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In this paper, we review the classification of the orbits followed by charged massive test particles in the
gravitational background of the black hole solutions of Einstein-Born-Infeld spacetime. Even though some
features are quite similar to those of Reissner-Nordström spacetime, there are also important differences,
particularly those related to the effective potential governing the orbital motion. Explicit solutions
involving Weierstrass functions are given for a pair of specific scenarios.
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I. INTRODUCTION

In 1872 James Clerk Maxwell unified electricity and
magnetism in a single theory. In Maxwell’s theory of
electromagnetism, the field of a pointlike charge is singular
at the position of the charge. As a consequence, it has
infinite self-energy. To avoid this unattractive feature, in
1934 Born and Infeld [1,2] proposed a nonlinear electro-
dynamics with the goal of obtaining a finite value for the
self-energy of a pointlike charge [2]. In this theory, the
electric field of a point charge is regular at the origin. Also,
its total energy is finite.
In recent years the Born-Infeld action has received

considerable attention due to several reasons. In the context
of superstring theory, for example, the low energy dynam-
ics of D-branes is governed by the Born-Infeld (BI) action
[3]. Also, when analyzing the low-energy effective action
for an open superstring, loop calculations lead to BI type
actions [4]. For detailed discussions on several aspects of
the BI theory in string theory see [5] and [6] for instance.
Other motivations arise from a purely constructive

generalization of Einstein-Maxwell systems. In particular
the extension of the Reissner-Nordström (RN) black hole
solutions in Einstein-Maxwell theory to the charged black
hole solutions in Einstein-Born-Infeld (EBI) theory, with or
without a cosmological constant, has attracted some atten-
tion in recent years. Different aspects of these black holes
have been studied including their thermodynamical proper-
ties, phase transitions, geodetical motion and higher-
dimensional generalizations [7–15].
In this paper, we will focus on the study of the motion of

electrically and magnetically charged test particles in BI
electrodynamics. The black hole solution for EBI gravity
was obtained by García et al. [16] in 1984 and two years
later Demianski [17] found a static spherically symmetric

solution of the EBI equations that is regular at the origin,
the so-called EBIon.
The black hole solution we will consider is well known

as the nonlinear generalization of the RN black hole
solutions characterized by the mass M and the charge Q
of the black hole and the BI parameter b, that is related to
the strength of the electromagnetic field at the position of
the charge, usually to be located at the origin.
In recent years there has been a growing interest in the

study of geodesics of certain black holes [18,19]; in
particular, the RN solution turns out be the ultimate fate
of the gravitational collapse of a very massive star with
electric charge. In this context, the properties of a black
hole including its geodesics and its generalization to
nonlinear electrodynamics is of fundamental interest.
Since we already know the black hole solution that
generalizes the RN solution, it is important to study the
complete classification of orbits for this solution.
There are already some papers written in the literature in

this direction; Bretón discussed in a series of papers the test
particle trajectories for the static-charged EBI black hole
[20,21]. Properties of null geodesics of static charged black
holes in EBI gravity were presented by Sharmanthie [22]
very recently. The aim of our paper is to complete the
discussion about the classification of orbital motion by
analyzing the problem in a more systematic way and by
addressing some issues that had not been discussed before.
This paper is organized as follows: In Sec. II, we review

the EBI solution and discuss the conditions for the
existence of an EBI extreme black hole. The equations
of motion for a test particle with both electric and magnetic
charge moving in EBI spacetime are derived in Sec. III
using the Hamilton-Jacobi formalism and the complete
classification of the trajectories is presented in Sec. IV.
Analytic explicit solutions are given in Sec. V, for both the
radial and angular differential equations of the orbital
motion and in Sec. VI we discuss the issue of observables.
We end up with some remarks in the Conclusions.
Throughout this paper we will use geometrical

units G ¼ c ¼ 1.
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II. EBI SPACETIME

The history of finding solutions to the Einstein equations
of motion coupled to the energy momentum tensor of the
nonlinear electrodynamics of BI [2] goes back to the first
attempt made by Pellicer and Torrence [23]. They found a
static spherical symmetric solution for a point charge
source, which approaches the RN solution at large dis-
tances from the source.
Some years later, Morales [24] found that the Bertotti-

Robinson solution admitted an interpretation in terms of
nonlinear electrodynamics. Soon after, García et al. [16]
found all type-D solutions in the Petrov classification of the
EBI system of equations [16]. Among the solutions they
obtained was the generalized RN black hole metric again,
usually called EBI black hole. In this section we give a
short summary of the way in which the solution is obtained
(for a detailed derivation see [16]).

A. EBI black hole

The action for the gravitational field coupled to a generic
nonlinear electrodynamics is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− LðFÞ
�
: ð1Þ

Here R denotes the curvature scalar obtained from the
metric coefficients gμν, g≡ det jgμνj and LðFÞ is the non-
linear electrodynamics Lagrangian density, which depends
in a nonlinear way on the two invariants of the electro-
magnetic tensor F. For the BI nonlinear electrodynamics
we have explicitly

LBI ¼ b2
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ FμνFμν

2b2
−
ðFμν

~FμνÞ2
4b4

s !
; ð2Þ

where

~Fμν ¼ −
1

2
ffiffiffiffiffiffi−gp ϵμνρσFρσ; ð3Þ

denotes the dual tensor of the electromagnetic tensor
and ϵμνρσ is the totally antisymmetric Levi-Civita tensor.
The parameter b is the maximum electromagnetic field
intensity and has dimensions of ½length�−2. Notice that this
Lagrangian reduces to the Maxwell one in the strong field
limit (b → ∞)

LBIðFÞ ¼ −
1

4
FμνFμν þOðF4Þ: ð4Þ

The full system of equations of motion derived from the
action Eq. (1) is given by the Einstein field equations

