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A class of Siklos waves, representing exact vacuum solutions of general relativity with a cosmological
constant, is extended to a new class of Siklos waves with torsion, defined in the framework of the Poincaré
gauge theory. Three particular exact vacuum solutions of this type, the generalized Kaigorodov, the
homogeneous solution and the exponential solution, are explicitly constructed.

DOI: 10.1103/PhysRevD.92.024047 PACS numbers: 04.50.Kd, 04.20.Jb, 04.30.-w

I. INTRODUCTION

The first complete formulation of the idea of (internal)
gauge invariance was given in Weyl’s classic paper [1].
Significant progress in this direction was achieved some-
what later by Yang, Mills and Utiyama [2,3]. It opened a
new perspective for understanding gravity as a gauge
theory, the perspective that was realized by Kibble and
Sciama [4] in their proposal of a new theory of gravity,
known as the Poincaré gauge theory (PGT). The PGT is a
gauge theory of the Poincaré group, with an underlying
Riemann-Cartan (RC) geometry of spacetime [5,6]. In this
approach, basic gravitational variables are the tetrad field bi

and the Lorentz connection ωij (1-forms), and the related
field strengths are the torsion Ti ¼ dbi þ ωi

m ∧ bmj and
the curvature Rij ¼ dωij þ ωi

m ∧ ωmj (2-forms). At a
more physical level, the source of gravity in PGT is matter
possessing both the energy-momentum and spin currents.
The importance of the Poincaré symmetry in particle
physics leads one to consider PGT as a favorable frame-
work for describing the gravitational phenomena.
Based on the experience stemming from Einstein’s

general relativity, it is known that exact solutions play a
crucial role in developing our understanding of the
geometric and physical content of a gravitational theory;
for a review, see Refs. [7–10]. An important set of these
solutions refers to exact gravitational waves, the structure
of which has been studied also in PGT [11]. In the present
work, we focus on a particular class of the gravitational
waves, the class of Siklos waves that are vacuum solutions
of general relativity with a cosmological constant (GRΛ),
propagating on the anti–de Sitter (AdS) background [12].
By generalizing the ideas developed in three dimensions
[13], we construct here a class of the four-dimensional
Siklos waves with torsion as vacuum solutions of PGT.
The paper is organized as follows. In Sec. II, we give a

short account of the Siklos waves in the tetrad formulation
of GRΛ. In Sec. III, we show that Siklos waves are torsion-
free vacuum solutions of PGT. In Sec. IV, we introduce new

vacuum solutions of PGT, the Siklos waves with torsion, by
modifying the Siklos geometry in a manner that preserves
the radiation nature of the original configuration. That is
achieved by an ansatz for the RC connection that produces
only the tensorial irreducible mode of the torsion with
JP ¼ 2þ. The PGT field equations are simplified and
shown to depend only on three parameters, including the
mass of the torsion mode. In Secs. V–VII, we describe three
different vacuum solutions belonging to the class of Siklos
waves with torsion: the generalized Kaigorodov, the homo-
geneous solution and the exponential solution. Section VII
is devoted to concluding remarks, and two appendixes
contain some technical details.
Our conventions are as follows. We use the Poincaré

coordinates xμ ¼ ðu; v; x; yÞ as the local coordinates; the
latin indices ði; j;…Þ refer to the local Lorentz (co)frame
and run over ðþ;−; 2; 3Þ, bi is the tetrad (1-form), and hi is
the dual basis (frame), such that hi⌋bk ¼ δki ; the volume
4-form is ϵ̂ ¼ bþ ∧ b− ∧ b2 ∧ b3, the Hodge dual of a
form α is ⋆α, with ⋆1 ¼ ϵ̂, and the totally antisymmetric
tensor is defined by ⋆ðbi ∧ bj ∧ bk ∧ bmÞ ¼ εijkm and
normalized to εþ−23 ¼ 1; in the rest of the paper, the
exterior product of forms is implicit.

II. SIKLOS WAVES IN GRΛ

Siklos waves were introduced as a class of exact
gravitational waves propagating on the AdS background
[12]. In the Poincaré coordinates xμ ¼ ðu; v; x; yÞ, the
Siklos metric is given by

ds2 ¼ l2

y2
½2duðHduþ dvÞ − dx2 − dy2�; ð2:1Þ

with H ¼ Hðu; x; yÞ. It admits the null Killing vector
field ∂v that is not covariantly constant; the wave fronts
are surfaces of constant u and v, and the case H ¼ 0
corresponds to the AdS background. The metric (2.1)
coincides with a special subclass of the Kundt class
[9,10], and is obviously conformal to pp waves. The
physical interpretation of the Siklos waves was investigated
by Podolský [14,15].
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Now we give a short account of the Siklos waves in the
tetrad formulation of GRΛ, which allows for a simpler
generalization to PGT. First, we choose the tetrad field in
the form

bþ ≔
l
y
du; b− ≔

l
y
ðHduþ dvÞ;

b2 ≔
l
y
dx; b3 ≔

l
y
dy; ð2:2Þ

so that the line element becomes ds2 ¼ 2bþb−−
ðb2Þ2 − ðb3Þ2 ≡ ηijbibj, where η is the half-null
Minkowski metric,

