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Besides their astrophysical interest, compact stars also provide an arena for understanding the properties
of theories of gravity that differ from Einstein’s general relativity. Numerous studies have shown that
different modified theories of gravity can modify the bulk properties (such as mass and radius) of neutron
stars for given assumptions on the microphysics. What is not usually stressed though is the strong
degeneracy in the predictions of these theories for the stellar mass and radius. Motivated by this
observation, in this paper we take an alternative route and construct a stellar structure formalism which,
without adhering to any particular theory of gravity, describes in a simple parametrized form the departure
from compact stars in general relativity. This “post-Tolman-Oppenheimer-Volkoff (TOV)” formalism for
spherical static stars is inspired by the well-known parametrized post-Newtonian theory, extended to
second post-Newtonian order by adding suitable correction terms to the fully relativistic TOV equations.
We show how neutron star properties are modified within our formalism, paying special attention to the
effect of each correction term. We also show that the formalism is equivalent to general relativity with an
“effective” (gravity-modified) equation of state.
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I. INTRODUCTION

Neutron stars play a special role among astrophysical
objects, because they are excellent laboratories for matter
under extreme conditions (unlike black holes) and also
excellent laboratories to probe strong gravity (unlike ordinary
stars or white dwarfs) [1]. For these reasons neutron stars are
among the main targets of future observatories, such as SKA
[2], NICER [3], LOFT [4], and AXTAR [5]. These experi-
ments have the potential to measure neutron star masses and
radii to unprecedented levels [6–8]. If general relativity (GR)
is assumed to be the correct theory of gravity, the observed
mass-radius relation will constrain the equation of state
(EOS) of matter at supranuclear densities, which are inac-
cessible to laboratory experiments [9–14]. A procedure to
reconstruct the EOS from observations of the mass-radius
relation (working within GR) was developed in a series of
papers by Lindblom and collaborators [15–17]; see Ref. [18]
for a review.
Besides their interest for nuclear physics, neutron stars

are also unique probes of strong-field gravitational physics.
For any given EOS, theories that modify the strong-field
dynamics of GR generally predict bulk observable

properties (neutron star mass, radius, moment of inertia
and higher multipole moments) that are different from those
in Einstein’s theory. However, a survey of the literature on
neutron stars in modified theories of gravity (see e.g.,
Table 3 of Ref. [1]) reveals a high degree of degeneracy in
the salient properties of relativistic stars. As we show in
Fig. 1, if we assume a nuclear-physics motivated EOS
(specifically, EOS APR [19] in the figure), modifications in
the gravity sector are usually equivalent to systematic shifts
of the GR mass-radius curves towards either higher masses
and larger radii (as in the case of scalar-tensor theories
[20,21]), lower masses and smaller radii (as in the case
of Einstein-dilaton-Gauss-Bonnet [22,23] and Lorentz-
violating theories [24,25]) or both, as in Eddington-
inspired-Born-Infeld gravity with different signs of the
coupling parameter [26,27].
Systematic shifts in the mass-radius relation could be

attributed either to the poorly known physics controlling
the high-density EOS, or to modifications in the theory of
gravity itself. This EOS/gravity degeneracy is intrinsic in
all attempts to constrain strong gravity through astrophysi-
cal observations of neutron stars: chapter 4 of Ref. [1]
reviews various proposals to solve this problem, e.g.,
through the recently discovered universal relations between
the bulk properties of neutron stars [28–31].
In any case, different gravitational theories span (at least

qualitatively) the same parameter space in terms of their
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predictions for relativistic stellar models. Gravity-induced
modifications usually look like smooth deformations of the
general relativistic predictions. A notable exception are
cases where nonperturbative effects induce phase transi-
tions, as in the “spontaneous scalarization” scenario first
proposed in Ref. [32], where modifications only occur in a
specific range for the central density.
With the possible exception of nonperturbative phase

transitions, these considerations suggest that the broad
features of a large class of modified gravity theories can
be reproduced, at least for small deviations from GR, by a
perturbative expansion around a background solution given
by the standard Tolman-Oppenheimer-Volkoff (TOV)
equations, which determine the structure of relativistic
stellar models in GR [33,34].
Instead of committing to one particular pet theory, in this

paper we formulate a parametrized “post-TOV” framework
for relativistic stars based on the well-known parametrized
post-Newtonian (PPN) theory developed by Nordtvedt and
Will [35,36]; see e.g., Refs. [34,37] for introductions to the
formalism. The foundations of post-Newtonian (PN) theory
for fluid configurations in GR were laid in classic work by
Chandrasekhar and collaborators [38,39]. Various authors
studied stellar structure using the PN approximation, both
in GR [40–43] and in modified theories of gravity, such as
scalar-tensor theory [44,45]. To our knowledge, after some

early work that will be discussed below [46–48], the
investigation of compact stars within the PPN approxima-
tion has remained dormant for more than 30 years. In the
intervening time the PPN parameters have been extremely
well constrained by Solar System and binary pulsar
observations at the first PN (1PN) order (see Ref. [49]
for a review of current bounds).
In this paper we build a phenomenological post-TOV

framework by considering 1PN- and second PN (2PN)-
order corrections to the TOV equations. Our strategy is, at
heart, quite simple: from a suitable set of PPN hydrostatic
equilibrium equations we isolate the purely non-GR pieces.
These PPN terms are subsequently added “by hand” to the
full general relativistic TOV equations, hence producing a
set of parametrized post-TOV equations (cf. Ref. [50] for a
similar “post-Einsteinian” parametrization in the context of
gravitational radiation from binary systems). The formal-
ism introduces a new set of 2PN parameters that are
presently unconstrained by weak-field experiments, and
that encompass the dominant corrections to the bulk
properties of neutron stars in GR in a wide class of
modified gravity theories.

A. Executive summary

Since this paper is rather technical, we summarize our
main conclusions here. The core of our proposal is to use
the following set of “post-TOV” equations of structure for
spherically symmetric stars (from now on we use geomet-
rical units G ¼ c ¼ 1):

dp
dr

¼
�
dp
dr

�
GR

−
ρm
r2

ðP1 þ P2Þ; ð1aÞ

dm
dr

¼
�
dm
dr

�
GR

þ 4πr2ρðM1 þM2Þ; ð1bÞ

where

P1 ≡ δ1
m
r
þ 4πδ2

r3p
m

; ð2aÞ

M1 ≡ δ3
m
r
þ δ4Π; ð2bÞ

P2 ≡ π1
m3

r5ρ
þ π2

m2

r2
þ π3r2pþ π4

Πp
ρ

; ð2cÞ

M2 ≡ μ1
m3

r5ρ
þ μ2

m2

r2
þ μ3r2pþ μ4

Πp
ρ

þ μ5Π3
r
m
: ð2dÞ

Here r is the circumferential radius,m is the mass function,
p is the fluid pressure, ρ is the baryonic rest mass density, ϵ
is the total energy density, andΠ≡ ðϵ − ρÞ=ρ is the internal
energy per unit baryonic mass. A “GR” subscript denotes
the standard TOVequations in GR [cf. Eq. (7) below, where

[km]

FIG. 1 (color online). The gravity-theory degeneracy problem.
The mass-radius relations in different modified theories of gravity
for EOS APR [19]. Masses are measured in solar masses, and
radii in kilometers. The theory parameters used for this plot are
α ¼ 20M2⊙ and β2 ¼ 1 (Einstein-dilaton-Gauss-Bonnet [22]),
c14 ¼ 0.3 (Einstein-aether [24]), β ¼ −4.5 (scalar-tensor theory
[20]), and κ ¼ �0.005 (Eddington-inspired-Born-Infeld gravity
[26]). Even if the high-density EOS were known, it would be hard
to distinguish the effects of competing theories of gravity on the
bulk properties of neutron stars.
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we appended a subscript “T” to the mass function for
reasons that will become apparent later]; δi; πi (i ¼ 1;…; 4)
and μi (i ¼ 1;…; 5) are phenomenological post-TOV
parameters. The GR limit of the formalism corresponds
to setting all of these parameters to zero, i.e., δi; πi; μi → 0.
The dimensionless combinations P1;M1 and P2;M2

represent a parametrized departure from the GR stellar
structure and are linear combinations of 1PN- and 2PN-
order terms, respectively. In particular, the coefficients δi
attached to the 1PN terms are simple algebraic combina-
tions of the traditional PPN parameters: see Eqs. (35)
and (36) below. As such, they are constrained to be very
close to zero by existing Solar System and binary pulsar
observations1: jδij ≪ 1. This result translates to negligibly
small 1PN terms in Eq. (1): P1;M1 ≪ 1. On the other
hand, πi and μi are presently unconstrained, and conse-
quently P2;M2 should be viewed as describing the
dominant (significant) departure from GR.
Each of the two combinations P2 and M2 involves no

more than five dimensionless 2PN terms, but as we show in
Sec. III B these terms are representative of five distinct
“families” consisting of a large number of 2PN terms. Each
family is defined by the property that all of its members
lead to approximately self-similar changes in the stellar
mass-radius curves when included in P2;M2. In other
words, as we verified by numerical calculations, we can
account for several terms belonging to the same family by
taking just one term from that family (either the dominant
one or, when convenient, a much simpler subdominant one)
and varying the corresponding post-TOV coefficient πi
or μi.
The qualitative effect of each of the 2PN-order post-TOV

terms on the mass-radius relation is illustrated in Fig. 2. The
values of the πi and μi coefficients in each panel of this
figure were chosen for purely illustrative purposes, i.e., we
chose these coefficients to be large enough that they can
produce visible deviations on the scale of the plot. A first
noteworthy feature is that pressure terms typically induce
corrections that are about an order of magnitude smaller
than mass terms.2 This can be seen by the larger range of
πi’s needed to produce visible changes in the mass-radius
curve (jπ2j ≤ 4, jπ3j ≤ 100 and jπ4j ≤ 10) when compared
to the corresponding corrections in the mass-function
equation (jμ2j ≤ 1, jμ3j ≤ 1 and jμ4j ≤ 1.5, respectively).
Some terms (such as those proportional to π2, π3, π4, μ3 and
μ5) induce smooth rigid shifts of the mass-radius curve,
similar to those that would be produced by a softening or
stiffening of the nuclear EOS. Other terms (like those
proportional to μ1, μ2 and μ4) produce more peculiar
features that are more or less localized in a finite range

of central densities. This is interesting, because (for
example) it is plausible to conjecture that some combina-
tion of the μ1 and μ2 corrections may reproduce the
qualitative features of a highly nonperturbative phenome-
non such as spontaneous scalarization, despite the intrinsi-
cally perturbative nature of our formalism.
The punch line here is that each post-TOV correction is

qualitatively different, so we can use the post-TOV for-
malism as a toolbox to reproduce the mass-radius curves
shown in Fig. 1 for various modified theories of gravity.
More ambitiously, it would be interesting to address the
inverse problem, i.e., to find out how the post-TOV
parameters are related to the dominant corrections induced
by each different theory. These issues are beyond the scope
of this paper, but they are obviously crucial to relate our
formalism to experiments, and we plan to address them in
future work.
The second main result of this paper has to do with the

“completeness” of our post-TOV formalism, in the sense
that the stellar structure (1)—if we neglect the small terms
P1;M1—can be formally derived by a covariantly con-
served perfect fluid stress-energy tensor. That is,

∇νTμν ¼ 0; Tμν ¼ ðϵeff þ pÞuμuν þ pgμν; ð3Þ
where the effective, gravity-modified energy density is

ϵeff ¼ ϵþ ρM2; ð4Þ
and the covariant derivative is compatible with the effective
post-TOV metric

gμν ¼ diag½−eνðrÞ; ð1 − 2mðrÞ=rÞ−1; r2; r2sin2θ�; ð5Þ

with

dν
dr

¼ 2

r2

�
ð1 −M2Þ

mþ 4πr3p
1 − 2m=r

þmP2

�
: ð6Þ

Our phenomenological post-TOV formalism is expected to
encompass a large number of alternative theories of gravity,
but it is not completely general, and future extensions may
be possible or even desirable. As we stated earlier, theories
which produce nonperturbative phase transitions in their
stellar structure equations may not be accurately modeled.
The formalism is also limited by the choice of acceptable
2PN terms out of all dimensionally possible combinations,
based on criteria that have bearing on the structure of the
gravitational field equations (see Sec. III B below).