Rμν −
1

2
gμνR ¼ 8πTμν; ð5Þ

and the electromagnetic field equations

∇μðFμνL;F Þ ¼ 0: ð6Þ

In the Einstein field equations, Eq. (5), the energy
momentum tensor is given by

Tμν ¼ LBIgμν − FμσFσ
ν ; ð7Þ

and in the conservation laws, Eq. (6), L;F represents the
partial derivative of LBIðFÞ with respect to F.
The static electrically charged black hole solution with

spherical symmetry for the EBI system of equations is well
known, it is given by the metric

ds2 ¼ −Δdt2 þ dr2

Δ
þ r2ðdθ2 þ sin2 θdφ2Þ; ð8Þ

and the radial electric field

Fμν ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 þQ2=b2
p ðδrμδtν − δtμδ

r
νÞ: ð9Þ

The function Δ ¼ ΔðrÞ in Eq. (8) is given by

Δ ≔ 1 −
2M
r

þ 2

3
b2r2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=b2r4

q �

þ 4Q2

3r

Z
∞

r

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þQ2=b2

p : ð10Þ

The last term is an elliptic integral of the first kind,
which in the literature can be found written either in
terms of the Legendre’s elliptic integral: Fðβ; κÞ≡R∞
β ð1 − k2sin2sÞ−1=2ds, or in terms of the hypergeometric
function 2F1ða; b; c; xÞ as follows
Z

∞

r

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þQ2=b2

p ¼ 1

2

ffiffiffiffi
b
Q

s
F

�
arccos

�
br2=Q − 1

br2=Qþ 1

�
;
1ffiffiffi
2

p
�

¼ 1

r 2F1

�
1

4
;
1

2
;
5

4
;−

Q2

b2r4

�
: ð11Þ

For a detailed deduction of Eq. (11) see [25].
In the following we write down the function Δ in terms

of Legendre’s elliptic function [20]

Δ ¼ 1 −
2M
r

þ 2

3
b2r2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=b2r4

q �

þ 2Q2

3r

ffiffiffiffi
b
Q

s
F

�
arccos

�
br2=Q − 1

br2=Qþ 1

�
;
1ffiffiffi
2

p
�
: ð12Þ
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The physical interpretation of the parameters in the
function Δ is the following: M is the mass and Q is the
electric charge of the black hole. The parameter b is the BI
parameter which corresponds to the magnitude of the
electric field at r ¼ 0. The solution can have either zero
(naked singularity), one or two horizons depending on the
values of these parameters. This conclusion is obtained by
simple inspection of the condition Δ ¼ 0.
To have a better understanding on the nature of the

horizons, we have plotted in Fig. 1 the massM as a function
of the horizon radius. For the sake of clarity we have fixed
the value of the BI parameter b and the value of the electric
charge Q as well.
As can be seen from this plot, there is a critical valueM⋆

for the mass of the black hole that leads to different physical
scenarios: first, for values of M < M⋆ we have a naked
singularity; we will not discuss this case any further in this
paper but see [26] for an interesting physical consequence.
For M ¼ M⋆ we have a black hole solution with one
horizon (dashed line) and for values of M > M⋆ we have a
black hole with two horizons; we will denote by rh� the
inner (outer) radii respectively in this case.
The metric in Eq. (8) has the expected limits. In the

strong field limit, b → ∞, we recover the RN black hole
solution in agreement with the Maxwell limit Eq. (4). As
expected in this limit, the radial electric field (9) approaches
the Maxwellian expression of the electric field E ¼ Q=r,
which diverges at the origin. For the function Δ we have

lim
b→∞

Δ ¼ 1 −
2M
r

þQ2

r2
: ð13Þ

As usual, by setting further Q ¼ 0, we obtain also the
Schwarzschild black hole solution. Additionally, we can
obtain the Schwarzschild black hole solution by taking the
weak field limit b → 0 and then Q ¼ 0.
For large values of rwith b ≠ 0 and finite, the functionΔ

becomes the unity and we obtain a flat metric, meaning that

the EBI black hole is an asymptotically flat solution. It is
clear that for small values of the b parameter (b ≪ 1) we
have a black hole solution that looks like very similar to the
Schwarzschild black hole and for large values of b (b ≫ 1)
we have a solution that is very similar to the RN black hole.
As it has been shown in [16], because the BI theory has

the freedom of electromagnetic duality rotations, the EBI
black hole solution can include also a magnetic charge G;
the corresponding solution is obtained simply from the

electric case by the substitution Q →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þG2

p
, i.e., the

general case can be obtained by making this replacement
in all the relevant expressions for the function ΔðrÞ that
appears in the EBI metric, namely Eqs. (10)–(12).

B. Extreme black holes

The necessary and sufficient conditions to have an
extreme EBI black hole solution (rhþ ¼rh−≡rex) are
Δ¼0 anddΔ=dr ¼ 0. Combiningboth conditions,weobtain
fromEq. (12) a constraint that determines the horizon radii rex
for the extreme black hole in terms of the electric charge

1þ 2
�
b2r2ex −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4r4ex −Q2b2

q �
¼ 0; ð14Þ

its solution being given by

r2ex ¼ Q2 −
1

4b2
: ð15Þ

Hence the horizon belonging to the extremeEBI black hole is
determined by the positive root of Eq. (15), i.e.,

rex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −

1

4b2

r
: ð16Þ

This solution is meaningful only if the radicand is positive,
i.e., ifQ > 1=2b.When the radicand is zero, we have the case
of a spacetime singularity. In the caseQ < 1=2bwe obtain a
naked singularity.
It is possible to express the extremality condition as a

function of the formM ¼ Mðb;QÞ by substituting back the
expression of rex in the condition Δ ¼ 0. This gives

MðrexÞ ¼
rex
2

−
b2r3ex
3

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2=b2r4ex

q
Þ

þQ2

3

ffiffiffiffi
b
Q

s
F

�
arccos

	
br2ex=Q − 1

br2ex=Qþ 1



;
1ffiffiffi
2

p
�
: ð17Þ

In the strong field limit, b → ∞, this condition reduces to
the well-known condition for the extremal RN black hole
solution rex ¼ M ¼ Q. Figure 2 shows MðrexÞ as a
function of b for Q fixed. It is clear that for a given value
of Q, the horizon size depends strongly on the choice of b.