ηij ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA:

The dual frame hi is given by

hþ ¼ y
l
ð∂u −H∂vÞ; h− ¼ y

l
∂v;

h2 ¼
y
l
∂x; h3 ¼

y
l
∂y: ð2:3Þ

Next, we introduce the Riemannian connection ωij by
imposing the condition of vanishing torsion, ∇bi ≔ dbiþ
ωi

mbm ¼ 0, which yields

ωþ−;ωþ2 ¼ 0; ωþ3 ¼ 1

l
bþ;

ω23 ¼ 1

l
b2; ω−2 ¼ −

y
l
∂xHbþ;

ω−3 ¼ 1

l
b− −

y
l
∂yHbþ: ð2:4aÞ

The wave nature of the Siklos wave is clearly seen by
rewriting ωij in the form

ωij ¼ ω̄ij þ kiðhj⌋HÞbþ; ð2:4bÞ

where ω̄ij ¼ ωijðH ¼ 0Þ refers to the AdS background,
and the second term is the radiation piece, characterized by
the null vector ki ¼ ðkþ; k−; k2; k3Þ ¼ ð0; 1; 0; 0Þ.

Now one can calculate the Riemannian curvature:

Rþj ¼ 1

l2
bþbj; R23 ¼ 1

l2
b2b3;

R−2 ¼ 1

l2
b−b2 þ 1

l2
ðy2∂xxH − y∂yHÞbþb2

þ 1

l2
ðy2∂xyHÞbþb3;

R−3 ¼ 1

l2
b−b3 þ 1

l2
ðy2∂yyH − y∂yHÞbþb3

þ 1

l2
ðy2∂xyHÞbþb2; ð2:5Þ

where we use ∂xx ≔ ∂2=∂x2 etc. The Ricci curvature
Rici ¼ hm⌋Rmi and the scalar curvature R ¼ hi⌋Rici are
found to be

Ricm ¼ 3

l2
bm; m ¼ þ; 2; 3;

Ric− ¼ 3

l2
b− þ 1

l2
ðy2∂xxH þ y2∂yyH − 2y∂yHÞbþ;

R ¼ 12

l2
: ð2:6Þ

Dynamical structure of GRΛ is defined by the action
IΛ ¼ −

R
d4x

ffiffiffiffiffiffi−gp ða0Rþ 2ΛÞ. The corresponding vacuum
field equations can be suitably written in the traceless
form as

Rici −
1

4
Rbi ¼ 0: ð2:7Þ

As a consequence, the metric function H must obey

y2ð∂xxH þ ∂yyHÞ − 2y∂yH ¼ 0: ð2:8Þ

The profile (u-dependence) of the Siklos wave may be
arbitrary.
We display here three special solutions of (2.8) discussed

by Siklos [12]:

H1 ¼ y3; Kaigorodov’s solution ð1963Þ;
H2 ¼ arctanðx=yÞ þ xy=ðx2 þ y2Þ; ~H2 ¼ ðx2 þ y2ÞH2;

H3 ¼ C1exðcosyþ y sinyÞ þC2exðsiny− y cosyÞ:

Note that Defrise’s metric (1969), with H ¼ 1=y2, is not a
vacuum solution of GRΛ [15].

III. SIKLOS WAVES AS TORSION-FREE
SOLUTIONS OF PGT

In this section, we show that the Siklos spacetime of the
previous section is an exact Riemannian solution of PGT in
vacuum.
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Starting from the general PGT dynamics described in
Appendix B, one can easily derive its reduced form in the
Riemannian sector of PGT, characterized by Ti ¼ 0. First,
we note that the only nonvanishing irreducible components
of the Riemannian curvature are ð1ÞRij, ð4ÞRij and ð6ÞRij,
defined in Appendix A. And second, the condition Ti ¼ 0
implies that dynamical evolution of the Riemannian sol-
utions in PGT is described by a reduced form of the general
field equations (B3):

ð1STÞ Ei ¼ 0;

