
Small scale structure of spacetime: The van Vleck determinant and
equigeodesic surfaces

D. Jaffino Stargen* and Dawood Kothawala†

Department of Physics, Indian Institute of Technology Madras, Chennai, India 600 036
(Received 27 March 2015; published 29 July 2015)

It has recently been argued that if spacetime M possesses nontrivial structure at small scales, an
appropriate semiclassical description of it should be based on nonlocal bitensors instead of local tensors
such as the metric gabðpÞ. Two most relevant bitensors in this context are Synge’s world function Ωðp; p0Þ
and the van Vleck determinant (VVD) Δðp; p0Þ, as they encode the metric properties of spacetime and
(de)focusing behavior of geodesics. They also characterize the leading short distance behavior of two point
functions of the d’Alembartian p0

□p. We begin by discussing the intrinsic and extrinsic geometry of

equigeodesic surfaces ΣG;p0
≡ fp ∈ MjΩðp; p0Þ ¼ constantg in a geodesically convex neighborhood of

an event p0 and highlight some elementary identities relating the VVDwith geometry of ΣG;p0
. As an aside,

we also comment on the contribution of ΣG;p0
to the surface term in the Einstein-Hilbert (EH) action and

show that it can be written as a volume integral of□ lnΔ. We then proceed to study the small scale structure
of spacetime in presence of a Lorentz invariant short distance cutoff l0 usingΩðp; p0Þ and Δðp; p0Þ, based
on some recently developed ideas. We derive a second rank bitensor qabðp; p0;l0Þ ¼ qab½gab;Ω;Δ� which
naturally yields geodesic intervals bounded from below and reduces to gab for Ω ≫ l2

0=2. We present a
general and mathematically rigorous analysis of short distance structure of spacetime based on (a) geometry

of equigeodesic surfaces ΣG;p0
of gab, (b) structure of the nonlocal d’Alembartian g

p0
□p associated with qab,

and (c) properties of VVD. In particular, we prove the following: (i) The Ricci biscalar gRicðp; p0Þ of qab is
completely determined by ΣG;p0

, the tidal tensor and first two derivatives of Δðp; p0Þ, and has a nontrivial

classical limit (see text for details): liml0→0 limΩ→0�
gRicðp; p0Þ ¼ �DRabqaqb (ii) The GHY term in EH

action evaluated on equigeodesic surfaces straddling the causal boundaries of an event p0 acquires a
nontrivial structure. These results strongly suggest that the mere existence of a Lorentz invariant minimal
length l0 can leave unsuppressed residues independent of l0 and (surprisingly) independent of many

precise details of quantum gravity. For example, the coincidence limit of gRicðp; p0Þ is finite as long as

the modification of distances Sl0∶2Ω↦2 ~Ω satisfies (i) Sl0ð0Þ ¼ l2
0 (the condition of minimal length),

(ii) S0ðxÞ ¼ x, and (iii) ½jSl0 j=S02
l0
�ð0Þ < ∞. In particular, the function Sl0

ðxÞ, which should eventually

come from a complete framework of quantum gravity, need not admit a perturbative expansion in l0.
Finally, we elaborate on certain technical and conceptual aspects of our results in the context of entropy
of spacetime and classical description of gravitational dynamics based on Noether charge of diffeo-
morphism invariance instead of the EH lagrangian.
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I. INTRODUCTION

Quantum effects are expected to drastically affect the
structure of space and time at the smallest of scales.
However, our current theories of gravity and quantum
mechanics are (fortunately) very stingy with the options
they leave us as far as the small scale of structure of
spacetime is concerned. For example, attempts to model
such a structure by violating or deforming Lorentz invari-
ance (LI) are either very strongly constrained by experi-
ments or run into deeper conceptual issues when one goes
beyond the simple one-particle models. It is much more

plausible that instead of LI, it is the assumption of locality
that might have to be given up at small scales [1]. However,
abandoning locality then also necessitates that we give
up the classical description of spacetime in terms of local
tensorial objects, in particular the metric tensor gabðpÞ.
Finding the right geometric variables that can describe
spacetime geometry down to smallest scales is of utmost
significant not only for quantum gravity, but also for the
proper physical interpretation of the field equations of
gravity at the classical level. In particular, the deep
connection between Einstein equations, thermodynamics,
and information theory that has been studied in depth for
over a decade very strongly suggests that we question the
conventional description of gravitational dynamics based
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on Einstein-Hilbert (EH) action. In any case, to properly
understand the implications of results that have been
accumulated from the study of quantum fields in curved
spacetime, it is extremely important that one must first
identify the correct geometric variables to describe space-
time geometry at the classical level itself.
Fortunately, the hint for doing so also comes from these

very same results. In particular, one of the most significant
results to have come out of semiclassical studies is the
existence of a minimal spacetime length, say l0, below
which spacetime intervals loose any operational signifi-
cance [2,3]. Such a zero-point length appears in various
forms in several candidate models of quantum gravity, and
is often considered as the universal regulator for divergen-
ces in quantum field theory (QFT) and general relativity
(GR). In a recent work, one of us [4] proposed that a more
appropriate description of spacetime geometry in presence
of a minimal length scale must be based on nonlocal
bitensors instead of the metric tensor. The geodesic distance
between two spacetime events, in particular, was proposed
as a more fundamental object than the metric tensor. The
relevant bitensor in this context is the so-called Synge
world function Ωðp; p0Þ defined by [5]

Ωðp; p0Þ ¼
1

2
ðλðpÞ − λðp0ÞÞ

Z
λðpÞ

λðp0Þ
½gabqaqb�ðxðλÞÞdλ

¼ 1

2
σðp; p0Þ2; ð1Þ

where σðp; p0Þ2 is the square of geodesic interval, with the
corresponding geodesic distance given by

dðp; p0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵσðp; p0Þ2

q
:

Here, qa is tangent to the geodesics, and ϵ ¼ qaqa ¼ �1.
[In this paper, we shall use Ωðp; p0Þ; σðp; p0Þ2, and
dðp; p0Þ interchangeably to keep the expressions and
notation convenient. We will also often use λ ¼ dðp; p0Þ
in covariant Taylor series to keep track of terms of various
orders without messing up the notation.]
Assuming that the small scale structure of spacetime

is characterized (at least at a semiclassical level) by the
existence of a minimal length, it was shown that one can
construct a second rank bitensor, qabðp; p0;l0Þ, such that it
yields geodesic distances with a lower bound l0.
The construction of qab in [4] was based on two inputs.