0 1 2 3 4
r

1

2

3

4
M

FIG. 1. The mass M of the EBI black hole as a function of r
(Q ¼ 2; b ¼ 5); at M ¼ 0.7 there is only one horizon.
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III. THE ORBITAL EQUATIONS OF MOTION

The EBI solution is described by the metric in Eq. (8). In
the following we will be concerned with the dyon case
where both the electric chargeQ and the magnetic chargeG
of the source are nonvanishing. In this scenario, the field
strength Fμν ¼ Aν;μ − Aμ;ν, and its dual ~Fμν ¼ ~Aν;μ − ~Aμ;ν

are derived respectively from the vector potentials Aμ and
~Aμ; their explicit forms are known from the analysis in [16]
of type-D solutions in EBI spacetime

At ¼ Q
Z

∞

r

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þQ2=b2

p ; Aϕ ¼ −G cos θ;

~At ¼ iG
Z

∞

r

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þQ2=b2

p ; ~Aϕ ¼ iQ cos θ: ð18Þ

The equations of motion of test particles in the EBI
spacetime can be analyzed using the Hamilton-Jacobi (HJ)
equation, which can be constructed from a constant of
motion that we always have at our disposal for geodesics:
metric compatibility implies that along the geodesic path
the quantity

δ ¼ −gμν
dxμ

dλ
dxν

dλ
; ð19Þ

is constant. Of course, for a massive particle we typically
choose λ ¼ τ (proper time), δ ¼ 1, and the above relation
simply becomes m2 ¼ −gμνpμpν. For a massless particle
we always have δ ¼ 0. We will also be concerned with
spacelike trajectories (even though they do not correspond
to paths of particles), for which we will choose δ ¼ −1.
The Hamilton-Jacobi (HJ) equation is given by [27]

m2δ ¼ −gμν
� ∂S
∂xμ
�� ∂S

∂xν
�
: ð20Þ

As we have mentioned, we are interested in studying the
orbital motion of charged particles, both electrically and

magnetically, in EBI spacetime. For this purpose, we
use the minimal coupling prescription defined by pμ →

pμ − qAμ þ ig ~Aμ to account for all electromagnetic inter-
actions; the HJ equation for a test particle with electric
charge q and magnetic charge g is then

m2δ ¼ −gμν
� ∂S
∂xμ − qAμ þ ig ~Aμ

�� ∂S
∂xν − qAν þ ig ~Aν

�
:

ð21Þ

In our case, the Hamiltonian does not depend explicitly on
the coordinates τ and ϕ, i.e., these coordinates are cyclical
and thus there are conserved quantities. This allows us to
consider the following Ansatz

S ¼ −Etþ Lϕþ S1ðrÞ þ S2ðθÞ; ð22Þ

for the action S. The parameter δ, as mentioned before, is
equal to 0 for a massless particle and equal to 1 for a
massive particle. On the other hand, the constants E and L
are identified respectively with the energy and the angular
momentum, along the z direction, of the test particle. As
noted from Eq. (18), the terms qAϕ and q ~Aϕ in Eq. (21)
have a nontrivial dependence on the angular variable θ;
in consequence, even though the EBI metric Eq. (8) is
spherically symmetric, the motion followed by a massive
test particle possesses axial symmetry.
There are two Killing vectors associated with the

stationarity and axisymmetry of the EBI spacetime:

ξμðtÞ ≡ ð∂tÞμ ¼ ð1; 0; 0; 0Þ;
ξμðϕÞ ≡ ð∂ϕÞμ ¼ ð0; 0; 0; 1Þ: ð23Þ

The EBI spacetime also has an irreducible Killing tensor
given by

Kμν ≡ 2r2lðμnνÞ þ r2gμν ¼ 2r2mðμm̄νÞ; ð24Þ

with the null tetrad defined by

lμ ≡ ðr2;Δr; 0; 0Þ=Δr

nμ ≡ ðr2;−Δr; 0; 0Þ=2r2;
mμ ≡ ð0; 0; 1; i= sin θÞ=

ffiffiffi
2

p
r; ð25Þ

where lμnμ ¼ −1 and mμm̄μ ¼ 1 while all the other inner
products vanish. The metric gμν can be written in terms of
the null vectors as gμν ¼ −2lðμnνÞ þ 2mðμm̄νÞ. Here we
have defined Δr ≔ r2Δ.
Leaving aside the effect of self-interaction, a charged

particle in EBI spacetime can be regarded as a test particle
that moves along a path obtained from Eq. (21). The
coordinates of the trajectory tðτÞ; rðτÞ; θðτÞ and ϕðτÞ are all

Q 1

Q 2

Q 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
b

1

2

3

4

5

6
Mex

FIG. 2 (color online). The mass Mex of the extreme EBI black
hole as a function of b.
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parametrized by the proper time τ. Furthermore, there are
three integrals of motion from the symmetries of the EBI
spacetime: the energy E, angular momentum L and Carter
constant K [28], respectively. These are expressed as

E≡ −ξμðtÞpμ ¼ m
Δr

r2
∂t
∂τ þ ΔqIðrÞ;

L≡ ξμðϕÞpμ ¼ mr2sin2θ
∂ϕ
∂τ − Δg cos θ;