B. Plan of the paper

The plan of the paper is as follows. In Sec. II we
introduce the PPN formalism and review previous appli-
cations to relativistic stars (in particular work by Wagoner
and Malone [46] as well as Ciufolini and Ruffini [47]). In
Sec. III we develop the post-TOV formalism to 1PN order

1Using the latest constraints on the PPN parameters
[49] we obtain the following upper limits: jδ1j≲6×
10−4, jδ2j≲7×10−3, jδ3j≲ 7 × 10−3, jδ4j≲ 10−8.

2A notable exception to this rule is the π1 term, for reasons that
will be explained in Sec. IV below.
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(where all parameters are already constrained to be very
close to their GR values by Solar System and binary pulsar
experiments), and then to 2PN order. We also show the
equivalence between the 2PN post-TOV equations and GR
with a gravity-modified EOS under a minimal set of
reasonable assumptions. In Sec. IV we present some
numerical results illustrating the relative importance of
the different post-TOV corrections. Some technical
material is collected in three appendices. Appendix A gives
details of the dimensional analysis arguments used to
select the relevant set of 2PN post-TOV coefficients. In
Appendix B we present a brief summary of the relativistic
Lane-Emden theory, which plays an auxiliary role in the
construction of our formalism. Finally, Appendix C shows

that certain integral potentials appearing at 1PN order in the
stellar structure equations (namely, the gravitational poten-
tial U, the internal energy E, and the gravitational potential
energy Ω) can be approximated by linear combinations of
nonintegral potentials, so these integral potentials are
“redundant” and can be discarded when building our
post-TOV expansion.

II. SETTING THE STAGE: STELLAR
STRUCTURE WITHIN PPN THEORY

A. The TOV equations

A convenient starting point for our analysis is the
standard general relativistic TOV equations, describing

FIG. 2 (color online). 2PN-order post-TOV corrections on the mass-radius curves. We show the modification induced by different
families of post-TOV terms on the general relativistic mass-radius curve, assuming the APR EOS. Left to right and top to bottom, the
different panels show the effect of the pressure terms, proportional to πi (i ¼ 1;…; 4), and of the mass terms, proportional
to μi (i ¼ 1;…; 5).
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hydrostatic equilibrium in spherical symmetry [34]. These
are given by the familiar formulas

�
dp
dr

�
GR

¼ −
ðϵþ pÞ

r2
ðmT þ 4πr3pÞ
ð1 − 2mT=rÞ

; ð7aÞ
�
dmT

dr

�
GR

¼ 4πr2ϵ; ð7bÞ

where p and ϵ are the fluid’s pressure and energy density,
respectively, and mT is the mass function (the subscript is
used to distinguish this mass function from similar quan-
tities appearing in PPN theory; see below).
For later convenience we also write down the 1PN-order

expansion of these equations (for simplicity the subscript
“GR” is omitted):

dp
dr

¼−
mTρ

r2

�
1þΠþp

ρ
þ2mT

r
þ4π

r3p
mT

�
þOð2PNÞ; ð8aÞ

dmT

dr
¼ 4πr2ρð1þ ΠÞ; ð8bÞ

where we have introduced the baryonic rest-mass density ρ
and the dimensionless internal energy per unit mass,
Π≡ ðϵ − ρÞ=ρ. It can be noticed that the mass function
equation only contains 1PN corrections to the Newtonian
equations of hydrostatic equilibrium, while higher-order
corrections appear in the pressure equation.

B. The PPN stellar structure equations

The PPN formalism [35,36] was first employed for
building static, spherically symmetric models of compact
stars by Wagoner and Malone [46], and subsequently by
Ciufolini and Ruffini [47]. This early work is briefly
reviewed here since it will provide the stepping stone
towards formulating our post-TOV equations.
A convenient starting point is the set of stellar structure

equations derived in Ref. [47] from the original Will-
Nordtvedt PPN theory [35,36]. These are [cf. Eqs. (14) of
Ref. [47]]

dp
dr

¼ −
ϵm̄
r2

�
1þ ð5þ 3γ − 6β þ ζ2Þ

m̄
r
þ p

ϵ

þ ζ3
E
m̄
þ ðγ þ ζ4Þ

4πr3p
m̄

þ 1

2
ð11þ γ − 12β þ ζ2 − 2ζ4Þ

Ω
m̄

�
; ð9aÞ

dm̄
dr

¼ 4πr2ϵ; ð9bÞ

where we have adopted the standard notation for the nine
PPN parameters, fβ; γ; ζ1; ζ2; ζ3; ζ4; α1; α2; α3g. In the GR
limit β ¼ γ ¼ 1 and ζi ¼ αi ¼ 0 (i ¼ 1;…; 4) [49].

It should be pointed out that the basic parameters p; m̄
(as well as the radial coordinate r) entering Eqs. (9a) and
(9b) may not be the same as the corresponding ones in the
TOVequations. This is a reflection of the “gauge” freedom
in defining these parameters in a number of equivalent
ways. Indeed, below we are going to exploit this freedom
and obtain an “improved” set of PPN equations by a
suitable redefinition of the mass function. On the other
hand, following Ref. [47], we will stick to the same p and r
throughout this analysis, implicitly assuming that they are
the same variables as the ones in the TOV equations (7).
The potentials Ω and E appearing in Eq. (9a) obey

dΩ
dr

¼ −4πrρm̄;
dE
dr

¼ 4πr2ρΠ: ð10Þ

The more familiar Newtonian gravitational potential U (the
solution of ∇2U ¼ −4πρ) is not featured in Eqs. (9a) and
(9b) as a result of a change of radial coordinate and a
redefinition of the mass function m̄ with respect to the
original PPN theory parameters (see Ref. [47] for details).
The stellar structure equations can be manipulated

further by switching to a new mass function:

mðrÞ ¼ m̄þ AEþ BΩþ C
m̄2

r
þDð4πr3pÞ; ð11Þ

where A, B, C, and D are free constants. As evident, m̄ and
m differ at 1PN level. The constants A and B can be chosen
so that the terms proportional to E and Ω in Eq. (9a) are
eliminated. This is achieved for

A ¼ ζ3; B ¼ 1

2
ð11þ γ − 12β þ ζ2 − 2ζ4Þ: ð12Þ

The resulting “new” set of PPN stellar structure
equations is

dp
dr

¼ −
ρm
r2

�
1þ Πþ p

ρ
þ ð5þ 3γ − 6β þ ζ2 − CÞm

r

þ ðγ þ ζ4 −DÞ4π r
3p
m

�
; ð13aÞ

dm
dr

¼ 4πr2ρ

�
1þ ð1þ ζ3ÞΠþ 3D

p
ρ
−

C
4π

m2

ρr4

−
1

2
ð11þ γ − 12β þ ζ2 − 2ζ4 − 4Cþ 2DÞm

r

�
:

ð13bÞ

These expressions still contain the gauge freedom asso-
ciated with the definition of the mass functionm in the form
of the yet unspecified constants C and D. In particular, the
Wagoner-Malone hydrostatic equilibrium equations [46]
represent a special case of these expressions, and it is
straightforward to see that they can be recovered for
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D ¼ γ þ ζ4; C ¼ 1

2
ð7þ 3γ − 8β þ ζ2Þ: ð14Þ

Making this choice for the constants on the right-hand side
of Eq. (11) leads to a new mass function, say ~m, and to the
following structure equations, which match Eqs. (6) and (7)
of Ref. [46]:

dp
dr

¼ −
ρ ~m
r2

�
1þ Πþ p

ρ
þ a

~m
r

�
; ð15aÞ

d ~m
dr

¼ 4πr2ρ

�
1þ ð1þ ζ3ÞΠþ a

~m
r
þ 3ðγ þ ζ4Þ

p
ρ

−
b
4π

~m2

ρr4

�
; ð15bÞ

where a≡ ð3þ 3γ − 4β þ ζ2Þ=2 and the constant b in the
notation of Ref. [46] is ourC, i.e., b¼ð7þ3γ−8βþζ2Þ=2.
A comparison between the two sets of PPN equations (9)

and (15) discussed in this section reveals that the Wagoner-
Malone equations are simpler, in the sense that they do not
depend on the auxiliary potentials Ω and E. This advantage,
however, is partially offset by the more complicated expres-
sion for the mass function equation. If we compare the GR
limit of the Wagoner-Malone equations (15) against the 1PN
expansion of the TOVequations [Eqs. (8a) and (8b)], we find
that the two sets coincide provided we identify m̄ ¼ mT, i.e.,

~m ¼ mT þ
m2

T

r
þ 4πr3p; ð16Þ

where the last equation follows by taking the GR limit of
Eq. (11) in combination with Eqs. (12) and (14). Clearly, the
fact that ~m ≠ mT in the GR limit is an unsatisfactory
property of the Wagoner-Malone equations.
It would be desirable to have a set of structure equations

that [unlike the set (9)] does not involve integral potentials,
and such that [unlike the set (15)] the mass function is
compatible with the GR limit. Fortunately, it is not too
difficult to find a new set of PPN equations for which
m ¼ mT. In the following section we will propose an
improved set of PPN stellar structure equations that
satisfies these requirements.

C. An improved set of PPN equations

We can exploit the degree of freedom associated with the
constants C;D in Eqs. (13a) and (13b) and produce a new
set of PPN equations that exactly match the 1PN TOV
equations in the GR limit withm ¼ mT. It is easy to see that
this can be achieved by making the trivial choice

C ¼ D ¼ 0: ð17Þ

Note that the constants A and B are still given by Eq. (12).
The resulting PPN equations are

dp
dr

¼ −
ρm
r2

�
1þ Πþ p

ρ
þ ð5þ 3γ − 6β þ ζ2Þ

m
r

þ ðγ þ ζ4Þ4π
r3p
m

�
; ð18aÞ

dm
dr

¼ 4πr2ρ

�
1þ ð1þ ζ3ÞΠ

−
1

2
ð11þ γ − 12β þ ζ2 − 2ζ4Þ

m
r

�
: ð18bÞ

As advertised, in the GR limit these equations reduce to
Eqs. (8a) and (8b) with m ¼ mT. The same equations will
be used in Sec. III below in the construction of the desired
post-TOV equations.

