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Recently, a family of exact force-free electrodynamic (FFE) solutions was given by Brennan, Gralla and
Jacobson, which generalizes earlier solutions by Michel, Menon and Dermer, and other authors. These
solutions have been proposed as useful models for describing the outer magnetosphere of conducting stars.
As with any exact analytical solution that aspires to describe actual physical systems, it is vitally important
that the solution possess the necessary stability. In this paper, we show via fully nonlinear numerical
simulations that the aforementioned FFE solutions, despite being highly special in their properties, are
nonetheless stable under small perturbations. Through this study, we also introduce a three-dimensional
pseudospectral relativistic FFE code that achieves exponential convergence for smooth test cases, as well as
two additional well-posed FFE evolution systems in the appendix that have desirable mathematical
properties. Furthermore, we provide an explicit analysis that demonstrates how propagation along
degenerate principal null directions of the spacetime curvature tensor simplifies scattering, thereby
providing an intuitive understanding of why these exact solutions are tractable, i.e. why they are not
backscattered by spacetime curvature.
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I. INTRODUCTION

Force-free electrodynamics [1–3] (FFE) is a simplifica-
tion to the joint electromagnetic and plasma dynamics that
is applicable in the limit of magnetic domination. Within
FFE, the inertia of the plasma is neglected, so that the
equation of motion for the plasma is not required to close
the set of evolution equations. This leads to a significant
reduction in computational complexity, with the presence
of the plasma becoming a nonlinear modification to the
vacuum Maxwell equations. Astrophysically, FFE is rec-
ognized as the appropriate limit for describing the magneto-
spheres of black holes [1] and particularly neutron stars [2],
where one can find intense magnetic fields of 108–1015

gauss accompanied by charged particles supplied by
electron-positron pair production [1,4]. FFE is an integral
part of most proposed mechanisms for extracting rotational
energy from neutron stars [2] or black holes [1,5], and
electromagnetic dominance (over gas dynamics) is
argued to be valid in all ultrarelativistic outflows [6]. For
instance, the jets in quasars and active galactic nuclei [7] or
gamma-ray bursts [8] are generally simulated using the
FFE approximation. To understand these astrophysical
phenomena, it is therefore important to analytically (e.g.
Refs. [7,9–12]) and numerically (e.g. Refs. [13–28]) study
the solutions to the FFE equations.
One step in this direction was achieved recently with the

presentation of a family of analytical solutions in Kerr

spacetime by Brennan, Gralla and Jacobson [12], which
combines and generalizes some earlier solutions by Michel
[10,29], Menon and Dermer [9], and puts them in a
language more accessible to relativists. It has been sug-
gested that these solutions (containing nonlinear ingoing or
outgoing waves) can describe astronomical systems such as
the outer magnetosphere of a pulsar [12,30,31], describing
the mechanism for transporting energy extracted from the
interior regions towards infinity. Because the FFE equa-
tions are highly nonlinear, analytical solutions are relatively
rare (see Refs. [32–35] for some additional solutions in
extremal Kerr spacetime), so it is worthwhile to examine
these solutions in greater detail, especially those aspects
related to their applicability to real astronomical problems.
For the benefit of finding further exact solutions, it is also
interesting to study the properties that make these known
solutions tractable.
A remarkable feature of these solutions is that their wave

contents are not backscattered1 by the spacetime curvature,
a fact that significantly simplifies the analysis, and in no
small part contributes to the possibility of expressing
these solutions in closed form. Such scattering-avoidance

1In this paper, we will refer to “backscattering” as the
scattering capable of altering the propagation direction of the
waves, or introducing a Coulomb component where initially there
was none.
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behavior is not typical among waves traveling in a curved
spacetime; generically the waves will scatter against the
spacetime curvature and travel inside (as well as on) the
null cones. In addition to not being scattered by spacetime
curvature, these solutions are also not backscattered by
nonlinear electromagnetic interactions, which makes them
particularly efficient channels of energy transfer. A ques-
tion then naturally arises: does the physical specialness and
mathematical simplicity of these solutions equate to fra-
gility? In other words, are these solutions stable under
initial perturbations? The answer to this question is critical,
as a negative answer would mean that these solutions do not
describe realistic astronomical systems that are always
subject to perturbing influences from their surrounding
environments If these solutions represent “repellers” in the
FFE solution space, then one would expect that a small
perturbation in the initial data will quickly drive the
physical system away from them and perhaps establish
alternative, physically less special and less efficient energy
transportation channels. Even worse, if uncontrolled
growth in the magnitude of the perturbations appears
due to the presence of unstable modes, it would be a sign
that the mathematical model may be intrinsically inad-
equate for describing real physics.
On the topic of stability of force-free and magneto-

hydrodynamical configurations, there is a rich and impres-
sive list of literature on the structure (see e.g. Refs. [36–41])
and stability of jets. Researchers have examined in detail
the various instability types that could alter the jet structure
or even disrupt it. For example, Refs. [42–56] examined
various types of current-driven instabilities, providing
important observations such as that instabilities can change
the current density in the jets [50,52], forming structures
that can heat and accelerate particles, and that increased
magnetization tends to have a stabilizing effect [57]. Other
instability types in jets such as Kelvin-Helmholtz and
pressure-driven modes have also been the subject of intense
studies (see for example Refs. [58–67]). Currently, a
consensus on the reason behind the remarkable stability
of observed and numerically simulated (see e.g.
Refs. [15,68–70]) jets is still lacking [71], and will continue
to be a fascinating area of research.
In this paper, we tackle a rather different problem.
(1) We do not examine collimated jets, but rather more

isotropic radiation which appears to contribute to a
significant [26] or even dominant [27] portion of the
energy budget in the radiation emitted by e.g. a
binary black hole system inside a common mag-
netosphere. This type of radiation has received
less attention previously, but the particular scatter-
avoiding solutions we examine, if stable (their
stability has not been examined before), may prove
to be a preferred (as it is the most efficient, without
backscattering of energy flux) channel through
which isotropic energy flux escapes through the

magnetosphere, thus providing us with a perfect
entry point for further research. Because a large
pulse of isotropic radiation is emitted during the
merger phase of a black hole binary [26], which can
potentially be picked up by observers on Earth, such
research should have relevance for multimessenger
(gravitational and electromagnetic wave) astronomy.

(2) Because these solutions are envisaged to be the
couriers that carry energy across magnetospheres
of black holes or neutron stars, relativistic effects
would become important, so our analysis will
necessarily have to take spacetime curvature into
account. In contrast, most of the previous studies on
jet stability assume flat spacetime, as jet disruption
does not occur until very far from the central
compact object.

(3) We are examining global (while jet stability studies
concentrate on the vicinity of the jets) solutions, and
so there are subtle new instability types that may
emerge. For example, there is no globally regular
vacuum counterpart to the solutions we examine
[12,72], so does that mean singularities similar to
those seen in the vacuum case would generically
develop even in the force-free case when we in-
troduce perturbations? This subtle potential insta-
bility, whose underlying source is global in nature,
would not have been included in the consideration of
typical severe plasma instabilities. On the other
hand, the solutions we examine do not have extreme
features such as a jet boundary, so they are likely less
prone to many instabilities that a jet would suffer. In
fact, a cursory glance gave us no reason to strongly
expect these typical plasma instabilities to severely
impact these solutions (we caution however, due to
different assumptions regarding the structure of the
solution and the nature of the plasma, jet stability
results may not be directly applicable to the
present study).

(4) Whereas previous studies mostly concentrate on the
stability of a physical feature (i.e. jets), we examine
the more restrictive case of the stability of a
particular family of exact analytical solutions.
Therefore, even though physical processes that
slightly alter the exact structure of the jets—but
do not disrupt it—may not be regarded as serious
instabilities, they would in our case be necessarily
recognized as a problem, as they would nudge the
actual physical configurations away from being
precisely the same as the exact solutions.

A consideration of all possible instabilities to an ana-
lytical solution is exemplified by the study of Kerr metric
stability (see e.g. Ref. [73] for a summary). The problem
can be attacked by first studying the mode stability (see e.g.
Ref. [50] for an example in the context of jet stability
studies) through solving linearized perturbation equations
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assuming separable solutions. For example, a recent paper
[74] studying perturbations of magnetic monopole and
Blandford-Znajek solutions showed no unstable individual
FFE modes.2 It is then an arduous task to further prove
linear stability, as it is not guaranteed that all linear
perturbations can be decomposed into such modes, or that
the sum of infinitely many stable individual modes remains
stable [73]. A proof for full nonlinear stability is more
difficult still. On the other hand, while a rigorous proof is
currently out of reach, important evidence of nonlinear
stability can often be found using fully nonlinear numerical
simulations. For example, several studies of the numerical
robustness of the Blandford-Znajek process can be found in
Refs. [15,68–70]. Indeed, the ability to examine stability is
cited as one of the principal motivations for developing
fully time-dependent numerical FFE codes [17,75]. In this
paper, we adopt this more accessible numerical approach to
studying nonlinear stability.
This paper is organized as follows: We begin by

introducing the force-free equations in curved spacetimes,
as well as the details of the exact analytical solutions that
we examine in Sec. II. We then introduce in Sec. III a new
pseudospectral numerical code, used for our stability study.
We also present several nontrivial tests demonstrating that
the code achieves exponential convergence. Then in
Sec. IV, we evolve a constraint-free perturbed initial data
set, and show that the exact analytical solutions are in fact
stable, despite their physical specialness. In Sec. V, we
provide some derivations and arguments that provide an
intuitive explanation as to why the analytical solutions are
not backscattered by spacetime curvature (this section is
not necessary for understanding the numerics described in
the earlier sections, and utilizes spinors extensively; there-
fore, readers who are only interested in the numerical
aspects of this paper do not need to review Sec. V). Finally,
although not used in the numerical studies in this work, we
also provide in Appendix B a couple of force-free evolution
systems that have improved well-posedness properties.
In this paper, we adopt geometrized units withG¼ c¼ 1

and use ð−þþþÞ for the metric signature. The beginning
of the lower-case latin alphabet will be used to denote
spacetime indices, and the middle of the alphabet denotes
spatial indices. Capital latin letters will denote spinor
indices, while greek letters will index different quantities
in different sections, whose meaning will be clear from
their context. Bold-faced letters will denote vectors and
tensors. The numerical work in this paper is carried out

within the pseudospectral code infrastructure of the
Spectral Einstein Code (SpEC) [76].

II. THE FORCE-FREE EQUATIONS
AND THEIR EXACT SOLUTIONS

A. Some useful definitions

In this paper, we will use the 3þ 1 form of the metric

ds2 ¼ −N2dt2 þ gijðdxi þ βidtÞðdxj þ βjdtÞ; ð2:1Þ

where N is the lapse, β is the shift, and g is the (spatial)
metric for the spatial hypersurfaces of constant t. The
extrinsic curvature K of these spatial hypersurfaces is
given by

ð∂t − LβÞg ¼ −2NK; ð2:2Þ

which is a spatial tensor depending on both the geometry
(metric) of the overall four-dimensional spacetime and the
way we slice it. For example, the extrinsic curvature of a
Minkowski spacetime can be nonvanishing if one picks
unusual slicings. The operator on the left-hand side of
Eq. (2.2) is the derivative along the normal vector ta to the
spatial hypersurfaces.
When there is an electromagnetic field represented by

the Faraday tensor F, we can also break it down into a 3þ 1
form, which will then allow us to write the force-free
evolution and constraint equations in terms of spatial
tensors in the next section. These equations will then
resemble those used in the numerical study of the
Einstein equation, and can be handled with the same
code infrastructure. We define the electric and magnetic
vectors as

Ea ¼ Fabtb; Bd ¼ 1

2
ϵabcdFabtc: ð2:3Þ

Note that although we have written them as 4-vectors in the
definitions, they are really only spatial vectors with E0 and
B0 vanishing. We will denote them as 3-vectors E and B
below, with the understanding that a projection into the
spatial slices has been taken. Within the spatial slices, we
will also use traditional vector calculus notations to
simplify expressions, with, for example

E ·B≡ EiBjgij; ðE ×BÞi ≡ gilEjBkϵljk: ð2:4Þ

B. The evolution equations

In this section, we write down a set of FFE equations
with constraint damping capabilities that are numerically
robust, although they possess some mathematically unde-
sirable properties that do not appear to hinder their
performance in practice. The numerical studies carried
out in the main body of this paper use this evolution system.

2A similar analysis for perturbations over the FFE solutions we
are interested in would be much more difficult. These solutions
have a null current that couples to the perturbing fields just like
the Blandford-Znajek case. However, unlike the current for the
Blandford-Znajek solution, this null current is not proportional to
a small parameter like the black hole spin, and cannot be treated
using the perturbative techniques of Ref. [74].
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Aside from this system of equations, we also provide in
Appendix B two additional sets of equations with desirable
mathematical properties, but which are numerically less
forgiving. We go through the derivation of these equations
in some details for pedagogical reasons, as existing
literature tends to be brief and sometimes leaves out terms
that should be included for curved spacetimes.
We begin by writing down the Maxwell equations in

curved spacetime, which are

ð∂t − LβÞE ¼ NKEþ∇ × ðNBÞ − 4πNJ; ð2:5Þ

ð∂t − LβÞB ¼ NKB −∇ × ðNBÞ; ð2:6Þ

∇ ·E ¼ 4πρ; ð2:7Þ

∇ ·B ¼ 0: ð2:8Þ

To derive the current J, which is the spatial part of a four-
current Jð4Þ, we begin with the force-free condition

FabJð4Þb ¼ 0, which states that the four-force density
describing the transfer of energy and momentum between
the electromagnetic fields and the charged plasma particles
vanishes. This ensures that the stress-energy Tab

EM of the
electromagnetic field remains dominant over that of the
plasma. Indeed, we can derive the force-free condition
starting from the differential conservation of energy and
momentum ∇aTab ¼ 0. Then when Tab

EM is the dominant
contribution to Tab, we have [15,17]

∇aTab ≈∇aTab
EM ¼ −FabJð4Þb ¼ 0: ð2:9Þ

In a 3þ 1 decomposition, this translates into

E · J ¼ 0; ρEþ J ×B ¼ 0; ð2:10Þ

where the second equation is the vanishing of the Lorentz
force. To derive the force-free current J, we take the cross
product between Eq. (2.10) and B, which gives us

4πNJ ¼ 4πNðB · JÞ B
B2

þ 4πNρ
E ×B
B2

; ð2:11Þ

where the second term above can be seen as the charge
density moving at the plasma drift velocity, and we can
replace ρ with ∇ ·E=4π using one of the Maxwell con-
straint equations. To further work out the current B · J
along the B field, we note that

ðBa=
ffiffiffiffiffiffiffiffiffiffiffi
BbBb

q
ÞFabJð4Þb ¼ 0

⇒ E ·B ¼ 0 or ρ ¼ 0; ð2:12Þ

and for nonvacuum solutions (vacuum here refers to
Jð4Þ ¼ 0, with these solutions satisfying the force-free

condition trivially) we would like to enforce the E·B¼0
condition, which should be preserved along the timelike
normal to the spatial hypersurfaces, and so

ð∂t − LβÞE ·B ¼ 0: ð2:13Þ

Using the definition of the extrinsic curvature tensor
Eq. (2.2), and substituting in the Maxwell equations, we
obtain an equation for B · J that reads

4πNB · J ¼ −E ·∇ × ðNEÞ þB · ∇ × ðNBÞ
− 2NKijEiBj þ 2NKE ·B ð2:14Þ

(note that the extrinsic curvature terms on the second line
appear to be missing in some of the existing literature).
Substituting Eq. (2.14) into Eq. (2.11) yields J in terms of
E and B. Substituting this expression back into the
Maxwell equations yields the desired minimalist FFE
evolution system.
There is also a set of constraints that needs to be satisfied,

which comes from both the Maxwell equations and the
force-free condition. When deriving the current J, we have
explicitly used q ¼ ∇ ·E=4π as the definition of charge
density, so there is no need to enforce this constraint. The
nontrivial constraints are ∇ · B ¼ 0, and the force-free
constraint E · B ¼ 0. These two constraints are preserved
automatically by the evolution equations [31]. Specifically,
the ∇ ·B ¼ 0 constraint is preserved by the original
Maxwell equations and inherited by the force-free spe-
cialization. The E · B ¼ 0 condition is also preserved, as
we have explicitly used the condition ð∂t − LβÞE · B ¼ 0

to derive the current. Physically, this condition fixes the
magnitude of the conduction current along the B direction
[17], which would short out the E field along B by
redistributing charge to eliminate the potential difference
associated with that E component, thus enforcing
E ·B ¼ 0.
Although the ∇ ·B ¼ 0 and E ·B ¼ 0 constraints are

preserved by the evolution equations when they are
satisfied initially, numerical noise inevitably creates some
seed constraint violation that may grow further under the
minimal evolution system. It is therefore beneficial to
modify the evolution equations so as to be able to clean
up the constraint violations as they emerge. For the
E ·B ¼ 0 constraint, we adopt a strategy similar in
form to Ref. [27]. Specifically, we add a damping term
−NδðE · BÞB=B2 to ∂tE, so that the full set of evolution
equations becomes