K ≡ Kμνpμpμ ¼ p2
θ þ L2

�
cos θ
sin θ

�
2

: ð26Þ

Here IðrÞ is the integral in Eq. (11); the fact that we are
analyzing a charged particle in the vector potential of EBI
spacetime is reflected on the presence of the factors [18]
Δq ≡ ~Gq − ~Qg and Δg ≡ ~Qqþ ~Gg. Because functions of
conserved quantities are also conserved, any function of K
and the two other constants of the motion can be used as a
third constant in place of K. This results in some confusion
as to the form of Carter’s constant. For example, it is
sometimes more convenient to use k ≔ K þ L2 as the
conserved quantity of motion.
For later convenience, we define dimensionless quan-

tities (rs ≔ 2M)

~r ≔
r
rs
; ~t ≔

t
rs
; ~τ ≔

τ

rs
;

~Q ≔
Q
rs
; ~G ≔

G
rs
; ~L ≔

L
rs
: ð27Þ

The use of the Ansatz Eq. (22) in the HJ equation leads to
a differential equation for each coordinate. At this stage, it
is more convenient to parametrize the particle orbit with the
so-calledMino time γ, which is related to the parameter ~τ as
d~τ≡ ~r2dγ [29]. In terms of the Mino time, the first set of
equations of motion are

�
d~r
dγ

�
2

¼ Rð~rÞ;
�
dθ
dγ

�
2

¼ ΘðθÞ; ð28Þ

where

Rð~rÞ ≔ ~r4

m2
½Eþ ΔqIð~rÞ�2 −

~Δr

m2
ðm2δ~r2 þ kÞ; ð29Þ

ΘðθÞ ≔ k
m2

−
1

m2sin2θ
ð ~Lþ Δg cos θÞ2; ð30Þ

meanwhile the second set is

dϕ
dγ

¼ 1

msin2θ
ð ~Lþ Δg cos θÞ; ð31Þ

d~t
dγ

¼ ~r4

m ~Δr

½E − ΔqIð~rÞ�: ð32Þ

In the above expressions the following notation was used
[18]: ~Δr ≡ Δr=r2s and Ið~rÞ is the integral in Eq. (11) after
rescaling. Notice that the θ- and ϕ-equations of motion are
the same as in the RN case.

IV. CLASSIFICATION OF TEST
PARTICLE TRAJECTORIES

We now proceed to solve the HJ Eqs. (28)–(32). They are
rather complicated due to the function R in Eq. (29) and the
function Θ in Eq. (30). These functions depend strongly on
the constants of motion, the metric coefficients and the
charges of the test particle and this in turn will influence the
possible types of orbits that a particle may follow.

A. The θ–motion

The polar angle θ should certainly take only real values.
From Eq. (30), we see that real solutions are allowed if the
condition Θ ≥ 0 holds. This means that k ≥ 0. Using now
the new variable ξ ≔ cos θ, the θ-equation of motion in
Eq. (30) becomes

�
dξ
dγ

�
2

¼ Θξ with Θξ ¼ aξ2 þ bξþ c; ð33Þ

where

a¼−ðkþΔ2
gÞ; b¼−2 ~LΔg; c¼k− ~L2: ð34Þ

It should be noticed that we obtain a quadratic polynomial
on the right-hand side of this equation. It follows that a < 0
since k ≥ 0. The turning points where Θξ vanishes define
the angles of two cones and the motion of test particles is
confined to this region; it has been pointed out before that a
similar feature appears in Taub-NUT and Kerr spacetimes
[30,31]. In the special case when Δg vanishes, the motion
takes place on a plane, as exemplified by the orbits of
electrically charged or neutral particles in RN spacetime.
Let us now focus on the requirement Θξ ≥ 0. We have

first that the zeroes of this polynomial are given by

ξ1;2 ¼ −
~LΔg �

ffiffiffiffiffi
kκ

p

kþ Δ2
g

; ð35Þ

where κ ≔ k − ~L2 þ Δ2
g. Since k ≥ 0, for these zeroes to be

real we must have κ ≥ 0. It can be easily seen that ξ ∈
½−1; 1� and Θξ ≥ 0 are then guaranteed. On the other hand,

the maximum of Θξ is at ð−
~LΔg

kþΔ2
g
; kκ
kþΔ2

g
Þ.

If ~L or Δg were vanishing, then the zeroes would be
symmetric with respect to the line ξ ¼ 0. Physically this
means that only for vanishing ~L or Δg, the motion has a
symmetry with respect to the equatorial plane. As men-
tioned before, motion on a cone is also permissible when
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electric and/or magnetic charges are considered. This
follows from the condition Θξ ¼ 0, which in the general
case admits the two solutions given in Eq. (35). These
values determine the angles θmin and θmax from which the
conicity of the orbit, Δconicity ≔ π − ðθmin þ θmaxÞ, can be
obtained. The essential features of the orbits of the
θ–motion can then be analyzed in quite a similar way as
that given in [18] for the RN spacetime and we shall not
dwell on this.

B. The ~r-motion

We now explore the dynamics on the ~r-coordinate for
massive particles and shall start as for the θ-motion,
namely, we require real values for ~r. Clearly this implies
R ≥ 0. Now, the regions where this condition is satisfied are
bounded by the zeroes of R and we can further analyze
these regions by looking for roots of multiplicity 2 of the
function R. More specifically, we consider the locus
determined by the conditions

R ¼ ~r4

m2
½Eþ ΔqIð~rÞ�2 −

~Δr

m2
ðm2δ~r2 þ kÞ ¼ 0;

dR
d~r

¼ 0: ð36Þ

In a similar way as for the RN case [18], parametric plots
on the ðE; kÞ-plane can be done. For comparison purposes,
we focus only on the Q ¼ 0.3, G ¼ 0.1, q ¼ 0.1, g ¼ 0
situation for different values of the BI parameter b.
As we see in Fig. 3, for b large we recover the RN curves