P1: The requirement that geodesic distances have a Lorentz
invariant lower bound, and this arises from modification of
geodesic distances as σ2 → σ2 þ l2

0. P2: The requirement

that the modified d’Alembartian g
p0
□p yields the following

modification for the two point functions Gðp; p0Þ of
fields in flat spacetime: G½σ2� → ~G½σ2� ¼ G½σ2 þ l2

0�.
(This essentially regulates the UV divergences in QFT
and is based on several earlier works on the subject.)

These two requirements then completely fix the form of
qab. Being manifestly covariant, the extension to arbitrary
curved spacetimes suggests itself naturally.
In subsequent work [6], it was shown that the Ricci

biscalar gRicðp; p0Þ corresponding to this so-called qmetric
qab has a very specific nonanalytic structure which results
in a nontrivial result for the coincidence limit ½gRic� when
l0 → 0. The specific result proved there was

lim
l0→0

lim
σ2→0�

gRicðp; p0Þ ∝ Rabqaqb ð2Þ

with qa being arbitrary normalized vectors at each space-
time event. A similar analysis for the surface term K

ffiffiffiffiffiffijhjp
of the EH action was also presented subsequently, and the
very same term as above was shown to appear there as well
(see second reference in [6]).
The above results have many deep implications, in

particular, for understanding better the notion of entropy
associated with each spacetime event p0 and it’s causal
boundaries, and for the emergent gravity paradigm; these
were discussed in detail in [6]. They not only provide a very
strong hint towards the importance of the quantity Rabqaqb

in description of gravitational dynamics, but also give a
precise quantitative manner in which the transmutation of
gravitational lagrangian R → Rabqaqb can arise as a relic of
a minimal length.
On the other hand, the analysis presented in [6] does not

give much insight on the robustness of the conclusions
drawn from the final result, and much less insight on
some of the miraculous cancellations responsible for it. In
particular, the following issues concerning the main inputs
P1 and P2 were left unclear:
1. The analysis assumed (see P1) that a lower bound

on geodesic distances is realized via the modification
σ2 → σ2 þ l2

0. While the motivation for such a modifica-
tion comes from several older results, it remained unclear
as to how much the final result depends on it. This question
is of fundamental significance, since the precise manner
in which a minimal length is introduced in spacetime can
come only from a complete framework of quantum gravity.
In absence of such a framework, it is important not to
make any assumptions on how distances can get modified.
In particular, the modifications introduced by quantum
gravity can be nonperturbative, and hence, need not possess
a series expansion in l0 near σ2 ¼ 0.
In this paper, we shall establish our result without

making any such assumption. Technically, we shall keep
the function Sl0

∶2Ω↦2 ~Ω, which represents modification
of distances, completely arbitrary, and satisfying only
½jSl0 j=S02

l0
�ð0Þ < ∞ in addition to it’s defining properties

(which will be given below). In particular, the function Sl0
need not admit a perturbative expansion in l0, unlike the
form Sl0ðxÞ ¼ xþ l2

0 which was used in [4]. The con-
struction of qab for arbitrary Sl0

ðxÞwas already sketched in
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the Appendix of [6], except for a crucial difference, which
brings us to our second point concerning the input P2.
2. The requirement P2 that two point functions get

modified as G½σ2� → ~G½σ2� ¼ G½σ2 þ l2
0� makes sense

only when Gðp; p0Þ depends on p and p0 only through
σ2∀ðp; p0Þ. This can not happen in arbitrary curved
spacetimes, which very much reduces the possibilities
available to fix the qmetric. This is, of course, good, since
it reduces the room available for ad hoc choices. The most
general space(time)s in which Gðp; p0Þ is only a function
of σ2∀ðp; p0Þ are the maximally symmetric spaces, of
which flat space(time) is but the simplest possibility with
zero curvature. Fixing the qmetric based on flat spacetime,
although it captures the correct leading singularity of the
two point functions in the coincidence limit, wipes away all
information about curvature. More precisely, the leading
singular structure of two point functions associated with the
d’Alembartian p0

□p in arbitrary spacetime is given by the
Hadamard form

Gðp; p0Þ ≔
ffiffiffiffi
Δ

p

ðσ2ÞD−2
2

× ð1þ smooth termsÞ: ð3Þ

As is evident, the information about curvature, at the
leading order, therefore appears in the two point functions
through the so-called van Vleck determinant (VVD)
Δðp; p0Þ. In flat spacetime, Δðp; p0Þ ¼ 1 exactly, whereas
in arbitrary curved spacetimes,

lim
p→p0

Δðp; p0Þ ¼ 1: ð4Þ

One might therefore think that the dependence of qmetric
on Δðp; p0Þ can not possibly affect the coincidence limit of
the Ricci biscalar gRicðp; p0Þ (or any other curvature
invariant) associated with qab. This expectation is, how-
ever, wrong. Curvature involves second derivatives of the
metric, and the coincidence limit of the second (or higher)
derivatives of Δðp; p0Þ is not zero in general. (The exact
form of the coefficients in covariant Taylor expansion of
VVD are well-known and are quoted later in this paper.)
This makes it crucial to identify the dependence of qmetric
on VVD. As we shall show, doing so leads to some
remarkable results, all following from certain identities
satisfied by the VVD.
3. The modified gRicðp; p0Þ derived in [6] is in fact

singular in the coincidence limit σ2 → 0. This divergence is
cubic in qa’s and can be regularized using known methods
in point splitting regularization, as was suggested in [6].
However, this still leaves a certain amount of discomfort at
the mathematical level. It does not make much sense to
appeal to point splitting regularization since our starting
point, based on existence of a minimal length, does not
invoke point splitting at any level, but is instead based on
use of a nonlocal second rank bitensor. It is therefore
important to have a deeper look at this divergence and it’s
origin, particularly so because it depends on ∇iRab and

hence, vanishes for all maximally symmetric spaces. The
argument given in 2 above advocating the use of maximally
symmetric spaces therefore is not expected to help here,
since the divergence is anyway zero for these spaces. One
requires a much more mathematically rigorous analysis to
probe the structure of this divergent term. As we shall show,
identifying the correct dependence of qab on the VVD in
fact cancels this divergence in a rather surprising manner.
In fact, the reason for this cancellation is buried deep
within the expansion of extrinsic curvature of equigeodesic
surfaces ΣG;p0