ð2NDÞ ∇Hij ¼ 0: ð3:1aÞ

Here, the Riemannian expressions for Ei and Hij are
obtained directly from the corresponding PGT formulas
(see Appendix B) in the limit Ti ¼ 0:

Hij ¼ −2a0⋆ðbibjÞ þ 2⋆ðb1ð1ÞRij þ b4ð4ÞRij þ b6ð6ÞRijÞ;

Ei ≔ hi⌋LG −
1

2
ðhi⌋RmnÞHmn: ð3:1bÞ

As shown in Ref. [5], the field equations (3.1) are
satisfied for any configuration in which the traceless
symmetric Ricci tensor vanishes:

RicðijÞ −
1

4
ηijR ¼ 0: ð3:2Þ

Comparing this result with the GRΛ field equation (2.7),
one concludes that any vacuum solution of GRΛ is
automatically a torsion-free solution of PGT. In particular,
this is true for the Siklos metric.
It is useful to explore this general statement in detail.

Using the geometry of the Siklos spacetime found in the
previous section, the content of Eqs. (3.1a) is found to be

ð1STÞ ðb4 þ b6 − a0l2Þy½yð∂xxH þ ∂yyHÞ − 2∂yH� ¼ 0;

3a0 þ l2Λ ¼ 0;

ð2NDÞ ðb1 þ b4Þy2∂x½yð∂xxH þ ∂yyHÞ − 2∂yH� ¼ 0;

ðb1 þ b4Þy2∂y½yð∂xxH þ ∂yyHÞ − 2∂yH� ¼ 0:

ð3:3Þ

For the generic values of the Lagrangian parameters
a0; b1; b4; b6, dynamical content of these equations is
obviously the same as in GRΛ, since the metric function
H must be such that

ŜH ≔ yð∂xxH þ ∂yyHÞ − 2∂yH ¼ 0: ð3:4Þ

Thus, although PGT has a rather different dynamical
structure as compared to GRΛ, the class of Riemannian
Siklos spacetimes is still an exact vacuum solution of PGT.

IV. SIKLOS WAVES WITH TORSION

We are now ready to generalize the previous results by
constructing a new, non-Riemannian class of Siklos waves,
the Siklos waves with torsion.

A. Geometry of the ansatz

We wish to introduce torsion in a manner that preserves
the radiation nature of the Riemannian Siklos waves of
GRΛ, relying on the approach proposed in [13].
We start the construction by assuming that the tetrad field

in PGT retains its Riemannian form (2.2). Then, by noting
that the radiation piece of the Riemannin connection (2.4)
has the form ðωijÞR ¼ kiðhjμ∂μHÞbþ, we assume that the
new RC connection is given by

ωij ¼ ω̄ij þ kihjμð∂μH þ KμÞbþ; ð4:1aÞ

where the form of Kμ is defined by

Kμ ¼ ð0; 0; Kx; KyÞ;
Kx ¼ Kxðu; x; yÞ; Ky ¼ Kyðu; x; yÞ: ð4:1bÞ

This ansatz modifies only two components of the
Riemannian connection (2.4):

ω−2 ¼ −
y
l
ð∂xH þ KxÞbþ;

ω−3 ¼ 1

l
b− −

y
l
ð∂yH þ KyÞbþ:

The new terms in the connection are related to the torsion of
spacetime:

T− ¼ y
l
ðKxbþb2 þ Kybþb3Þ; Tþ; T2; T3 ¼ 0:

ð4:2Þ

The only nonvanishing irreducible torsion piece is the
tensor piece ð1ÞTi, with ð1ÞT− ¼ T−.
Denoting the Riemannian curvature found in Sec. II by

~Rij, the new RC curvature is found to have the form

Rþj ¼ 1

l2
bþbj; R23 ¼ 1

l2
b2b3;

R−2 ¼ ~R−2 þ 1

l2
ðy2∂xKx − yKyÞbþb2 þ

1

l2
ðy2∂yKxÞbþb3;

R−3 ¼ ~R−3 þ 1

l2
ðy2∂yKyÞbþb3 þ

1

l2
ðy2∂xKy þ yKxÞbþb2:

ð4:3aÞ

Note that the radiation piece of Rij is proportional to the
null vector ki ¼ ð0; 1; 0; 0Þ. The corresponding Ricci and
scalar curvatures are
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Ricm ¼ 3

l2
ba; m ¼ þ; 2; 3;

Ric− ¼ gRic− þ 1

l2
ðy2∂xKx þ y2∂yKy − yKyÞbþ;

R ¼ 12

l2
: ð4:3bÞ

The nonvanishing irreducible components of the curvature
are ðnÞRij for n ¼ 1; 4; 6 (as in GRΛ) and n ¼ 2. Quadratic
invariants of the field strengths are regular:

Rij⋆Rij ¼
12

l4
ϵ̂; Ti⋆Ti ¼ 0:

B. Field equations

Dynamical content of our ansatz is effectively described
by the RC Lagrangian (B1) with nonvanishing parameters
ða0;Λ; a1; b1; b2; b4; b6Þ and the associated PGT field
equations (B3). Explicit calculation of the second field
equation in (B3), denoted shortly by F ij, is shown to have
two nontrivial components, F−2 and F−3. After introduc-
ing the quantity ŜH as in Eq. (3.4), these components take
the respective forms

b1ðy∂xŜH þ y2∂xxKx þ y2∂yyKx − 2y∂xKyÞ
þ b2ðy2∂yyKx − y2∂xyKy − y∂xKyÞ
þ b4ðy∂xŜH þ y2∂xxKx þ y2∂xyKy − y∂xKyÞ
þ 2ðb6 − b1 þ a1l2 − a0l2ÞKx ¼ 0; ð4:4aÞ

and

b1ðy∂yŜH þ y2∂xxKy þ y2∂yyKy þ 2y∂xKxÞ
þ b2ð−y2∂xyKx þ y2∂xxKy þ y∂xKxÞ
þ b4ðy∂yŜH þ y2∂xyKx þ y2∂yyKy þ y∂xKxÞ
þ 2ðb6 − b1 þ a1l2 − a0l2ÞKy ¼ 0: ð4:4bÞ

The content of the first field equation is much simpler. To
have the smooth limit for vanishing torsion, we require
3a0 þ l2Λ ¼ 0, whereupon the first equation reads

ðb4 þ b6 − a0l2ÞŜH
þ ðb4 þ b6 − a0l2 þ a1l2Þðy∂xKx þ y∂yKy − KyÞ ¼ 0:

ð4:4cÞ

The form of the differential equations (4.4) appears to be
rather complicated [16]. However, there exists a suitable
reformulation that makes their content much more trans-
parent. To see that, we first rewrite Eq. (4.4c) in the form

ŜH ¼ σðy∂xKx þ y∂yKy − KyÞ;

σ ≔ −
�
1þ a1l2

b4 þ b6 − a0l2

�
: ð4:5aÞ

Then, by substituting the expressions for y∂xŜH and
y∂yŜH into (4.4a)–(4.4b), and dividing the resulting
equations by ðb1 þ b4Þðσ þ 1Þ, one obtains

ðy2∂xx þ ρy2∂yy þ 2l2μ2ÞKx

þ ½ð1 − ρÞy2∂xy − ð1þ ρÞy∂x�Ky ¼ 0; ð4:5bÞ

ðy2∂yy þ ρy2∂xx þ 2l2μ2ÞKy

þ ½ð1 − ρÞy2∂xy þ ð1þ ρÞy∂x�Kx ¼ 0; ð4:5cÞ

where

ρ≔
b1 þ b2

ðb1 þ b4Þðσ þ 1Þ ; μ2 ≔
a1 − a0 þ ðb6 − b1Þ=l2

ðb1 þ b4Þðσ þ 1Þ :

The final equations (4.5) contain only three independent
parameters, σ; ρ and μ2, which makes it much easier to find
some specific solutions for the Siklos waves with torsion.
The parameter μ2 has a simple physical interpretation. As

the linearized PGT analysis shows, possible torsion exci-
tations around the Minkowski background are modes with
spin parity JP ¼ 0�; 1�; 2� [17]. In particular, the spin-2þ
state is associated to the tensorial piece of the torsion, and
its mass is

μ̄2 ¼ a0ða1 − a0Þ
a1ðb1 þ b4Þ

:

For 1=l2 → 0, the coefficient μ2 tends exactly to μ̄2,
whereas for finite (and positive) l2, μ2 is associated to
the spin-2þ torsion excitation with respect to the AdS
background.
In what follows, we present three exact solutions of the

PGT field equations (4.5), enlightening thereby basic
dynamical aspects of the Siklos waves with torsion. All
the integration “constants” appearing in these solutions are
functions of u.