D. The physical interpretation of the mass function

Within the framework of PPN theory, inertial mass and
active/passive gravitational mass are, in general, distinct
notions. In the context of compact stars, expressions for all
three kinds of mass were given in Ref. [47]:

Min ¼ m̄ðR̄Þ þ
�
17

2
þ 3

2
γ − 10β þ 5

2
ζ2

�
ΩðR̄Þ; ð19Þ

Ma ¼ Min þ
�
4β − γ − 3 −

1

2
α3 −

1

3
ζ1 − 2ζ2

�
ΩðR̄Þ

þ ζ3EðR̄Þ −
�
3

2
α3 − 3ζ4 þ ζ1

�
P; ð20Þ

Mp ¼ Min þ
�
4β − γ − 3 − α1 þ

2

3
α2 −

2

3
ζ1 −

1

3
ζ2

�

×ΩðR̄Þ; ð21Þ
where R̄ is the stellar radius associated with the mass
function m̄ðrÞ [i.e., with the set of equations (9)] and

P ¼ 4π

Z
R̄

0

drr2p ð22Þ

is the volume-integrated pressure.
In GR the three masses are of course identical,

Min ¼ Ma ¼ Mp. As argued in Ref. [47], any theory
conserving the four-momentum of an isolated system
should incorporate the equality of the two gravitational
masses, i.e., Ma ¼ Mp. If adopted, this equality leads to
following three algebraic relations for the PPN parameters:

ζ3 ¼ 0; ð23Þ

ζ1 − 3ζ4 þ
3

2
α3 ¼ 0; ð24Þ

ζ1 þ 3α1 − 2α2 − 5ζ2 −
3

2
α3 ¼ 0: ð25Þ
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Wecan subsequentlywrite for the commongravitationalmass

Mg ¼ Ma ¼ Mp ¼ m̄ðR̄Þ þ FΩðR̄Þ; ð26Þ

with

F ¼ 1

2

�
11þ γ − 12β − α3 þ ζ2 −

2

3
ζ1

�
: ð27Þ

For our new PPN equations with C ¼ D ¼ 0 the mass
equality Ma ¼ Mp implies

mðrÞ ¼ m̄ðrÞ þ 1

2
ð11þ γ − 12β þ ζ2 − 2ζ4ÞΩðrÞ: ð28Þ

Then with the help of Eq. (24) it is easy to see that

Mg ¼ mðR̄Þ þ
�
ζ4 −

1

2
α3 −

1

3
ζ1

�
ΩðR̄Þ ¼ mðR̄Þ: ð29Þ

If R is the stellar radius associated with our PPN
equations (18), the difference δR ¼ R − R̄ is a 1PN-order
quantity. We can then approximately write

mðR̄Þ ≈mðRÞ − dm
dr

ðRÞδR: ð30Þ

However, Eq. (18b) implies that dm=drðRÞ ¼ 0 if ρðRÞ ¼ 0
at the stellar surface. This is indeed the case for a realistic
EOS. Therefore, we have shown that at 1PN precision the
mass of the system is given by

Mg ¼ mðRÞ: ð31Þ

This elegant result is one more attractive property of the new
PPN equations.

III. THE POST-TOV FORMALISM

The logic underpinning the formalism we are seeking is
that of parametrizing the deviation of the stellar structure
equations from their GR counterparts, thus producing a set
of post-TOV equations. As already pointed out in the
introduction, the post-TOV formalism is merely a useful
parametrized framework rather than the product of a
specific, self-consistent modified gravity theory (in the
spirit of PPN theory). In this sense our formalism is akin
to the existing “quasi-Kerr” or “bumpy” Kerr metrics,
designed to study deviations from the Kerr spacetime in GR
(see, e.g., Refs. [51–53]).
By design the post-TOV formalism should be a more

powerful tool for building relativistic stars than the PPN
framework; after all, the latter is based on a PN approxi-
mation of strong gravity. However (as will become clear
from the analysis of this section), our formalism has its own
limitations, the most important one being the fact that the
deviations from GR are introduced in the form of PN

corrections. This could mean that the structure of compact
stars with a high degree of departure from GR may not be
accurately captured by the formalism.

A. Post-TOV equations: 1PN order

The recipe for formulating leading-order post-TOV
equations is rather simple: from a suitable set of PPN
hydrostatic equilibrium equations we isolate the purely
non-GR pieces. These 1PN terms are subsequently added
“by hand” to the full general relativistic TOV equations,
hence producing a set of parametrized post-Einsteinian
equations. It should be pointed out that this procedure can
only be applied at the level of 1PN corrections. Higher-
order corrections should by sought by other means, such as
dimensional analysis (see Sec. III B).
In principle, either set of equations—Eqs. (9a) and (9b)

[47] or Eqs. (15a) and (15b) [46]—could have been used.
However, our improved PPN equations (18) seem to be best
suited for this task.
Considering Eqs. (18a) and (18b), we first isolate the

terms that represent a genuine deviation from GR. These
are the terms in the second line in the following equations:

dp
dr

¼ −
ρm
r2

�
1þ Πþ p

ρ
þ 2m

r
þ 4π

r3p
m

�

−
ρm
r2

�
ð3þ 3γ − 6β þ ζ2Þ

m
r
þ ðγ − 1þ ζ4Þ4π

r3p
m

�
;

ð32aÞ
dm
dr

¼ 4πr2ρð1þ ΠÞ

þ 4πr2ρ

�
ζ3Π −

1

2
ð11þ γ − 12β þ ζ2 − 2ζ4Þ

m
r

�
:

ð32bÞ

The second step consists of adding the non-GR terms to the
TOV equations (7). We obtain (recall that m ¼ mT)

dp
dr

¼ −
ðϵþ pÞ

r2

�
mþ 4πr3p
1 − 2m=r

�
−
ρm
r2

�
δ1

m
r
þ δ24π

r3p
m

�
;

ð33Þ

dm
dr

¼ 4πr2
�
ϵþ ρ

�
δ3

m
r
þ δ4Π

��
; ð34Þ

where we have introduced the constant post-TOV
parameters:

δ1 ≡ 3ð1þ γÞ − 6β þ ζ2; δ2 ≡ γ − 1þ ζ4; ð35Þ

δ3 ≡ −
1

2
ð11þ γ − 12β þ ζ2 − 2ζ4Þ; δ4 ≡ ζ3: ð36Þ

As expected, δi ¼ 0 in the limit of GR.
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The above equations can be written in a more compact
form:

dp
dr

¼
�
dp
dr

�
GR

−
ρm
r2

�
δ1

m
r
þ δ24π

r3p
m

�
; ð37aÞ

dm
dr

¼
�
dm
dr

�
GR

þ 4πr2ρ

�
δ3

m
r
þ δ4Π

�
: ð37bÞ

These expressions represent our main result for the leading-
order post-TOV stellar structure equations. They describe
the 1PN-level corrections produced by an arbitrary
deviation from GR that is compatible with PPN theory.
In other words, Eqs. (37a) and (37b) encapsulate the stellar
structure physics (at this order) for any member of the PPN
family of gravity theories.
We could in principle introduce other 1PN order terms, in

the spirit of the general parametrized framework of deviating
from GR that we have described in the beginning of this
section. But the introduction of such terms would correspond
to either redefinitions of coordinates and/or themass function
at the 1PN level, as we have already seen, or deviations from
special relativity, which we would prefer not to include.
Unfortunately, it turns out that Eqs. (37a) and (37b) are of

limited practical value. As discussed in the executive
summary, the modern limits on the PPN parameters suggest
that these corrections are very close to their GR values,
because β; γ ≈ 1 and αi; ζi ≪ 1, making all the δi parameters
very small. We should not therefore expect any notable
deviation from GR at the level of the leading-order post-
TOV equations. We verified this claim by explicit calcu-
lations of neutron star stellar models with different EOSs.
Any significant deviations from compact stars in GR

have to be sought at 2PN order and beyond, where the
existing observational limits leave much room for the
practitioner of alternative theories of gravity. This calls
for the formulation of a higher-order set of post-TOV
equations, a task to which we now turn.

B. Post-TOV equations: 2PN order

In this section we shall formulate post-TOV equations
with 2PN-accurate correction terms. Unlike the calculation
of the preceding section, we now have to build these
equations “from scratch,” given that the general PPN theory
has not yet been extended to 2PN order. Inevitably, the
procedure for building the various 2PN terms will turn out to
be somewhat more complicated than that of the preceding
section, heavily relying on dimensional analysis for con-
structing these terms out of the available fluid parameters.
Moreover, at 2PN order we also need to consider terms that
involve the integral potentials U, E, and Ω (recall that these
were eliminated at 1PN order by a suitable redefinition of the
mass function). However, as shown numerically and via
analytical arguments in Appendix C, the integral potentials
can be approximated to a high precision, and for a variety of

EOSs, by simple linear combinations of the nonintegral PN
terms. As a result, they do not have to be considered
separately in the post-TOV expansion.
To begin with, we can get an idea of the form of some of

the 2PN terms we are looking for by expanding the TOV
equations (7) to that order. Let us first consider the pressure
equation (7a):

dp
dr

¼ −
ρm
r2

��
1þ Πþ p

ρ

��
1þ 2m

r
þ 4π

r3p
m

�

þ 4m2

r2
þ 8πr2p

�
þOð3PNÞ: ð38Þ

As anticipated, all 1PN terms appearing here are also
present in our PPN equation (18a). The produced 2PN
corrections are proportional to the following combinations:

m2

r2
; Π

m
r
; r2p;

mp
rρ

; Π
r3p
m

;
r3p2

ρm
: ð39Þ

Additional 2PN terms that do not appear in the TOV
equations can be constructed by forming products of the
available 1PN terms. The largest set of 1PN terms can be
found in the general PPN equations (13a) and (13b):

1PN∶ Π;
p
ρ
;
m
r
;
r3p
m

;
m2

ρr4
: ð40Þ

We can observe that all terms, except the last one, also
appear in our final PPN equations (18a) and (18b). From
these we can reproduce the set (39) as well as the additional
2PN terms:

r6p2

m2
;Π

m2

ρr4
;
m3

ρr5
;Π2;Π

p
ρ
;

p2

ρ2
;
m4

ρ2r8
;
m2p
ρ2r4|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}: ð41Þ

We have set apart the last three (underbraced) terms of this
set because, as a result of their ∼1=ρ2 scaling, these terms
will be discarded. In fact, the same fate will be shared by
any term ∼ρβ with β ≤ −2.
There are various reasons why we believe that this

selection rule should be imposed. In our opinion these
reasons are quite convincing, but they fall short of constitut-
ing a watertight argument: in all fairness, if we had a single
truly compelling reason, we would not need more than one.
The first line of reasoning to exclude the presence of

negative powers of ρ (and of the other fluid parameters) in
the PN terms is based on the regularity of these terms at the
stellar surface, where p; ρ;Π → 0 for any realistic EOS. A
PN term like the second one in the underbraced group of the
set (41) will lead to a term diverging as ∼1=ρ at the stellar
surface in the stellar structure equations, and therefore it is
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not an acceptable PN correction. Although this surface
regularity argument is powerful, it obviously works only
for terms that do not scale with positive powers of p or Π.
The second (heuristic) argument applies to gravity

theories with the following (symbolic) structure:

fgeometryg ¼ 8πTμν; ð42Þ

∇νTμν ¼ 0 →
dp
dr

¼ ðϵþ pÞfgeometryg; ð43Þ

where “geometry” stands for combinations of the metric and
its derivatives, and the last equation assumes a perfect fluid
stress-energy tensor. The stress-energy tensor and the right-
hand side of Eq. (43) feature ϵþp¼ρð1þΠþp=ρÞ and p
linearly. It can then be argued that the solution of the field
equations for the metric and its derivatives will display a

fgeometryg ∼ ðϵþ τpÞn ∼ ρn
�
1þ Πþ τ

p
ρ

�
n

ð44Þ

dependence with respect to the fluid variables [where τ and n
areOð1Þ numbers]. Such a solution should lead to pressure-
dependent PN terms of the form

PN term ∼ ðr2ρÞn−1
�
p
ρ

�
k
; k ¼ n; n − 1;…; ð45Þ

where one ρ factor has been removed and absorbed in the
Newtonian prefactor of the structure equations, while at the
same time the r2 factor has been added in order to produce a
dimensionless quantity. A key observation is that the form
(45) assumes a theory that does not depend on dimensional
coupling constants. Now, according to Eq. (45) the highest
negative power of ρ corresponds to k ¼ n, which means that
the scaling with respect to the density should be

PN term ∼ ρβ; β ≥ −1: ð46Þ

Based on these arguments, we deem acceptable those PN
terms which scale with ρ as in Eq. (46). This choice is also
consistent with the previous PPN formulas; see Eqs. (13a)
and (13b). A similar argument can be used to exclude terms
with negative powers of p and Π.3

Equation (39) and the top row of Eq. (41) represent a
large set of 2PN terms emerging from the expansion of the
TOVequation and from products of the various known 1PN
terms. This set is large but not necessarily complete.