(dashed red line) and for b small the Schwarzschild limit
(solid black line); the general features of these curves are
similar to the RN case discussed in [18] and can be
analyzed in a similar fashion.
Furthermore, along the lines of [18], we can also

determine the turning points of the orbits followed by
massive particles. From the ~r-equation of motion in
Eq. (28) we have that the constraint

0 ¼
�
d~r
dγ

�
2

¼ ~r4ðE − Vþ
effÞðE − V−

effÞ; ð37Þ

defines an effective potential of the form

V�
eff ¼ −ΔqIð~rÞ �

1

~r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Δrðδ~r2 þ kÞ

q
: ð38Þ

In Figs. 4–7 we show this potential for some values of the
parameters ~Q; ~G; ~q; ~g; k and the BI parameter ~b ≔ r2sb. The
red area shows the Schwarzschild limit ( ~b ≪ 1), the green
area corresponds to the RN limit ( ~b ≫ 1) and the yellow
region is associated to a generic EBI case ( ~b ∼ 0.1–3). It
can be remarked the absence of a barrier wall near the
origin for EBI in Figs. 4 and 7.

FIG. 3 (color online). Distribution of roots of the function R on
the k − E plane showing the transition from Schwarzschild space-
time ( ~b ¼ 1 × 10−6, solid line) to RN spacetime ( ~b ¼ 1 × 106,
dashed line); the regions with 4 zeroes are not indicated.

FIG. 4 (color online). ~Q ¼ 0.4, ~G ¼ 0.25, ~q ¼ 0.05, ~g ¼ 0.1,
k ¼ 4.

FIG. 5 (color online). ~Q ¼ 0.4, ~G ¼ 0.25, ~q ¼ −4, ~g ¼ 0.1,
k ¼ 0.2.
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V. SOLUTION OF THE ORBITAL EQUATIONS
OF MOTION

We now proceed to discuss some analytical solutions
to the equations of motion Eqs. (28)–(32). For simplicity
we consider only the electric case knowing that the
general case can be discussed using the replacement

Q →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ G2

p
in the final expressions.

A. Solution of the ~r-equation of motion

Given the complexity of the functions Rð~rÞ and ΘðθÞ,
analytical solutions in terms of elementary functions are not
known, in fact, since the expression for the metric coef-
ficients gtt and grr involve hypergeometric functions, the
standard procedure of studying the roots of a polynomial to
determine a solution to the radial equation of motion cannot
be implemented here. However, there are two cases for
which it is possible to simplify the equations in such a
way that explicit analytical solutions can be found using

Weierstrass’ function; in the following we discuss these
particular situations where explicit details can be worked
out: the Schwarzschild and the RN limit.

1. Case Q=b ≫ r2

This case corresponds to the Schwarzschild limit b → 0.
The function Δr has the expression

Δr ¼ r2 − 2Mrþ 2b2r
Z

∞

r
ds
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s4 þQ2=b2
q

− s2
�
:

ð39Þ

Using now the relation [25]

Z
∞

r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þ r40

q
− s2

�
ds

¼ 1

3
r3
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r40=r

4

q �
þ 2

3
r40

Z
∞

r

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s4 þ r40

p

≃ r30
6
ffiffiffi
π

p Γ
�
1

4

�
2

− r20r −
1

10

r5

r20
þOðr9Þ; ð40Þ

with r40 ≔ Q2=b2, we obtain

Δr ¼ −2ðM −MmÞrþ ð1 − 2bQÞr2 þOðr6Þ; ð41Þ

where we have defined

Mm ≔
1

6

ffiffiffi
b
π

r
Q3=2Γ

�
1

4

�
2

: ð42Þ

It follows that

~Δr ¼ ~rð ~M − 1Þ þ ð1 − 2~b ~QÞ~r2; ð43Þ

with ~M ¼ Mm=2M. Let us now define

b1 ≔ ~M − 1; b2 ≔ 1 − 2~b ~Q; ð44Þ

then the ~r-equation of motion becomes

�
d~r
dγ

�
2

¼ ~r4
�
EþΔq

~r

�
2

−ðb1 ~rþb2 ~r2Þðδ~r2þkÞ; ð45Þ

or equivalently

�
d~r
dγ

�
2

¼ a1 ~rþ a2 ~r2 þ a3 ~r3 þ a4 ~r4; ð46Þ

where

a1 ¼ −b1k; a2 ¼ Δ2
q − b2k;

a3 ¼ 2ΔqE − b1δ; a4 ¼ E2 − b2δ: ð47Þ

FIG. 7 (color online). ~Q ¼ 0.4, ~G ¼ 0.25, ~q ¼ 0.025, ~g ¼ 0.1,
k ¼ 2.7.

FIG. 6 (color online). ~Q ¼ 0.4, ~G ¼ 0.25, ~q ¼ 4, ~g ¼ 0.1,
k ¼ 0.2.
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Notice the dependence of the coefficients a0is on the BI
parameter: for ~b ¼ 0 we have b1 ¼ −1 and b2 ¼ 1. By
making now the change of variable ~r ¼ 1=x, Eq. (46) can
be cast as the differential equation

�
dx
dγ

�
2

¼ a1x3 þ a2x2 þ a3xþ a4: ð48Þ

We have obtained then a polynomial on the right-hand side
of this equation of third order on x. Finally, through the
defining relation

x ≕ 4y=a1 − a2=3a1; ð49Þ

we obtain the standard form of the Weierstrass differential
equation

�
dy
dγ

�
2

¼ 4y3 − g2y − g3; ð50Þ

with corresponding parameters

g2 ¼
a22
12

−
a1a3
4

; g3 ¼
a1a2a3
48

−
a32
216

−
a0a23
16

: ð51Þ

Equation (50) is of elliptic type and its solution is well
known, it is given by the Weierstrass function

yðγÞ ¼ ℘ðγ − γ0in; g2; g3Þ; ð52Þ

and hence, the ~r-equation of motion has the solution

~r ¼ a3
4℘ðγ − γ0in; g2; g3Þ − a2

3

: ð53Þ

2. Case ~b → ∞
The situation here corresponds to the RN limit. In this

case we proceed as above but before doing it we must
analyze the behavior of the function ~Δr. Figure 8 shows
this function for small and large values of the parameter
~b ¼ r2sb and ~Q ¼ ffiffiffiffiffiffiffi

