxÞ

¼
�

l4

64a2þ
−

l4

64a2−

�
gμν

�
RαβRαβ −

1

3
R2

�
− ða2þ − a2−ÞBμνðxÞ: ð54Þ
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Note that the trace of the left-hand side vanishes. Thus, the
trace of arbitrary tensor Bμν should be such that the above
equation is satisfied. The same argument holds at all orders.
Thus, finally, we have

hμνðy ¼ ϕþ; xÞ
¼ a2ðϕþÞ½gμν þ fμνðϕþ; xÞ þ qμνðϕþ; xÞ þ � � �� ð55Þ

hμνðy ¼ ϕ−; xÞ
¼ a2ðϕ−Þ½gμν þ fμνðϕ−; xÞ þ qμνðϕ−; xÞ þ � � ��; ð56Þ

where we choose arbitrary tensors at each order such
that a2þfμνðϕþ; xÞ ¼ a2−fμνðϕ−; xÞ and a2þqμνðϕþ; xÞ ¼
a2−qμνðϕ−; xÞ. Imposing all these conditions, we finally
obtain

hμνðϕ−; xÞ ¼ Ω2hμνðϕþ; xÞ;

Ω2 ¼ a2ðϕ−Þ=a2ðϕþÞ ¼ exp

�
2ðϕþ − ϕ−Þ

l

�
: ð57Þ

Note that since the branes are not fixed, the factor Ω
depends on brane coordinates. Ω depends only on the
separation,ϕ− − ϕþ, i.e., on the radion field. Thus, we
observe that, in general, for any order in the gradient
expansion scheme, we can have the relation (57), where the
metric on the brane located at y ¼ ϕ− is connected to the
metric on the brane located at y ¼ ϕþ by a conformal
factor. Thus, the Ricci tensor, the Ricci scalar, and the
Einstein tensor in the two branes are related through the
following relation:

R−
μν ¼ Rþ

μν þ
1

Ω2
∇μ∇νΩ2 −

3

2Ω4
∇μΩ2∇νΩ2

þ 1

2Ω2
hþμν∇α∇αΩ2 ð58aÞ

R− ¼ 1

Ω2

�
Rþ þ 3

Ω2
∇μ∇μΩ2 −

3

2Ω4
∇μΩ2∇μΩ2

�
ð58bÞ

Gð−Þμ
ν ¼ GðþÞμ

ν þMμ
ν

¼ GðþÞμ
ν þ 1

Ω2
∇ν∇μΩ2 −

3

2Ω4
∇νΩ2∇μΩ2

− δμν
1

Ω2
∇α∇αΩ2 þ δμν

3

4Ω4
∇αΩ2∇αΩ2; ð58cÞ

where the object Mμ
ν is defined through Eq. (58c). We,

therefore, have the following Einstein’s equation on the two
branes:

l
2
GðþÞμ

ν ¼ κ2

2
TðþÞμ
ν ð59aÞ

l
2
Gð−Þμ

ν ¼ l
2
ðGðþÞμ

ν þMμ
νÞ ¼ κ2

2
Tð−Þμ
ν : ð59bÞ

Thus, we observe

κ2

l

�
1

Ψ
TðþÞμ
ν −

1−Ψ
Ψ

Tð−Þμ
ν

�
¼ 1

Ψ
GðþÞμ

ν −
1−Ψ
Ψ

ðGðþÞμ
ν þMμ

νÞ

¼GðþÞμ
ν −

1−Ψ
Ψ

Mμ
ν ; ð60Þ

where we have defined Ψ ¼ 1 −Ω2. The field equation
now leads to the following form:

GðþÞμ
ν ¼ κ2

l

�
1

Ψ
TðþÞμ
ν −

1 −Ψ
Ψ

Tð−Þμ
ν

�
þ 1 −Ψ

Ψ
Mμ

ν

¼ κ2

l

�
1

Ψ
TðþÞμ
ν −

1 −Ψ
Ψ

Tð−Þμ
ν

�

−
1

Ψ

�
ð∇μ∇νΨ − δμν∇α∇αΨÞ

þ ωðΨÞ
Ψ

�
∇μ∇νΨ −

1

2
δμν∇αΨ∇αΨ

��
; ð61Þ

where we have introduced a new function, ωðΨÞ ¼
3Ψ=2ð1 −ΨÞ. Again eliminating GðþÞμ

ν from Eqs. (59a)
and (59b) with the contraction of the indices, we arrive at

□Ψþ 2ωþ 3

3
∇αΨ∇αΨ ¼ κ2

l
1

2ωþ 3
ðTð−Þμ

μ − TðþÞμ
μ Þ:

ð62Þ

Note that the field equation for gravity given in Eq. (61) and
the field equation for Ψ provided by Eq. (62) hold for any
order in the gradient expansion scheme. Thus, the field
equation for Ψ or, equivalently, for the radion field, is
determined by the trace of the stress energy tensor at both
branes. The remarkable thing about these field equations is
that they hold for all orders in the perturbation scheme, and
are equivalent to Brans-Dicke field equations for gravity.
In order to make the circle complete, let us write down

the effective equation entirely in terms of Ω. For that we
note the following identities:

∂aΩ2 ¼ Ω2
2

l
ð∂aϕþ − ∂aϕ−Þ ð63Þ

∂aΩ2∂aΩ2 ¼ 4Ω4

l2
½ð∂aϕþÞ2 þ ð∂aϕ−Þ2 − 2∂aϕ−∂aϕþ�

ð64Þ

ϕþ − ϕ− ¼ l
2
lnΩ2: ð65Þ

However, in order to get a clear picture we set ϕþ ¼ const.
such that a2þ ¼ 1. Thus, up to second order, the effective
equation turns out to have the following form
from Eq. (48):
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Stot ¼
l
2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ð1 −Ω2ÞR −

3

2Ω2
∂μΩ2∂μΩ2 −

3l5

64
lnΩ2

�
Rα
βR

β
α −

1

3
R2

��

¼ l
2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
ΨR −

ωðΨÞ
Ψ

∂μΨ∂μΨ −
3l5

64
lnΩ2

�
Rα
βR

β
α −

1

3
R2

��
; ð66Þ

which resembles the action for the Brans-Dicke theory of
gravity. Thus, even at the level of the effective action, the
bulk-brane system is equivalent to the Brans-Dicke or
scalar-tensor theories of gravity.
We should stress that in [23] the equivalence with Brans-

Dicke theory was shown for first order in the gradient
expansion scheme. In this work we have shown explicitly
that the effective action with second-order corrections
included resembles the Brans-Dicke theory of gravity.
However, our argument uses arbitrary tensors at each order
and, thus, holds for any order in the gradient expansion
scheme. Therefore, the resemblance of the brane world
model with the Brans-Dicke theory of gravity holds at all
orders in the gradient expansion scheme.

V. DISCUSSION

In this work, our main aim was to address two important
aspects related to brane world models: first, the issue of
factorizability of the metric ansatz, and second, the equiv-
alence of the Brans-Dicke theory with this brane world
model. Previous steps in these directions were taken in
[21–25]. Our work, however, generalizes their results and
relaxes most of their assumptions. The key results in our
analysis, which differ significantly from those presented in
earlier attempts, can be summarized as follows:

(i) In [22] the second-order corrections in the gradient
expansion scheme were calculated; however, two
assumptions were made: (i) branes were assumed to
be located at fixed positions and (ii) higher-order
terms of the arbitrary tensors could be neglected. In
this work we have generalized the previous result,
relaxing both these assumptions, by deriving the
second-order correction to the bulk metric. We have
taken the brane position to be variable and have
included in our calculations all the corrections
originating from the arbitrary tensors.

(ii) Our work shows that the effective action becomes
factorized into the extra dimensional (or radion) part

and the brane part, even when the second-order
corrections are included (this generalizes previous
results derived only up to first order [25]). By
generalizing our result, we can argue that factoriz-
ability is a valid assumption up to all orders in this
perturbative expansion scheme.

(iii) Nonlocal factors originating from the bulk field
equations can be used to express the gravitational
field equation on the brane in terms of the radion field
and bulk metric. This has been done previously in
[23], though with only the first-order corrections to
the effective equation. In this work we have incorpo-
rated the second-order corrections, and we have
devised a generic method that can easily be extended
to any order in the gradient expansion scheme.

(iv) Through this work, we can conclude that the two-
brane system is equivalent to the Brans-Dicke theory
as far as the effective description is considered; this
is true for all orders in the perturbative gradient
expansion valid at low energies.

Therefore, our work shows that metric factorizability is a
valid assumption in all orders of the perturbation theory,
with the ratio of four-dimensional curvature to the five-
dimensional one as a perturbative parameter. Second, we
were able to show that brane world model is equivalent
to the Brans-Dicke theory of gravity. This is also true in
all orders of the perturbative expansion. Thus, we can
conclude that metric factorizability and the equivalence of
brane word models with the Brans-Dicke theory holds in
low energy (i.e., when the brane-to-bulk curvature ratio is
small) to all orders in the gradient expansion scheme; this
generalizes all the previous results in this direction.
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