Inevitably, a systematic approach to the problem of
“guessing” 2PN terms should involve dimensional analysis.
To improve readability we relegate our dimensional analy-
sis considerations to Appendix A, and here we only quote
the main result. Themost general form for 2PN-order terms
is given by the dimensionless combination

Λ2 ∼ Πθðr2pÞαðr2ρÞβ
�
m
r

�
2−2α−β−θ

; ð47Þ

where α, β, θ are integers with

β ≥ −1; ð48Þ
while different bounds on θ and α apply to the two
hydrostatic equilibrium equations:

dp
dr

∶ 0 ≤ θ ≤ 2; 0 ≤ α ≤ 2 − θ; ð49Þ
dm
dr

∶ 0 ≤ θ ≤ 3; 0 ≤ α ≤ 3 − θ: ð50Þ
The lower bounds on the three parameters α, β, θ are

dictated by the same considerations discussed below
Eq. (41), namely, regularity at the surface and consistency
with the fact that gravitational field equations of the general
form (43) are unlikely to generate negative powers higher
than 1=ρ. The upper bounds on α and θ are imposed by the
regularity at r ¼ 0 of the stellar structure terms arising from
Λ2 (see Appendix A).
From the general expression (47) we can reproduce

all previous 1PN and 2PN terms and generate an infinite
number of new ones. This possibility could have been a
fatal blow to our post-TOV program. Fortunately, the day is
saved by the fact that the magnitude of Λ2 decays rapidly
throughout the star as β increases. This trend is clearly visible
in the numerical results shown in Fig. 3 (see discus-
sion below).
For all practical purposes these results imply that the first

few members of the β ¼ −1; 0; 1;… sequence are sufficient
to construct accurate post-TOVexpansions. A sample set of
such dominant 2PN terms is

2PN∶
m3

r5ρ
;
m2

r2
; rρm;

mp
rρ

; r2p;
r3p2

ρm
;
r6p2

m2
;

r7p3

ρm3

r10p3

m4
;Π

m2

r4ρ
;Π

m
r
;Πr2ρ;Π

p
ρ
;

Π
r3p
m

;Π
r4p2

ρm2
;Π

r7p2

m3
;Π2

m
ρr3

;Π2;Π2
rp
mρ

;

Π2
r4p
m2

;
Π3

r2ρ
;Π3

r
m
: ð51Þ

This set is markedly larger than the previous sets (39)
and (41) (whose acceptable terms form a subset of the new
set), but a complete post-TOV formalism would have to
include all (or almost all) of these terms, with twice the

3A related argument for excluding high powers of 1=ρ is the
following. By virtue of the field equations, the Ricci scalar is
usually proportional to the energy density of matter (at least in the
Newtonian limit, if the modified theory reproduces GR in the
weak-field regime): R ∼ ρ. If inverse powers of ρ are produced by
gravity modifications, they should therefore originate from terms
∼1=Rn in the action of the theory. These terms are usually
associated with ghosts or instabilities [54], and therefore their
presence is problematic.
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number of free coefficient in the dp=dr and dm=dr
equations. Fortunately, as it turns out, the same job can
be done with a much smaller subset of 2PN terms. This is
possible because the various 2PN terms can be divided into
five “families,” each family comprising terms with similar
profiles. When incorporated in the post-TOV equations,
terms belonging to a given family lead to self-similar
modifications in the mass-radius curves for a given EOS.
Insight into the behavior of the Λ2ðα; β; θÞ terms can be

gained by direct numerical calculations of their radial

profiles in relativistic stars. We carried out such calcula-
tions for a variety of realistic EOSs as well as relativistic
polytropes, and for different choices of central density,
verifying that all cases lead to very similar results, as
discussed below. More specifically, we considered EOS A
[55], FPS [56], SLy4 [57,58], and N [59] in increasing
order of stiffness, as well as relativistic polytropes with
indices n ¼ 0.4, 0.6, and 1.0; see Appendix B, and in
particular Eq. (B7). Note that the polytropic models are
parametrized by λ ¼ pc=ϵc instead of ϵc alone (the

FIG. 3 (color online). The radial profile of the Λ2 function. We exhibit the behavior of ρ̄Λ2, where ρ̄ ¼ ρ=ρc and Λ2 is given in
Eq. (47), for a stellar model using the APR EOS, with ϵc=c2 ¼ 0.86 × 1015 g=cm3, M ¼ 1.51M⊙, and R ¼ 12.3 km. The curves are
labeled according to the respective values of ðα; β; θÞ. From the top row to the bottom row the index θ takes on the values (0,1,2,3),
respectively. Despite the multitude of possible dimensionally correct 2PN terms, their self-similarity—which is clear when we compare
terms along the bottom-left to top-right diagonals in this “grid” of plots—allows us to group them into a relatively small number of
families (see text for details). The contributions plotted in the three panels at the bottom right of the grid (marked as “Excluded”) would
lead to divergences in the hydrostatic equilibrium equations, and therefore they can be discarded as unphysical.
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subscript “c" indicates a quantity evaluated at the center),
but this is equivalent to the central density parametrization.
The polytropic models are also invariant with respect to the
scale factor Kn=2; this can be adjusted to generate poly-
tropic models of (say) the same mass (for a given λ) as that
of a specific tabulated-EOS model.
Rather than computing Λ2 itself, from a phenomeno-

logical point of view it makes more sense to consider the
combination ρΛ2. The reason is that this combination
appears in both the pressure and mass equations, and
furthermore it has the desirable feature of being regular
at the surface for β ¼ −1. More specifically, in Fig. 3 we
plot the dimensionless combination ρ̄Λ2ðα; β; θÞ, where
ρ̄ ¼ ρ=ρc. Our sample neutron star model was built using
the APR EOS with central energy density ϵc=c2 ¼
0.86 × 1015 g=cm3, corresponding to mass M ¼ 1.51M⊙
and radius R ¼ 12.3 km, but we have verified that our
qualitative conclusions remain the same for different
models and different EOSs.
Figure 3 reveals two key trends: (i) the clear β ordering

of the ρΛ2 profiles, with β ¼ −1 always associated with the
dominant term for fixed α and θ, and (ii) the remarkable
similarity in the shape of the profiles of terms with
dissimilar ðα; β; θÞ triads along the bottom-left to top-right
diagonals in the “grid” of Fig. 3. This property defines
distinct families of 2PN terms and implies that the terms of
each family cause self-similar changes in the mass-radius
curves of the various post-TOV stellar models.
We have identified five 2PN families (labeled

“F1”; ...; “F5” in the various panels of Fig. 3, and described
in more detail in Table I):

(i) F1: This is a single-member family comprising only
the ρΛ2ð0;−1; 0Þ term in the top-left panel, which is
zero at r ¼ 0 but finite at r ¼ R.

(ii) F2: The members of this family vanish at r ¼ 0 and
r ¼ R, and have a peak near the surface. These are
the ρΛ2ð0; β; 0Þ terms with β ≥ 0 in the top-
left panel.

(iii) F3: These terms also vanish at both r ¼ 0 and r ¼ R,
but display an approximately flat profile inside
the star. They correspond to ρΛ2ð1; β; 0Þ (top-
middle panel) and ρΛ2ð0; β; 1Þ (top-right panel)
for β ≥ −1.

(iv) F4: This family comprises terms that are finite at
r ¼ 0 but zero at r ¼ R. These are the ρΛ2ð2; β; 0Þ
(bottom-left panel) and ρΛ2ð1; β; 1Þ (bottom-middle
panel) terms with β ≥ −1.

(v) F5: These terms by themselves diverge at r ¼ 0
and vanish at r ¼ R, but they become well
behaved when inserted into the stellar mass-function
equation, where they are multiplied by the factor
r2: cf. Eq. (A24). These terms correspond to
ρΛ2ð2; β; 1Þ, and from the constraints (49) and
(50) we conclude that the members of this family
can only appear in the mass equation.

There is an intuitive way to explain the existence of the
above families. As an example we consider F3, where the
seemingly unrelated terms Λ2ð1; β; 0Þ and Λ2ð0; β; 1Þ yield
similar profiles. Consider

Λ2ð0; β; 1Þ ∼ r−1þ3β Πρβ

mβ−1 : ð52Þ

By means of the approximations m ∼ ρr3, Π ∼ p=ρ (the
latter approximation is motivated by the exact thermody-
namical relation Π ¼ np=ρ for relativistic polytropes with
index n; see Appendix B) we find

Λ2ð0; β; 1Þ ∼ r2þ3βp

�
ρ

m

�
β

∼ Λ2ð1; β; 0Þ: ð53Þ

Similarly we can show that Λ2ð2; β; 0Þ ∼ Λ2ð1; β; 1Þ for the
F4 family. The argument can be generalized to show that
terms along the diagonals of Fig. 3 are equivalent.
Table I summarizes the taxonomy of the most important

terms of each family according to the above criteria. The
impact of each of these terms as a post-TOV correction has
been tested for a variety of EOSs. The results reveal that the
members of a given family lead to self-similar modifica-
tions to the stellar mass-radius curves. A sample of these

TABLE I. Taxonomy of the dominant 2PN terms. The self-
similarity between the radial profiles of the various 2PN terms
listed in Eq. (51) (and illustrated in Fig. 3) allows us to group
them into five distinct families. This table spells out the explicit
form of the various terms, and indicates which term in each
family is dominant (D) according to our numerical calculations,
and which one was chosen (C) as a representative of each family.

Family 2PN term ðα; β; θÞ Dominant/Chosen?