V. KAIGORODOV-LIKE SOLUTION

Motivated by the form of the Kaigorodov solution of
GRΛ (Sec. II), we consider now a class of PGT configu-
rations for which the functions H;Kx and Ky are x
independent. Then the field equations (4.5) take a much
simpler form:

ðρy2∂yy þ 2μ2l2ÞKx ¼ 0; ð5:1aÞ

ðy2∂yy þ 2μ2l2ÞKy ¼ 0; ð5:1bÞ
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y∂yyH − 2∂yH ¼ σðy∂y − 1ÞKy: ð5:1cÞ

The Euler-Fuchs differential equation (5.1a) is solved by
the ansatzKx ¼ yα, where α is restricted by the requirement
α2 − αþ 2μ2l2=ρ ¼ 0, which implies

α� ¼ 1

2
� p; p ≔

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ2l2=ρ

q
: ð5:2Þ

(a1) For 8μ2l2=ρ < 1 (real p),

Kx ¼
ffiffiffi
y

p ðA1yp þ A2y−pÞ: ð5:3aÞ

(a2) For 8μ2l2=ρ > 1 (imaginary p, q ≔ jpj),

Kx ¼
ffiffiffi
y

p ½A3 cosðq ln yÞ þ A4 sinðq ln yÞ�: ð5:3bÞ

(a3) For 8μ2l2=ρ ¼ 1 (p ¼ 0),

Kx ¼
ffiffiffi
y

p ðA5 þ A6 ln yÞ: ð5:3cÞ

Equation (5.1b) follows from (5.1a) in the limit ρ → 1.
Hence, using the notation

ᾱ� ¼ 1

2
� p̄; p̄≔

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8μ2l2

q
; q̄¼ jp̄j; ð5:4Þ

the solutions for Ky can be obtained from Eqs. (5.3) by the
replacements p → p̄, q → q̄.
(b1) For 8μ2l2 < 1,

Ky ¼
ffiffiffi
y

p ðB1yp̄ þ B2y−p̄Þ: ð5:5aÞ

(b2) For 8μ2l2 > 1,

Ky ¼
ffiffiffi
y

p ½B3 cosðq̄ ln yÞ þ B4 sinðq̄ ln yÞ�: ð5:5bÞ

(b3) For 8μ2l2 ¼ 1,

Ky ¼
ffiffiffi
y

p ðB5 þ B6 ln yÞ: ð5:5cÞ

Knowing the form of Ky, one can integrate Eq. (5.1c) to
obtain the metric function H. Let us first find a particular
solution HðiÞ of the inhomogeneous equation (5.1c).
(c1) For 8μ2l2 < 1,

HðiÞ ¼ σy3=2
� ðᾱþ − 1Þ
ðᾱþ þ 1Þðᾱþ − 2ÞB1yp̄

þ ðᾱ− − 1Þ
ðᾱ− þ 1Þðᾱ− − 2ÞB2y−p̄

�
: ð5:6aÞ

(c2) For 8μ2l2 > 1,

HðiÞ ¼
2σ

9þ 4q̄2
y3=2½ðB3 − 2B4q̄Þ cosðq̄ ln yÞ

þ ðB4 þ 2B3q̄Þ sinðq̄ ln yÞ�: ð5:6bÞ

(c3) For 8μ2l2 ¼ 1,

HðiÞ ¼
2σ

9
y3=2ðB5 − 2B6 þ B6 ln yÞ: ð5:6cÞ

Adding to HðiÞ the solution of the homogeneous equa-
tion (5.1c), that is the Kaigorodov solutionH1 from Sec. II,
one obtains the complete solution:

H ¼ H1 þHðiÞ; H1 ¼ Dy3: ð5:7Þ

Thus, the existence of torsion has a direct influence on the
form of metric.
The above solutions for Kx; Ky and H define a

Kaigorodov wave with torsion as a vacuum solution
of PGT.

A. Asymptotic AdS limit

It is interesting to note that the Kaigorodov solution in
GRΛ is asymptotically AdS, as follows from the asymptotic
relation H ¼ Oðy3Þ for y → 0, and the form of the
Riemannian curvature (2.5). In PGT, the presence of torsion
makes the situation not so simple. Namely, the condition
that the RC curvature Rij in (4.3) has the AdS asymptotics
produces two types of requirements: the first one is
obtained from the non-Riemannian piece of Rij,

yKx → 0; yKy → 0; ð5:8aÞ

y2∂yKx → 0; y2∂yKy → 0; ð5:8bÞ

and the second from the Riemannian piece:

y∂yHðiÞ → 0; y2∂yyHðiÞ → 0: ð5:8cÞ

Further analysis goes as follows.
(i) In the sector with 8μ2l2=ρ ≥ 1 and 8μ2l2 ≥ 1, one

can directly verify that the solutions for Kx; Ky and HðiÞ
satisfy the requirements (5.8).
(ii) In the complementary sector with 8μ2l2=ρ < 1 and

8μ2l2 < 1, one finds that the requirements (5.8) are valid
for p < 1 and p̄ < 1, or equivalently, for

8μ2l2=ρ > −1 and 8μ2l2 > −1: ð5:9Þ

Continuing with exploring the asymptotic properties of
the torsion, we see that (5.8a) implies Ti → 0 for y → 0.
Thus, the choice of parameters described in (5.9) ensures
that the Kaigorodov-like solution has an AdS asymptotic
behavior, with vanishing torsion. Clearly, in the physical
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sector with μ2 ≥ 0, the second condition in (5.9) is
automatically satisfied.