(see below) in an arbitrary spacetime to a
fourth order in covariant Taylor series, and a close relation-
ship between VVD and extrinsic curvature of ΣG;p0

.
We address all the above issues in this paper, and while

doing so, reveal the mathematical robustness of the final
result, andhence, it’s inevitability (given the twobasic inputs)
in any theory which admits a LI short distance cutoff. Our
key inputs would be much less restrictive and/or specialized
than the ones used in [4,6], whichmakes the results presented
here significantly stronger. These can be stated as:
Q1: The requirement that geodesic distances have a

Lorentz invariant lower bound.
Q2: The requirement that the modified d’Alembartiang

p0
□p yields the following modification for the two point

functions Gðp; p0Þ of fields in all maximally symmetric
spacetimes: G½σ2� → ~G½σ2� ¼ G½Sl0 ½σ2��.
As is evident, these inputs are much more minimalistic

compared with P1, P2, and hence, can be expected to
provide much more general insights into small scale
structure of spacetime.
The paper is structured as follows:
Section II: In this section, we discuss the geodesic

structure of arbitrary curved space(time)s, with focus on
intrinsic and extrinsic geometry of equigeodesic surfaces
ΣG;p0

[7], which comprise of points p which are at some
constant geodesic distance σ2 from p0, and connected to p0

by non-null geodesics. We also discuss the geometric
significance of VVD in studying the small scale structure
of spacetime and highlight some elementary identities
relating derivatives of VVD to the extrinsic curvature of
ΣG;p0

, which are used later in Sec. IV.
Section III: We present the derivation of the second rank

bitensor, the qmetric qabðp; p0;l0Þ, based on the two
inputs Q1, Q2 stated above. In particular, we identify
the dependence of the qmetric on the VVD using our
condition Q2.
Section IV: The Ricci biscalar gRicðp; p0Þ for the

qmetric is obtained in a closed form based on certain tools
developed in [7], and it’s coincidence limit σ2 → 0 is
evaluated to obtain a local scalar ½gRic�ðp0Þ at p0. It is then
shown ½gRic�ðp0Þ ≠ Ricðp0Þ, which is one of the key
results of this paper.
Section V: In this section, we complete our analysis of

the EH action by evaluating the Gibbons-Hawking-York
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(GHY) surface term in the action on equigeodesic surfaces,
for the qmetric.
In Sec. VI, we finally conclude with a general discussion

and implications of the results obtained in this work.
Key equations.—The key results of this paper are

contained in the boxed Eqs. (28), (32), and (37).
Notation.—We work in D dimensions and use the

sign convention ð−;þ;þ;…Þ for Lorentzian spaces.
Latin alphabets denote spacetime indices. Also, for nota-
tional convenience, we use l2

0 throughout to denote short
distance cutoff on geodesic distances; for timelike or
spacelike cases, the replacement l2

0 → ϵl2
0 must be made

in the final results after which l2
0 > 0. For convenience, we

give below a quick list of some of the most recurring
symbols or notation used in the text:

(i) Dk∶⟹
def

D − k
(ii) Eab ¼ Rambnqmqn

(iii) E ¼ gabEab ¼ Rabqaqb

(iv) ½gRic�ðp0Þ is the coincidence limit of gRicðp; p0Þ

II. THE GEODESIC STRUCTURE OF SPACETIME

A. Equigeodesic surfaces

Mathematically, a key role in our analysis would be played
by the congruence of geodesics emanating from a fixed
spacetime event p0 and the surface comprised of events p
lying at constant geodesic interval from p0, which we call as
the equigeodesic surface of event p0 and denote it by ΣG;p0

(Fig. 1). The relevant geometrical properties of such surfaces
in arbitrary curved spacetimes were discussed in [7], and we
simply quote the results which we will need here.

We start with the affinely parametrized tangent vector qa

to the geodesic connecting p0 to p

qa ¼
∇aσ

2

2
ffiffiffiffiffiffiffi
ϵσ2

p ð5Þ

and note that it is also the normal to ΣG;p0
. The extrinsic

curvature tensor of ΣG;p0
, is therefore given by

Kab ¼ ∇aqb ¼
∇a∇bðσ2=2Þ − ϵqaqbffiffiffiffiffiffiffi

ϵσ2
p : ð6Þ

This particular foliation, which characterizes the local
geodesic structure of any spacetime, has many interesting
properties, and all of these derive from the well-known
covariant Taylor series expansion of the bitensor
∇a∇bðσ2=2Þ at p near p0 [8]:

∇a∇b

�
1

2
σ2
�

¼ gab −
λ2

3
Eab þ

λ3

12
∇qEab

−
λ4

60

�
∇2

qEab þ
4

3
EiaEi

b

�
þOðλ5Þ; ð7Þ

where ∇q ≡ qi∇i.
Therefore, we see that the extrinsic geometry of such a

equigeodesic “foliation” is very special and completely
characterized by the tidal tensor Eab ¼ Rambnqmqn. In
fact, the intrinsic and extrinsic curvatures can be charac-
terized by systematic Taylor expansions around p0, given
by [7]

FIG. 1 (color online). The geodesic structure of spacetime. (a) Equi-geodesic surfaces ΣG;p0
attached to an event p0 in an arbitrary

curved spacetime; (b) ΣG;p0
in Minkowski spacetime.
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Kab ¼
1