F1 m3=ðr5ρÞ ð0;−1; 0Þ D/C

F2 ðm=rÞ2 (0,0,0) D/C
F2 rmρ (0,1,0) −
F3 mp=ðrρÞ ð1;−1; 0Þ −
F3 r2p (1,0,0) −
F3 Πm2=ðr4ρÞ ð0;−1; 1Þ D/C
F3 Πm=r (0,0,1) −
F3 r2Πρ (0,1,1) −
F4 r3p2=ðρmÞ ð2;−1; 0Þ −
F4 r6p2=ðm2Þ (2,0,0) −
F4 Πp=ρ ð1;−1; 1Þ C
F4 Πr3p=m (1,0,1) −
F4 Π2m=ðr3ρÞ ð0;−1; 2Þ D
F4 Π2 (0,0,2) −
F5 Πr4p2=ðρm2Þ ð2;−1; 1) −
F5 Πr7p2=m3 (2,0,1) −
F5 Π2rp=mρ ð1;−1; 2Þ −
F5 Π2r4p=m2 (1,0,2) −
F5 Π3=ðr2ρÞ ð0;−1; 3Þ D
F5 Π3r=m (0,0,3) C
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numerical results is shown in Fig. 2, which is further
discussed in Sec. IV below.
This remarkable self-similarity property means that we

can simply select one term from each family and emulate
the effect of all significant 2PN terms of the same family by
simply varying the post-TOV coefficient associated with
the selected term.
In doing so, it is reasonable to choose the simplest terms

as family representatives. For families F2 and F4 the
simplest terms also happen to be the dominant ones (i.e.,
the ones with the largest ρΛ2), while for F3 and F5 they are
the first subdominant ones. The case of the single-member
family F1 is trivial. The five terms we select based on this
reasoning are

F-representatives∶
m3

r5ρ
;
m2

r2
; r2p;Π

p
ρ
;Π3

r
m
: ð54Þ

The phenomenologically relevant radial profiles of
ρ̄Λ2ðα; β; θÞ produced by these terms are shown in
Fig. 4 for three choices of EOS: FPS, APR, and an
n ¼ 0.6 polytrope. The most striking feature of this figure
is the close resemblance of the Λ2 profiles of identical
ðα; β; θÞ triads for different EOSs, which lends support to
the EOS independence of our selection of post-TOV terms.
The family-representative terms (54) are again shown in

Fig. 5, where we plot the combinations that appear in the
dp=dr and dm=dr equations, i.e., mρΛ2=r2 and r2ρΛ2,
respectively (in the latter term we have omitted a trivial
prefactor of 4π). We consider two different EOSs: APR and
an n ¼ 0.6 polytrope. All terms displayed are regular at
both r ¼ 0 and r ¼ R with the exception of the F5 term in
the dp=dr equation, which is divergent at r ¼ 0 and must
be excluded. Once again, the variations in the radial profiles
due to considering different EOSs are extremely mild.

We have thus obtained a minimum set of representative
2PN terms, listed in Eq. (54), which in reality encompasses
a much larger set, like the one obtained from the combi-
nation of Eqs. (41) and (51), as well as terms that involve
the integral potentials.
After this admittedly tedious procedure we can finally

assemble our 2PN-order post-TOV equations for the
pressure and the mass. These are (omitting the negligibly
small 1PN corrections)

dp
dr

¼
�
dp
dr

�
GR

−
ρm
r2

�
π1

m3

r5ρ
þ π2

m2

r2

þ π3r2pþ π4Π
p
ρ

�
; ð55aÞ

dm
dr

¼
�
dm
dr

�
GR

þ 4πr2ρ

�
μ1

m3

r5ρ
þ μ2

m2

r2

þ μ3r2pþ μ4Π
p
ρ
þ μ5Π3

r
m

�
; ð55bÞ

where, as anticipated in the executive summary, πi
(i ¼ 1;…; 4) and μi ði ¼ 1;…; 5Þ are free parameters
controlling the size of the corresponding departure
from GR.

C. Completing the formalism: the post-TOV metric
and stress-energy tensor

So far, our post-TOV formalism comprises no more than
a pair of stellar structure equations [Eqs. (55a) and (55b)],
which can be used for the description of static and
spherically symmetric compact stars. In this section we
show that there is more to the formalism than meets the eye:
to a high precision it is a “complete” toolkit, in the sense
that (i) it can be reformulated in terms of a spherically

FIG. 4 (color online). The family-representative 2PN terms. Here we show the selected representative terms from each of the families
depicted in Fig. 3, as listed in Eq. (54), for three different EOSs: FPS (left panel), APR (middle panel) and an n ¼ 0.6 polytrope (right
panel). Each term illustrates the qualitative behavior of each family of possible 2PN contributions to the structure equations. The high
degree of invariance of the Λ2 profiles with respect to the EOS is evident in this figure. The GR background stellar models utilized in the
figure have the following bulk properties: ϵc ¼ 0.861 × 1015 g=cm3 (λ≡ pc=ϵc ¼ 0.165),M ¼ 1.51M⊙ and R ¼ 12.3 km (left panel);
ϵc ¼ 1.450 × 1015 g=cm3 (λ ¼ 0.198), M ¼ 1.50M⊙ and R ¼ 10.7 km (center panel); λ ¼ 0.165, M ¼ 1.50M⊙ and R ¼ 11.75 km
(right panel).
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symmetric metric gμν and a perfect fluid stress-energy
tensor Tμν, and (ii) these two structures are related through
the covariant conservation law ∇νTμν ¼ 0 (where ∇ν is the
metric-compatible covariant derivative), hence respecting
the equivalence principle. Remarkably, it also turns out that
the metric and matter degrees of freedom can be related as
in GR, which implies that the post-TOV formalism is
equivalent to stellar structure in GR with a gravity-modified
EOS for matter and an effective spacetime geometry.
In order to establish the above statements we begin with

the following general result. Assume the static spherically
symmetric metric

ds2 ¼ gμνdxμdxν

¼ −eνðrÞdt2 þ
�
1 −

2MðrÞ
r

�
−1
dr2 þ r2dΩ2 ð56Þ

and a perfect fluid stress-energy tensor (with energy density
E and pressure P)

Tμν ¼ ðE þ PÞuμuν þ Pgμν: ð57Þ

For a static spherical fluid ball, the energy-momentum
conservation equation

∇νTμν ¼ 0 ð58Þ

leads to

dP
dr

¼ −ðE þ PÞΓt
rt ¼ −

1

2
ðE þ PÞ dν

dr
: ð59Þ

As long as we consider theories respecting Eq. (58) with a
metric-compatible covariant derivative, this result is inde-
pendent of the gravitational field equations.

FIG. 5 (color online). The family-representative terms in the structure equations. This figure illustrates the behavior of each of the
family-representative 2PN terms [see Eq. (54)] multiplied by the Newtonian prefactors in the post-TOVequations. The stellar parameters
are identical to the ones used in Fig. 4. Left panel: The combination ðρm=r2ÞΛ2ðα; β; θÞ appearing in the pressure equation. Right panel:
The combination ρr2Λ2ðα; β; θÞ appearing in the mass equation. The top panels correspond to EOS APR; the bottom panels correspond
to a relativistic polytrope with polytropic index n ¼ 0.6. The divergence at the origin of the F5 term justifies its exclusion from the
pressure equation.
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For the mass function MðrÞ we can always write a
relation of the form

dM
dr

¼ 4πr2E½1þ ZðrÞ�; ð60Þ

where ZðrÞ is a theory-dependent function. Einstein’s
theory is recovered by setting Z ¼ 0, as required by the
field equations of GR.
To establish the properties described at the beginning of

this section we will show that we can successfully map our
post-TOV equations onto Eqs. (59) and (60) (with Z ¼ 0).
The full post-TOV equations [Eqs. (55a) and (55b)] can

be written in the form

dp
dr

¼ −
ðϵþ pÞ

r2
ΓðrÞ − ρm

r2

��
1þ Πþ p

ρ

�
P1 þ ~P2

�
;

ð61Þ

dm
dr

¼ 4πr2ϵþ 4πr2ρ½M1 þM2�; ð62Þ

where P1;P2 have been defined in Eqs. (2a)–(2d),

~P2 ≡ P2 −
�
Πþ p

ρ

�
P1 ð63Þ

is a 2PN-order term, and ΓðrÞ≡ðmþ4πr3pÞ=ð1−2m=rÞ.
Based on these expressions, we can define the effective

energy density

ϵeff ≡ ϵþ ρðM1 þM2Þ; ð64Þ
which implies

dm
dr

¼ 4πr2ϵeff : ð65Þ

Using Eq. (64) in the pressure equation, we have

dp
dr

¼ −½ϵeff þ p − ρðM1 þM2Þ�
Γ
r2

−
m
r2
½ðϵþ pÞP1 þ ðϵeff þ pÞ ~P2�; ð66Þ

where we have used the fact that in any 2PN term we can
replace the factor ρ by ϵeff þ p, at the cost of introducing
3PN terms. Using Eq. (64) once more in the last term, and
after some rearrangement, we obtain

dp
dr

¼ −
ðϵeff þ pÞ

r2
½ð1 −M2ÞΓþmðP1 þ ~P2 −M1P1Þ�

þ ρ

r2
M1Γ: ð67Þ

Given thatM1 ≪ 1, the last term can be safely omitted and
we are left with

dp
dr

≈ −
ðϵeff þ pÞ

r2
½ð1 −M2ÞΓþmðP1 þ ~P2 −M1P1Þ�

ð68Þ

≈ −
ðϵeff þ pÞ

r2
½ð1 −M2ÞΓþmP2�; ð69Þ

which is of the form (59). Note that in this and the
following expressions the small M1;P1 terms can be
omitted.
The resulting mapping is

P ¼ p; M ¼ m; E ¼ ϵeff : ð70Þ

It follows that the effective post-TOV metric is

gμν ¼ diag½−eνðrÞ; ð1 − 2mðrÞ=rÞ−1; r2; r2sin2θ�; ð71Þ

with

dν
dr

≈
2

r2
½ð1 −M2ÞΓþmðP1 þ ~P2 −M1P1Þ� ð72Þ

≈
2

r2
½ð1 −M2ÞΓþmP2�: ð73Þ

From this result we can see that r represents the circum-
ferential radius of the r ¼ constant spheres and therefore
the post-TOV radius R [where pðRÞ ¼ 0] coincides with
the circumferential radius of the star.
Finally, the effective post-TOV stress-energy tensor is

Tμν ¼ ðϵeff þ pÞuμuν þ pgμν; ð74Þ
and it is covariantly conserved with respect to themetric (71).
These expressions clearly demonstrate that our post-

TOV formalism is completely equivalent to GR with an
effective EOS:

pðϵÞ → pðϵeffÞ; ð75Þ
ϵeff ≈ ϵþ ρM2: ð76Þ

As is evident from this last expression, ϵeff represents a
gravity-shifted parameter with respect to the physical
energy density ϵ. This result highlights a key characteristic
of compact relativistic stars when studied in the context of
alternative theories of gravity, namely, the intrinsic degen-
eracy between the physics of the matter and gravity sectors.
Whether the above effective description (and in particu-

lar its effective geometry part) can give observables that
have a correspondence to observables of an underlying
theory or not depends on the nature of that theory. As long
as the underlying theory admits a PN expansion, the
physical description that arises from the effective formalism
should match that of the physical theory. This nontrivial
issue will be further discussed elsewhere [60].
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IV. NUMERICAL RESULTS

In this sectionwe provide amore detailed discussion of our
numerical techniques and results, focusing on themass-radius
curves produced by the integration of the post-TOV equa-
tions (55a) and (55b) [or equivalently Eqs. (1a) and (1b)].
First, let us briefly summarize the integration procedurewe

have followed in this paper. We have carried out two kinds of
computations: (i) “background” models (these involve the
integration of the general relativistic TOVequations) with the
purpose of studying the radial profiles of the post-TOV
correction terms, and (ii) the integration of the full post-TOV
equations, typically including the representative term of a
single 2PN family.
The post-TOV structure equations (1a) and (1b) are

integrated simultaneously starting at the origin r ¼ 0, for
fixed values of the coefficients πi, μi, and for a range of
central energy density values. The chosen central energy
density ϵc fixes the central pressure pc ¼ pðϵcÞ, the central
mass density ρc ¼ mbnbðϵcÞ, and the central internal energy
Πc ¼ ðϵc − ρcÞ=ρc, where mb ¼ 1.66 × 10−24 g is the bar-
yonic mass and nb is the baryon number density. In general,
pðϵÞ and nbðϵÞ are computed using tabulated EOS data. Once
the initial conditions have been specified, Eqs. (1a) and (1b)

FIG. 7 (color online). Self-similarity in mass-radius curves—II.
Same as in Fig. 6, but for the F5 family, which only admits post-
TOV corrections with μ5 < 0 (see text).