ð∂t − LβÞE ¼ NKEþ∇ × ðNBÞ −E ×B
B2

N∇ ·E

− N
B
B2

ðB ·∇ ×B −E · ∇ × E

− 2KijEiBj þ 2KE ·Bþ δE ·BÞ; ð2:15Þ
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ð∂t − LβÞB ¼ NKB −∇ × ðNEÞ: ð2:16Þ

The damping term is proportional to the constraint, and will
not affect the physical constraint-satisfying solutions.
However, it modifies the constraint evolution equation to
a damped form

ð∂t − LβÞE ·B ¼ −δNE ·B: ð2:17Þ

We note that our damping strategy differs from that of
Ref. [27], in that we have kept the original current terms
from Eq. (2.14) and treated the new damping term as an
addition instead of a replacement. In contrast, Ref. [27]
removed all of the original current terms from the evolution
equations, replacing them with only the damping term.
With their strategy, the evolution equations become simpler,
but those current terms forcibly removed from the evolution
equations will resurface in the constraint evolution equa-
tion, specifically on the right-hand side of Eq. (2.17).
Therefore Eq. (2.17) will not reduce to ð∂t − LβÞE · B ¼ 0

whenE ·B ¼ 0, so that constraint-satisfying FFE solutions
at some instance of time cannot stay constraint satisfying as
the simulation progresses. However, this does not invalidate
the results of Ref. [27], as the size of the constraint violation
would be negatively correlated with δ (and positively
correlated with the magnitudes of the derivatives of B
and E), as the damping will be activated when E · B grows
too large. Indeed, Ref. [27] adopted a δ greater than the
inverse of the time step size and observed a well-controlled
E ·B. Such a strategy, however, leads to a stiff term in the
evolution equations that has to be treated with an implicit-
explicit (IMEX) evolution scheme [27]. As the analytical
solutions we examine are exactly constraint satisfying at all
times, and since we do not use an IMEX scheme, we will
use the damping term as an addition with a moderate
coefficient δ ¼ 100, allowing us to enjoy its constraint
cleaning benefits but avoid the aforementioned complica-
tions. Finally, note that this damping term does not
introduce magnetic monopoles, see Eq. (B50).
We note that the introduction of the additional damping

term replaces another alternative constraint cleaning strat-
egy of removing the component of E along B after taking
each time step, which has been widely utilized (e.g.
Refs. [13,15,17,77]). Such an alteration of the evolving
fields at a discrete set of times (which depend on resolution)
will result in a failure of the system to achieve the usual
convergence behavior that would be expected if the scheme
were just applied to a set of differential equations without
this alteration [78]. In contrast, a damping term is less
intrusive and its properties are more easily understood. We
will show that our set of evolution equations displays the
expected convergence behavior in Sec. III C 2. In addition,
because this damping term does not contain derivatives, it
will not affect the characteristic structure of the evolution

equations, which is particularly helpful for our pseudo-
spectral implementation.
Lastly, we note that aside from the aforementioned

E ·B ¼ 0 and∇ ·B ¼ 0 constraints, we have an additional
constraint of E2 ≤ B2. When a E2 > B2 region develops,
the plasma particles have to move faster than the speed of
light in order to experience a vanishing Lorentz force. One
can see this from the second term in Eq. (2.11), which can
be written as qvd, where vd is the drift velocity for the
advection of the charge density [13,17]. The inequality
E2 > B2 then implies a superluminal vd. For an even
simpler demonstration, if we consider the special-
relativistic point particle case, then the requirement for
the vanishing of the Lorentz force qðEþ v ×BÞ would
imply jvj > 1 when E2 > B2. Such superluminal motion is
unrealistic, but FFE evolution equations cannot prevent it,
because the current [Eq. (2.11)] is derived without invoking
plasma physics. Consequently, the FFE equations have no
internal checks that enforce the B2 − E2 ≥ 0 constraint. In
other words, the B2 − E2 ≥ 0 constraint is not strictly a
constraint in the mathematical sense like ∇ · B ¼ 0 and
E ·B ¼ 0, and solutions satisfying the force-free condition
(2.9) are not automatically magnetically dominated. One
symptom of the breakdown of this physical constraint is
that, when strong waves interact [13], the Alfvén mode
characteristic speeds become complex, breaking the hyper-
bolicity of the FFE evolution equations (because these are
physical modes, augmentations to the evolution equations
like those in Appendix B will not be able to change their
characteristic speeds and will thus not cure this hyper-
bolicity breakdown). Another example is the formation of
current sheets, in which the magnetic fields can vanish
and then reverse direction [13]. Physically, the force-free
assumption is invalid when B2 − E2 < 0. The actual
plasma particles, which have inertia, will experience a
nonvanishing Lorentz force and be accelerated. In other
words, the system becomes dissipative [17], averting
divergences and possibly restoring magnetic dominance
[13]. A proper treatment of such regions would require
special codes for the plasma [15] that do not assume the
force-free condition being met. For the numerical studies
carried out in the later parts of this paper, we do not need
such a sophisticated treatment, as we are guaranteed
magnetic dominance by the presence of a magnetic
monopole in the solutions we examine. We will discuss
this in more detail in the next section. In particular, we do
not need to adopt the common procedure of scaling
down the E field after each time step to avoid electric
dominance [13,15,17,77].
We have now a basic set of evolution equations and the

associated constraints. However, this does not automati-
cally mean that we can simply plug them into the computer
and run simulations, because we need to ensure that the
evolution equations are well posed. This is a rather
technical discussion, which we have relegated to the
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appendixes. It turns out that the simple evolution systems
given by Eqs. (2.15) and (2.16) (which we adopt for our
numerical code) is not strictly strongly hyperbolic (see
Appendix A), but the violation is insignificant enough that
it does not create problems in practice for the simulations
carried out in this work. Nevertheless, we have formulated
two additional evolution systems that are not only strongly
hyperbolic, but also have additional desirable properties in
terms of well-posedness. One of them is strongly hyper-
bolic even when E ·B ≠ 0, while the other has a particu-
larly simple constraint evolution behavior. These systems
are given in Appendix B. Unfortunately, they (also includ-
ing a similar evolution system from Ref. [79]) introduce a
term containing the second derivative of B [see Eq. (B50)]
into the evolution equation for ∇ · B, making it sensitive to
high-frequency noises (see Sec. VI 4). In other words, these
mathematically more satisfying systems are numerically
less forgiving. Therefore, we take a pragmatic approach,
and use the simple system as given by Eqs. (2.15) and
(2.16) for the numerical studies presented in the main text.
However, the mathematically improved systems may yet
prove useful for application in finite-difference and finite-
volume FFE codes, which tend to be more forgiving in the
presence of high-frequency noise than pseudospectral
schemes.

C. The exact analytical solutions

In this section, we introduce the analytical solutions
whose stability properties we seek to examine. The
solutions are introduced in Ref. [12], and readers interested
in their derivation should consult that reference.
We begin by emphasizing that the spacetime background

used in this paper is the Schwarzschild spacetime, and the
situation in a spinning black hole case is beyond the scope
of our current study. This restriction stems from the need to
enforce the magnetic dominance condition that we dis-
cussed in Sec. II B. The scatter-avoiding wave-only ana-
lytical solutions given in Ref. [12] are the so-called null
solutions, which can be seen as generalizations to plane
waves (see later in the section), and as such have E2 ¼ B2

just like the plane waves. When we add a small perturbation
to it, we can easily end up with E2 > B2 regions which
cannot be properly accounted for under the force-free
approximation. However, this is not a problem, because
instead of these null solutions, we in fact study the stability
of what we call nullþ solutions, where a magnetic monop-
ole is superimposed onto the null solutions (this prescrip-
tion is also provided by Refs. [12] and [31]), so all the
scatter-avoiding properties of the null solutions are simply
inherited by the wave components of the nullþ solution, yet
magnetic dominance is maintained even with the presence
of perturbations (Figs. 1 and 2 depict the basic structure of
field quantities for the nullþ solutions, and we will discuss
them in more detail later). Subsequently, we restrict
ourselves to the Schwarzschild spacetimes because only

when the black hole is not spinning would such a monopole
addition not interfere with the null wave component, and
the total solution (as a simple superposition of the wave and
monopole components) still satisfy the force-free condi-
tions. On the other hand, these two components would
couple in a nontrivial way in a spinning black hole

FIG. 1 (color online). The ratio jBnullj=jBmonoj for the nullþ
solution studied, where Bnull and Bmono are the null and
monopole contributions in Eq. (2.33), while the norm is defined
as jBnullj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bnull ·Bnull

p
. Shown is a cross section in the xz

plane, which extends radially from R− ¼ 1.95 M to
Rþ ¼ 195 M.

FIG. 2 (color online). The top left figure shows the electric field
lines, and the top right figure shows the magnetic field lines for
the same nullþ solution as shown in Fig. 1; the lines are colored
by E2 and B2, respectively. The bottom figures plot the time
variation of the Ex component, showing the wave propagating
inwards.
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spacetime, and we do not have a simple nullþ solution in
that situation to study (the nullþ solution in that case has
not been worked out yet).
We note that because in astrophysical applications, we

would have a split monopole background present in
addition to the energy-carrying waves, we are more
interested in the stability of nullþ solutions instead of
the null ones on physical grounds. So it is the stability
of the nullþ solutions and not that of the null solutions that
is the intended target of study in this paper. The study of the
stability of nullþ solutions is not a surrogate for that of the
null solutions. In fact, our stability results would unlikely
translate from the nullþ to the null solutions, as we will
discuss later in the Conclusion section. Furthermore, for
our numerical study, we will pick the nullþ solutions with
an ingoing (instead of outgoing3) wave component, as these
are regular on the future horizon of the Schwarzschild black
hole. The outgoing solutions face the same possible
“fragility due to specialness” issue, but need to be glued
onto an astronomically realistic interior solution (not
currently available); otherwise, they will represent energy
flux emerging from the past horizon [31].
Before we dive into the details of the nullþ solutions, we

first introduce some formalism that will be needed. The
structure of the solutions is most explicit in the Newman-
Penrose (NP) formalism, wherein we express tensors under
the NP null tetrad fl;n;m; m̄g that consists of two real null
vectors l and n usually chosen to be in the outgoing and
incoming directions, and two complex null vectors m and
m̄. This tetrad can be seen as the null version of an
orthonormal tetrad [80], relating to it via a rigid trans-
formation. Under the null tetrad, the metric is a constant
matrix

0
BBB@

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

1
CCCA; ð2:18Þ

just as the metric is a constant matrix diagf−1; 1; 1; 1g
under an orthonormal tetrad. The freedom for choosing the
null tetrad is then given by the transformations that preserve
the metric, namely the Lorentz transformations. Such a
tetrad is just a basis to express components of a tensor in. In
particular, the components of the Faraday tensor F under
the Newman-Penrose null tetrad are the Newman-Penrose
scalars ϕ0, ϕ1 and ϕ2, defined by

ϕ0 ¼ Fablamb; ð2:19Þ

ϕ1 ¼
1

2
Fabðlanb þ m̄ambÞ; ð2:20Þ

ϕ2 ¼ Fabm̄anb: ð2:21Þ

These three complex numbers are simply the six real
components of Fab (three from E and three from B, and
these vectors are of course just F’s components written in
the coordinate basis) recombined.
One reason why the NP tetrad is nicer than a coordinate

basis is that we can pick the l and n in it to be pointing
along special directions such as the outgoing and ingoing
null directions of a Schwarzschild spacetime. (We will be
using the so-called Kinnersley tetrad [81], which has this
property. See Appendix D for their detailed expressions.)
This specialness in the basis orientation translates into
special meanings for the components of Fab associated
with these bases, and subsequently ϕ0, ϕ1 and ϕ2 can be
interpreted as the incoming wave, Coulomb background
and outgoing wave pieces of F, respectively. In particular,
this identification is physical and gauge (coordinate choice)
invariant, as the outgoing and ingoing directions as
identified by l and n in a Kinnersley tetrad are those
determined by the spacetime geometry and are unambigu-
ous [80], and not based on the radial direction of arbitrary
coordinate systems, which can be subject to random
coordinate transformations that change the radial direction.
As E and B and the three NP scalars are simply F

components written in a different basis, it is not surprising
that we can translate the force-free equations (2.15) and
(2.16) into equations for ϕ0, ϕ1 and ϕ2, and that the
equations’ structure clarifies tremendously because all
the quantities in it now have clear physical meaning.
This is the approach taken in Ref. [12].
For the ingoing nullþ solutions that we are interested in

for this work, we need outgoing ϕ2 ¼ 0, while the ingoing
wave ϕ0 and background ϕ1 are nonvanishing. It turns out,
however, that in a Schwarzschild background, the equa-
tions for ϕ0 and ϕ1 decouple, so we can solve for ϕ0 first,
assuming ϕ1 ¼ 0, and then add a monopolar ϕ1 back later.
The ansatz Ref. [12] uses when solving for ϕ0 is then
ϕ1 ¼ 0 ¼ ϕ2, as well as an additional condition (guess) that
the current flows in the ingoing null direction n. Under
these assumptions, we get an equation for ϕ0 we can
actually solve.
After obtaining an expression for ϕ0 (like the one we will

write down later in the section), we can reconstruct the
Faraday tensor as

Fab ¼ 4ℜðϕ0m̄½anb�Þ; ð2:22Þ
which can be shown to satisfy

1

2
FabFab ¼ −

1

2
�Fab�Fab ¼ B2 − E2 ¼ 0; ð2:23Þ3The outgoing waves are obtainable through the transforma-

tions in Sec. 5 of Ref. [12].
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1

4
Fab

�Fab ¼ E ·B ¼ 0: ð2:24Þ

These conditions form the definition for a null wave. We
have the following observations for our ingoing null wave
solutions (which are also inherited by the wave component
of the nullþ solutions):
(1) Locally, the two null wave conditions imply that the

E and B fields are orthogonal to each other, and
share the same amplitude just like a plane wave.
These solutions are of course not really plane waves;
see the E field lines in Fig. 2 (also note that the B
field lines in that figure are for nullþ and not null
solutions, and are not applicable for our present
discussion).

(2) The amplitude of E and B, and thus the wave, is
given by ϕ0.

(3) This “local plane wave” travels along the ingoing n
direction (radially inwards), which is also the direc-
tion of the current.

(4) The presence of the current is an extra freedom not
available to vacuum Maxwell equations, so while
FFE null solutions can be globally regular,
singularities would develop in a vacuum null
solution [12].

(5) ϕ1 and ϕ2 vanish everywhere in this solution,
meaning that the null wave is not backscattered
(in which case an outgoing component would be
generated) by either the current or the spacetime
curvature. And this property is shared by outgoing
solutions, which makes them highly efficient
channels for transferring energy.

(6) The magnitude of ϕ0 (and thus the amplitudes of E
and B) is not limited. The solution represents fully
nonlinear waves satisfying the nonlinear FFE equa-
tions. This allows the outgoing variant of these
solutions to carry an arbitrarily large energy flux
from the interior region through the magnetosphere.
If energy flux travels via scattered solution on the
other hand, we would likely see much of the energy
turn back and be swallowed by the black hole. This
is not what simulation of binary merger in magneto-
spheres appears to show.

(7) When we add a monopole background, and take the
small amplitude/linearized limit, these waves reduce
to the traveling waves discussed in Ref. [82]. And if
we further take the eikonal limit such that the
wavelength is much smaller than the radius of
curvature, these waves become Alfvén waves trav-
eling along the background magnetic field [83].