B. Defrise-like solution as a special case

It is interesting to observe that the form of HðiÞ in (5.6a)
allows us to obtain a generalized Defrise solution, defined
in Sec. II, as a special case of the Kaigorodov wave
with torsion. Namely, by choosing D ¼ 0 one eliminates
H1 from H, whereupon the term HðiÞ, specified by B1 ¼ 0
and p̄ ¼ 7=2, becomes identical to the Defrise metric
function:

H ¼ HðiÞ ∼ 1=y2: ð5:10Þ

The restriction p̄ ¼ 7=2 refers to the tachyonic sector of the
2þ torsion mode, with μ2l2 ¼ −6. The above result for H,
combined with the corresponding expressions for Kx and
Ky, defines the Defrise solution with torsion as a vacuum
solution of PGT. In contrast to that, the corresponding
solution in GRΛ exists only in the presence of matter. One
should stress that the metric function H originates purely
from the torsional term HðiÞ.

VI. HOMOGENEOUS SOLUTION

Let us now look for a solution in which Kx; Ky;H are
homogeneous functions of y and x:

Kx ¼ fxðtÞ; Ky ¼ fyðtÞ;
H ¼ hðtÞ; t ≔ y=x:

As a consequence, the field equations (4.5) become

ðt4 þ ρt2Þf00x þ 2t3f0x þ 2μ2fx − ð1 − ρÞt3f00y þ 2ρt2f0y ¼ 0;

ð6:1aÞ

ðt2 þ ρt4Þf00y þ 2ρt3f0y þ 2μ2fy − ð1 − ρÞt3f00x − 2t2f0x ¼ 0;

ð6:1bÞ

ŜH ¼ σð−t2f0x þ tf0y − fyÞ; ð6:1cÞ

where ŜH ¼ y½2tðt2 − 1Þh0 þ ðt4 þ t2Þh00�.
The set of equations (6.1) represents a system of

ordinary, second-order, linear differential equations. The
system is significantly simplified by assuming that the
metric function H retains the same form as in GRΛ, so that
ŜH ¼ 0. Consequently, the right-hand side of Eq. (6.1c)
vanishes, −t2f0x þ tf0y − fy ¼ 0, which implies

fx ¼
1

t
fy þ B; ð6:2Þ

where B ¼ BðuÞ. Substituting this expression into
(6.1a)–(6.1b), one obtains

ρt2ðt2þ1Þf00yþ2ρtðt2−1Þf0yþ2ðρþμ2l2Þfyþ2μ2tB¼0;

ð6:3aÞ

ρt2ðt2 þ 1Þf00y þ 2ρtðt2 − 1Þf0y þ 2ðρþ μ2l2Þfy ¼ 0:

ð6:3bÞ

Taking the difference of these two equations yields

μ2B ¼ 0:

Hence, either μ2 or B has to vanish.

A. Case μ2 ¼ 0

Assuming ρ ≠ 0, the set of equations (6.3) reduces to

t2ðt2 þ 1Þf00y þ 2tðt2 − 1Þf0y þ 2fy ¼ 0:

Hence, the general solution for fy is given by

fy ¼ C1

t
t2 þ 1

þ C2

t2

t2 þ 1
; ð6:4Þ

fx is determined by (6.2), and the metric function has the
same form as in GRΛ:

h ¼ C3

�
− arctan tþ t

1þ t2

�
þ C4: ð6:5Þ

As before, all the integration constants are functions of u.

B. Case B ¼ 0

In this case, the set of equations (6.3) reduces to

t2ðt2 þ 1Þf00y þ 2tðt2 − 1Þf0y þ 2

�
1þ μ2l2

ρ

�
fy ¼ 0:

(d1) For 8μ2l2=ρ ≠ 1,

fy ¼ C5t
3
2
−ξ

2F1

�
3

4
−
ξ

2
;
5

4
−
ξ

2
; 1 − ξ;−t2

�

þ C6t
3
2
þξ

2F1

�
3

4
þ ξ

2
;
5

4
þ ξ

2
; 1þ ξ;−t2

�
ð6:6aÞ

where ξ ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ2l2=ρ

p
and 2F1ða; b; c; zÞ is the

hypergeometric function [18].
(d2) For 8μ2l2=ρ ¼ 1,

fy ¼ C7t3=22F1

�
3

4
;
5

4
; 1;−t2

�
þ C8G20

20

�
−t2

���� 1=2; 1

3=4; 3=4

�
;

ð6:6bÞ

where Gmn
pq is the Meijer G function [18]. In both cases, the

associated solution for fx is given by fx ¼ fy=t, see (6.2),
and the metric function h remains the same as in (6.5).
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In the above two cases (d1)–(d2), the forms of the
corresponding torsion functions fy are illustrated in Fig. 1.