FIG. 6 (color online). Self-similarity in mass-radius curves—I. Numerical integrations show that 2PN terms belonging to the same
family result in self-similar deviations from GR in the mass-radius relation. This figure illustrates this remarkable property for pressure
terms (top row) and mass terms (bottom row) belonging to families F2, F3, and F4 (from left to right). In each panel, the solid line
corresponds to GR, the long-dashed line corresponds to a positive-sign correction due to the chosen term in each family, and the short-
dashed line corresponds to a negative-sign correction due to the chosen term in each family. The various symbols show that nearly
identical corrections can be produced using different terms belonging to the same family, as long as we appropriately rescale their post-
TOV coefficients.
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are integrated outward up to the stellar radius R, where
pðRÞ ¼ 0. The gravitational mass is obtained asM ¼ mðRÞ.
The integration procedure for realistic EOS background

models is virtually the same as the one just described. We
have also employed a number of polytropic background
models; for these the integration procedure is slightly

different (see Appendix B for details), and it is based on
the simpler Lane-Emden formulation, where the pressure is
replaced by the density ρ in the structure equations and the
stellar model is parametrized by the ratio λ ¼ pc=ϵc rather
than ϵc alone (this formulation is of course equivalent to the
one using tabulated EOSs). The added advantage of this

FIG. 8 (color online). Fractional deviations induced by the post-TOV parameters on the stellar mass and radius. Here we illustrate
the fractional changes caused by the post-TOV parameters in neutron star masses and radii. For a fixed central energy density and
EOS APR, we plot the relative deviations from GR in mass and radius that result from varying the post-TOV parameters within
the range indicated in the legends. Top row: ϵc=c2 ¼ 8.61 × 1014 g=cm3, MGR ¼ 1.51M⊙, and RGR ¼ 12.3 km. Bottom row:
ϵc=c2 ¼ 1.20 × 1015 g=cm3,MGR ¼ 2.04M⊙, and RGR ¼ 11.9 km. Left panels: Effect of the post-TOV terms that enter in the pressure
equation. Right panels: Effect of the post-TOV terms that enter in the mass equation. The circles represent contours of fixed relative
deviation from GR.
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approach is its scale invariance with respect to the poly-
tropic constant K. This means that K can be freely adjusted
to generate a model with (say) a specific mass M. This
scaling procedure also fixes the radius R.
The main installment of our mass-radius results has

already been presented in Fig. 2 of the executive summary
(Sec. I A). As discussed there, the various post-TOV
correction terms, representing the five 2PN families of
Sec. III B, cause qualitatively different modifications to the
mass-radius curves.
As a rule of thumb, the corrections to the pressure

equation lead to markedly weaker mass-radius modifica-
tions than the corrections to the mass equation, for the same
magnitude of πi and μi. The effective-metric formulation of
the post-TOV formalism suggests a simple qualitative
explanation of this observation. The mass corrections
M2 change both the effective EOS and the strength of
gravity, as measured by νðrÞ, while the pressure corrections
P2 are only associated with a change in the strength of
gravity [cf. Eqs. (73) and (76)], and it is well known that
changes in the EOS outweigh gravity modifications in
terms of their effect on the mass-radius relation.
A notable exception is the single-member family F1, for

which the pressure correction term dominates over its mass
counterpart. In fact, the F1 pressure term leads to the largest
mass-radius changes, as evidenced by the π1 values used in
Fig. 2. It is not too difficult to explain why this happens:
near the stellar surface, where all three fluid parameters
p; ρ;Π are close to zero, the F1 correction terms remain
finite and dominate over all other terms in the post-TOV
equations (this can be clearly seen in Fig. 5), thus taking
control of the pressure and mass derivatives.
Another noteworthy point is that, when considering

individual post-TOV terms, it is not always possible to
integrate the equations for both positive and negative values
of the corresponding coefficient. This is the case for family
F5 in Fig. 2, where the integration fails for μ5 < 0. We have
found that this is caused by an unphysical negative slope
dm=dr near the origin.
The remarkable self-similarity in the radial profiles of

2PN terms belonging to the same family has been illus-
trated in Fig. 3 (see Sec. III B). With hindsight, this
property should not come as a total surprise, given the
approximate correlations among the fluid variables:
m ∼ ρr3, Π ∼ p=ρ.
The emergence of the same self-similarity in the mass-

radius curves is something far less anticipated and even
more striking. This property, which has allowed us to
formulate a practical and versatile set of post-TOV equa-
tions, is illustrated in Figs. 6 and 7, where we show mass-
radius results for each 2PN family, considering both the
pressure and the mass equation and for the same APR EOS
stellar model as in Fig. 2. Each panel is devoted to a
particular family, and it shows the mass-radius curves
resulting from the integration of the post-TOV equations

when various terms from Table I are included as corrections
(notice that F1 is missing from these plots for the obvious
reason that it consists of only one post-TOV correction).
In all cases considered, the terms of the same family are

found to cause nearly identical mass-radius changes by a
suitable rescaling of the relevant coefficient πi or μi. This
behavior is most striking for family F4, where different
post-TOV corrections in the mass equations lead to the
same characteristic back-bending behavior in the mass-
radius curve. The only notable exception to this remarkable
scaling property is the (0,0,1) member of the F3 family,
proportional to Πm=r, which can be rescaled to agree with
other members of the family at high densities but partially
fails to capture the behavior of the mass-radius curve at low
densities. This partial symmetry breaking can be under-
stood by looking at the leftmost panel in the second row of
Fig. 3: the behavior of this term near the surface is not as
smooth as for other members of this family. In our opinion
this does not warrant extensions of the formalism to include
another family, but this is definitely a possibility that could
be considered in the future, given the approximate nature of
the self-similarity argument.
Another important aspect of the post-TOV results is their

“directionality” in the mass-radius plane, in the sense that a
given correction term could affect the mass more than the
radius, or vice versa. This kind of information cannot be
easily extracted from a traditional mass-radius plot such as
Fig. 2, but becomes very visible if we display the same
results in terms of the fractional changes δM=MGR≡
ðM −MGRÞ=MGR and δR=RGR ≡ ðR − RGRÞ=RGR from
the corresponding GR values.
“Dart-board" plots of these fractional changes are shown

in Fig. 8. The aforementioned directionality of the various

FIG. 9 (color online). Directions of the post-TOV induced
deviations. This schematic diagram shows which sign of indi-
vidual post-TOV parameters produces smaller or larger masses/
radii with respect to GR, cf. Fig. 8.
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post-TOV corrections is clearly visible in this figure.
Individual correction terms are seen to drive nearly linear
departures (at least up to a ∼10% level) from the center of
the “board.” Moreover, certain terms are mutually (nearly)
orthogonal, although not aligned with the mass or radius
axis. In some cases this happens between the pressure and
mass terms of the same family, e.g., family F2. In general,
the departures from the GR model are more isotropically
scattered when caused by the correctionsM2 in the dm=dr

equation, whereas the pressure corrections P2 are clearly
more concentrated near the direction of the mass axis. This
behavior fits nicely with the effective-EOS interpretation of
how M2 and P2 corrections change the mass-radius
diagram. As expected, M2 corrections affect the stiffness
of the effective EOS with significant effects on the radius,
while P2 corrections change the strength of gravity, and
this mostly affects how much mass a particular model can
support.

FIG. 10 (color online). Deviations induced by the post-TOV parameters on the stellar compactness. Here we consider the influence of
the post-TOV parameters on the compactness C ¼ M=R of neutron stars. Deviations from GR are calculated assuming the same APR
EOS models as in the top and bottom rows of Fig. 8. Left panels: Effect of the post-TOV terms appearing in the pressure equation. Right
panels: Effect of the post-TOV terms appearing in the mass equation.
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These trends remain unchanged as the central energy
density (and the stellar mass) increases (see bottom panels
of Fig. 8). The pressure correction term associated with π1
(family F1) provides the exception to the rule: a sequence
of π1 > 0 values leads to a nonlinear trajectory, with
initially just the radius decreasing and then followed by
a comparable fractional decrease in the mass. Negative
values of π1 are not shown because they lead to unphysical
models where in the outer low-density layers of the star
dp=dr becomes nearly zero but never negative, thus
preventing us from finding the exact location of the surface
(as we have pointed out earlier in this section, this behavior
is related to the nonzero value of the F1 term at the surface).
Figure 9 provides a schematic chart of the correlation

between the sign of the πi; μi coefficients and the sign of the
associated variations δM, δR. Interestingly, the πi terms are
limited to just two of the four possible quadrants (note the
anticorrelation between the signs of π1 and the other πi).
This translates to variations that simultaneously make the
star bigger (smaller) and heavier (lighter), i.e., δR > 0,
δM > 0 (or δR < 0, δM < 0). In contrast, the μi terms
occupy all four quadrants, with the F3, F4, and F5 families
leading to δRδM > 0 variations, and the F1 and F2 families
giving rise to the opposite arrangement, δRδM < 0.
The linear patterns of Fig. 8 suggest that the mass and

radius variations, for a given σi ¼ fπi ≠ π1; μig, obey the
empirical relations

δM
MGR

≈ σiKM;
δR
RGR

≈ σiKR; ð77Þ

where the structure parameters KM, KR are functions of the
EOS and of ϵc, but they are independent of σi. Given the
nonlinear character of the post-TOV equations, this con-
clusion is clearly nontrivial. We can recast this result in
terms of the variation of the stellar compactness C≡M=R,

δC
CGR

≈ σiðKM − KRÞ: ð78Þ

This almost linear δCðσiÞ dependence4 can indeed be seen
in the numerical results shown in Fig. 10, where we
consider the same stellar models as in Fig. 8.
The results presented in this section provide a wealth of

information on the character of the post-TOV corrections

of stellar structure. It is likely that a more systematic study
of the self-similar F families will reveal additional layers of
information and provide clues as to why the 2PN terms
change the bulk properties of the star the way they do, as a
function of the central density. Such a study is beyond the
scope of this paper but provides an attractive subject for
future work.