Now that we have a broad picture of what these solutions
look like, we turn to the details of a particular representative
example that we will study in this work. There are infinitely
many solutions to the ϕ0 equation, and we cannot numeri-
cally examine the stability of each and every one of them.
So instead, we pick an arbitrary representative solution

which does not have any special properties (it shares the
same basic current/field structure and other physical
properties listed above with all of its siblings, and possesses
no special symmetries) that would make it more stable than
any other solution. Therefore its stability should be seen as
strong evidence that most, if not all, of the other solutions
obtained in the same manner should also be stable.
One such representative solution is given in Sec 4.2.4 of

Ref. [12], whose ϕ0 is given by

ϕ0 ¼
fR þ ifI

Δρ
; ð2:25Þ

where

Δ ¼ r2 − 2Mr and ρ ¼ −
1

r
ð2:26Þ

in the ingoing Kerr (Eddington-Finklestein) coordinates
ðν; r; θ;ψÞ, with M being the mass of the background
Schwarzschild black hole. The quantity fR is a real
function of the form

fR ¼ 15FðνÞ sin2 θ cos θ cosψ ; ð2:27Þ

where FðνÞ is an arbitrary function specifying essentially
the time dependence of the solution (ν is the null coordinate
in ingoing Kerr). The quantity fR also determines a
companion function

fI ¼ 1

sin θ

Z
ð∂ψfRÞdθ:

¼ −5FðνÞ sinψ sin2 θ: ð2:28Þ

Given these expression, we have now

ϕ0 ¼
sin2 θ
Δρ

½5FðνÞð3 cos θ cosψ − i sinψÞ�; ð2:29Þ

while the current is

J ¼ 1

2π
ffiffiffi
2

p
Δ
½20FðνÞ cosψ sin θð2 cos2 θ − sin2 θÞ�; ð2:30Þ

flowing along the ingoing congruence tangential to the
ingoing null base n.
When we numerically implement this solution, we will

use the Kerr-Schild coordinate system ð~t; x; y; zÞ, instead
of the ingoing-Kerr coordinates originally utilized in
Ref. [12]. In Kerr-Schild, we have
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ϕ0 ¼
3ðx2 þ y2ÞFðrþ tÞ

r3

�
3z sin

�
tan−1

�
y
x

�
−
1

2
πsgnðxÞ

�

þ ir cos

�
tan−1

�
y
x

�
−
1

2
πsgnðxÞ

��
; ð2:31Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. We can also now add a mag-

netic monopole piece

ϕ1 ¼ −
i
2

q
r2

ð2:32Þ

(it has the same expression in ingoing Kerr and Kerr-Schild
coordinates) to obtain our final magnetically dominated
nullþ solution. We can do this (despite the equations being
nonlinear) because the null and monopole solutions decou-
ple in a Schwarzschild spacetime in the sense that the
monopole has no currents, and its field tensor F does not
exert a force on the current of the null solution [31].
Therefore, the superposition of the null and monopole
solutions still satisfy the force-free condition, and yield
another FFE solution. (We note that although a magnetic
monopole is not physically realistic, a more realistic split-
monopole solution can be constructed by gluing two copies
of the nullþ solutions together, with a current sheet on the
interface [30,31].) The monopole only contributes to the
Coulomb part, and the field tensor is now given by

Fab ¼ 4ℜðϕ0m̄½anb� þ ϕ1m½am̄b�Þ: ð2:33Þ

When combined with the expressions for the tetrad basis
summarized in Appendix D, one can generate the Faraday
tensor and subsequently the E and B fields via

Ea ¼ FabTb; Ba ¼ ð1=2ÞϵabcdFcdTd; ð2:34Þ

where T is the timelike normal to the Kerr-Schild spatial
slices. We do not reproduce the full expressions for E and
B in Kerr-Schild coordinates, as they are long and tedious.
We can, however, plot figures that further illustrate the
properties of the nullþ solutions.
For concreteness, we first need to pick the parameters in

our ϕ0 and ϕ1. Because ϕ1 drops off as ∼1=r2 [see
Eq. (2.32)] while ϕ0 drops at a slower rate of ∼1=r [see
Eq. (2.29)], we pick q ¼ 1000 and some arbitrary values
(so the solution has no special stability properties as
compared to the rest in the family) FðνÞ ¼ A cosðΩνÞ with
A ¼ 1 and Ω ¼ 0.1 (i.e. the solution is time dependent), so
that the monopole is large enough to ensure magnetic
dominance at the outer edge of our computational domain
(see the next section). The ratio between the null and
monopole contributions to B is shown in Fig. 1, where we
see that the two contributions are comparable in magnitude
in the outer regions of the computational domain.
In Fig. 2, we plot the field lines for E and B for the

nullþ solution with the parameters set in the last paragraph.

The top left panel of the figure shows the E field lines,
which clearly demonstrate that the solution is fully three
dimensional, without any axisymmetry. The top right figure
shows the magnetic field lines, which is clearly affected by
the background monopolar contribution. The bottom panels
show the time variation of the Ex component of the electric
field, demonstrating the time dependence of our solution
and the fact that the wave is propagating inwards. Looking
back at Fig. 1, one also sees that the wave component of
this particular nullþ solution is rather isotropic and not
concentrated near the poles, so there are no jet-like features.

III. A PSEUDOSPECTRAL NUMERICAL CODE

In this section, we briefly introduce the pseudospectral
code used for evolving the force-free equations. As is noted
in Ref. [17], a pseudospectral code is especially suited to
the task of examining stabilities, as it avoids erroneous
instabilities that may be triggered by the larger numerical
noise present in finite-difference or finite-volume schemes.
An example is pointed out by Ref. [17], that during a study
of the Sweet-Parker reconnection in Ref. [84], a spectral
code was observed to not suffer from secondary island
formations resulting from a tearing-mode instability, in
contrast to results obtained using finite-difference and
finite-volume schemes.
In addition to our main evolution code, we also imple-

ment an initial data solver to ensure that the constraints are
properly satisfied. We note that this is an additional
improvement relative to existing codes, as many previous
studies using finite-difference or finite-volume codes have
evolved initial data that violated the constraints (they,
however, employ constraint cleaning schemes to remove
the violation later during evolution).

A. The code infrastructure

In the interest of completeness, we briefly introduce the
basic infrastructure employed in this work. Our force-free
code is a module of the SpEC code, which was developed
primarily to study binary black holes in full general

FIG. 3 (color online). Half of the computational domain and the
spectral grid (spectral collocation points are at the intersection of
the black lines); the semitransparent sphere represents the event
horizon of the Schwarzschild black hole.
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relativity. Readers interested in the details are encouraged
to consult Ref. [76] and the list of articles shown there.
The basic setup of the computational domain used in

this work is a spherical shell (see Fig. 3), whose inner edge
is at R− ¼ 1.95 M, and whose outer edge extends to
Rþ ¼ 195 M, where M is the mass of the Schwarzschild
black hole, which sets the length and time scales for the
simulations, and will be used as a unit in the plots. The
inner edge terminates just inside the event horizon at 2 M
(the semitransparent surface in Fig. 3), effectively excising
the singularity from the computational domain, so we will
not run into related numerical issues. The inner edge being
inside the event horizon means there will be no information
coming through that boundary into the computational
domain, and so we do not need to impose boundary
conditions there.
For the outer boundary, the evolution variables E and B

are first translated into the characteristic modes (see
Appendix A for their detailed expressions), which can
be seen as waves propagating normal to the boundary,
carrying information into and out of the computational
domain. To ensure there are no additional incoming
perturbations during the simulation, which would create
the false impression of instabilities, we use the analytical
expressions for E and B from the exact nullþ solutions to
compute the clean incoming characteristic modes and
impose them as boundary conditions (so there is no
additional perturbation being carried by these waves into
the computational domain). On the other hand, there are no
conditions imposed on the outgoing characteristic modes.
This way, there are no new perturbations coming into the
computational domain, but the perturbations already inside
are allowed to exit.
In order to carry out parallel computation, we break the

entire computational domain into eight concentric spheres,
whose boundaries are seen as dense concentrations of black
circles in Fig. 3. Each subdomain is handed to a separate
processor for computations. The communication between
subdomains is also done via characteristic modes, where
the outgoing characteristic modes of one subdomain are
matched onto the ingoing characteristic modes of its
neighboring subdomains via a penalty method [85–88]
so that any discontinuity across the subdomain boundaries
is forced to vanish over time. Within each subdomain, the
data is represented pseudospectrally through an expansion
into Chebyshev polynomials in the radial direction and
spherical harmonics in the angular directions. When we
take spatial derivatives, we simply use the analytical
expressions for the derivatives of the individual basis
functions and sum the results up using the expansion
coefficients. The code is pseudospectral and not fully
spectral, in that we do not evolve the series expansion
coefficients, but instead keep the values ofE andB on a set
of collocation points (at the intersections of the black lines
in Fig. 3) optimized for translating back and forth into

expansion coefficients (so that we can go quickly into the
series expansion representation and take spatial derivatives
there, before jumping back). This way, we can implement
the evolution equations in their natural spacetime form,
yet still take advantage of the high accuracy of spectral
derivatives. The number of collocation points represents the
resolution of the simulation and corresponds to the highest
order of the basis functions used (e.g. the largest l in Ylm).
We label the different levels of resolution using an integer k
which changes linearly with the total number of collocation
points in each spatial dimension. In the radial direction, the
number of collocation points is given by kþ 6. In the
spherical directions, the highest l in the harmonics used is
2kþ 7, which translates into 2kþ 8 collocation points in
the θ direction, and 4kþ 16 collocation points in the ϕ
direction. To give readers an intuitive feel of the density of
collocation points, Fig. 3 plots the grid for k ¼ 6.

B. Initial data solver

It is frequently the case with FFE evolutions that the
initial B field is not divergence free, and subsequently
∇ ·B is cleaned using some additional cleaning field (see
Appendix C) during evolution. We do not implement such a
cleaning field, and instead properly solve the constraints for
our initial data. This is only necessary for the evolution of the
perturbed solutions carried out in Sec. IV, and is not used for
the numerical tests of Sec. III C, where we simply use exact
constraint-satisfying analytical solutions as initial data.
The divergence ∇ · B can be removed by solving the

Poisson equation

∇2Φ ¼ −∇ ·B ð3:1Þ

on the initial spatial hypersurface, and thenBþ∇Φwill be
a divergence-free field. We solve Eq. (3.1) with the
multidomain spectral method described in Ref. [89], and set
the Dirichlet boundary condition Φ ¼ 0, so as to preserve
the original B as much as possible by avoiding any
unnecessary ∇Φ pointing between different segments of
the boundaries.
We also tune the E field so that the FFE constraint

E ·B ¼ 0 is also satisfied by the initial data. This is
achieved easily through an algebraic operation

E → E −
E ·B
B2

B: ð3:2Þ

As this only modifies the E field, it will not interfere with
the earlier divergence cleaning step. We emphasize that this
is the same operation as is given by Eq. (15) of Ref. [15],
except we are strictly applying the operation on the initial
data, whereas in Ref. [15] this operation is applied at every
time step of the evolution.
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C. Numerical tests

1. Constant B field in flat spacetime

A particularly simple solution to the FFE equations is a
constant B field with vanishing E field in a Minkowski
background spacetime. We choose the spatial slicings such
that K ¼ 0, and adopt a Cartesian coordinate system in
which N ¼ 1, β ¼ 0, and g is the unit matrix. This is a
physically trivial yet numerically interesting solution. Here
and for the rest of the paper, the computational domain is a
spherical shell, which is broken down into “subdomains” of
concentric spherical shells (four shells extending from a
radius of R− ¼ 1.9 to Rþ ¼ 15 code units for this test; the
speed of light is unity in the code units). Therefore,
the constant B field subtends all possible angles with the
normal n̂ of the subdomain boundaries, including the special
case of ðn̂ · BÞ2 ¼ ðn̂ ×EÞ2 ¼ 0, when the evolution sys-
tem prescribed by Eqs. (2.15) and (2.16) becomes ill posed.
For initial conditions, we use an analytical constant B

field of unit strength without any added noise or perturba-
tion, which is also imposed as a Dirichlet boundary
condition on the incoming (into the computational domain)
characteristic modes during the evolution, on the external
boundaries of the computational domain (at R− ¼ 1.9 and
at Rþ ¼ 15). The interior of the computational domain is
evolved with Eqs. (2.15) and (2.16), and the differences
between the numerical and analytical values of B and E
provide a precise measurement of the simulation error.
Letting ΔB and ΔE be the differences between the
numerical and analytical values of B and E, we compute
the L2 norms of ΔB · ΔB and ΔE · ΔE:

L2ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Σ jsj2dVR
Σ dV

s
; dV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðhÞj

p
dx3; ð3:3Þ

where h is the spatial metric and Σ is the computational
domain. The values of L2ðΔB2Þ and L2ðΔE2Þ over the
entire computational domain are plotted in Fig. 4. From
this figure, we see that despite not being strictly strongly
hyperbolic, the evolution system can be evolved stably for a
long period of time.
The constant B-field test is, however, not suitable for

examining the convergence behavior of our pseudospectral
code with increasing resolution, because the spatial deriv-
atives of the evolution variables vanish identically in
approximations to the spatial derivatives at any order.
For this task, we turn to the nontrivial analytical solutions
given in Ref. [12]. Once again, we utilize analytical
solutions because they provide precise references for
comparison, allowing for more rigorous convergence tests.

2. Analytical nullþ solutions

For a nontrivial analytical solution that is more suitable
for testing convergence, we turn to the time-dependent fully

three-dimensional wave given at the end of Sec. II C, whose
structure is plotted in Fig. 2. This nullþ wave solution has a
large amplitude and is fully nonlinear.
In Fig. 5, we plot the L2 norms of the errors in B and E

for our simulations of the nullþ solution. Due to constraints
on computational resources, we evolve the simulations to
1000 M, which is around 16 cycles for the time-dependent
FðνÞ. We carry out evolutions at ten different resolutions
where the number of radial collocation points is given by
kþ 6, k ∈ f0;…; 9g. Note that our maximum lmax for the
higher resolutions becomes excessive, and the improve-
ments in accuracy come mainly from the increase in radial
resolution, but we keep the same lmax vs k relationship to
ensure consistency across all resolutions. Recall from
Sec. III A that the number of collocation points in each
spatial dimension scales linearly with k. On the other hand,
Fig. 5 shows that the errors decline approximately expo-
nentially with k, so our FFE implementation achieves
exponential convergence for this time-dependent, nontri-
vial, but smooth (without current sheets) test case, as
expected from its pseudospectral nature.
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FIG. 4 (color online). Top: The L2 norm of the error measure
ΔB2 for the constant B field simulation. Bottom: The L2 norm of
the error measure ΔE2. The simulation time is shown in units of
the light-crossing time Rþ from the origin to the outer boundary
Rþ. There is only one curve being plotted in each panel, which
oscillates quickly giving the appearance of a band.
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3. Quasinormal modes of the
black hole magnetosphere

Next, we present a test case with richer dynamics. The
test is designed to demonstrate the code’s ability to
correctly treat various types of waves allowed by the
force-free equations, and in particular account for their
interactions with the spacetime curvature to a high accu-
racy. As mentioned in the Introduction section, the nullþ
solutions we examine are envisaged to play the role of
carrying energy across magnetospheres of black holes or
neutron stars; therefore, a more direct demonstration of the
relativistic effects is beneficial.
Specifically, we launch a train of ingoing FFE waves

towards the black hole, and examine the magnetosphere
quasinormal modes (QNMs) being excited. Similar modes
are intensely studied for gravitational waves, and constitute
the main postmerger signal after a coalescence of two black

holes. More recently, they have been shown to also be
present in a black hole magnetosphere, where the so-called
trapped FFE modes (in the short-wavelength/eikonal limit,
they become the fast magnetosonic waves, so they will be
referred to as generalized magnetosonic waves below) can
be excited and trapped by the gravitational potential well of
the black hole, and leak out over time with an exponentially
decaying amplitude. The frequency and decay rates of these
modes are completely determined by the spacetime geom-
etry and the nature of the wave, and are independent of how
they are excited. In particular, this means whatever the
frequency of the wave train we send in, we should observe
the same frequency and decay rate for the QNM it excites.
When we launch a wave train consisting of, in general,

the long-wavelength generalizations of both Alfvén and
magnetosonic waves towards the black hole, part of the
wave is swallowed by the black hole, while the rest scatters
around it and travels back out. During the process, some
generalized magnetosonic waves are excited as QNMs,
which do not have a counterpart consisting of generalized
Alfvén waves. Our code needs to be able to correctly
distinguish the propagation behavior of both types of
waves, especially their different interactions with spacetime
curvature, in order to reproduce the frequency and decay
rates predicted by analytical calculations.
The wave train is constructed by first building a ϕ0 (the