λ
hab −

1

3
λEab þ

1

12
λ2∇qEab −

1

60
λ3Fab þOðλ4Þ;

K ¼ D1

λ
−
1

3
λE þ 1

12
λ2∇qE −

1

60
λ3FþOðλ4Þ;

RΣG;p0
¼ ϵD1D2

λ2
þR−

2ϵðDþ 1Þ
3

E þOðλÞ; ð8Þ

where Fab ¼ ∇2
qEab þ ð4=3ÞEakEk

b, and F ¼ Fabgab. For
later use, we also quote here the combination (easily
derived from above):

K2
ab − ηK2 ¼ ð1 − ηD1Þ

�
D1

λ2
−
2

3
E þ 1

6
λ∇qE

−
1

30
λ2
�
∇2

qE −
4

3
E2
ab

��

þ 1

9
λ2ðE2

ab − ηE2Þ þOðλ3Þ ð9Þ

for any arbitrary η. As we shall see, the structure of the
above expression, which requires keeping up to fourth
order terms in Kab and K [that is, terms of Oðλ3Þ], hold
the key to elimination of coincidence limit divergences ingRicðp; p0Þ, in conjunction with a couple of differential
identities (involving Kab and K) satisfied by the VVD,
which we discuss next.

B. Van Vleck determinant

The van Vleck determinant, Δðp; p0Þ, is an extremely
important object in semiclassical physics. Geometrically,
this biscalar governs the properties of geodesic congruen-
ces emanating from a point, say p0, as a function of an
arbitrary point p. The immense physical importance of this
object certainly warrants a longer discussion than presented
here, and we refer the reader to [8–10] for the same. In fact,
as we shall see, the geometrical significance of VVD holds
the key to its relevance for the small scale structure of
spacetime, a theme that will resonate constantly throughout
this paper.
The VVD is defined as follows:

Δðp; p0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðpÞgðp0Þ
p det

�
∇ðpÞ

a ∇ðp0Þ
b

1

2
σðp; p0Þ2

�
:

ð10Þ
Two of the most important differential identities that we
shall use, connecting the VVD with the extrinsic curvature
of ΣG;p0

, are the following:

I1∶ ∇q lnΔ ¼ D1ffiffiffiffiffiffiffi
ϵσ2

p − K; ð11Þ

I2∶ ∇q∇q lnΔ ¼ −
D1

ϵσ2
þ K2

ab þ Rabqaqb; ð12Þ

where ∇q ≡ qi∇i and K2
ab ≡ KabKab.

Proofs of I1 and I2: The above elementary identities
follow trivially from the expression [9–11]

∇i½Δ∇iσ2� ¼ 2DΔ: ð13Þ
Noting that the acceleration ai of qi is zero since qi

represents tangents to geodesics, we can write the above
identity as

∇q lnΔ ¼ D1ffiffiffiffiffiffiffi
ϵσ2

p − K; ð14Þ

which is I1. Operating once more with ∇q and using the
(easily proved) differential geometric identity

∇qK ¼ qi∇i∇jqj

¼ −K2
ab − Rabqaqb þ∇iai ð15Þ

with ai ¼ 0, we get I2.

C. Aside: VVD and the surface term in action

As an aside, let us point out the possible relevance of
the VVD in the gravitational action when one focuses on
an observer dependent description of gravitational dynam-
ics based on causal structure associated with an arbitrary
event (“observer”) p0. The relevance of such a description
has gained increased attention since the proposal by
Jacobson [12] of using local Rindler frames as probes
of gravitational dynamics. We shall focus on the equi-
geodesic surfaces ΣG;p0

straddling the causal boundaries
of an arbitrary event p0 and briefly comment on the null
limit in the end.
The complete EH action is given by [13]

16πAEH ¼
Z
V
RdVD þ 2ϵ

Z
∂V

ðK − K0ÞdΣD−1; ð16Þ

where dVD; dΣD−1 are covariant volume elements in bulk
and boundary, respectively. The subtraction term, K0, is
usually taken to be the trace of extrinsic curvature of the
boundary surface embedded in flat spacetime. Usually, the
boundary ∂V is taken at infinity. However, given the fact
that the causal structure of spacetime limits the amount of
information accessible at an event p0, it is interesting to ask
for the contribution of the boundaries ΣG;p0

(which, in the
null limit, would make the null cone of p0). We therefore
write

16πAEH¼
Z
Vp0

RdVDþ2ϵ

�Z
∂V∞

þ
Z
ΣG;p0

�
ðK−K0ÞdΣD−1:

[Note the subscript p0 on V; we put it as a reminder that we
are now focusing on quantities from the point of view of a
specific event (observer) p0.]
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The trace of extrinsic curvature of ΣG;p0
, as embedded

in flat spacetime, is K0 ¼ D1=
ffiffiffiffiffiffiffi
ϵσ2

p
. Recalling I1, this

immediately implies

ðK − K0ÞΣG;p0
¼ −qi∇i lnΔ:

Using divergence theorem,
R
ΣG;p0

qi∇i lnΔ ¼ R
V □ lnΔ.

(We must include a similar contribution from ∂V∞;
we do not write this explicitly since we are only interested
in the contribution from ΣG;p0

). Putting all this together,
we get

16πAEH ¼
Z
Vp0

ðR − 2ϵ□ lnΔÞdVD þA∂V∞; ð17Þ

where we have dumped all contributions from ∂V∞ in
A∂V∞

. Let us now comment briefly on the null limit. Since
the term □ lnΔ is purely geometrical, we expect the
null limit of the bulk term above to be straightforward.
However, we must point out that the issue of boundary term
for null boundaries is not completely unambiguous [14],
and it might therefore require more care to repeat the above
steps for a strictly null surface.
The above analysis strongly suggests that an observer

dependent study of gravitational dynamics might require us
to change the conventional description based on EH lagran-
gian. In the rest of this paper, wewill actually present amuch
stronger result suggesting a very natural transmutation of
gravitational lagrangian from R to Rabqaqb in presence of a
Lorentz invariant short distance cutoff.