V. CONCLUSIONS AND OUTLOOK

This paper is a first step towards establishing a para-
metrized perturbative framework that should, at least in
principle, encompass all modifications to the bulk proper-
ties of neutron stars induced by modified theories of
gravity. As in the original formulation of the PPN formal-
ism, along the way we were forced to make some
reasonable simplifying assumptions in order to reduce
the complexity (and increase the practicality) of our para-
metrization. These reasonable assumptions may well fail to
match the well-known creativity of theorists, and it will be
interesting to see how the formalism can be extended and
improved.
In a follow-up paper we will use our basic post-TOV

equations to recover stellar structure calculations in some
popular theories of gravity, such as those shown in Fig. 1. It
is particularly interesting to compare the formalism against
theories that violate some of our basic assumptions, such as
scalar-tensor gravity with spontaneous scalarization (which
introduces intrinsically nonperturbative effects [32]) or
Eddington-inspired-Born-Infeld gravity, with its lack of a
Newtonian limit and its unorthodox dependence on the
stress-energy tensor [27,62].
We have already obtained some interesting results in this

context: for example, our conclusion that the 2PN post-
TOV equations are equivalent to an effective modified
perfect fluid EOS (see Sec. III C) has an interesting parallel
with the results of Delsate et al. [62], who reached a similar
conclusion for Eddington-inspired-Born-Infeld gravity. We
are currently extending the “effective metric” formalism
developed in this paper to the exterior spacetime of
compact stars [60]. This is necessary to compute physical
observables—such as the gravitational redshift of surface
atomic lines, the touchdown luminosity of a radius expan-
sion burst, and the apparent surface area of neutron stars
[63]—and it is possible that the combination of multiple
observables may lift the EOS/gravity degeneracy.
There are several interesting extensions of our work that

should be addressed in the future. The most obvious one is
to assess whether post-TOV parameters can indeed repro-
duce the mass-radius curve in various classes of alternative
theories, and whether the post-TOV parameters encode
specific information on the physical parameters underlying
specific theories. This study will hopefully lead to a better
understanding of the generality of the EOS/gravity-theory
degeneracy.

4It is interesting to note that the qualitative effect of the post-
TOV terms in the pressure equation can be understood by analogy
with the case of anisotropic stars in GR. The post-TOV pressure
equation takes the form dp=dr ¼ ðdp=drÞGR − ρmπifiðrÞ=r2,
with fiðrÞ > 0, whereas anisotropic stars obey dpr=dr ¼
ðdpr=drÞGR − 2σ=r, with σ ¼ pr − pq being the difference
between the radial and tangential pressure. These two expressions
can be matched if 2rσ ¼ ρmπifiðrÞ. The compactness of
anisotropic stars is known to decrease (increase) when σ increases
(decreases) [61]. This conclusion is in good qualitative agreement
with the results shown in the left panel of Fig. 10.
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From a data analysis point of view, it is important to
understand whether physical measurements of masses and
radii (or perhaps more realistically, measurements of
masses and surface redshifts/stellar compactnesses) can
lead to constraints on the post-TOV parameters under
specific assumptions on the high-density EOS. The answer
to this question obviously depends on the relative magni-
tude of modified gravity effects and EOS uncertainties. It
will be interesting to quantify what uncertainties in the EOS
are acceptable if we want to experimentally constrain post-
TOV parameters at meaningful levels.
Other obvious extensions are (i) the generalization of the

post-TOV framework to slowly and possibly fast rotating
relativistic stars, and (ii) stability investigations within the
post-TOV framework. We hope that our work will stimulate
further activity in this field. Stability studies in a post-TOV
context may reveal that certain generic features of modified
gravity lead to instabilities even for nonrotating stars,
possibly excluding whole classes of modified gravity
theories.
Last but not least, we would like to point out that our

post-TOV toolkit is not (nor was it designed to be) a self-
consistent PN expansion, but rather a phenomenological
parametrization of the leading-order (unconstrained) devi-
ations from GR. A systematic and self-consistent PPN
expansion extending the PN stellar structure works cited in
the Introduction [40–43] is an interesting but quite distinct
area of investigation that should also be pursued in the
future.
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APPENDIX A: DIMENSIONAL ANALYSIS OF
POST-NEWTONIAN TERMS

In this appendix we develop an algorithm for construct-
ing PN terms using dimensional analysis techniques.
Barring PN terms involving the three potentials U, E, Ω,
the available parameters for generating PN terms are

fp; ρ; m; r;Πg. From these quantities plus the gravitational
constant G and the speed of light c we can build the
dimensionless combination5

Λ ¼ pαρβmγrδΠθGκcλ ðA1Þ

for a suitable choice of integers α; β; γ; δ; κ; λ (these are not
to be confused with the PPN parameters of Sec. II). SinceΠ
is already dimensionless, there is no a priori dimensional
restriction on θ (apart from one coming from the PN order
of Λ) and therefore that factor can be omitted in the
dimensional analysis. Using the scalings

p ∼G
mρ

r
; m ∼ ρr3; ðA2Þ

we obtain the following form forΛ in terms of mass, length,
and time dimensions:

Λ ∼ ½M�αþβþγ−κ½L�−αþδ−3βþλþ3κ½T�−2α−λ−2κ: ðA3Þ

Since Λ is required to be dimensionless, we have the three
algebraic relations

λ ¼ −2ðαþ κÞ; κ ¼ αþ β þ γ; ðA4Þ

and

−αþ δ − 3β þ λþ 3κ ¼ 0: ðA5Þ

The first two relations simply express λ and κ in terms of
the other parameters. Using them in Eq. (A5), we obtain

γ þ δ ¼ 2ðαþ βÞ; ðA6Þ

which represents the true dimensional degree of freedom. It
is straightforward (if tedious) to verify that all PN terms
appearing in the PPN equations of Sec. II are consistent
with Eq. (A6).
All α < 0 terms are divergent at the surface and need not

be considered. As we shall shortly see, all terms with α ≥ 4
are divergent at r ¼ 0 in both structure equations, and
therefore they should be discarded. The α ¼ 3 terms are
singular in the dp=dr equation and can be discarded by the
same argument; α ¼ 3 terms are regular in the dm=dr
equation, but they are always dominated in magnitude by
the α < 3 terms, and therefore they will not be presented in
detail here. Therefore our strategy hereafter is to focus on
the particular cases α ¼ 0 (no pressure dependence) and
α ¼ 1; 2 (linear and quadratic scaling with the pressure).

5Note that this combination is oblivious to the presence of
dimensional coupling constants that might appear in modified
theories of gravity.
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1. Terms with α ¼ 0

Starting with the α ¼ 0 case we have

γ þ δ ¼ 2β: ðA7Þ
The resulting form of Λ in geometric units is

Λ ∼ ðr2ρÞβ
�
m
r

�
γ

: ðA8Þ

Formally, this combination is of order ðm=rÞβþγ. Therefore,
we can generate N-PN terms if β þ γ ¼ N. These are of the
form

ΛNðβÞ ∼ ðr2ρÞβ
�
m
r

�
N−β

; ðA9Þ

with β ¼ 0;�1;�2;… For instance, the first few 1PN and
2PN terms of this series are (we start from β ¼ −1 for
reasons explained below)

Λ1ð−1Þ ∼
m2

r4ρ
; Λ1ð0Þ ∼

m
r
; Λ1ð1Þ ∼ r2ρ; ðA10Þ

Λ2ð−1Þ ∼
m3

r5ρ
; Λ2ð0Þ ∼

m2

r2
; Λ2ð1Þ ∼ rρm:

ðA11Þ
2. Terms with α ¼ 1

The α ¼ 1 group of terms can be obtained with the same
procedure. We have

γ þ δ ¼ 2ð1þ βÞ; ðA12Þ
and this leads to terms of the form

Λ ∼ r2pðr2ρÞβ
�
m
r

�
γ

: ðA13Þ

Since r2p is a 2PN term, the resulting N-PN combination
should take the form

ΛNðβÞ ∼ r2pðr2ρÞβ
�
m
r

�
N−2−β

: ðA14Þ

The first few 1PN and 2PN terms generated from this
expression are

Λ1ð−1Þ ∼
p
ρ
; Λ1ð0Þ ∼

r3p
m

; Λ1ð1Þ ∼
r6ρp
m2

;

ðA15Þ

Λ2ð−1Þ ∼
pm
ρr

; Λ2ð0Þ ∼ r2p; Λ2ð1Þ ∼
r5ρp
m

:

ðA16Þ

3. Terms with α ¼ 2

Finally, we consider the α ¼ 2 terms. The corresponding
ΛN combination is

ΛNðβÞ ¼ ðr2pÞ2ðr2ρÞβ
�
m
r

�
N−4−β

; ðA17Þ

and from this we have

Λ1ð−1Þ ∼
r4p2

m2ρ
; Λ1ð0Þ ∼

r7p2

m3
; ðA18Þ

Λ2ð−1Þ ∼
r3p2

ρm
; Λ2ð0Þ ∼

r6p2

m2
: ðA19Þ

4. Generic N-PN-order terms and constraints

It is now not too difficult to see that a N-PN order term
with an arbitrary pα scaling and with Π reintroduced is
given by the universal formula

ΛNðα; β; θÞ ∼ Πθðr2pÞαðr2ρÞβ
�
m
r

�
N−2α−β−θ

: ðA20Þ

As discussed in Sec. III B, different threads of reasoning
lead to the constraint β ≥ −1. The first one has to do with
avoiding a divergence at the stellar surface (this already has
allowed us to filter out all α < 0 terms). An inspection of
the two stellar structure equations reveals that terms with
α ¼ θ ¼ 0 should scale as

ρΛNð0; β; 0Þ ∼ ρ1þβ ðA21Þ
in the vicinity of the surface, and therefore we ought to take
β ≥ −1 in order to avoid a surface singularity. This argu-
ment still allows for β < −1 values in the ΛN terms with
α; θ > 0, since these terms have a smoother profile as a
result of the vanishing of p and Π at the surface.
The second thread is no more than a heuristic argument

and has to do with the expectation that for a broad family of
gravity theories the solution for the metric (and its
derivatives) should scale as ∼ðϵþ τpÞn ¼ ρnð1þ Πþ
τp=ρÞn with the fluid parameters [where τ and n are
Oð1Þ numbers]. From this it follows that negative powers
of ρ will come in the form of dimensionless PN terms
∼ρn−1ðp=ρÞk, where k ¼ n; n − 1;… (note that a factor ρ
has been absorbed by the Newtonian prefactor in the
structure equations). As a consequence, ρ−1 is the only
possible negative power in a PN expansion. Obviously, this
argument automatically takes care of the regularity of any
ΛNðα; β; θÞ term at the surface.
The exclusion of all α ≥ 4 terms comes about as a

consequence of regularity at the stellar center. Near the
origin (where p; ρ;Π take finite nonzero values) a
ΛNðα; β; θÞ term behaves as
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ΛNðr → 0Þ ∼ r2ðN−α−θÞ: ðA22Þ
The corresponding terms in the stellar structure equations
will behave as

dp
dr

∼
ρm
r2

ΛN ∼ r2ðN−α−θÞþ1; ðA23Þ

dm
dr

∼ r2ρΛN ∼ r2ðN−α−θþ1Þ; ðA24Þ

and therefore regularity at the center dictates the following
limits for each equation:

dp
dr

∶ 0 ≤ α ≤ N − θ; ðA25Þ

dm
dr

∶ 0 ≤ α ≤ N þ 1 − θ: ðA26Þ

We can also see that these conditions entail the following
limits for θ:

dp
dr

∶ 0 ≤ θ ≤ N;
dm
dr

∶ 0 ≤ θ ≤ N þ 1: ðA27Þ

For the particular case of 2PN-order terms, we then have

dp
dr

∶ 0 ≤ θ ≤ 2; 0 ≤ α ≤ 2 − θ; ðA28Þ

dm
dr

∶ 0 ≤ θ ≤ 3; 0 ≤ α ≤ 3 − θ; ðA29Þ

which shows that all α ≥ 4 terms are to be excluded and
that α ¼ 3 terms can only appear in the mass equation.