NP scalar representing ingoing waves) that has a Y22

spherical harmonic angular profile and a sinusoidal radial
profile A sinðΩðr − r0ÞÞ with r0 ¼ 200 M, enclosed in a
top-hat-like radial envelope extending from 100 M to
300 M. We also add a q ¼ 1000 magnetic monopole
which enters through the Coulomb background ϕ1 as in
Eq. (2.32). Together, these scalars allow us the build the
Faraday tensor via Eq. (2.33) and then E and B via
Eq. (2.34) (Fig. 6 provides a visual depiction of the wave
train and its time evolution). In order to accommodate the
wave train, we use a slightly different domain structure
from that of Sec. II C and the rest of the paper (including
the stability studies later). Namely, we have 16 concentric
spherical shells extending from 1.05 M to 495 M, with the
number of radial collocation points given by 5þ 2K, and
those for the θ and ϕ directions by 7þ K and 14þ 2K (we
have used capital K to distinguish it from our usual
resolution label of k used in Sec. III C 2 and later stability
test sections).
The bottom panel in Fig. 6 shows both the power and the

limitation of the spectral methods. The gray surface in that
figure is constructed by linearly interpolating between the
collocation points (done by the visualization software; it is
not the actual spectral representation of ℜϕ0), which is not
smooth at all because there are very few collocation points
inside each radial oscillation period. The actual spectral
“interpolation” using our Chebyshev polynomials, on the
other hand, gives very smooth functions (see Figs. 7, 8
and 9 below). This shows that the spectral methods are
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FIG. 5 (color online). Top: The L2 norm of the error measure
ΔB2 for the nullþ simulations. Bottom: The L2 norm of the error
measure ΔE2. There are ten resolutions being plotted, with the
number of radial collocation points given by kþ 6, and the
maximum l for the angular Ylm decomposition given by 2kþ 7.
In both panels, the error decays with increasing k, so that k ¼ 0
corresponds to the topmost (black) line, and the lower lines are, in
turn, k ¼ 1; 2; 3;…. The errors decline approximately linearly in
log scale, indicating that our pseudospectral code achieves
exponential convergence as expected over a wide range of
resolutions, with the highest resolution being limited in accuracy
by machine precision.
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capable of providing accurate representations of functions
with very few collocation grid points; in other words, their
effective resolution, given a fixed number of grid points, is
very high. On the other hand, the black square in that figure
highlights the region close to the rather sharp corner of the
top-hat-like envelope of the form

1�
1þ e−100

r−r−
rþ−r−

��
1þ e−100

rþ−r
rþ−r−

� ; ð3:4Þ

with rþ and r− being the outer and inner boundaries of the
envelope, respectively. The spectral methods behave rather
differently from finite difference methods, where the
sharp kinks are simply under-resolved and rounded due
to numerical dissipation. With the present low radial
resolution, the steep envelope cannot be resolved, and
leads to Gibbs oscillations bleeding into the surrounding
region. While the shape of the waveform is thus not
perfectly represented, we note that nevertheless the shape
is propagated without diffusive broadening [90] (also see
this reference for an additional suite of tests on the
numerical behavior of the pseudospectral infrastructure
underlying our force-free code), as typically caused by
numerical viscosity of finite-difference codes.
To examine the QNMs, we need to extract the outgoing

wave component ϕ2 of the Faraday tensor (QNMs escaping
from the trapping gravitational potential will show up as an
exponential tail to the wave train in ϕ2). We do so by
extracting the ϕ2 values via Eq. (2.21) on a sphere located
at 100 M from the coordinate origin, and integrate this
ϕ2ðθ;ϕÞ distribution against the Y22 spherical harmonic to
get a single scalar value representing the (2,2) harmonic
component of ϕ2. We do so at each time step and obtain a
time series for this harmonic coefficient of the outgoing

wave, which we denote ϕð2;2Þ
2 ðtÞ. We note that in order to

make comparison with perturbation theory that predicts the

FIG. 6 (color online). Top row: Contours of ℜϕ0 that show the
structure of the wave train. It has a Y2;2 angular profile, and
consists of fast radial oscillations with frequency Ω. It is confined
into a radial top-hat-style envelope of width 200 M. The shape of
the wave train shows that our test is fully three dimensional,
without any axisymmetry. The figures on the left and right depict
the wave train at earlier and later times, showing that it is initially
moving inwards toward the black hole. The green semitranspar-
ent surface is the equatorial slice of the computational domain,
included to indicate its extent. The grid structure on this slice is
also plotted to provide a visual description of the density of
collocation points at K ¼ 7. Bottom figure: The ℜϕ0 is depicted
by warping half of the equatorial slice with a vertical displace-
ment proportional to the ℜϕ0 values at collocation points, and
then connecting them via “straight lines” into the gray surface
(i.e. the gray surface is a trivial interpolation between the
collocation points and is not the actual ℜϕ0 as represented by
the spectral functions). The green surface is the top-hat-like radial
envelope function. This figure also corresponds to K ¼ 7.

FIG. 7 (color online). The log of ϕð2;2Þ
2 plotted as a time series.

The curves corresponding to different wave train frequencies Ω
are shifted slightly relative to each other vertically, so that the
curves will not lie right on top of each other, and we can see more
clearly. The flat region for the curves correspond to the wave train
itself, moving back outwards after having scattered around the
black hole. The sloped region corresponds to the exponentially
decaying QNM. We can see that the wave train has very different
frequencies, but the QNMs excited in all cases share the same
frequency and decay rate.

FIG. 8 (color online). The dashed black lines indicate the fitting
results (they extend only over the fitting interval) corresponding
to the fitted parameters in Table I, while the curves being fitted are
the negatively sloped segments of the curves in Fig. 7.
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QNM frequencies, we use a small wave amplitude of
A ¼ 0.0001. There is, however, still nonlinear interaction
between the wave and the background magnetic monopole.
We first test whether the correct QNM wave is produced

in our code—specifically, whether it has the correct
frequency and decay rate as predicted by analytical models.
To this end, recall that these values are independent of the
specifics of the initial wave train, so a stringent test consists
of launching initial wave trains with different frequencies
Ω, and see if we get the same set of QNM parameters
despite this major difference. If we do obtain the same
parameters as expected, we can then be confident that the
code has managed to cleanly excite and extract the QNMs,
and the decaying tail is not some other leftover feature from
the wave train (such as the oscillations seen in the black
square of Fig. 6, which is in reality much smaller in
amplitude and drops off faster than the QNMs). We
simulate four cases with Ω ¼ 0.2; 0.3; 0.4, and 0.5 at

K ¼ 7, and plot their ϕð2;2Þ
2 in a log plot (so exponential

decay shows up as a straight line with a negative slope
equaling the decay rate) in Fig. 7. By visual inspection, we
can already see that despite the rather different frequencies
of the wave train, the frequencies ω and decay rates γ of the
exponential tails in the four cases are indeed the same. We
can also carry out a more quantitative fitting of these
quantities using Mathematica’s FindFit function. The
results and the analytical reference values are shown in
Table I. [We also plot in Fig. 8 the fitting results (dashed
black lines) inside the fitting interval to provide a visual
depiction of the fitting quality.] We indeed find a good
match between the measured and predicted values. Aside
from truncation error, the excitation of QNMs of other
overtone numbers n > 1 (we have only considered the
fundamental overtone n ¼ 1 that decays the slowest) is
likely a main source of any residual errors.
The second test we carry out is a convergence test, to

verify that our code still achieves exponential convergence
with this dynamically richer setup. To this end, we fix
Ω ¼ 0.4 and perform four simulations at K ¼ 5, K ¼ 7,

K ¼ 9 and K ¼ 11. The log plots of ϕð2;2Þ
2 for these runs

and their differences are shown in Fig. 9, which shows that
exponential convergence is indeed achieved.

IV. STABILITY OF THE nullþ SOLUTIONS

In this section, we utilize our new FFE code and carry
out numerical simulations in order to determine whether

the nullþ solutions are stable, in the sense of whether a
perturbed solution will asymptote to an exact nullþ solution
over time, or diverge from it. As an underlying unperturbed
nullþ solution, we use the same configuration shown in
Sec. II C and studied in Sec. III C 2, with q ¼ 1000, FðνÞ ¼
A cosðΩνÞ and A ¼ 1. However, here we will vary Ω. Note
that we have chosen a large absolute magnitude for the
Faraday tensor in order to carry out a more stringent test, as
small magnitudes will diminish the significance of the
nonlinear terms. We also use the same domain structure as
in Secs. II C and III C 2, namely eight spherical shells
extending from 1.95 M to 195 M.
We denote the Faraday tensor for the unperturbed

solution as F and impose it as a Dirichlet boundary
condition on the incoming characteristic modes as dis-
cussed in Sec. III A. In other words, we enforce the
condition that there are no incoming perturbative modes.
On the other hand, there is no restriction on the outgoing
characteristic modes, so overall, we have a purely outgoing
boundary condition for the perturbations, just as when one
studies the mode stability of the Kerr metric by calculating
its QNMs, for example.

FIG. 9 (color online). The top figure shows the wave train and
the QNM tail for the four resolutions of the Ω ¼ 0.4 simulation.
The bottom figure shows the differences between resolutions.
Because the differences are approximately equally displaced in
the vertical direction, which is plotted in log scale, the simulation
indeed achieves exponential convergence.

TABLE I. The fitted values of the frequency ω and decay rate γ
of the QNMs excited by wave trains of different Ω, as well as the
reference analytically computed values.

Analytical Ref. Ω ¼ 0.2 Ω ¼ 0.3 Ω ¼ 0.4 Ω ¼ 0.5

ω 0.457596 0.444071 0.453783 0.453742 0.44466
γ 0.0950044 0.0922016 0.0885479 0.0893736 0.0901566
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A. Perturbation in ϕ0

The simplest perturbation to the nullþ solution is a
variation in the initial ϕ0 profile, so that it no longer
satisfies Eq. (2.29). Specifically, we generate a Faraday
field FA from an altered ϕA

0 (in addition to an unperturbed
monopole component) that is perturbed away from the
exact solution (Eq. (2.29) by

δϕ0 ¼ 0.25
sin2 θ
Δρ

FðνÞi sinψ ; ð4:1Þ

where we choose the same FðνÞ function as the unper-
turbed solution. For simplicity, we also choose Ω ¼ 0 so
that the unperturbed background solution is time indepen-
dent. Such a solution does not have the usual character that
one would associate with a traveling wave, although it is
still technically a wave in the same sense that a constant
would satisfy a simple 1D wave equation. Nonetheless, this
solution is still physically interesting, as the energy flux
does not vanish, so that the solution describes an “electro-
magnetic wind” or “Poynting wind” [31]. We will examine
a time-dependent case later in Sec. IV C.
Given the altered field ϕA

0 , we now define our perturbed
initial data. Because we employ boundary conditions based
on the unperturbed background solution, we require the
perturbed initial data FP to approach the unperturbed
solution at the boundaries (strictly speaking, we do not
need a boundary condition at the inner boundary, as it is
inside the event horizon, but we use the Dirichlet condition
there for simplicity). We achieve this by blending between
FA and F via

FP ¼ fFA þ ð1 − fÞF; ð4:2Þ

where the weighting function is

f ¼ P8ð2 − PÞ8Q8ð2 −QÞ8; ð4:3Þ

with

P ¼ 2
r − R−

Rþ − R−
and Q ¼ 2

θ

π
: ð4:4Þ

Equation (4.3) ensures 0 ≤ f ≤ 1, such that the unper-
turbed solution dominates on the domain boundaries,
ensuring a smooth transition to the Dirichlet boundary
conditions imposed there. The angular dependence in A
ensures that the unperturbed solution also dominates on the
vertical axis (θ ¼ 0 and θ ¼ π). This feature is not con-
structed to satisfy any requirements of the present form of
perturbation, but instead is included for later convenience
in Sec. IV B.
The perturbed solution does not automatically satisfy the

constraints; since the monopole resides inside the event

horizon and outside of our computational domain,
the magnetic field should be divergence free within the
computational domain. We are therefore free to solve the
Poisson equation in Sec. III B to remove any divergence. In
Fig. 10, we plot the right- and left-hand sides of Eq. (3.1)
and show that the initial data solver performs as designed
by removing ∇ ·B. Note that there is some high-frequency
noise in the output of this elliptic solver [see the center of
Fig. 10(b)], which we partially remove by passing the
initial data through a spectral filter that reduces the high-
frequency spectral coefficients in the radial direction. The
removal is only partial, as the filtering strength is chosen to
be conservative, so it does not introduce new divergence
into the magnetic field. As a second step, we also use
Eq. (3.2) to impose the FFE constraint E ·B ¼ 0.
In Fig. 11, we plot the evolution of L2ðΔB2Þ and

L2ðΔE2Þ, where ΔB ¼ BP − B is the difference between
the evolved BP and its unperturbed counterpart B (com-
puted analytically). ΔE is defined similarly. We observe
that the differences drop by several orders of magnitudes as
time progresses. A more detailed distribution of ΔB is
shown in Fig. 12, which plots the relative difference
jΔBj=jBj on a vertical slice of the computational domain.
The magnitude of the relative difference is indicated by the
height of the surface as well as the coloring. The panels
correspond to different times and suggest that the pertur-
bation does not diverge, but instead propagates inwards to
begin with, and then outwards after scattering around the
black hole, before exiting through the outer boundary.
Consequently, our observation indicates that there are no

diverging modes excited by our initial perturbation at the
fully nonlinear level, and so the nullþ solution is stable
against our perturbation. Furthermore, the eventual exit of
the perturbation is consistent with the nullþ solution being
asymptotically stable (attracting). We note, however, that
we cannot rigorously prove the latter stronger stability, as
L2ðΔB2Þ and L2ðΔE2Þ values at late times do not reach

FIG. 10 (color online). Left: The right-hand side of Eq. (3.1),
or explicitly, the initial −∇ · B value on a vertical slice of the
computational domain before we apply our initial data solver (the
z axis corresponds to θ ¼ 0 and θ ¼ π). Right: The left-hand side
of Eq. (3.1), which is the value of ∇2Φ that emerges after solving
for the initial data.
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their small sizes in the unperturbed convergence test case
shown in Fig. 5. The main culprit appears to be the high-
frequency noise in the initial data we see in Fig. 10(b),
which is absent from the analytical initial data used for the
convergence tests. The fact that the convergence behavior
improves after we apply spectral filtering to the initial data
before starting the evolutions provides evidence for this
conclusion. In particular, the SpEC code utilizes a penalty
method [85–88] to enforce consistency across internal
boundaries, which allows for discontinuities to exist
temporarily. It has been noted in several previous studies
[80,91] that high-frequency noise tends to induce large
discontinuities at the internal boundaries, thereby creating
errors in B. The situation is the same for our FFE evolution
system, as can be seen in Fig. 13. The high-frequency noise
also destroys the convergence at the highest resolutions (see
Fig. 11), because lower resolution (smaller k) acts as an
effective spectral filter, shielding the lower-resolution
simulations from high-frequency noise. We expect this
complication to disappear as we ascertain the source of the
high-frequency noise (one possibility is the boundary
condition of Φ ¼ 0 being too simplistic) and further
improve our procedure of solving Eq. (3.1).

FIG. 12 (color online). Top four panels: The relative difference
jΔBj=jBj on a vertical slice of the computational domain. The
magnitude of the relative difference is indicated by the height of
the surface as well as the coloring. Different panels correspond to
different times. The initial perturbation seen at t ¼ 0 propagates
inwards, creating the pattern shown at t ¼ 60. After scattering
around the black hole, the perturbations propagate outwards,
forming the pattern seen at t ¼ 150, and eventually begin to exit
the computational domain as seen at t ¼ 270. Bottom two panels:
The initial and later perturbations on the horizontal equatorial
slice of the computational domain; they show that the perturba-
tions are three dimensional in nature, without axisymmetry.
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FIG. 11 (color online). Top: The L2 norm of the difference
measure ΔB2 for the nullþ simulations initially perturbed in the
ϕ0 values. Bottom: The L2 norm of the difference measure ΔE2.
The arrangement of the collocation points is the same as for
Fig. 5.