VII. EXPONENTIAL SOLUTION

In this section, we start with

Kx ¼ exfxðyÞ; Ky ¼ exfyðyÞ; H ¼ exhðyÞ;
ð7:1Þ

whereupon the field equations (4.5) become

ðy2þ ρy2∂yyþ 2μ2l2Þfxþ ½ð1− ρÞy2∂y− ð1þ ρÞy�fy ¼ 0;

ð7:2aÞ

ðy2∂yyþ ρy2þ 2μ2l2Þfyþ ½ð1− ρÞy2∂yþð1þ ρÞy�fx ¼ 0;

ð7:2bÞ

ŜH ¼ σðyfx þ y∂yfy − fyÞ; ð7:2cÞ

and ŜH ¼ ex½yðhþ h00Þ − 2h0�.
As in the previous section, we assume that H coincides

with the vacuum solution of GRΛ, defined by ŜH ¼ 0. This
imposes an extra condition on fx and fy:

yfx þ y∂yfy − fy ¼ 0 ⇒
fx
y
þ
�
fy
y

�0
¼ 0: ð7:3Þ

By introducing a change of variables, given by

fx ¼ ygx; fy ¼ ygy; ð7:4aÞ

the condition (7.3) takes a simple form:

gx þ g0y ¼ 0: ð7:4bÞ

As a consequence, Eqs. (7.2a)–(7.2b) are transformed into

ρy2gð3Þy þ 2ρyg00y þ ðρy2 þ 2μ2l2Þg0y þ 2ρygy ¼ 0; ð7:5aÞ

ρy2g00y þ ðρy2 þ 2μ2l2Þgy ¼ 0: ð7:5bÞ

One can note that (7.5a) is equal to the derivative (with
respect to y) of (7.5b). The solution of (7.5b) reads

gy ¼
ffiffiffi
y

p ½D1JνðyÞ þD2YνðyÞ�; ð7:6Þ

where ν ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8μ2l2=ρ

p
, and Jν, Yν are the Bessel

functions of the first and second kind, respectively [18].
Hence,

fy ¼ y
3
2ðD1JνðyÞ þD2YνðyÞÞ; ð7:7aÞ

and fx ¼ −yg0y yields

fx ¼
ffiffiffi
y

p ½D1ðyJνþ1ðyÞ − ðνþ 1=2ÞJνðyÞÞ
þD2ðyYνþ1ðyÞ − ðνþ 1=2ÞYνðyÞÞ�: ð7:7bÞ

The forms of the torsion functions (7.7) are illustrated in
Fig. 2. They are of the same type as the GRΛ metric
function H3, defined in Sec. II. Together, they define our
third specific Siklos wave with torsion.

5 10 15 20
t

20
15
10
5

5
10
15

fy

5 10 15 20
t

20

10

10

fx

FIG. 2 (color online). The plots of the torsion functions (7.7) for D1 ¼ D2 ¼ 1, 8μ2l2=ρ ¼ −1.
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FIG. 1 (color online). The plots of the torsion function fy in (6.6a), 8μ2l2=ρ ¼ −1, fy½1� ¼ 1; f0y½1� ¼ 0 (left), and in (6.6b),
fy½1� ¼ 1, f0y½1� ¼ 0 (right).
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VIII. CONCLUDING REMARKS

In this paper, we introduced a new class of exact vacuum
solutions of PGT, the Siklos waves with torsion. The
solution is constructed in a way that respects the radiation
nature of the original Siklos configuration in GRΛ. This is
achieved by an ansatz for the RC connection that produces
only the tensorial irreducible mode of the torsion, propa-
gating on the AdS background. A compact form of the PGT
field equations is used to find three particular vacuum
solutions belonging to the class of Siklos waves with
torsion; they generalize the Kaigorodov, the homogeneous
solution and the exponential solution of GRΛ.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION
OF THE FIELD STRENGTHS

We present here formulas for the irreducible decom-
position of torsion and curvature in four-dimensional
Riemann-Cartan spacetime [5]; for general D, see [19].
It is convenient to start the exposition with the Bianchi

identities:

∇Ti ¼ Ri
mbm; ∇Rij ¼ 0: ðA1Þ

The torsion 2-form has three irreducible pieces:

ð2ÞTi ¼ 1

3
bi ∧ ðhm⌋TmÞ;

ð3ÞTi ¼ −
1

3
⋆½bi ∧ ⋆ðTm ∧ bmÞ� ¼

1

3
hi⌋ðTm ∧ bmÞ;

ð1ÞTi ¼ Ti − ð2ÞTi − ð3ÞTi: ðA2Þ

The RC curvature 2-form can be decomposed into six
irreducible pieces:

ð2ÞRij ¼ −�ðb½i ∧ Ψj�Þ; ð4ÞRij ¼ b½i ∧ Φj�;

ð3ÞRij ¼ −
1

12
X�ðbi ∧ bjÞ; ð6ÞRij ¼ 1

12
Wbi ∧ bj;

ð5ÞRij ¼ 1

2
b½i ∧ hj�⌋ðbm ∧ WmÞ;

ð1ÞRij ¼ Rij −
X6
a¼2

ðaÞRij;

where

Wi ≔ hm⌋Rmi ¼ Rici; W ≔ hi⌋Wi ¼ R;

Xi ≔ �ðRki ∧ bkÞ; X ≔ hi⌋Xi ðA3Þ

and

Φi ≔ Wi −
1

4
biW −

1

2
hi⌋ðbm ∧ WmÞ;

Ψi ≔ Xi −
1

4
biX −

1

2
hi⌋ðbm ∧ XmÞ: ðA4Þ

The trace and symmetry properties of ðnÞRij can be found in
Ref. [19], page 127. All these properties are satisfied by our
ansatz.
For torsion-free solutions, the first Bianchi identity in

(A1) implies Xi ¼ 0; hence ð2ÞRij and ð3ÞRij vanish.
Moreover, Ric½ij� ¼ 0 implies ð5ÞRij ¼ 0. The remaining
three curvature parts, first, fourth and sixth, are the PGT
analogues of the irreducible pieces of the Riemannian
curvature. In Riemannian geometry, ð1ÞRij coincides with
the Weyl (conformal) tensor,

Cij ≔ Rij −
1

2
ðbiRicj − bjRiciÞ þ 1

6
Rbibj;

but in the RC geometry, ð1ÞRij differs from Cij by the
presence of torsion terms. Thus, ð1ÞRij is a true extension of
Cij to the RC geometry. The fourth component is defined in
terms of the symmetric traceless Ricci tensor,

Φi ¼
�
RicðijÞ −

1

4
ηijR

�
bj: ðA5Þ

The above formulas are taken from Refs. [5,19] with one
modification: the definition of Wi is taken with an addi-
tional minus sign (Landau-Lifshitz convention), and for
consistency, the overall signs of the fourth through sixth
curvature parts are also changed.

APPENDIX B: PGT FIELD EQUATIONS

The gravitational dynamics of PGT is determined by a
Lagrangian LG ¼ LGðbi; Ti; RijÞ (4-form), which is
assumed to be at most quadratic in the field strengths
(quadratic PGT) and parity invariant. The form of LG can
be conveniently represented as

LG ¼ −⋆ða0Rþ 2ΛÞ þ 1

2
TiHi þ

1

4
RijH0

ij; ðB1Þ

where Hi ≔ ∂LG=∂Ti (the covariant momentum) and H0
ij

define the quadratic terms in LG:

Hi ¼ 2
X3
n¼1

⋆ðanðnÞTiÞ; H0
ij ≔ 2

X6
n¼1

⋆ðbnðnÞRijÞ:

ðB2aÞ

Varying LG with respect to bi and ωij yields the PGT field
equations in vacuum. After introducing the complete
covariant momentum Hij ≔ ∂LG=∂Rij by
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Hij ¼ −2a0⋆ðbibjÞ þH0
ij; ðB2bÞ

these equations can be written in a compact form as

ð1STÞ ∇Hi þ Ei ¼ 0;

ð2NDÞ ∇Hij þ Eij ¼ 0; ðB3Þ

where Ei and Eij are the gravitational energy-momentum
and spin currents:

Ei ≔ hi⌋LG − ðhi⌋TmÞHm −
1

2
ðhi⌋RmnÞHmn;

Eij ≔ −ðbiHj − bjHiÞ: ðB4Þ

The general field equations (B3) are used in Sec. IV to
describe specific dynamical aspects of the Siklos waves
with torsion. In the Riemannian sector with Ti ¼ 0, we
have Hi ¼ 0 and Eij ¼ 0, and the field equations (B3)
reduce to the form given in Sec. III.
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