III. THE QMETRIC

We now have the basic geometric tools using which
we can implement Q1 and Q2 to arrive at a geometrical
description of spacetime at small scales. Our aim in this
section would be to construct the so-called qmetric
qabðp; p0;l0Þ, as described in [4], which would reduce to
the background spacetimemetric gabðpÞ for dðp; p0Þ ≫ l0,
but which yields geodesic distances bounded from below
by l0, while maintaining Lorentz invariance. As was shown
in [4], the general form of qab turns out to be (throughout
this paper, qa ¼ gabqb)

qab ¼ A−1gab þ ϵQqaqb

¼ A−1hab þ ϵðA−1 þQÞqaqb ð18Þ
with corresponding covariant components qab

qab ¼ Agab − ϵBqaqb; ð19Þ
whereB≡QA=ðA−1 þQÞ, where hab ¼ gab − ϵqaqb is the
induced metric on ΣG;p0

, and A;Q are functions of events
p; p0 to be fixed by Q1 and Q2.
The requirement of minimal length, Q1, can be imposed

[4,6] using the Hamilton-Jacobi equation satisfied by
σ2 ¼ 2Ω [11]

gab∂aσ
2∂bσ

2 ¼ 4σ2 ð20Þ

and requiring

qab∂aSl0∂bSl0 ¼ 4Sl0 : ð21Þ

We make no assumptions about precisely how quantum
gravity would actually affect geodesic intervals, that is,
we construct qab for arbitrary modification of distances
Sl0∶2Ω → 2 ~Ω. We will only require:

(i) Sl0ð0Þ ¼ l2
0 (the condition of minimal length).

(ii) S0 is identity: S0ð2ΩÞ ¼ 2Ω.
(iii) ½jSl0 j=Sl0

02�ð0Þ < ∞.
The Hamilton-Jacobi equation, Eq. (21), then partially

fixes the following combination in the qmetric, as was
sketched in the Appendix of [6]:

α≡ A−1 þQ ¼ 1

σ2
Sl0ðσ2Þ
S02
l0
ðσ2Þ : ð22Þ

We now use Q2 to fix the qmetric completely (which is
where we differ significantly with the presentation in [4,6]).
Recalling the condition Q2 explained in detail in the
Introduction, we will require that the two point functions

of the modified d’Alembartian g
p0
□p satisfy ~G½σ2�¼

G½Sl0ðσ2Þ� in all maximally symmetric spacetimes (rather
than just flat spacetime).
We start with the d’Alembartian operator corres-

ponding to qab for arbitrary backgrounds gab (not neces-
sarily maximally symmetric). After some algebra, we
obtain:

~□ ¼ A−1
�
□g þ

1

2
D3gij∂i lnA∂j þ ϵ∂ lnA∂

�

þ ϵQ

��
∇iqi þ

1

2
D1∂ lnA

�
∂ þ ∂2

�
þ

ffiffiffiffiffiffiffi
ϵσ2

p
α0∂;

ð23Þ

where Dk ≡D − k, ∂ ≡ qi∂i.
To impose Q2, we will analyze this operator for

maximally symmetric spacetimes, in which A and Q are
functions of only σ2, and Eq. (23) becomes

~□ ¼ α□þ 2ασ2½ln ðαAD1Þ�0 ∂
∂σ2 : ð24Þ

On the other hand, the d’Alembertian □ for maximally
symmetric spacetimes is given by

□ ¼ ∂2

∂σ2 þ
� ∂
∂σ lnΔ

−1 þD1

σ

� ∂
∂σ ; ð25Þ

where
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Δ−1=ðD−1Þ ¼
�
sinðjσj=aÞ
jσj=a ; 1;

sinhðjσj=aÞ
jσj=a

�

is the exact expression of the van Vleck determinant in
maximally symmetric spacetimes of positive, zero,
and negative curvature, respectively (with radius of curva-
ture a). The quantity ΔS below is defined as above
with σ2 → Sl0 .
We are now ready to impose Q2. As shown in the

Appendix, the condition that ~G½σ2� ¼ G½Sl0ðσ2Þ� is the two
point function corresponding to ~□, which translates into
~□ ~G½σ2� ¼ 0 when □G½σ2� ¼ 0 (for p ≠ p0), gives a
differential equation

d
dσ2

ln

�
A

Sl0=σ
2

�
ΔS

Δ

�
2=D1

�
¼ 0 ð26Þ

whose solution is

A ¼ Sl0

σ2

�
Δ
ΔS

�
2=D1

; ð27Þ

where the constant of integration is fixed by the condition
A ¼ 1 when Sl0

¼ σ2.
We have therefore accomplished our aim of identi-

fying the dependence of A, and hence, the qmetric, on
the VVD by appealing to maximally symmetric spaces
and Q2. Equations (22) and (27) fix the final form of the
qmetric as

q ¼ Sl0

σ2

�
Δ
ΔS

�þ 2
D1gþ ϵ

�
σ2S02

l0

Sl0

− Sl0

σ2

�
Δ
ΔS

�þ 2
D1

�
q ⊗ q

ð28Þ

with the inverse metric given by

qab ¼ σ2

Sl0

�
Δ
ΔS

�
− 2
D1gab þ ϵ

�
Sl0

σ2S02
l0

−
σ2

Sl0

�
Δ
ΔS

�
− 2
D1

�
qaqb:

For maximally symmetric spacetimes, it can be shown
that the metrics gab and qab are related by a nonlocal,
singular diffeomorphism. This is most easily seen from the
line element corresponding to qab when gab is maximally
symmetric (assuming σ2 > 0 and constant positive curva-
ture below for purpose of demonstration):

ds2 ¼ dσ2 þ σ2Δ−2=D1dΩ2
D−1fds2 ¼ qabdxadxb

¼
	
d

ffiffiffiffiffiffiffi
Sl0

q 

2 þ Sl0Δ

−2=D1

S dΩ2
D−1: ð29Þ

The above relationship between gab and qab will, of course,
not hold in arbitrary curved spacetimes, and therefore the
two metrics would have different curvatures.
The form derived in [4] and [6] turn out to be

special cases of the one derived above if one chooses
Sl0ðxÞ ¼ xþ l2

0 and Δ ¼ 1. As we will see, while the
choice of Sl0 is just that, a choice, putting Δ ¼ 1 can be
potentially dangerous, since one then risks missing impor-
tant contributions to gRicðp; p0Þ arising from derivatives
of Δ.
In fact, this is just what happens.