FIG. 13 (color online). The numerical error in BP (as seen in
jΔBj=jBj) being generated at subdomain boundaries (signified
by dense concentrations of black lines). The gray frames high-
light the locations of the error on such boundaries. Note that the
warping scale and the color map are different from Fig. 12, but
the plane shown is the same as those appearing in Fig. 12.
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B. Perturbation in the propagation direction

With numerical experiments, we can only state that there
are no diverging modes being excited by the particular
perturbations that we introduce into the initial data.
Therefore, in order to provide as strong evidence as
possible for stability (meaning the nonexistence of diverg-
ing modes in general), it is important that we consider a set
of initial perturbations that is as generic as possible. In the
last section, although we started with specific modifications
to ϕ0, our initial data construction procedure nevertheless
has to go through the blending and constraint solving
stages, which means the resulting perturbation is in fact
rather general (containing many modes).
However, the wave component (the ϕ0 piece of the

Faraday tensor) of the simple perturbation studied in
Sec. IVA still follows the GPNDs initially, as we have
retained the use of the Kinnersley tetrad when constructing
the perturbed Faraday tensor (ϕ0 is by definition the wave
propagating along the tetrad’s ingoing null direction, which
for the Kinnersley tetrad is in a doubly degenerate GPND
direction), and is therefore (at least initially) not necessarily
backscattered by the spacetime curvature (see Sec. V). In
other words, the perturbation may be restricted to a rather
specific submanifold in the solution space. In principle, it is
possible that even though nullþ solutions are stable on this
submanifold, they may still be unstable under perturbations
off of it. Although we would expect numerical truncation
errors to induce perturbations away from this submanifold
regardless of whether the initial perturbation places us on it
or not, the time scale for this occurring may simply be too
large, so we fail to observe the possible instabilities in the
previous test, and a more appropriate off-the-submanifold
initial perturbation is desirable. In this subsection, we
construct perturbations that are nontrivial in the sense that
the wave component of the initial data does not follow
degenerate GPNDs everywhere and is therefore generically
backscattered by spacetime curvature. In other words, the
initial data do not possess one of the core features of the
nullþ solutions, and the perturbation is not restricted to
some specific submanifold in the solution space.
For the initial wave propagation direction, we use a

congruence of null geodesics (that is generally not tangen-
tial to degenerate GPNDs) in the Schwarzschild spacetime,
which admits analytical descriptions. We will begin by
introducing the procedure for generating a single geodesic
within the congruence, building an adapted Newman-
Penrose null tetrad along it whose ingoing null basis vector
is tangential to the geodesic, and constructing the FP field
whose wave component ϕ0 (as defined with respect to that
newly built tetrad) follows the geodesic direction. Later, we
will describe how to obtain the entire congruence, thus
filling in the FP field everywhere. We begin by choosing
Boyer-Lindquist/Schwarzschild coordinates ðr; θ;ϕÞ so
that the geodesic lies on the equatorial plane. The null
geodesic then satisfies the equation [92–94]

�
dy
dϕ

�
2

¼ 4y3 − g2y − g3; ð4:5Þ

where

y¼M
2r

−
1

12
; g2 ¼

1

12
; g3 ¼

1

216
−
�
M
2

�
2

P; ð4:6Þ

with P ¼ 1=b2 for impact parameter b. With a small impact
parameter (P > 1=27M2), the null geodesic will be
absorbed by the black hole, and the shear-free principal
congruence tangential to the degenerate pair of incoming
GPNDs corresponds to b ¼ 0. The solution to Eq. (4.5) is
then given by yðϕÞ ¼ ℘ðϕþ Yjg2; g3Þ, where ℘ is the
Weierstrass elliptic function and ðg2; g3Þ are its invariants.
The angle Y is the angle at which the geodesic strikes the
origin r ¼ 0.
Armed with the geodesic, we can now build a Newman-

Penrose null tetrad adapted to it. First, we calculate the
spatial tangent to the geodesic, and then we convert it into a
null four-vector and apply the Jacobian from Boyer-
Lindquist to Kerr-Schild coordinates (see Appendix D
for details). We will let the n basis vector be in the
direction of this four-dimensional null tangent, while
keeping l the same as that of the Kinnersley tetrad. The
scaling of n is then fixed by lana ¼ −1. The remaining m
and m̄ bases can be fixed using a Gram-Schmidt procedure
[80]. We first define two spatial vectors C and D, so that
m ¼ 1=

ffiffiffi
2

p ðCþ iDÞ. LetG andH be the Kinnersley tetrad
versions of C and D, respectively. We can then achieve
proper orthonormality for the new tetrad by setting

Ĝa ¼ Ga þ Gblbna þ Gbnbla; Ca ¼ Ĝaffiffiffiffiffiffiffiffiffiffiffiffi
ĜbĜb

p ; ð4:7Þ

and then

Ĥa ¼ Ha þHblbna þHbnbla −HbCbCa; ð4:8Þ

Da ¼ Ĥaffiffiffiffiffiffiffiffiffiffiffiffi
ĤbĤb

p : ð4:9Þ

Under this tetrad, we choose a preliminary Faraday field FA

according to Eq. (2.22), with the ϕ0 distribution prescribed
by Eq. (2.29), which now describes an incoming wave
(there is no ϕ2) traveling in the new n direction that is
different from the GPNDs provided b ≠ 0.
We now turn to filling the entire computational domain

with geodesics and the Faraday field tensor. To this end, we
begin by specifying an impact parameter b and populate the
equatorial plane with null geodesics by varying Y (see
Fig. 14). We then take the x ≥ 0 portion of Fig. 14 and
rotate it around the z axis, thus filling the entire 3D space.
However, when the impact parameter does not vanish (for
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our perturbative study, we choose b ¼ M=
ffiffiffiffiffi
10

p
), the

resulting congruence will be singular on the vertical axis.
We eliminate this problem by constructing an unperturbed
null solution with the same ϕ0 (but with b ¼ 0), and we
blend its Faraday tensor F with the FA associated with the
b ≠ 0 congruence, so that only the unperturbed null
solution F that is regular on the vertical axis is present
there. Explicitly, we set

FP ¼ fFA þ ð1 − fÞF; ð4:10Þ

with the weighting function f given by Eqs. (4.3) and (4.4)
(the choice of Q in those equations was made in antici-
pation of this regularization procedure on the poles).
Furthermore, we will add an unperturbed magnetic monop-
ole with q ¼ 1000 to obtain a perturbed nullþ solution just
as in Sec. IVA. We also carry out the same constraint
enforcement procedure as in Sec. IVA. For this section we
will keep the background solution time independent with
Ω ¼ 0, and leave the time-dependent case to the next
section.
We note that just as before, the blending and constraint

solving stages ensure that the perturbation we start the
simulation with is in fact rather general, with many radial
and spherical modes excited. Our procedure differs from an
explicit sum of modes with random coefficients in that the
specific modifications to the wave propagation directions
essentially introduce correlations into the mode coeffi-
cients, so that the modes do not accidentally cancel out,
leaving us with a perturbation without propagation direc-
tion change. It also helps to avoid the initial data solver
simply removing the uncorrelated constraint-violating

modes and bringing us back to the unperturbed exact
solution.
The output of the initial data solver is displayed in

Fig. 15, while the evolution of ΔB and ΔE is shown in
Figs. 16 and 17. Despite having a different type of initial
perturbation, we observe a similar behavior as seen in
Sec. IVA, with no diverging modes occurring, and with the
perturbation eventually exiting through the outer boundary.

FIG. 14 (color online). Example congruence of geodesics in the
equatorial plane of the Schwarzschild black hole, with a non-
vanishing impact parameter b translating into P ¼ 2=27M2 (not
the value we use for the simulations, but instead chosen to
accentuate the perturbation). The red circle is the location of the
event horizon. Angle Y is the angle at which the dashed geodesic
strikes the origin.

FIG. 15 (color online). Similar to Fig. 10, but for initial data
with a perturbed propagation direction. Left: The right-hand side
of Eq. (3.1). Right: The left-hand side of Eq. (3.1).
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FIG. 16 (color online). Top: The L2 norm of the difference
measure ΔB2 for the nullþ simulations initially perturbed in the
propagation direction. Bottom: The L2 norm of the difference
measure ΔE2.
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C. Time-dependent background solution

For our final numerical setup, we introduce a time
dependence with Ω ¼ 0.1, so that the background solution
has the familiar character of a traveling wave. The
procedure for introducing perturbations is otherwise iden-
tical to Sec. IV B, so that the waves are initially traveling in
directions different from the degenerate GPNDs.
The output of the initial data solver and the evolution

codes are displayed in Figs. 18, 19 and 20. Despite the
change of energy flux character from electromagnetic
winds to waves, our simulation suggests that the now
time-dependent nullþ solutions are also stable. The most
noticeable difference with the two earlier cases is that the
perturbation propagates almost entirely inwards initially,

FIG. 17 (color online). The relative difference jΔBj=jBj on a
vertical slice of the computational domain. The initial perturba-
tion seen at t ¼ 0 propagates mostly outwards, creating the
patterns seen at t ¼ 60 and t ¼ 100, and exits the computational
domain as seen at t ¼ 200.

FIG. 18 (color online). Similar to Fig. 15, but for initial data
with a perturbed propagation direction based on a time-dependent
unperturbed solution. Left: The right-hand side of Eq. (3.1).
Right: The left-hand side of Eq. (3.1).
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FIG. 19 (color online). Top: The L2 norm of the difference
measure ΔB2 for the initially perturbed time-dependent nullþ

simulation. Bottom: The L2 norm of the difference measure ΔE2.

FIG. 20 (color online). The absolute difference jΔBj on a
vertical slice of the computational domain. The initial perturbation
seen at t ¼ 0 propagates inwards creating the patterns seen at
t ¼ 70 and t ¼ 120. By t ¼ 200, the perturbation has been almost
entirely absorbed by the black hole. We have shown the absolute,
rather than the relative difference, because jBj increases quickly
whenwe approach the black hole, so it is more difficult to seewhat
is going on in the inner regions with a relative difference plot.
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and is absorbed by the black hole almost completely after
one light-crossing time.

V. SCATTERING BY SPACETIME CURVATURE
AND THE ROLE OF GPNDS

In this section, we seek to shed some light on the
question of what feature of the analytical solutions exam-
ined in this work allows them to avoid being backscattered
by spacetime curvature. Because we will only carry out
analytical studies on the unperturbed exact solutions in this
section, the null and nullþ solutions are exactly the same in
terms of their wave propagation properties. So we will
consider pure null solutions for brevity, with the under-
standing that the conclusions translate to the wave compo-
nent of the nullþ solutions trivially.
The answer to the scatter-avoidance question is

interesting, in that it provides guidance to the search for
similar FFE solutions in other spacetime backgrounds,
or solutions to non-FFE equations. For example, when
several analytical solutions [9,10] to the FFE equations
were first found, it was not immediately clear why such
simple solutions exist [10,12], given that the FFE
equations are nonlinear. Furthermore, such scatterless null
solutions are closely related to important advances in
mathematical physics, such as the discovery of new
solutions to the Einstein equations [95,96], and the defi-
nition of twistors [97]. Therefore, it is informative to try to
understand the core features of these solutions at an
intuitive level.
A hint on the answer to this question is provided by the

Goldberg-Sachs theorem [98], which states that scatter-
avoiding waves must propagate along a repeated principal
null direction (GPND4) of the Weyl curvature tensor.
However, as far as the authors are aware, there is no
explicit analysis in the literature of the reverse question, i.e.
whether all waves propagating along GPNDs are to some
extent scatter avoiding. Aside from shedding some light on
the scatter avoidance puzzle, this analysis also fills a gap in
the literature by providing a simple physical intuition on the
concept of GPNDs, which underlies such important con-
structs and results as the Petrov classification of spacetimes
and the peeling theorem [97,99–102].
Before diving into the technical details, we first sum-

marize the results of this section, and provide some
intuitions as to why one should expect these results.
Readers only interested in the conclusions and their uses
can skip the derivations presented later in this section. The
conclusions are
(1) Null solutions that propagate along repeated GPNDs

of multiplicity 3 or above will not experience

scattering by spacetime curvature at all. This re-
quires the background spacetime to be of Petrov
type III or type N [103,104] (and of course type O
which is flat),5 and for the null waves to be
propagating along the special direction in those
spacetimes identified by the repeated GPNDs.
Such a situation arises when analyzing the coinci-

dent gravitational and electromagnetic wave signals
from distant sources in the context of multimessen-
ger astronomy. The two types of waves travel in the
same direction for the majority of their journey, and
the gravitational wave gives a metric perturbation of
type N with the fourfold degenerate GPND pointing
in the propagation direction. This means one does
not need to worry about the gravitational wave
changing the electromagnetic wave during their long
journey to Earth.

(2) When the spacetime is less special in the sense that
the repeated GPNDs have less multiplicity, the null
electromagnetic solutions traveling along the repeated
GPNDs will in general experience some scattering by
the spacetime curvature. However, the more severe
backscattering (where a wave propagating in the
opposite direction and/or a Coulomb background
piece is created by the scattering) can be avoided,
and the scattering only manifests itself as an influence
on the wavefront profile.
As Schwarzschild and Kerr spacetimes are of

Petrov type D (the multiplicity of the degenerate
GPNDs is 2), this is the situation relevant for the exact
analytical solutions (more precisely the null part of
the nullþ solutions) presently under examination. The
avoidance of backscattering allows for, e.g., setting
ϕ2 (the outgoing wave component of the Faraday
tensor) and ϕ1 (the Coulomb background piece) to
zero, and only solving forϕ0 (the ingoing wave piece)
in the force-free equations, which significantly re-
duces the complexity of the solution finding process.
We expect similar features to also be available when
solving the equations of other field theories in these
important spacetimes.

These conclusions create the obvious impression that the
GPNDs are somehow particularly flat directions of space-
time, such that waves propagating along them see less of
the spacetime curvature. This intuition can be made more
visual by invoking an analogy with a curved surface
embedded in a three-dimensional (flat) ambient space. In
fact, the name “principal null directions” already invoke
this analogy, but we will argue that instead of the principal
directions, it is really the asymptotes on the curved surface

4We denote these principal null directions as GPNDs, rather
than PNDs, to emphasize that they are gravitational PNDs, and
distinguish them from the electromagnetic PNDs that we will
encounter later.

5Petrov type I: four different GPNDs; type II: two degenerate
GPNDs and two nondegenerate GPNDs; type D: two sets of
doubly degenerate GPNDs; type III: a triply degenerate set of
GPNDs and a nondegenerate one; type N: four-fold degeneracy
in GPNDs; type O: Weyl curvature tensor vanishes.
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that these GPNDs are more akin to. Given our quick scan of
the literature, our discussion appears to be the first to state
this way of intuiting the GPNDs, and we hope it may be
helpful to researchers newly acquainted with these impor-
tant quantities.
The curving shape of a surface embedded in the ambient

(see Fig. 21) is given by the extrinsic curvature tensor K,
which is a rank-two tensor. The twice contraction of a
vector tangential to the surface at a point (the center/origin
in Fig. 21) with K gives the curvature of a geodesic on the
surface developed along that vector direction. The principal
directions are defined to be those directions whose asso-
ciated geodesics have the maximum or minimum (most
negative/bending the other way) curvature among the
different direction choices, and are in fact the eigenvectors
ofK. Their associated geodesics are the thick black lines on
the surfaces in Fig. 21, which are clearly the most curved
(either in the up or down direction) directions on the
surface. The asymptotes, on the other hand, are defined to
be those directions whose twice contraction with K
vanishes. These are the red curves in Fig. 21, and are
clearly locally flat/straight. Later in the section, we will
show that the contraction of quantities representing GPNDs
with those representing the spacetime curvature tensor
gives us zeros instead of maxima and minima, so the
GPNDs are really more akin to the asymptotes.
The principal directions are always halfway in between

the asymptotes, so these two sets of quantities are trivially
related. When two asymptotes coincide, the principal
direction in between them is then forced to become
coincident with both asymptotes and thus take up vanishing
curvature (the right panel of Fig. 21 shows this situation,
where there is also a thick black line aligned with the
coinciding red lines at the bottom of the “valley”), so the
spacetime becomes flatter in a sense as one of its extremally
curved directions become flat (in the case of the curved
surface, the surface on the right of Fig. 21 that has
coinciding asymptotes becomes developable—its intrinsic
curvature vanishes, and the surface can be unfolded into a
simple flat plane). The analog with this on the spacetime

side is that more coinciding GPNDs signal that the
spacetime is “flatter,” especially along the direction of
those coinciding GPNDs (this is essentially the intuitive
meaning of the Petrov classification). It is then not entirely
surprising that FFE waves traveling along the “extra flat”
degenerate GPNDs will experience less curvature-induced
scattering.
This analogy can be developed much further,6 but a

detailed discussion will lead us too far on a digression away
from the main content of this paper, so we stop here and
turn to some derivations directly relevant for curvature-
related scattering that back up the conclusions listed above,
which also provide some more concrete examples of the
type of vanishing contractions underlying our analogy-
based intuitive picture.
The discussion below will rely heavily on the spinor

formalism, which reveals the characteristic structure of the
Weyl curvature tensor in a significantly more transparent
manner than the tensor formalism. We include a brief
summary of spinors in Appendix E. The most important
feature for us is that the spinors can roughly be seen
as “square roots” of null vectors with the tensor product
oA ōA

0
of a pair of complex conjugate spinors oA and ōA

0

corresponding to a null vector. In addition, the self-
contractions of the spinors vanish (oAoA ¼ 0 ¼ ōA0̄oA

0
) just

as they do with null vectors.
The null solutions of Ref. [12] are the FFE counterparts

to the vacuum null electromagnetic solutions described in
Ref. [107]. A null solution is defined by the property that
the two principal null directions (EPNDs7) of the Faraday
tensor are coincident, just like simple plane waves in flat
spacetime. These solutions can thus be seen locally as
generalized plane waves [see the discussion following
Eq. (22) of Ref. [12] for more explicit local similarities
with plane waves], whose propagation directions follow
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FIG. 21 (color online). The principal directions (black lines)
and the asymptotes (red lines) on curved surfaces. The figure on
the left depicts the situation with a more generic surface, while the
figure on the right depicts a more degenerate surface where two
asymptotes become coincident and the principal direction in
between them becomes flat.