APPENDIX B: THE NEWTONIAN AND
RELATIVISTIC LANE-EMDEN EQUATIONS

In this appendix we review the nonrelativistic and
relativistic Lane-Emden equations. The former equation
is classic textbook material (see, e.g., Ref. [64]) and
therefore is just sketched here. The somewhat less familiar
relativistic extension was developed by Tooper [65,66] and
is discussed in a bit more detail below. Our definition for
the polytropic EOS, i.e., p ¼ Kρ1þ1=n, is the same as the
one adopted in Ref. [66] but is different than the one used in
Tooper’s earlier paper [65], i.e., p ¼ Kϵ1þ1=n. This subtle
difference, combined with the choice between pc=ρc or
pc=ϵc (the “c” index refers to the stellar center) for the scale
of the system, leads to slightly different Lane-Emden
equations.

1. The Newtonian Lane-Emden equation

In Newtonian gravity, one can express the hydrostatic
equilibrium equation for spherical nonrotating stars in
terms of dimensionless parameters for the pressure, the
density, and the radial coordinate. If the EOS is polytropic

(i.e., according to our definition, p ¼ Kρ1þ1=n) the
equations governing the dimensionless quantities are
scale invariant, depending only on the polytropic index
n. By writing the density and the pressure as

θn ≡ ρ

ρc
; p ¼ Kρ1þ1=n

c θnþ1; ðB1Þ

and introducing the dimensionless radial coordinate

r ¼ αξ; α≡
�ðnþ 1ÞK

4πG
ρ−1þ1=n
c

�
1=2

; ðB2Þ

the Newtonian stellar structure equations

dp
dr

¼ −
GmN

r2
ρ; ðB3Þ

dmN

dr
¼ 4πr2ρ ðB4Þ

lead to

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θn: ðB5Þ

This is the famous Lane-Emden equation, and its scale-
invariant solutions describe all possible fluid configurations
in terms of the single parameter n.

2. The relativistic Lane-Emden equations

Generalizing the Lane-Emden formalism to GR is a
straightforward task, but this comes at the price of losing
the scale-invariance property of the Newtonian treatment.
In relativity we can define the polytropic EOS in the same
way as before, where ρ is the baryonic rest mass density.
The polytropic exponent is defined as

Γ ¼ 1þ 1

n
¼ ρ

p
dp
dρ

¼ ϵþ p
p

dp
dϵ

: ðB6Þ

Then the energy density ϵ and the internal energy Π are
given by

ϵ ¼ ρþ np; ðB7Þ

which implies

Π ¼ n
p
ρ
: ðB8Þ

This observation was used in the argument leading
to Eq. (53).
We can now introduce the relativistic version of the

Lane-Emden equations. In analogy with the Newtonian
case we define ρ ¼ ρcθ

n, r ¼ aξ, and p ¼ Kρ1þ1=n
c θnþ1.
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The ratio between the central pressure and the central
energy density,

λ≡ pc

ϵc
¼ Kρ1þ1=n

c

ρc þ nKρ1þ1=n
c

; ðB9Þ

is a convenient measure of the importance of relativistic
effects in the system. Note that our definition deviates from
Tooper’s [66], who prefers to use the ratio pc=ρc.
The energy density is then

ϵ ¼ ρcθ
n þ nKρ1þ1=n

c θnþ1

¼ ϵc½1þ nλðθ − 1Þ�θn: ðB10Þ

We now want to derive a dimensionless form of the TOV
equations (7a) and (7b). The definition of the mass function
mT implies

dmT

dξ
¼ 4πϵca3½1þ nλðθ − 1Þ�θnξ2: ðB11Þ

In terms of the dimensionless mass

m̄≡ mT

a3ϵc
; ðB12Þ

this becomes

dm̄
dξ

¼ 4π½1þ nλðθ − 1Þ�θnξ2: ðB13Þ

From the TOV equation for the pressure we similarly
obtain, after some manipulations,

dθ
dξ

¼ −
m̄
ξ2

ð1 − nλÞ
�
1þ ðnþ 1Þ λ

1 − nλ
θ

�

×

�
1þ λ

4πξ3θnþ1

m̄

��
1 − 2ðnþ 1Þλ m̄

ξ

�
−1
: ðB14Þ

In the present case the characteristic length scale is

a ¼ ½ðnþ 1ÞKρ−1þ1=n
c ð1 − nλÞ2�1=2: ðB15Þ

At this point we would like to define dimensionless
quantities that come from the relativistic Lane-Emden
equations. The central baryonic rest-mass density is related
to λ as [see Eq. (B9)]

ρc ¼ K−nln; l≡ λ

1 − nλ
: ðB16Þ

The factor K−n has units of mass density (or inverse square
length in geometrical units), and therefore the dimension-
less rest-mass density is

ρ̄≡ ρKn ¼ lnθn: ðB17Þ

Similarly, the length scale a takes the form

a ¼ Kn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þl1−n

q
ð1 − nλÞ; ðB18Þ

where Kn=2 has dimensions of length. The dimensionless
radius is defined as

r̄≡ rK−n=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þl1−n

q
ð1 − nλÞξ: ðB19Þ

The remaining dimensionless parameters are

ϵ̄≡ ϵKn ¼
�

ln

1 − nλ

�
½1þ nλðθ − 1Þ�θn; ðB20Þ

μ̄≡mTK−n=2 ðB21Þ

¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þl1−n

q
ð1 − nλÞ�3

�
ln

1 − nλ

�
m̄; ðB22Þ

p̄≡ pKn ¼ lnþ1θnþ1; ðB23Þ

Π ¼ n
p̄
ρ̄
¼ nlθ: ðB24Þ

All of the above dimensionless profiles are functions of ξ,
n, and λ. At variance with the Newtonian treatment, the
relativistic Lane-Emden formalism does not allow for a
simple algebraic mass-radius relation MðRÞ. This is also
related to the fact that the system is not scale invariant, due
to the presence of λ in the equations.

APPENDIX C: THE PPN POTENTIALS

The goal of this appendix is to study the behavior of the
potentials U, E, and Ω appearing in the PPN stellar
structure equations (9a) and (9b), first derived by
Ciufolini and Ruffini [47]. By means of a mass function
redefinition (see Sec. II), these potentials can be eliminated
at 1PN order, but they could still appear at 2PN order and
higher.
Given the 2PN precision of our calculations we can write

these potentials as

UðrÞ ¼ −
Z

r

0

dr0
mN

r02
þ Uð0Þ; ðC1aÞ

EðrÞ ¼ 4π

Z
r

0

dr0r02ρΠ; ðC1bÞ

ΩðrÞ ¼ −4π
Z

r

0

dr0r0ρmN; ðC1cÞ

where all right-hand side quantities are computed in
Newtonian theory. In Eqs. (C1a)–(C1c), mNðrÞ denotes
the Newtonian mass function
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mNðrÞ ¼ 4π

Z
r

0

dr0ρr02 ¼ 4πmb

Z
r

0

dr0nbr02; ðC2Þ

where nb is the baryon number density. The integral
quantities U, E, and Ω represent the system’s gravitational
potential energy, internal energy, and gravitational potential
energy, respectively [34]. They appear as dimensionless PN
terms in the form of reduced potentials: U, E=mN, Ω=mN
[see Eqs. (9a) and (9b)].
The radial profiles of the three potentials inside the star

can be determined by first integrating the Newtonian
hydrostatic equilibrium equations (B3) and (B4) to find
mN and p as functions of r. Using realistic EOS data tables
for pðρÞ, we can subsequently compute the internal density
per unit mass ΠðpÞ and the mass density ρðpÞ ¼ mbnbðpÞ,
and then numerically evaluate the potentials inside the star
by integration.
Some insight into the nature of these potentials can be

obtained by rewriting Eqs. (C1a)–(C1c) in the form

U ¼ mN

r
þ 4π

Z
R

r
dr0r0ρ; ðC3aÞ

E
mN

¼ Π −
1

mN

Z
r

0

dr0mN
dΠ
dr0

; ðC3bÞ

Ω
mN

¼ −
mN

2r
−

1

2mN

Z
r

0

dr0
�
mN

r0

�
2

¼ 4π
r3p
mN

−
12π

mN

Z
r

0

dr0r02p: ðC3cÞ

Note that the integration constant for U has been fixed by
requiring UðRÞ ¼ M=R at the stellar surface, while those
for E andΩ have been set to zero in order to have regularity
of E=mN andΩ=mN at r ¼ 0. The values of the potentials at
the stellar center are

Uð0Þ ¼ 4π

Z
R

0

drrρ;
Ω
mN

ð0Þ ¼ 0;
E
mN

ð0Þ ¼ Πc:

ðC4Þ

From Eqs. (C3a)–(C3c), we can see that E=mN and
Ω=mN are (partially) expressed in terms of the nonintegral
1PN terms

mN

r
;Π;

r3p
mN

: ðC5Þ

This suggests the possibility that the behavior of all three
potentials could be captured by linear combinations of
nonintegral 1PN terms. If true, this would mean that any
2PN term involving U;E=mN, or Ω=mN is effectively
accounted for by the presence of the other terms in the
post-TOV formulas. For instance, this idea can be dem-
onstrated for U and for the special case of a polytropic

system. Starting from Eq. (C1a) and expressing mN in
terms of dp=dr, after an integration by parts and the use of
Eq. (B6) we arrive at

U ¼ ðnþ 1Þ
�
p
ρ
−
pc

ρc

�
þ Uð0Þ: ðC6Þ

We know that for a polytrope Π ¼ np=ρ, which means that
we can also write

U ¼ ðnþ 1Þ
n

ðΠ − ΠcÞ þ Uð0Þ: ðC7Þ

For a polytropic model, therefore, U can be written exactly
as a linear function of p=ρ or Π.
We have verified that U, E=mN, and Ω=mN can be

approximated by similar linear functions for the case of
realistic EOSs. As an illustration, in Fig. 11 we consider a
stellar model built using the APR EOS with a central
mass density of 0.58 × 1015 g=cm3, Newtonian mass
mN ¼ 1.50M⊙, and radius R ¼ 14.8 km. For this model
we plot the radial profiles of U (top panel), E=mN (middle
panel), and Ω=mN (bottom panel). The figure shows that
the profiles of the three potentials can be accurately

Eq.

Eq.

Eq.

FIG. 11 (color online). Integral PN potentials and 1PN terms.
The radial profiles of the integral potentials U, E=mN, and Ω=mN
are well fitted by linear functions of the nonintegral potentials
p=ρ and r3p=mN. In all plots, the radial coordinate is normalized
to the stellar radius R.
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reproduced by linear combinations of the 1PN terms in
Eq. (C5), and that U is reasonably well fit by a linear
function of p=ρ, as suggested by Eq. (C6). This latter fit
breaks down near the surface, but with a different combi-
nation of 1PN terms (namely, Π and r3p=mN) one can
produce a near-perfect fit.

In conclusion, the addition of the integral potentials U,
E=mN, and Ω=mN in the 2PN terms is unnecessary because
their behavior can be captured by linear combinations of
the nonintegral PN terms which are already included in the
post-TOV equations (1a) and (1b).
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