IV. RICCI SCALAR FOR THE QMETRIC

Having found the qmetric, Eq. (28), in terms of modi-
fication of geodesic distances Sl0 and the VVD, we can

now proceed to evaluate the Ricci biscalar gRicðp; p0Þ
corresponding to it. This is the simplest curvature invariant
associated with any spacetime, and more importantly for
us, the Ricci scalar is the simplest lagrangian describing
gravitational dynamics in general relativity. We can then
construct a scalar from gRicðp; p0Þ by taking the coinci-
dence limit p → p0, and compare it with Ricðp0Þ, the
Ricci scalar of the background spacetime gab. Naively, one
might expect that

½gRic�ðp0Þ¼? Ricðp0Þ þ terms of orderl0:

Wewill explicitly calculate liml0→0½gRic�ðp0Þ to verify this,
and show that the leading term is ≠ Ricðp0Þ. We will
find an exact expression for the leading term as well as
subleading terms in terms of the geometry of ΣG;p0

and the
first two derivatives of the VVD.
To proceed with the calculation, we use the following

expression, derived in [7], relating Ricci scalars of metrics
related in a manner similar to qab and gab.

gRicðp;p0Þ ¼Ω−2Ricðp0Þ þ ϵðα−Ω−2ÞJ d − ϵαJ c ð30Þ

(where, borrowing notation of [7], Ω2 ¼ A), and

J c ¼ ϵ½2D1Ω−1
□ΩþD1D4Ω−2ð∇ΩÞ2�

þ ðK þD1∇q lnΩÞ ×∇q ln αΩ2;

J d ¼ 2Rabqaqb þ K2
ab − K2

¼ ϵðR −RΣG;p0
Þ: ð31Þ

One can now plug in the form of A and α from Eqs. (22) and
(27) to find the form of rhs. This is the most important, and
also the most lengthy, part of the calculation. The compu-
tation is largely aided by identities I1 and I2 [Eqs. (12)]
satisfied by the VVD. Some of the key steps are sketched in
the Appendix.
The final result turns out to be
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gRicðp; p0Þ ¼
�
σ2

Sl0

ζ−2=D1RΣG;p0
−D1D2

Sl0

þ 4ðDþ 1ÞðlnΔSÞ•
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q0

− Sl0

λ2S02
l0

�
KabKab − 1

D1

K2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QK

þ 4Sl0

�
− D
D1

½ðlnΔSÞ•�2 þ 2ðlnΔSÞ••
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QΔ

ð32Þ

where we have defined ζ¼Δ=ΔS , ðlnΔSÞ•¼dlnΔS=dSl0 ,
and ðlnΔSÞ•• ¼ dðlnΔSÞ•=dSl0 . It is not too difficult to
see that for l0 ¼ 0;S0ðxÞ ¼ x, the RHS above reduces to
Ricðp0Þ. [To verify this, one has to use I1; I2 from
Eqs. (12) above along with ∇q ≡ 2ϵλd=dσ2.]
It is crucial to note here that we have not used any of the

covariant Taylor expansions yet; the above expression,
therefore, does not assume the region of spacetime under
consideration to be smooth (i.e., having finite curvature).
This will be important for discussing the implications of
our framework for cosmological and black hole singular-
ities, which we wish to address in future work.
For the purpose of this paper, however, we shall assume

that we are working in smooth regions of spacetime, so that
the various Taylor expansions given in Sec. II can be used.
The significance of separating out the RHS into Q0;QK,
and QΔ will become evident shortly.
The above expression holds the key to understand

nonperturbative effects of a covariant short distance cutoff
on spacetime curvature. Let us therefore first highlight
some of it’s most important mathematical aspects, before
taking it’s l0 → 0 limit.
(1) The expression contains no derivatives of the func-

tion Sl0ðxÞ higher than one. This is an extremely
delicate mathematical point; as can be seen from the
details provided in the Appendix, terms of the form
S00
l0

do in fact appear in the intermediate steps, but
they cancel out in the final expression. Since Sl0

ðxÞ
represents (in general nonperturbative) effects of
quantum gravity on invariant distance between
spacetime events, the nonexistence of higher deriv-
atives of Sl0 in gRicðp; p0Þ is of deep conceptual
importance—it tells us that semiclassical effects of
quantum gravity can be captured only via limited
information about the precise details of quantum
gravity.

(2) The Ricci biscalar gRicðp; p0Þ is completely de-
scribed by geodesic structure of spacetime, charac-
terized by:
(a) RΣG;p0

(intrinsic curvature),
(b) Kab (extrinsic curvature), and
(c) the van Vleck determinant Δðp; p0Þ.

(3) The extrinsic curvature of ΣG;p0
appears only in a

very special combination, which (as we will see in a

moment), is responsible for no coincidence limit
divergences! This is essentially a consequence of
Eq. (9) for η ¼ 1=D1.