6We briefly mention why the name “principal null direction” is
historically given to the GPNDs, even though they are more like
asymptotes, and not the principal directions on a surface. That
name assignment comes from their being related to some
eigenvalue problem of the spacetime curvature tensor when
written in the tensor language. However, when we migrate to
the spinor language, the eigenvalue problem switches into one
over some other directions that sit in between the GPNDs (they
are the null basis vectors of the so-called canonical transverse
tetrads [97], and they are really the things that are akin to the
principal directions on a surface), just like the principal directions
on a surface sit in between the asymptotes. So in the spinor
language, the “true” nature of the GPNDs becomes more
apparent, and using something called sectional curvatures
[105,106], we can show that it is in the spinor and not the
tensor language that the eigenvalue problem is more closely
related to the curvatures of geodetic submanifolds of the
spacetime (analogs to the curves on a surface), and so the spinor
language is the one that is more appropriate for building
analogies.

7We will use EPND to refer to principal null directions of
electromagnetic solutions.

STABILITY OF EXACT FORCE-FREE ELECTRODYNAMIC … PHYSICAL REVIEW D 92, 024049 (2015)

024049-21



ingoing or outgoing shear-free null congruences [107]. In a
curved spacetime, this implies that they must evade being
backscattered by the spacetime curvature, or else they
cannot remain purely ingoing or outgoing. As a concrete
example, the solution given by Eqs. (2.22)–(2.28) has only
the ingoing wave component ϕ0, while the outgoing wave
component ϕ2 and the Coulomb background ϕ1 vanish
identically throughout space and time. To understand how
backscattering is avoided, we recall that the ingoing
solution as specified by ϕ0 follows the Kinnersley tetrad
n basis direction, which is tangential to a geodetic shear-
free null congruence [108]. By the Goldberg-Sachs theo-
rem [98], “A strictly nonflat vacuum metric has a multiple
principal null direction la iff la is geodetic and shear
free,” this n direction must also be the direction of two or
more degenerate GPNDs. We now show explicitly that
following degenerate GPNDs is responsible for the sim-
plifications to scattering by spacetime curvature.
We begin by recalling how electromagnetic waves

(with allowance for current and charge, so FFE waves
are included as a special case) scatter off of spacetime
curvature. The wave equation satisfied by the Faraday
tensor is given by [109]

∇c∇cFab ¼ −2RacbdFcd þ Ra
cFcb þ Fa

cRcb

þ∇bJa −∇aJb; ð5:1Þ

where ∇c∇c is the generalized covariant Laplacian oper-
ator. The scattering by spacetime curvature is described by
the first three terms on the right-hand side of Eq. (5.1), and
is a consequence of the tensorial nature of F that allows it to
couple to the spacetime curvature through the Ricci
identities, which when applied to our case gives

2∇½a∇b�Fcd ¼ RabceFe
d þ RabdeFc

e; ð5:2Þ

and subsequently yields the aforementioned terms. These
scattering terms imply that, generically, the electromagnetic
waves can propagate inside as well as on the future null
cone of a light source, as secondary ingoing waves can be
created by scattering, and so they do not satisfy Huygens’s
principle [109–112]. The remaining terms on the right-hand
side of Eq. (5.1) describe scattering by charge and current,
and are not the scattering we are interested in here. In other
words, our consideration in this section concentrates on the
scattering shared by vacuum (without current) and FFE
(with current), as well as other electromagnetic solutions
with more generic currents, so that our conclusions are not
confined to the FFE case.
Since we do not include the stress-energy tensor of the

electromagnetic field or the plasma in the gravitational
sector, as per the simplifying convention in FFE compu-
tations [12], we have Rab ¼ 0, and Rabcd reduces to the
Weyl tensor Cabcd. Both Cabcd and Fab can be written in the
spinor formalism as [113]

Fab ¼ ϕABϵA0B0 þ ϵABϕ̄A0B0 ; ð5:3Þ

Cabcd ¼ ΨABCDϵA0B0ϵC0D0 þ Ψ̄A0B0C0D0ϵABϵCD: ð5:4Þ

Note that as per convention, we have left out the soldering
forms like σAA

0
a for brevity, with the understanding that

spinor index pairs like AA0 correspond to tensor index a
(same letter but lowercase). The multi-indexed spinors can
be further factorized into products of their respective
principal spinors [relating to the principal null directions
of the original tensors via Eq. (E5)]:

ϕAB ¼ oðAιBÞ; ð5:5Þ

ΨABCD ¼ αð1ÞðA α
ð2Þ
B αð3ÞC αð4ÞDÞ ; ð5:6Þ

where more specialized Petrov classes of spacetimes have
more of the αð·Þ’s (corresponding to the GPNDs) being
coincident.
Now, a simple calculation shows that the scattering term

translates into the spinor language as

CacbdFcd ¼ ðΨABCDϕ
CDÞϵA0B0 þ c:c:; ð5:7Þ

where c:c: stands for complex conjugation. Substituting in
Eqs. (5.5) and (5.6), we find that the spinor counterpart to
the scattering term is

ΨABCDϕ
CD ¼ 1

12

X
i;j

ðαðiÞC oCÞðαðjÞD ιDÞαðkÞðA α
ðlÞ
BÞ ; ð5:8Þ

where ði; jÞ are an unordered and unequal pair of numbers
from f1; 2; 3; 4g, while ðk; lÞ are an ordered pair consisting
of the remaining two numbers, with k > l. From Eq. (5.8),
and recalling that the contraction of coincident spinors
vanish, it is clear that the more pairs of EPNDs and
GPNDs that are coincident, the more terms in the sum will
vanish, leaving us with a scattering term that is simpler in its
composition, meaning it has fewer independent components.
Such an effect is particularly strong with null electro-

magnetic waves, defined by the property that the two
EPNDs are coincident, or o ∝ ι (Sec. 5.1 of Ref. [113]).
This implies that ϕABϕ

AB ¼ 0 due to Eq. (E2). Through
Eq. (5.3), this further implies that the two real invariants of
the Faraday tensor must vanish [97], i.e. Eqs. (2.23) and
(2.24) must be satisfied. In particular, these conditions are
consistent with the force-free constraints, so there can be
FFE null solutions. More specifically, using Eqs. (5.3),
(5.5), (E11) and (E14), it is easy to verify that for a purely
ingoing null solution, we can write

Fab ¼ ϕ0oAoBϵA0B0 þ c:c:; ð5:9Þ

FAN ZHANG, SEAN T. MCWILLIAMS, AND HARALD P. PFEIFFER PHYSICAL REVIEW D 92, 024049 (2015)

024049-22



where ϕ0 is extracted under any dyad [corresponding to a
Newman-Penrose null tetrad via Eq. (E11)] that has o as a
member of its basis. Wewill denote such a dyad as ðoA; ζAÞ.
We now consider a null electromagnetic wave traveling

in a purely radiative (Petrov type N) [103,104] spacetime8

with all four GPNDs coinciding. If, furthermore, the
electromagnetic wave travels in the same direction as the
gravitational wave, so that the doubly degenerate EPNDs
coincide with the fourfold degenerate GPNDs, then all of
the contractions in Eq. (5.8) will vanish, and there will not
be any curvature scattering term left. Such a complete
disappearance of scattering can also happen when the
spacetime is of type III.
For the Petrov type-D Kerr spacetime, the scattering term

in Eq. (5.8) does not vanish completely, so there is still
some residual scattering, but of a simplified structure

CacbdFcd ¼ ϕ0Ψ2oAoBϵA0B0 þ c:c: ð5:10Þ

that does not necessarily lead to backscattering. In par-
ticular, the scattering term only contains oA and no ζA in its
spinor form, which helps prevent a contamination of Fab by
ϕ1 and ϕ2, as the spinor counterpart of Fab is given by

ϕAB ¼ ϕ0oAoB − 2ϕ1oðAζBÞ þ ϕ2ζAζB; ð5:11Þ

so that ϕ1 and ϕ2 need to multiply with ζA in order to pick
up spinor and subsequently tensor indices. A rigorous proof
for the existence of backscatterless solutions in type-D
spacetimes is provided by the general theorem (see
Refs. [107,114] and (7.3.14) of Ref. [97]) “If la is a
geodetic and shear-free null congruence and analytic, then
there is a nonzero solution of the vacuum Maxwell
equations which is null along la.” This result applies in
the vacuum case and, to a more limited extent (restricted to
Kerr spacetimes [12]), in the force-free case. The proof of
the theorem above and the discovery of the FFE solutions
are rather technical in nature, but we hope that our
discussion regarding the contraction/annihilation between
EPNDs and GPNDs and the subsequent simplification/
elimination of the scattering term will serve to help build
intuition for these important results.

VI. CONCLUSION

In this paper, we have introduced a new pseudospectral
fully 3D curved spacetime FFE code, with an initial data
solver and an improved constraint-damping mechanism.
Using this code, we have shown through numerical experi-
ments that the backscatterless analytical FFE solutions

found by Ref. [12] are stable against a variety of perturbing
scenarios, which we selected to avoid restricting ourselves
to special subspaces of the FFE solution space. However,
with any simulation, one can only constrain the growth rate
of unstable modes, as the simulations cannot be performed
for an infinite amount of time. We have carried out our
simulations for around ten light-crossing times, and
observed the perturbations to exit the computational
domain after two or three. If there exist unstable modes,
and they are excited to an appreciable initial amplitude, we
would expect them to remain in the computational domain
and then gradually grow. This does not appear to be the
case. Nevertheless, we should be cautious and only place an
upper bound on the growth rate of any unstable modes
assuming the worst scenario. Assuming that the unstable
modes exist but are not excited by our initial perturbation at
all, and instead started at the floor level of numerical noise
with ΔE2 and ΔB2 ∼ 10−20 (see Fig. 5), our final values for
these quantities are around 10−11 (see Figs. 11, 16 and 19)
after 2000 M of simulation, which gives an upper bound on
the growth rate for

ffiffiffiffiffiffiffiffiffi
ΔE2

p
and

ffiffiffiffiffiffiffiffiffi
ΔB2

p
at around 0.005. For

comparison, the fundamental l ¼ 1 quasinormal mode
decay rate for the magnetosphere in our study is 0.09.
In order to carry out concrete numerical studies, we had to

select particular solutions from the family of infinitely many
nullþ solutions that can be obtained. We have chosen
arbitrary representative solutions that share all the important
physical features listed in Sec. II C with the rest of their
siblings that are not explicitly simulated, and these solutions
do not have any special features or symmetries that would
make them more (or less) stable than the rest. We have also
examined both classes—the time-dependent “waves” and
the time-independent “winds”—of the solution family.
Therefore, we expect the stability conclusion to be general-
izable to the majority, if not all, of the solutions in the parent
family. In addition, we have chosen the magnitudes of the
unperturbed solution in such a manner as to ensure the tests
are carried out within the nonlinear regime of the FFE
equations, so our results suggest full nonlinear stability.
Furthermore, even though we cannot make mathematically
rigorous statements as to the asymptotic stability of the
nullþ solutions due to the presence of numerical noise, we
note that with all three different types of perturbations that
we have examined, the perturbations are seen to exit the
computational domain after two light-crossing times, and
the final ΔB2 and ΔE2 are small. From a practical point of
view, even if the final “steady-state” solutions are not
exactly the same as the nullþ solutions, they would be well
approximated by them, so that the nullþ solutions can be
considered effectively asymptotically stable. Therefore,
despite their physical specialness, these solutions are not
fragile, and can in fact describe physically realistic scenarios
like the outer magnetospheres of pulsars. We note that one
feature of the FFE nullþ solutions that made our numerical
study possible is the fact that they are globally regular, and

8Petrov type I: four different GPNDs; type II: two degenerate
GPNDs and two nondegenerate GPNDs; type D: two sets of
doubly degenerate GPNDs; type III: a triply degenerate set of
GPNDs and a nondegenerate one; type N: fourfold degeneracy in
GPNDs; type O: Weyl curvature tensor vanishes.
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are therefore amenable to numerical simulations. In con-
trast, the vacuum null solutions in curved spacetimes would
contain singularities if extended globally [12,72].
Unlike the jet stability (despite many plasma instabilities

that can be present in that case, the observed jets from
active galactic nuclei can extend to several hundred kpc),
the stability of the nullþ solutions is perhaps less surprising.
The nullþ solutions are more or less isotropic, so there is no
need to maintain a narrow collimated energy flux by e.g.
ambient gas pressure, and no sharp boundaries in the form
of a jet surface exist. Therefore, we do not have problems
like dangerous surface Kelvin-Helmholtz modes associated
with the vortex sheet on the jet surface [50,52].
Nevertheless, there are many interesting physical properties
of the nullþ solutions, such as having a null current and
being scatter avoiding, which we did not know would be
stablizing or destablizing. Given the stability result from
our numerical experiment, one can now ask interesting
questions such as whether the current being null will
actually help prevent the onset of current-driven instabil-
ities. Would an electromagnetic wave propagating close to
a degenerate GPND direction in fact tend to end up moving
exactly along it during its journey (in which case the nullþ
solutions will really have a preferential status)? These will
become interesting topics for future studies.
We caution however, that the stability of the nullþ

solutions does not necessarily translate into that of the null
solutions. This is because, first of all, the null exact solutions
will only satisfy the magnetic dominance condition margin-
ally, so any perturbation would likely introduce non-FFE
influences such as current sheets. In the study of jet stability,
the presence of current sheets at the jet surfaces is long
known to encourage instabilities [57], and in a more recent
study, it has been seen that dynamical current sheets have the
tendency to drastically rearrange the underlying force-free
solutions even when the initial data provided are already a
solution to the FFE equations [83]. Such current-sheet-
induced instabilities may well also beset the null solution
stability. Secondly, taking the limit where the null waves
become Alfvén waves, the background monopole B field in
a nullþ solution provides a preferred direction for the waves
to travel in. It is not clear whether the null solutions would be
more susceptible to changing propagation directions when
this guidance is taken away. Lastly, it has been observed in
the study of jet stabilities that increased magnetization has a
stabling effect [57], which can also be gone in the null case.
As in astrophysical situations, we expect a split monopole/
dipole-like background field to be present, the stability of the
nullþ solutions observed in this work would hopefully mean
that they can serve as efficient channels for carrying energy
across magnetospheres unhindered. However, because the
background field drops off faster than the null wave
component in a nullþ solution, eventually, this stability
may be lost (if the edge of the magnetosphere is not
reached first), and the ensuing instability may play a role

in how the transported energy finally turns into observational
signals.
Finally, on the analytical front, we have carried out an

explicit analysis of the scattering of an electromagnetic
wave by the spacetime curvature, with emphasis on the role
played by the GPNDs of the Weyl curvature tensor. We
showed that waves propagating along the degenerate
GPNDs experience simpler forms of curvature scattering,
thereby providing some intuition into the perplexing exist-
ence of backscatterless null solutions (although general
theorems on this subject already exist, their proofs are
highly technical). One interesting new conclusion is that the
scattering canvanish completely in a Petrov type-III or type-
N spacetime. This would remove a potential complication
(though it may or may not be significant in the first place)
associated with analyzing the coinciding electromagnetic
counterpart to a gravitational wave, as the gravitational
wave would not in fact try to scatter its electromagnetic
companion. The understanding of curvature scattering
gained here should also prove useful when constructing
new analytical solutions to the FFE equations and other field
theories where a lack of scattering is desirable, perhaps for
the sake of reducing computational complexity.
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APPENDIX A: HYPERBOLICITY
OF THE EVOLUTION SYSTEM

The study of the characteristic structure of a set of
evolution equations arises from the need for the initial
value problem to be well posed. For our pseudospectral
implementation, there is an added urgency because the
boundary conditions for the overall computational domain
[115–117], as well as between the adjacent subdomains
[85–88], are imposed on the characteristic modes. Recall
that the evolution system can be written as a collection of
coupled first-order differential equations in the form of

∂tUα þ Aiβ
α∂iUβ ¼ Rα; ðA1Þ
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where i is the spatial index, and α is the internal variable
index. In our case, we can see Uα as an abstract six-
dimensional state vector that is an alternative formulation
of Fab. For convenience, we will frequently express
such vectors as a pair of three-dimensional vectors.
Equation (A1) is strongly hyperbolic iff for all unit-vectors
n̂, the matrix n̂ ·A ¼ n̂iAi has only real eigenvalues and a
complete set of eigenvectors. It is furthermore symmetric
hyperbolic if there exists a definite positive symmetric
matrix S (a symmetrizer), such that the product of S and A
is symmetric. Symmetric hyperbolicity implies strong
hyperbolicity, and a strongly hyperbolic system is well
posed [118]. We note that as the spacetime metric is treated
as a background quantity, its derivatives do not contribute
to the principal part of the FFE evolution equations.
Comparing the curved spacetime evolution equations with
their flat spacetime limit, we see that