0.2
p

.
It can be remarked that for ~b large and strictly positive

values of ~r, the function ~Δr has a similar behavior as that of
a quadratic polynomial on ~r with two real roots. We write
then the expression

~Δr ¼ ð~r − rh−Þð~r − rhþÞ; ð54Þ

which corresponds to a quadratic polynomial, its roots
being located at the inner and outer event horizons rh− and
rhþ , respectively. The dependence on the BI parameter b is
coded in the locations of these two horizons; they become
the standard RN horizons in the limit b → ∞. Using this
expression we have

�
d~r
dγ

�
2

¼ ~r4E2 þ 2~r3Δq þ ~r2Δ2
q

− ð~r − rh−Þð~r − rhþÞðkþ δ~r2Þ; ð55Þ

or equivalently

�
d~r
dγ

�
2

¼ a0 þ a1 ~rþ a2 ~r2 þ a3 ~r3 þ a4 ~r4; ð56Þ

where

a0 ¼ −krh−rhþ ; a1 ¼ −kðrh− þ rhþÞ;
a2 ¼ ðΔ2

q − k − δrh−rhþÞ;
a3 ¼ ½2EΔq − δðrh− þ rhþÞ�;
a4 ¼ ðE2 − δÞ: ð57Þ

We now proceed as before. First, we make the change of
variable ~r ¼ � 1

x þ ~rR, where ~rR is one of the roots of the
quartic polynomial

a0 þ a1 ~rþ a2 ~r2 þ a3 ~r3 þ a4 ~r4 ¼ 0; ð58Þ

and in consequence we arrive to

�
dx
dγ

�
2

¼ b0 þ b1xþ b2x2 þ b3x3; ð59Þ

where

b0 ¼ a4; b1 ¼ a3 þ 4a4 ~rR;

b2 ¼ a2 þ 3a3 ~rR þ 6a4 ~r2R;

b3 ¼ a1 þ 2a2 ~rR þ 3a3 ~r2R þ 4a4 ~rR: ð60Þ

The further change of variable

FIG. 8 (color online). The function ~Δr for different values of the
dimensionless parameter ~b ¼ r2sb; the solid line corresponds to
the RN spacetime with ~Q ¼ ffiffiffiffiffiffi

0.2
p

.
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x ≕ ð4y − b2=3Þ=b3; ð61Þ

allows us to obtain

�
dy
dγ

�
2

¼ 4y3 − g2yþ g3; ð62Þ

where

g2 ¼
b22
12

−
b1b3
4

; g3 ¼
b1b2b3
48

−
b32
216

−
b0b23
16

: ð63Þ

Equation (62) is again Weierstrass’ differential equation
and therefore we can write immediately

~r ¼ � b3
4℘ðγ − γ0in; g2; g3Þ − b2

3

þ ~rR; ð64Þ

as the solution to the ~r-equation of motion in this case.
Summarizing, in this subsection and the previous one we

have considered the Schwarzschild and RN limit of the
generic EBI black hole solution. To obtain these results, we
could have proceeded in a different way. For instance, we
could have performed a perturbative analysis in these
two cases, taking the RN solution as the unperturbed
solution. We did not follow this path because we know
the exact solution in EBI spacetime and moreover, the
equation of motion involving the correction can be cast into
Weierstrass’ differential equation. In both cases the depend-
ence on the BI parameter is encoded in the coefficients of
the cubic polynomial appearing in the Weierstrass equation
and we certainly recover the known results in the literature
[18] in the limits b → 0 and b → ∞.
It is worth mentioning that knowledge of the exact EBI

black hole solution is not a trivial issue. For instance, as far
as we know, it is still a challenge to obtain a rotating black
hole solution for the EBI system, in such a way that in the
proper limit, we can recover the Kerr-Neumann black hole.
In this case only a perturbed solution for small rotations is
known [32] but not the generic solution.

B. Solution of the θðγÞ–equation
The solution of Eq. (33) with a < 0 and D > 0 can be

obtained in a straightforward way and it is given by the
elementary function

θðγÞ ¼ arccos

�
1

2a
ð
ffiffiffiffi
D

p
sinð ffiffiffiffiffiffi

−a
p

γ − γϑinÞ − bÞ
�
; ð65Þ

where γϑin ¼
ffiffiffiffiffiffi
−a

p
γin − arcsinðγinþbffiffiffi

D
p Þ, γin is the initial value

of γ and D ≔ 4kκ.

C. Solution of the ϕðγÞ–equation
Equation (31) can be simplified by using the θ-equation

of motion and the change of variable ξ ¼ cos θ. We have
thus

dϕ ¼ −
dξffiffiffiffiffiffi
Θξ

p ~L
1 − ξ2

−
ξdξffiffiffiffiffiffi
Θξ

p Δg

1 − ξ2
; ð66Þ

whereΘξ is given in Eq. (33). The resulting equation can be
easily integrated and the solution for a < 0 and D > 0 is
given by

ϕðγÞ ¼ 1

2
ðIþ þ I−Þ

����
ξðγÞ

ξin

þ ϕin; ð67Þ

where

I� ≔ −sgnð ~L� ΔgÞ arcsin
fffiffiffiffi
D

p ;

f ≔
kþ κ − ð ~L� ΔgÞ2∓ðkþ κ þ ð ~L� ΔgÞ2Þξ

ξ∓1
: ð68Þ

Here sgnðzÞ means the sign function.
For the special case k ¼ ~L2 and ~L ¼ �Δg, the solution

reduces to the simple form

ϕðγÞ ¼ 1

2

�
sgnð ~LÞ arcsin 1� 3ξ

ξ∓1

�����
ξðγÞ

ξin

þ ϕin; ð69Þ

where ϕin ≔ ϕðγinÞ. The θ and ϕ-motions are actually the
same as those obtained by Grunau and Kagramanova [18].