A. liml0→0½gRic�ðp0Þ
The coincidence limit of gRicðp; p0Þ gives us a local

scalar ½gRic�ðp0Þ at each spacetime event p0 which will
depend on l0. Wewish to ask whether this scalar gives back
Ricðp0Þ, the Ricci scalar of the background spacetime,
when l0 is set to zero.
The limit l0 → 0 must be taken with care. First of all,

note that any l0 independent contribution must come from
Q0. The contribution from QK and QΔ can only be Oðl2

0Þ,
since Sl0ð0Þ ¼ l2

0.
Let us therefore first focus on Q0.
To do this, we invoke the coincidence limit expansions

of various quantities given in Eqs. (8), in addition to the
following well-known covariant Taylor expansion of
the VVD

Δ1=2ðp; p0Þ ¼ 1þ 1

12
λ2Rabqaqb þOðλ3Þ ð33Þ

from which it is easy to see that

lim
l0→0

lim
σ2→0

ðlnΔSÞ• ¼
1

6
ϵ½Rabqaqb�ðp0Þ: ð34Þ

Also, using the last of Eqs. (8) for RΣG;p0
, and the fact that

Δð0Þ ¼ 1, we get

lim
σ2→0

�
σ2

Sl0

ζ−
2
D1RΣG;p0

−
D1D2

Sl0

�
¼ D1D2

Sl0ð0Þ
�
Δ

2
D1

l0
− 1

�
;

where Δ1=2
l0

¼ 1þ 1
12
ϵl2

0½Rabqaqb�ðp0Þ þ � � �
The limit l0 → 0 limit of the RHS above is most easily

evaluated using the l’Hospital’s rule (note that both the
numerator and denominator vanish in this limit):

lim
l0→0

D1D2

Sl0ð0Þ
ðΔ2=D1

l0
− 1Þ ¼ lim

l0→0

D1D2

∂l2
0
Sl0ð0Þ

∂l2
0
Δ2=D1

l0

¼ 1

3
D2ϵ½Rabqaqb�ðp0Þ: ð35Þ
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From Eqs. (34), (35), we immediately get

lim
l0→0

lim
σ2→0

Q0 ¼ ϵ

�
D − 2

3
þ 4ðDþ 1Þ

6

�
½Rabqaqb�ðp0Þ

¼ ϵD½Rabqaqb�ðp0Þ
¼ ϵDEðp0Þ ð36Þ

which is one of the most important results in this paper. The
above limit, being independent of Sl0

ðxÞ, is precisely the
relic left by the presence of a zero point length. [Quali-
tatively, this is similar to the various quantum anomalies
one encounters in QFT in curved spacetimes [15]; see [6]
(first reference) for a much detailed conceptual discussion
of this and related points.]
Now consider QK, with the condition ½jSl0 j=S02

l0
�ð0Þ <

∞. This term would be divergent in the coincidence limit
were it not for the fact that the combination of extrinsic
curvature appearing here is Oðλ2Þ, as is readily seen from
Eq. (9) with η ¼ 1=D1. This is a very strong result. Any
other combination of extrinsic curvature tensor would lead

to coincidence limit divergences in ½gRic�ðp0Þ, and the
reason the right combination appears here is completely
due to the presence of VVD. In the absence of it, we would
indeed get divergences, as can be seen from the result in [6].
The final term, QΔ, is a smooth function which would

yield further Oðl2
0Þ dependent terms coupled to the back-

ground curvature. These terms can be read off from the
known covariant Taylor expansions of the VVD.
To summarize, then, we have proved the following:

lim
l0→0

½gRic�ðp0Þ ¼ ϵD½Rabqaqb�ðp0Þ ð37Þ

⋆ Aside.—The expansion in powers of l0.
For the sake of completeness, we quote below the higher

order terms in l0 which can be obtained if one further
assumes that all the quantities involved allow a legitimate
series expansion in l0 in the coincidence limit. We must,
however, caution that such an assumption could be highly
objectionable (even wrong) in full quantum gravitational
context. Nevertheless, the expansion turns out to be:

½gRic�ðp0Þ ¼ ϵDEðp0Þ þ
2ϵðDþ 1Þ

3
ð∇qEÞl0

þ
�
1

18

�
Dþ 2 −

2

S0ð0Þ2
��

E2
ab −

E2

D1

�

þ 1

4
ðDþ 2Þ∇2

qE
�
l2
0 þOðl3

0Þ: ð38Þ

V. THE SURFACE TERM ON ΣG;p0

In the previous section, we analyzed the Ricci biscalargRicðp; p0Þ for the qmetric and showed that it’s coincidence

limit becomes proportional to Rabqaqb in the limit l0 → 0.
We now calculate the contribution of the surface termgK ffiffiffiffiffiffijhjp

for the equigeodesic surfaces using the qmetric.

This is a much simpler calculation than that of gRicðp; p0Þ
and is along the same lines as the one given in [6] (second
reference), so we will be brief.
We start with the following relation between induced

metrics and the extrinsic curvatures [7]ffiffiffiffiffiffi
j ~hj

q
¼ AD1=2

ffiffiffiffiffiffi
jhj

p
~K ¼ ffiffiffi

α
p �

K þD1

2
∇q lnA

�
: ð39Þ

Since by definition K ¼ ∂ ln ffiffiffiffiffiffijhjp
=∂λ, the series for K in

Eq. (8) readily yields

ffiffiffiffiffiffi
jhj

p
¼ λD1

�
1 −

1

6
Eðp0Þλ2 þ

1

36
∇qEðp0Þλ3 þOðλ4Þ

�
:

ð40Þ
Putting everything together, we get

lim
σ2→0

gK ffiffiffiffiffiffi
jhj

p
¼ lD

0

Δl0

�
D1

l2
0

− 2 lim
σ2→0

ðlnΔSÞ•
�
: ð41Þ

The above limit of the surface term corresponds to the
surfaces ΣG;p0

straddling very close to the causal horizon
of p0. If one takes the limit l0 → 0 above, it gives zero, and
hence, there is no nontrivial effect on the surface term as
was found in gRicðp; p0Þ.
⋆ Aside.—The expansion in powers of l0.
Again, if one can justify a series expansion in l0, one

gets

lim
σ2→0

gK ffiffiffiffiffiffi
jhj

p
¼ D1lD−2

0

�
1 −

Dþ 1

6ðD − 1Þ Eðp0Þl2
0 þOðl3

0Þ
�

¼D¼4
3l2

0 −
5

6
Eðp0Þl4

0 þOðl5
0Þ ð42Þ

in which the first two terms have the same form as in [6]
(second reference), where no expansion in l0 was
needed.