ðn̂j ~AjÞαβ ¼ Nðn̂jAjÞαβ − ðβjn̂jÞδαβ; ðA2Þ

where the tilde denotes curved spacetime expressions and
A the flat spacetime counterpart. Therefore, the eigenvalues
(characteristic speeds) in curved spacetime are simply
given by

~να̂ ¼ Nνα̂ − β · n̂; ðA3Þ

while the eigenvector (characteristic mode) expressions are
unchanged from their flat spacetime counterparts. The
analysis of the characteristic structure is then essentially
independent of the spacetime curvature.
For the minimal evolution system, the right eigenvalues

satisfying the equation

ðn̂i ~AiÞαβeβα̂ ¼ ~να̂eαα̂ ðA4Þ

are [79]

~ν1̂ ¼ −N − β · n̂; ðA5Þ

~ν2̂ ¼ N − β · n̂; ðA6Þ

~ν3̂ ¼ Nðν − ωÞ − β · n̂; ðA7Þ

~ν4̂ ¼ Nðνþ ωÞ − β · n̂; ðA8Þ

~ν5̂ ¼ −β · n̂; ðA9Þ

~ν6̂ ¼ −β · n̂; ðA10Þ

where

ν ¼ n̂ · ðE ×BÞ
B2

; ðA11Þ

ω ¼ 1

B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn̂ ·BÞ2ðB2 − E2Þ

q
: ðA12Þ

The right eigenvectors are

eα
1̂
¼ ð−PEþ n̂ ×B; PBþ n̂ × E Þ; ðA13Þ

eα
2̂
¼ ð−PE − n̂ ×B; PB − n̂ ×E Þ; ðA14Þ

eα
3̂;4̂

¼ ð−PBþ ν3̂;4̂n̂ ×Eþ ð1 − ν2
3̂;4̂
ÞB;

− PE − ν3̂;4̂n̂ × BÞ; ðA15Þ

eα
5̂
¼ ð 0; n̂ Þ; ðA16Þ

eα
6̂
¼ ð ðn̂ ·BÞn̂; PE Þ; ðA17Þ

where ν3̂;4̂ ¼ ν� ω, and for a vector A, ðPAÞ is defined as
A − ðn̂ ·AÞn̂. The eα

1̂
and eα

2̂
are fast modes traveling at the

speed of light. The terms eα
3̂
and eα

4̂
are the Alfvén modes,

while eα
5̂
and eα

6̂
are the unphysical modes (there can only be

four physical modes, as constraints∇ ·B¼ 0 andE · B ¼ 0
reduce the number of independent degrees of freedom
to four).
Note that the characteristic speeds become complex

when E2 > B2, and the evolution system will not be
strongly hyperbolic. This is one issue that stems from
the physical constraint of subluminal motion for the plasma
particles. There is, however, another hyperbolicity related
problem with the FFE evolution equations. Namely, even
when all the constraints are satisfied, we do not have a
complete set of eigenvectors when ðn̂ ·BÞ2 ¼ ðn̂ ×EÞ2
[79]. For example, when n̂ · B ¼ 0 and E ¼ En̂, we can
choose coordinates such that n̂ ¼ x̂ and B ¼ Bŷ; then for
the minimal system, we have

n̂ ·A ¼

0
BBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

E
B 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

1
CCCCCCCCA
; ðA18Þ

whose characteristic equation is

detðn̂ ·A − λ1Þ ¼ λ4ðλ2 − 1Þ ¼ 0; ðA19Þ

so that we have 4 zero eigenvalues. In order to allow for four
eigenvectors corresponding to these zero eigenvalues,
matrix n̂ ·A must have rank 6 − 4 ¼ 2. However, its actual
rank is 3, so we do not have a complete set of eigenvectors.
As an aside, we mention that in some numerical implemen-
tations, a divergence cleaning scalar field is introduced into
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the evolution system [27,119,120], which enlarges the space
of evolved variables, and changes the characteristic structure
of the evolution system. However, doing so does not cure
this particular hyperbolicity problem (details are provided in
Appendix C). Nevertheless, the directions for which we do
not have a complete set of eigenvectors is a set of measure
zero among all possible n̂ directions, and there are enough
eigenvectors to represent the constraint-satisfying solutions
even for these directions [79]. However, for constraint-
violating solutions, the constraints may grow on arbitrarily
short timescales (beyond the ability of our constraint-
damping additions to control) when the evolution system
is not well posed. Thankfully, for the numerical studies in
this paper, we do not encounter such a situation.
We note, nevertheless, that it is possible to obtain strictly

strongly hyperbolic evolution equations by augmenting
them with terms that vanish for constraint-satisfying
solutions, so that only unphysical modes are altered.
Reference [79] provides one such system, and we further
improve upon it by bringing in more augmentation terms
and proposing two systems with additional desirable
properties. In particular, one system remains symmetric
hyperbolic even when the constraint E · B ¼ 0 is violated.
The other system, although no longer symmetric hyper-
bolic when the constraints are violated, has a strongly
hyperbolic set of constraint evolution equations. The details
of these augmented systems are given in Appendix B.

APPENDIX B: WELL-POSED FFE
EVOLUTION SYSTEMS

It is desirable for an evolution system to be strongly
hyperbolic, as then it will be well posed. It has been shown

in a recent paper [79] that it is possible to augment the FFE
evolution equations with terms containing the derivatives of
the constraints, such that the resulting system is symmetric
hyperbolic when the constraints are satisfied. We show in
this appendix section that by considering additional aug-
mentation terms, it is possible to make the evolution
system retain its symmetric hyperbolicity even when the
FFE constaint E · B ¼ 0 is violated. As constraints are
never exactly satisfied in numerical simulations, such nice
off-shell (off of the constraint surface) properties are
obviously desirable. In addition, we also provide an
alternative augmented evolution system, whose evolution
equations do not remain symmetric hyperbolic off shell,
but whose associated constraint evolution equations are
strongly hyperbolic and particularly simple, so that the
constraints evolve in a well-understood and controlled
manner.

1. The main evolution equations

The unaugmented evolution equations are not strictly
hyperbolic even when the constraints are satisfied. Namely,
when ðn̂ · BÞ2 ¼ ðn̂ × EÞ2, the matrix n̂iA

iβ
α does not

possess a complete set of eigenvectors [79]. This problem
can be cured by adding constraints to the evolution
equations. Such additions will not change the physical,
constraint-satisfying solutions, but will modify the
characteristic structure of Eq. (A1) if the new terms
contain derivatives. For our case, we consider seven
possible additional terms that look similar to already
existing ones. With them, the evolution equations
become

ð∂t − LβÞE ¼ NKEþ∇ × ðNBÞ − N
B
B2

ðB ·∇ ×B −E · ∇ × E − 2KijEiBj þ 2KE ·Bþ δE ·BÞ

−
E × B
B2

N∇ · E − α1N
E
B2

×∇ðE ·BÞ − α2N
E ·B
B2

∇ ×E − α3NðE · BÞE × ∇ 1

B2
; ðB1Þ

ð∂t − LβÞB ¼ NKB −∇ × ðNEÞ − α4N
E ×B
B2

∇ ·B − α5N
B
B2

×∇ðE ·BÞ − α6
E ·B
B2

∇ × ðNBÞ

− α7NðE · BÞB ×∇ 1

B2
; ðB2Þ

where we have included the constraint damping term as
well (it does nothing to the characteristic structure of the
equations, as it does not contain any derivatives). Note that
in order to acquire additional desirable properties, we have
considered a larger collection of possible augmentation
terms than Ref. [79], which included those terms whose
coefficients are α1, α4 and α5, and with these coefficients
fixed to 0, 1 and 1, respectively. In other words, the

minimally augmented system (abbreviated to AU) intro-
duced in Ref. [79] corresponds to

AU∶ α ¼ ð0; 0; 0; 1; 1; 0; 0Þ ðB3Þ

in our notation.
We will propose two additional augmented systems AU2

and AU3, given by
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AU2∶ α ¼ ð−1; 0;−1=2; 1; 1; 0; 1=2Þ ðB4Þ

and

AU3∶ α ¼ ð0; 1; 0; 1; 1;−1; 1Þ; ðB5Þ

respectively. Both of these systems are symmetric hyper-
bolic (see Sec. 2 of this appendix) just like the AU system,
but possess additional desirable properties. TheAU2 system
retains its symmetric hyperbolicity when E ·B ≠ 0 (see
Sec. 3), and the AU3 system has a particularly simple
constraint evolution system (see Sec. 4).

2. Hyperbolicity of the main evolution equations
when constraints are satisfied

The requirement of hyperbolicity of Eqs. (B1) and (B2)
will imply restrictions on the coefficients α. To investigate
these restrictions, we first consider the case of n̂ · B ¼ 0

and E ¼ En̂, which is a special case of the ðn̂ ·BÞ2 ¼
ðn̂ ×EÞ2 configurations. Because the curvature of the
spacetime impacts the characteristic structure of the FFE
equations trivially, we will use only flat spacetime expres-
sions for the rest of this section, with the understanding that
curved spacetime counterparts can be recovered using
Eq. (A3). For the augmented systems, we have that

n̂ ·A ¼

0
BBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

E=B 0 0 0 −1 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 − α5 0 ðα4 − α5ÞE=B 0 0

1
CCCCCCCCA
;

ðB6Þ

whose characteristic equation is

detðn̂ ·A − λ1Þ ¼ λ4ðλ2 − 1Þ ¼ 0; ðB7Þ

so we have 4 zero eigenvalues. In order to allow for four
eigenvectors corresponding to this zero eigenvalue, matrix
n̂ ·A must have rank 2, which implies 1 − α5 ¼ 0 and
α4 − α5 ¼ 0, or α4 ¼ 1 ¼ α5. We note that all three
augmented systems given by Eqs. (B3), (B4) and (B5)
satisfy this requirement.
We now turn to prove symmetric hyperbolicity of AU2

and AU3 for generic cases by explicitly calculating the
symmetrizer S for them. We do so by writing down the
most general symmetrizer when the constraint E · B ¼ 0 is
satisfied, with each term multiplied by a yet-to-be-
determined coefficient. We then solve for these coefficients
by ensuring Sβαðn̂ ·AÞγβ is symmetric for all n̂. This is a
tedious but straightforward process. The condition of

α4 ¼ 1 ¼ α5 turns out to be necessary to ensure the positive
definiteness of Sβα. The symmetrizer for AU2 is simply

S¼
�
B2gij þ ðζ − 1ÞBiBj −EiBj þ ζBiEj

−BiEj þ ζEiBj B2gij þ ðζ − 1ÞEiEj

�
; ðB8Þ

where ζ is a free constant, and we require ζ > 0 for the
positive definiteness of S. The symmetrizer for AU3 is

S ¼
�Δgij þ ðξΔ − 2ΔÞ BiBj

B2 −Δ EiBj

B2 þ ξΔ BiEj

B2

−Δ BiEj

B2 þ ξΔ EiBj

B2 Δgij þ ξΔ EiEj

B2

�
; ðB9Þ

where Δ ¼ 1 − E2=B2, and we should pick a ξ > 1=Δ to
ensure positive definiteness of S.

3. Hyperbolicity of the main evolution equations
when E · B ≠ 0

The α vector for AU2 in Eq. (B4) is chosen to ensure that
the symmetrizer remains valid when E · B ≠ 0 (this prop-
erty is not shared by the AU3 or AU evolution systems).
Indeed, by picking ζ ¼ 1=2, it is straightforward to verify
explicitly that Sβαðn̂ ·AÞγβ is symmetric. Namely, if we
break the greek indices into a pair of spatial indices and
write Sβαðn̂ ·AÞγβ in a block form

� ðSAEEÞjk ðSAEBÞjk
ðSABEÞjk ðSABBÞjk

�
; ðB10Þ

we then have

ðSAEEÞikϵjik ¼ 0 ¼ ðSABBÞikϵjik;
ðSAEBÞik − ðSABEÞki ¼ 0; ðB11Þ

regardless of the value of E · B.
In greater detail, the block form of n̂ ·A is

� ðAEEÞjk ðAEBÞjk
ðABEÞjk ðABBÞjk

�
; ðB12Þ

where for generic α choices

ðAEEÞjk ¼ −
Bj

B2
ðE × n̂Þk þ

ðE ×BÞj
B2

n̂k þ α1
ðE × n̂Þj

B2
Bk

þ α2
E · B
B2

ϵjikn̂i; ðB13Þ

ðAEBÞjk ¼ −ϵjikn̂i þ
Bj

B2
ðB × n̂Þk þ α1

ðE × n̂Þj
B2

Ek

− 2α3
E · B
B4

ðE × n̂ÞjBk; ðB14Þ
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ðABEÞjk ¼ ϵjikn̂i þ α5
ðB × n̂Þj

B2
Bk; ðB15Þ

ðABBÞjk ¼ α4
ðE ×BÞj

B2
n̂k þ α5

ðB × n̂Þj
B2

Ek

þ α6
E · B
B2

ϵjikn̂i − 2α7
E · B
B4

ðB × n̂ÞjBk:

ðB16Þ

Multiplying with symmetrizer S as given by Eq. (B8) with
ζ ¼ 1=2 and an extra overall factor of 2 for convenience,
we obtain the components in Eq. (B10):

ðSAEEÞik ¼ −BiðE × n̂Þk þ 2ðE ×BÞin̂k − 2ðE × n̂ÞiBk

þB · ðE × n̂ÞBiBk þ BiðE × n̂Þk
− 2EiðB × n̂Þk þ

E · ðB × n̂Þ
B2

BiBk; ðB17Þ

ðSABBÞik ¼ −EiðB× n̂Þk þ 2BiðE× n̂Þk þ EjðB× n̂Þk
− 2

E ·B
B2

BiðB× n̂Þk −
B · ðE× n̂Þ

B2
EiEk

þE ·B
B4

B · ðE× n̂ÞEiBk þ 2ðE×BÞink

þ 2ðB× n̂ÞiEk −
E · ðB× n̂Þ

B2
EiEk

− 2
E ·B
B2

ðB× n̂ÞiBk þ
E ·B
B2

E · ðB× n̂Þ
B2

EiBk;

ðB18Þ

ðSAEBÞik ¼ 2B2ϵikln̂l − 2ðE × n̂ÞiEk þ 2
E ·B
B2

ðE × n̂ÞiBk

þ 2BiðB × n̂Þk; ðB19Þ

ðSABEÞik ¼ −2B2ϵikln̂l − 2ðE × n̂ÞkEi

þ 2
E · B
B2

ðE × n̂ÞkBi þ 2BkðB × n̂Þi; ðB20Þ

where we have specialized to the AU2 system of Eq. (B4).
We then have ðSAEBÞik − ðSABEÞki ¼ 0, and it is straight-
forward to show that the antisymmetric part of the diagonal
blocks are

ðSAEEÞikϵjik ¼ ðSABBÞikϵjik
¼ 2ðB × ðE × n̂Þ þ n̂ × ðB ×EÞ
þ E × ðn̂ ×BÞÞj ¼ 0: ðB21Þ

For completeness, we explicitly write out the character-
istic modes and speeds for the AU2 system. The right
eigenvalues satisfying the equation

ðniAiÞαβeβα̂ ¼ να̂eαα̂ ðB22Þ

are

ν1̂ ¼ −1; ðB23Þ

ν2̂ ¼ 1; ðB24Þ

ν3̂ ¼ ν − ω; ðB25Þ

ν4̂ ¼ νþ ω; ðB26Þ

ν5̂ ¼ ν; ðB27Þ

ν6̂ ¼ 2ν; ðB28Þ

where ν and ω are given in Eqs. (A11) and (A12). The right
eigenvectors are

eα
1̂
¼ ð−PEþ n̂ ×B; PBþ n̂ × E Þ; ðB29Þ

eα
2̂
¼ ð−PE − n̂ ×B; PB − n̂ ×E Þ; ðB30Þ

eα
3̂;4̂

¼ ð−PBþ ν3̂;4̂n̂ ×Eþ ð1 − ν2
3̂;4̂
ÞB;