VI. OBSERVABLES

In this section we calculate the periastron shift associated
to the paths of test particles moving in EBI spacetime. Let
us consider for simplicity the case of neutral test particles
(q ¼ g ¼ 0) and, as a further reduction, we take θ ¼ π=2,
i.e., we restrict the motion to the equatorial plane. Then
from Eqs. (28)–(32), we deduce that the above value of
θ is admissible provided that k ¼ ~L2; in the following we
assume this relation.
We now follow the classical argument found in text-

books of general relativity leading to the perihelion shift.
From the HJ equation we have

�
~L
~r2

d~r
dϕ

�2

¼ E2 −
~Δr

~r2

�
m2 þ

~L2

~r2

�
; ð70Þ

or, after the change of variable ~u ≔ 1=~r,

�
L
d ~u
dϕ

�
2

¼ E2 − Fð ~uÞðm2 þ ~L2 ~u2Þ; ð71Þ
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where

Fð ~uÞ ≔ 1 − ~uþ 2

3

~b2

~u2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

~Q2 ~u4

~b2

s !

þ 4

3
~Q2 ~u22F1

�
1

4
;
1

2
;
5

4
;−

~Q2 ~u4

~b2

�
: ð72Þ

The derivative of Eq. (71) with respect to ϕ gives then

d2 ~u
dϕ2

¼ − ~uFð ~uÞ − 1

2

dFð ~uÞ
d ~u

�
m2

~L2
þ ~u2

�
: ð73Þ

The RN limit is obtained by letting ~b → ∞; thus

Fð ~uÞ ∼ 1 − ~uþ ~Q2 ~u2 −
~Q4 ~u6

20~b2
; ð74Þ

to lowest order on negative powers of ~b. Using this
expression we arrive to

d2 ~u
dϕ2

¼ m2

2 ~L2
− ~uþ 3

2
~u2 −

m2 ~Q2

~L2
~u − 2 ~Q2 ~u3

þ 3m2 ~Q4

20~b2 ~L2
~u5 þ

~Q4

5~b2
~u7; ð75Þ

or equivalently

d2u
dϕ2

þ u ¼ M
h2

þ 3Mu2 −
Q2

h2
u − 2Q2u3

þ 3

80

Q4

h2b2M2
u5 þ 1

20

Q4

b2M2
u7; ð76Þ

where h ≔ L=m is the angular momentum per unit mass
of the test particle and u ≔ 1=r. The Newtonian orbit is
obtained by solving this differential equation with only the
constant term on the right-hand side; the standard relativ-
istic correction is given by the second term. The RN
correction is determined by the third and fourth terms
involving only the charge ~Q and the BI correction is given
by the fifth and sixth terms.
To get a feeling of the modification to the perihelion of

the test particle, let us consider the case of a test particle
with h such that ϵ ≔ 3M2=h2 is a small number; as it is well
known, this is the situation for Mercury’s perihelion.
Assuming the following Ansatz for the solution

u ¼ u0 þ ϵu1 þ ϵ2u2 þOðϵ3Þ; ð77Þ

we obtain

d2u0
dϕ2

þ u0 ¼
M
h2

;

d2u1
dϕ2

þ u1 ¼
h2

M
u20 −

1

3
ξ2u0 −

2

3
ξ2h2u30 þ

1

80

ξ4

b2
u50

þ 1

60

h2ξ4

b2
u70

d2u2
dϕ2

þ u2 ¼
1

16

ξ4u40
b2

u1 þ
7

60

ξ4h2u60
b2

u1

−
1

3
ξ2u1 þ

2h2

M
u0u1 − 2h2ξ2u20u1; ð78Þ

where we have defined ξ ≔ Q=M. In consequence the BI
correction is of second order on ϵ, which is of higher order
than the Newtonian and RN contribution.
Alternatively, we could have started from Eqs. (28)–(32),

with θ ¼ π=2, to obtain

�
d~r
dϕ

�
2

¼ ~r4

~L2

�
E2 −

~Δr

~r2

�
m2 þ

~L2

~r2

��
≕ Rϕð~rÞ: ð79Þ

The periastron shift is then calculated from

Ωp ¼ 2

Z
~ra

~rp

d~rffiffiffiffiffiffiffiffiffiffiffiffi
Rϕð~rÞ

p − 2π: ð80Þ

This follows straightforwardly from Eq. (70). In the limit
b → ∞, we have for the function Rϕ

Rϕð~rÞ ¼
~r4

~L2

�
E2 −

�
1 −

1

~r
þ

~Q2

~r2
−

~Q4

20~b2 ~r6

��
1þ

~L2

~r2

��
:

ð81Þ

Let us find an explicit expression for the perihelion in the
case of small charge Q with b ≫ 1; we look then for a
solution to Eq. (76) of the form

u ¼ M
h2

ð1 − e cosΩϕÞ: ð82Þ

Then, by demanding that after substitution the coefficients
of cosΩϕ on the left and right-hand side of the differential
equation coincide, we obtain

1 − Ω ¼ 3
M2

h2
−
1

2

Q2

h2
− 3

M2Q2

h4
þ 3

32

M2Q4

b2h10
þ 7

40

M4Q4

b2h12

¼ ϵ −
1

6

Q2

M2
ϵ −

1

3

Q2

M2
ϵ2 þ 1

32 · 34
Q4

M4

1

M4b2
ϵ5

þ 7

40 · 36
Q4

M4

1

M4b2
ϵ6: ð83Þ

The first two terms on the right-hand side of this expression
are recognized as the standard perturbations in RN
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spacetime; the remaining three terms are corrections of
higher order on ϵ and those depending on the BI parameter
b vanish in the limit b → ∞. This agrees with our remarks
after Eq. (78). For a Sun-like star we have the estimate [33]