VI. DISCUSSION

As mentioned in the Introduction, one needs only a very
few conceptual inputs from semiclassical gravity to
deduce some basic facts about spacetime at small scales.
The existence of a lower bound on spacetime intervals is
one such input, and if it turns out to be a fundamental
feature of quantum gravity, it makes sense to look for a
geometric description of spacetime in terms of objects
which are likely to be more useful in incorporating such a
lower bound. Bitensors then provide a natural choice, and
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indeed, if one looks deeper into our theories of classical
GR and QFT, some of the most important features of these
theories, such as geodesic deviation, focussing of geo-
desics, causal structure, singularity structure of two point
functions, etc., are characterized in terms of bitensors.
Characterizing the small scale topology of spacetime is
another aspect which would necessitate a description
directly in terms of bitensors such as the distance function
dðp; p0Þ. This is the point of view which was stressed in
[4], developed and described in much greater conceptual
detail in [6], and has been put on a much more rigorous
basis in the present paper. Our general expression (32) for

the Ricci biscalar gRicðp; p0Þ of the qmetric presents a
natural basis for the description of gravitational dynamics
by a nonlocal action. This can be particularly relevant for
study of spacetime singularities, where one can not use
covariant Taylor expansions.1

Although mathematical complexity forced us to look at
only the Ricci scalar (instead of the full Riemann tensor)
for geometries with a covariant short distance cutoff, the
resulting expression very elegantly and concretely
expresses the key idea: curvature of spacetime might be
solely expressible in terms of behavior of it’s geodesics and
related bitensorial quantities. In absence of a lower bound
on geodesic distances, such a description would coincide
with the standard one in terms of local tensors such as
gabðpÞ; RabcdðpÞ, etc. However, if there exists a minimal
length, then the nonlocal character of bitensors, combined
with the nonanalytic deformation of geometry necessitated
by such a minimal length, might lead to a very different
description of spacetime curvature at smallest of scales; in
particular, it may leave a relic independent of the details or
value of the short distance cutoff, thereby acting as a crucial
guidepost towards our understanding of classical gravity
itself.
The mathematical results derived here, for example,

seem to strongly support the so-called emergent gravity
paradigm, in which gravitational dynamics is described in
terms of thermodynamics of future causal horizon of an
event p0. Two of the key ideas in this context—the use of
local Rindler frames as probes of spacetime curvature (due
to Jacobson [12]), and a variational principle based on
entropy functional (due to Padmanabhan et al. [17])—find
a unified and purely geometric description in our frame-
work in terms of equigeodesic surfaces (which replace the
Rindler trajectories) and the l0 ¼ 0 term of the coinci-
dence limit of Ricci biscalar of the qmetric, which happens
to have the same form as the entropy functional.
The possibility of description of geometry in terms of

two point functions of quantum fields has also been

emphasized, in a series of paper, by Kempf and collabo-
rators [18]. The connection with the work presented here is
obvious: the UV behavior of two point functions is in one
to one correspondence with vanishing of geodesic distances
in the coincidence limit, which, of course, was the basis for
our input Q2. In fact, there could also be a more
fundamental connection at the level of geometry itself.
For example, it was pointed out in [19] that the commu-
tation relation between position and momenta, ½x̂μ; p̂ν�,
would in general acquire a correction on a curved manifold,
thereby affecting the resultant uncertainties. We hope to
present more details on this particular connection in a future
work (which is in progress).
We hope to apply the results derived here to analyze

implications of a Lorentz invariant minimal length for
issues such as cosmological and black hole singularities,
transplanckian problem in black hole physics and cosmol-
ogy, and possible relevance for the cosmological constant
problem.
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APPENDIX: DERIVATION OF EQ. (32)

The complete derivation of Eq. (32) is lengthy, but there
are several key structural aspects of the result which are
worth highlighting, since these are responsible not only for
the final simple form of gRicðp; p0Þ, but also for

(i) Finiteness of the coincidence limit, ½gRic�ðp0Þ.
(ii) Cancellation of any derivatives of Sl0ðxÞ higher than

the first.
The first of these is purely a consequence of the correct
identification of the dependence of the qmetric on
VVD and repeatedly using the identities I1; I2 for the
same.
The second fact is more nontrivial, and there is no simple

reason to have expected it. In fact, since qab depends on α,
and α depends on S0

l0
, one expects gRicðp; p0Þ to involve

terms such as S000
l0
, which it does not. Although we do not

have a completely geometric understanding of why this
must happen, we highlight below how the cancellations
happen which point to the following two reasons for these
subtle cancellations:

(i) The fact that the coupling between qab and gab is
disformal rather than conformal.

(ii) The fact that the S00
l0

contribution of the conformal
part is canceled by a contribution coming from the
disformal one.

To demonstrate these, we start from Eq. (30), and note that
the only possibility of occurrence of second derivatives of
Sl0 is from J c, which we write as

1The idea of gravity being described fundamentally by a
nonlocal action, with geodesic distance playing the key role,
seems to be conceptually in tune with certain ideas presented in
DeWitt and Alvarez et al. [16].
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J c ¼ ϵ½2D1Ω−1
□ΩþD1D4Ω−2ð∇ΩÞ2�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J c1

þ ðK þD1∇q lnΩÞ ×∇q ln αΩ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J c2

: ðA1Þ

The cancellation of higher order derivatives happens between the terms J c1, which is the contribution of purely conformal
transformation, and J c2, contributed by the disformal part. Simplifying the above expression, we get

J c1 ¼ −
1ffiffiffi
α

p D1ffiffiffiffiffi
ϵS

p ∇q ln αþ 2ϵ

ffiffiffiffiffi
ϵS

p ffiffiffi
α

p ∇q ln αðlnΔsÞ• þ ðterms that do not depend onS00
l0
Þ ðA2Þ

and

J c2 ¼ þ 1ffiffiffi
α

p D1ffiffiffiffiffi
ϵS

p ∇q ln α − 2ϵ

ffiffiffiffiffi
ϵS

p ffiffiffi
α

p ∇q ln αðlnΔsÞ• þ ðterms that do not depend onS00
l0
Þ: ðA3Þ

If the metrics qab and gab are conformally coupled, α ¼ Ω−2 and hence, J c2 ¼ 0. In such a case, the higher derivatives
of Sl0 would not cancel; the cancellation is solely a consequence of the disformal coupling between the metrics.
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