− PE − ν3̂;4̂n̂ × BÞ; ðB31Þ

eα
5̂
¼ ðEðB · n̂Þ −BðE · n̂Þ; B2n̂ −E ×Bν Þ; ðB32Þ

eα
6̂
¼ ðB; 0Þ: ðB33Þ

We note that the unphysical modes for the AU2 system as
given by Eqs. (B32) and (B33) are much less complicated
than for the AU system as given in Ref. [79]. This is
beneficial for inverting the characteristic modes in order
to obtain the fundamental variables E and B, which is
necessary for some pseudospectral implementations such
as ours, where both the internal (between the adjacent
subdomains) [85–88] and the external boundary conditions
[115–117] are imposed on the characteristic modes, and so
need to be translated into the fundamental evolution
variables before they become useful.
The left eigenvalues satisfying

eα̂αðniAiÞαβ ¼ να̂eα̂β ðB34Þ
are identical to the right eigenvalues in Eqs. (B23)–(B28),
while the left eigenvectors are

e1̂α¼
�
E− n̂×B;−B− n̂×EþðB2−E2Þ

1þν

n̂ ·B
B2

n̂

�
; ðB35Þ

e2̂α¼
�
Eþ n̂×B;−Bþ n̂×EþðB2−E2Þ

1−ν

n̂ ·B
B2

n̂

�
; ðB36Þ
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e3̂α ¼
�
n̂ ·B
B2

E ×Bþ ω

n̂ · B
B2

�
n̂ −

n̂ ·B
B2

B

�
;

−Eðω − νÞ þ n̂ ×B

�
; ðB37Þ

e4̂α ¼
�
−
n̂ ·B
B2

E ×Bþ ω

n̂ · B
B2

�
n̂ −

n̂ ·B
B2

B

�
;

−Eðω − νÞ − n̂ × B

�
; ðB38Þ

e5̂α ¼ ð0; n̂Þ; ðB39Þ

e6̂α ¼ ðB;EÞ: ðB40Þ

These eigenvectors are degenerate when E ¼ �n̂ ×B,
in which case we can find alternative complete sets of
eigenvectors. When E ¼ n̂ × B, we have ν1̂ ¼ ν3̂ ¼ −1,
and we can pick q̂⊥n̂ to construct

eα
1̂
¼ ð q̂; −n̂ × q̂ Þ; ðB41Þ

eα
3̂
¼ ð n̂ × q̂; q̂ Þ; ðB42Þ

e1̂α ¼ ðB × ðn̂ × q̂Þ; B × q̂ Þ; ðB43Þ

e3̂α ¼ ð−B × q̂; B × ðn̂ × q̂Þ Þ; ðB44Þ

while the remaining eigenvectors are still valid. When
E ¼ −n̂ ×B, we have ν2̂ ¼ ν4̂ ¼ 1, and can use the new
vectors

eα
2̂
¼ ð q̂; n̂ × q̂ Þ; ðB45Þ

eα
4̂
¼ ð n̂ × q̂; −q̂ Þ; ðB46Þ

e2̂α ¼ ð−B × ðn̂ × q̂Þ; B × q̂ Þ; ðB47Þ

e4̂α ¼ ðB × q̂; B × ðn̂ × q̂Þ Þ; ðB48Þ

together with the remaining eigenvectors that are still valid.
Lastly, as an aside, we note that for the AU2 system, we

can further use the identity

−
B
B
× ∇E ·B

B
¼ −

B
B2

×∇ðE ·BÞ

−
1

2
ðE ·BÞB ×∇ 1

B2
ðB49Þ

to combine terms in the evolution Eqs. (B1) and (B2).

4. The constraint evolution equations

We can derive the evolution equations of the constraints
∇ ·B and E ·B from the main evolution Eqs. (B1) and
(B2). The result is

∂t∇ ·B ¼ −α4∇ðv∇ ·BÞ − a ·∇ðE ·BÞ
þΨE ·B; ðB50Þ

∂tðE · BÞ ¼ −α5∇ · ðvðE · BÞÞ þ α1v ·∇ðE ·BÞ
þΨ0ðE ·BÞ; ðB51Þ

where

v ¼ E × B
B2

; ðB52Þ

a ¼ ðα5 − α7Þ∇ ×
B
B2

þ ðα6 þ α7Þ
1

B2
∇ ×B; ðB53Þ

Ψ ¼ −ðα6 þ α7Þ
�
∇ 1

B2

�
· ð∇ ×BÞ; ðB54Þ

Ψ0 ¼ ðα5 − α7 þ α3ÞðE ×BÞ · ∇ 1

B2
þ ðα5 − α2Þ

B · ∇ × E
B2

− ðα6 þ α5Þ
E ·∇ ×B

B2
: ðB55Þ

It is desirable for the constraint evolution equations to be
strongly hyperbolic, so that the constraints evolve in a
predictable and controlled manner. Such a property is
especially useful when the main evolution equations are
not symmetric hyperbolic off shell, as a well-posed con-
straint evolution system would signal that at least some
good behaviors are retained off shell. The n̂ ·A matrix for
the constraint evolution system is simply

�
α4v · n̂ a · n̂

0 ðα5 − α1Þv · n̂

�
; ðB56Þ

which does not have a complete set of eigenvectors when
v · n̂ ¼ 0 unless a · n̂ ¼ 0, which can be achieved by
setting α5 ¼ −α6 ¼ α7 as in the AU3 system. Note that
the AU and AU2 systems do not satisfy this condition, so
their constraint evolution equations are not strongly
hyperbolic.
The ∂tðE ·BÞ equation simplifies further when α1 ¼ 0

and Ψ0 ¼ 0. So under the coefficient choice α5¼−α6¼ α7,
α2 ¼ α5, and α1 ¼ 0 ¼ α3, the evolution equations reduce
to a pair of decoupled advection equations

∂tð∇ ·BÞ ¼ −∇ðα4v∇ · BÞ; ðB57Þ

∂tðE ·BÞ ¼ −∇ðα5vE · BÞ: ðB58Þ
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When combined with the α4 ¼ α5 ¼ 1 condition for the
hyperbolicity of the main evolution equations, we obtain
the α coefficients for the AU3 system as given by Eq. (B5).
We note that Eq. (B50) contains a second derivative of B

whenever α4 ≠ 0. Since hyperbolicity requires α4 ¼ 1, this
is always the case (shared by all of the AU, AU2 and AU3
systems), with both positive and negative implications: A
disadvantage of this term is that the second derivative
increases the sensitivity to high-frequency noise in B.
However, the α4 term in Eq. (B50) will cause any constraint
violations ∇ · B ≠ 0 to propagate along v, thus allowing it
to propagate away.

APPENDIX C: HYPERBOLICITY OF AN
EVOLUTION SYSTEM WITH A DIVERGENCE

CLEANING SCHEME

In our FFE code implementation, it turns out that just as
observed in Ref. [17], the intrinsic accuracy of the
pseudospectral code is sufficient to keep the ∇ · B ¼ 0
constraint under control (provided we remove it from the
initial data, of course), and there is no need for any
additional constraint cleaning procedures. We note, how-
ever, that Refs. [119,120] used a dynamical divergence
cleaning scheme. Namely, one adds a −N∇ϕ term to ∂tB,
where ϕ is a scalar field satisfying the evolution equation

ð∂t − LβÞϕ ¼ −N∇ · B − Nσ2ϕ: ðC1Þ

The ϕ field then damps the ∇ · B constraint with a time
scale of σ−12 [119].
The introduction of a new field like ϕ enlarges the

space of evolution variables, and would generally alter
the characteristic structure of the evolution system.
Unfortunately, this does not remove the hyperbolicity
problem when ðn̂ · BÞ2 ¼ ðn̂ × EÞ2. The characteristic
matrix for the now enlarged system is

n̂ ·A ¼

0
B@

ðAEEÞjk ðAEBÞjk 0

ðABEÞjk ðABBÞjk n̂j

0 n̂k 0

1
CA; ðC2Þ

where the four sub-blocks in the top left are the same as the
minimal system. Under the same assumptions that lead to
Eq. (A18), we have a 7 × 7 matrix whose characteristic
equation is λ3ðλ2 − 1Þ2 ¼ 0, so there are three vanishing
characteristic speeds. The matrix needs to have a rank of 4
for there to be three independent characteristic modes of
vanishing speed, but the matrix actually has a rank of 5.
Therefore, the enlarged evolution system is still not strictly
strongly hyperbolic.

APPENDIX D: THE NULL SOLUTIONS IN
KERR-SCHILD COORDINATES

In our simulations, we specify the metric using the Kerr-
Schild slicing and coordinates, and the transformations
between the Kerr-Schild coordinates ð~t; x; y; zÞ and the
ingoing Kerr coordinates ðν; r; θ;ψÞ are simply (we have
kept a in case readers need it elsewhere; for this paper, one
should set a ¼ 0 in all these expressions)

~t¼ ν− r; xþ iy¼ðrþ iaÞeiψ sinθ; z¼ rcosθ; ðD1Þ

with the inverse transformations being

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a2z2

p
Þ

r
; ðD2Þ

b≡ x2 þ y2 þ z2 − a2; ðD3Þ

θ ¼ arccos

�
z
r

�
; ν ¼ ~tþ r; ðD4Þ

ψ ¼ arctan

�
y
x

�
þ π

2

�
1 −

x
jxj

�
− arctan

�
a
r

�
: ðD5Þ

Aside from the null solution, we will also add in a
monopole contribution according to Eq. (2.32) to ensure
magnetic dominance, whereby the Faraday tensor becomes

Fab ¼ 4ℜðϕ0m̄½anb� þ ϕ1ðm½am̄b� þ n½alb�ÞÞ: ðD6Þ

Note that the second term for ϕ1 in the expression above
vanishes when ϕ1 is given by Eq. (2.32), which is purely
imaginary, and so the above expression reduces
to Eq. (2.33).
We also note that the Kinnersley tetrad in the Cartesian

(vector components are in the Cartesian basis) Kerr-Schild
coordinates is given by

l0 ¼ 2
r2 þ a2

Δ
− 1; ðD7Þ

l1 þ il2 ¼ eiψ sin θ

�
2ai
Δ

ðrþ iaÞ þ 1

�
; ðD8Þ

l3 ¼ cos θ; ðD9Þ

n0 ¼ Δ
2Σ

; ðD10Þ

n1 þ in2 ¼ −
Δ
2Σ

eiψ sin θ; ðD11Þ
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n3 ¼ −
Δ
2Σ

cos θ; ðD12Þ

m0 ¼ −
ρ̄ffiffiffi
2

p ia sin θ; ðD13Þ

m1 ¼ −
ρ̄ffiffiffi
2

p ðℜA cos θ − iℑAÞ; ðD14Þ

m2 ¼ −
ρ̄ffiffiffi
2

p ðℑA cos θ þ iℜAÞ; ðD15Þ

m3 ¼ ρ̄ffiffiffi
2

p r sin θ; ðD16Þ

where A ¼ ðrþ iaÞ expðiψÞ.
For use in Sec. IV B, we also summarize the relationship

between the Boyer-Lindquist ðt; r; θ;ϕÞ and Kerr-Schild
ð~t; x; y; zÞ spatial coordinates. The transformations between
them are

~t ¼ tþ 2M ln

				 r
2M

− 1

				; ðD17Þ

xþ iy ¼ ðrþ iaÞ expði ~ϕÞ sin θ; ðD18Þ

z ¼ r cos θ; ðD19Þ

where

~ϕ ¼ ϕþ a
rþ − r−

ln

				 r − rþ

r − r−

				; ðD20Þ

which in the a ¼ 0 limit gives the Jacobian

∂xKS

∂xBL
¼

0
BB@

1 2M
r−2M 0 0

0 cosϕ sin θ r cosϕ cos θ −r sinϕ sin θ

0 sinϕ sin θ r sinϕ cos θ r cosϕ sin θ

0 cos θ −r sin θ 0

1
CCA:

APPENDIX E: THE SPINOR FORMALISM

For a comprehensive introduction to spinors, please
consult, for example, Refs. [97,113,121]. Here, for the
sake of completeness, we give a brief summary.
When spinor bundles can be defined on a spacetime (see

Ref. [121]), we have a two-dimensional complex vector
space W, as well as its complex conjugation W0, over each
spacetime location. The elements of W0 are written with an
overhead bar (signifying complex conjugation) and primed
indices (e.g. ξ̄A

0 ∈ W0), while elements ofW have unprimed
indices and no special overhead symbols (e.g. ξA ∈ W). We
then map between W (W0) and its dual space W� (W0�)
using an antisymmetric spinor ϵAB (and ϵA0B0 , where it is

customary to leave out the overhead bar on ϵA0B0). In other
words, we raise and lower spinor indices with an anti-
symmetric second rank spinor as

ξBϵBA ¼ ξA ∈ W�; ϵABξB ¼ ξA ∈ W; ðE1Þ

rather than with a symmetric one. The result is that spinor
self-contractions vanish, i.e.

ξAξA ¼ ϵ½BA�ξðAξBÞ ¼ 0: ðE2Þ

In fact, we have the stronger result [Proposition (2.5.56) in
Ref. [113]] that αAβA ¼ 0 iff αA and βA are (complex)
scalar multiples of each other.When this happens, we will
call αA and βA coincident.
We also have a map between the tangent space of the

spacetime and the tensor product space W ⊗ W0 given by

vAA
0 ¼ vaσAA

0
a ; va ¼ vAA

0
σaAA0 ; ðE3Þ

where σ are the soldering forms satisfying

σAA
0

a σbAA0 ¼ −δab; σaAA0σBB
0

a ¼ −ϵABϵA0B
0
; ðE4Þ

where the minus signs are due to our metric signature
choice of ð−þþþÞ instead of the customary ðþ − −−Þ for
spinor calculations. The consequence is that whenever we
translate a contraction between a pair of spacetime indices
into the contraction between the corresponding pair of
double (one primed and the other unprimed) spinor indices,
and vice versa, we should add an extra minus sign. This
step would not be necessary had we adopted the ðþ − −−Þ
signature as Refs. [97,113,121] did. We note that the
spacetime null vectors map to particularly nice factorized
spinor forms

la ¼ σaAA0ξAξ̄A
0
: ðE5Þ

With the relationship (E5) and after applying Eq. (E4), we
see that Eq. (E2) is equivalent to null vectors having zero
norms under the Lorentzian metric.
Using the soldering forms, we can also transfer higher-

rank spacetime tensors into their corresponding multi-
spinors. For example, the metric maps to

gab ¼ σaAA0σbBB0gAA
0BB0

; ðE6Þ

where

gAA
0BB0 ¼ −ϵABϵA0B0

: ðE7Þ

More importantly for us, the Weyl tensor also has a spinor
counterpart ΨABCD defined by
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Cabcd ¼ ΨABCDϵA0B0ϵC0D0σAA
0

a σBB
0

b σCC
0

c σDD0
d

þ Ψ̄A0B0C0D0ϵABϵCDσ
AA0
a σBB

0
b σCC

0
c σDD0

d ; ðE8Þ

whereΨABCD has a much more straightforward relationship
with its principal spinors than the original tensor version
Cabcd had with its principal null vectors. Specifically,
the algebraic closedness of the complex numbers field
underlying spinors ensures that we always have the
factorization

ΨABCD ¼ αð1ÞðA α
ð2Þ
B αð3ÞC αð4ÞDÞ ; ðE9Þ

where the αð·Þ’s are the principal spinors, and then the
GPNDs of Cabcd are simply given by

σAA
0

a αðaÞA ᾱðaÞA0 ; ðaÞ ∈ fð1Þ; ð2Þ; ð3Þ; ð4Þg: ðE10Þ

Many other quantities take on more transparent forms
under the spinor formalism. For example, let a spinor dyad
ðo; ιÞ be defined such that it relates to a Newman-Penrose
null tetrad by

la ¼ σaAA0oA ōA
0
; na ¼ σaAA0 ιA ῑA

0
;

ma ¼ σaAA0oA ῑA
0
; m̄a ¼ σaAA0 ιA ōA

0
: ðE11Þ

Then the definitions for the Newman-Penrose scalars under
that tetrad,

Ψ0 ¼ Cabcdlamblcmd; ðE12aÞ

Ψ1 ¼ Cabcdlanblcmd; ðE12bÞ

Ψ2 ¼ Cabcdlambm̄cnd; ðE12cÞ

Ψ3 ¼ Cabcdlanbm̄cnd; ðE12dÞ

Ψ4 ¼ Cabcdnam̄bncm̄d; ðE12eÞ

can be rewritten as

Ψ0 ¼ ΨABCDoAoBoCoD; ðE13aÞ

Ψ1 ¼ ΨABCDoAoBoCιD; ðE13bÞ

Ψ2 ¼ ΨABCDoAoBιCιD; ðE13cÞ

Ψ3 ¼ ΨABCDoAιBιCιD; ðE13dÞ

Ψ4 ¼ ΨABCDι
AιBιCιD; ðE13eÞ

whereby the decreasing number of times that oA appears in
the definitions establishes the hierarchy of decay rates of
these scalars under the peeling theorem [80,97], a feature
not as visible in the tensorial expressions in Eq. (E12).
Lastly, to carry out some calculations in the main text, we
note the fact that under the dyad basis, ϵAB can be written as

ϵAB ¼ oAιB − ιAoB: ðE14Þ
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