Q
M

¼ 2πϵ0Gðmp −meÞ
qe

; ð84Þ

where ϵ0 is the vacuum permittivity, G is Newton’s
constant, mp the mass of the proton, me the mass of the
electron and qe its electric charge. For ϵ ¼ 3M2=h2 we take
the value 7.98765 × 10−8 which gives Mercury’s relativ-
istic perihelion shift of 42.9818 seconds of arc per century.
Using this we see from Eq. (83) that the coefficient of ϵ in
the second term is of order 10−38, the coefficient of ϵ2 is
also of order 10−38 and the coefficient of ϵ5 is of order
10−77 × ðM4b2Þ−1, being the same for the coefficient of ϵ6.
Due to the smallness of ϵ, the corrections due to the BI
parameter will be negligible, even if ðM4b2Þ−1 ∼ 1069; the
same considerations apply to the modifications on the
radius orbit due to the BI parameter.
Motion on the equatorial plane is also allowed in the

presence of electric and magnetic charges. For this to
happen the value θ ¼ π=2, should be an admissible value of
the polar angle consistent with the equations of motion.
From Eq. (30), the θ-equation of motion, we see that this
will be true provided k ¼ ~L2, the same condition as for
neutral particles. Actually, the above results can be gen-
eralized following [18,34]; we have first the general
expression

ΔP ¼ ðϒϕ −ϒ~rÞ=Γ; ð85Þ

for the perihelion shift where

Λ~r ≔ 2

Z
~ra

~rp

d~rffiffiffiffiffiffiffiffiffi
Rð~rÞp ;

Λθ ≔ 2

Z
θmax

θmin

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ;

ϒ~r ≔
2π

Λ~r
;

ϒϕ ≔
2

Λθ

Z
θmax

θmin

ΦθðθÞffiffiffiffiffiffiffiffiffiffi
ΘðθÞp dθ;

Γ ≔
2

Λ~r

Z
~ra

~rp

T ~rð~rÞffiffiffiffiffiffiffiffiffi
Rð~rÞp d~r: ð86Þ

The integrals on the radial variable r are evaluated from the
periapsis rp to the apoapsis ra and correspondingly, those
involving the polar angle θ from θmin to θmax. The functions
RðrÞ and ΘðθÞ in the above integrals were defined
previously; the functions ΦθðθÞ and TrðrÞ are given by
the right-hand sides of Eqs. (31)–(32), respectively, i.e.

ΦθðθÞ ≔
1

msin2θ
ð ~Lþ Δg cos θÞ;

T ~rð~rÞ ≔
~r4

m ~Δr

½E − ΔqIð~rÞ�: ð87Þ

The values

Λθ ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ Δ2

g

q ; Υϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ Δ2

g

q
; ð88Þ

can readily be found using the change of variable ξ ¼ cos θ
and thus

ΔP ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ Δ2
g

q
−
2π

Λ~r

�
1

Γ
: ð89Þ

No Lense-Thirring effect is present in BI spacetime since
physically the solution is describing a nonrotating black
hole; this conclusion can also be reached by looking at the
θ- and ϕ-equations of motion and noting that they are the
same as in the RN case, where this effect is absent. More
precisely, we have that

ΔLT ≔ ðϒϕ −ϒθÞ=Γ; ð90Þ

vanishes because

ϒθ ≔
2π

Λθ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ Δ2

g

q
; ð91Þ

has the same value as ϒϕ.

VII. CONCLUSIONS

In this work we have analyzed the orbital motion of
charged test particles for the EBI spacetime. We have seen
that even though BI electrodynamics has a more compli-
cated Lagrangian, the orbits followed by charged massive
particles admit a decomposition similar to that of the RN
spacetime.
The main difference between these two spacetimes is

encoded into the function ~Δr, which in the EBI case
involves a hypergeometric function. This has a nontrivial
influence on the motion of particles.
As seen from Figs. 4–7, the RN effective potential is

closer in appearance to the typical EBI effective potential,
however some differences are noticeable depending on the
value of the parameter k. In particular from Figs. 4 and 7,
we can deduce that a charged particle can fall to the origin
in the EBI case since there is no barrier wall near the origin,
meanwhile this will not happen in the RN scenario where
there is always a barrier wall for small values of ~r.
Obviously in the Schwarzschild case a massive particle
can fall to the origin but in that case there is not electric or
magnetic charge involved.
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Another noteworthy feature from the orbital motion in
EBI spacetime can be inferred from Figs. 5 and its mirror
image Fig. 6. In the RN spacetime, there are some values of
Veff in the interval 4.6–4.8 for which a closed orbit is
possible. These orbits disappear in the EBI case, being
replaced by unbounded trajectories. Furthermore, for some
orbits a turning point in the RN spacetime can be closer to
the origin than the corresponding one in EBI spacetime and
vice versa.
We have also analyzed two extremes cases where ana-

lytical results can be obtained. In both situations the radial
equation of motion is amenable, after a series of trans-
formations, to the differential equation satisfied by the
Weierstrass function. In this way a full explicit solution is
obtained. Furthermore, the periastron shift in BI spacetime
was analyzed in the limit b → ∞ following standard calcu-
lations and the corrections due to the BI parameter are very
small for Sun-like stars. The Lense-Thirring effect was also
shown to vanish as expected in a nonrotating metric.

The above results may be generalized to the case of a
slowly rotating BI black hole [32], where the Lense-
Thirring effect should be present; in this case since we
do not have a generic black hole solution for any angular
velocity, a perturbative treatment of the equations of motion
will be necessary.
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