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In this paper we extend the analysis of gravitational collapse of spherically symmetric generalized
Vaidya spacetimes to higher dimensions, in the context of the cosmic censorship conjecture. We present the
sufficient conditions on the generalized Vaidya mass function that will generate a locally naked singular
end state. Our analysis here generalizes all the earlier works on collapsing higher dimensional generalized
Vaidya spacetimes. With specific examples, we show the existence of classes of mass functions that lead to
a naked singularity in four dimensions, which gets covered on transition to higher dimensions. Hence for
these classes of mass function cosmic censorship gets restored in higher dimensions and the transition to
higher dimensions restricts the set of initial data that results in a naked singularity.
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I. INTRODUCTION

The singularity theorems predict the occurrence of
spacetime singularities for a wide class of theories of
gravity under very generic conditions, namely the attractive
nature of gravity, existence of closed trapped surfaces and
no violations of causality in the spacetime [1]. However
these theorems do not say anything about the causal nature
of these singularities, that is, if it is possible for future
directed null geodesics from the close vicinity of these
singular points to escape to infinity. To avoid such
scenarios where a naked singularity exists that can causally
influence the future infinities, the cosmic censorship con-
jecture was proposed by Penrose [2]. This states that
spacetime singularities produced by the gravitational col-
lapse of physically realistic matter fields are always
covered by trapped surfaces. Hence the final state of
continual gravitational collapse always leads to a black
hole, where the singularity is shielded from any external
observer.
Though the general proof of this conjecture still remains

elusive, there are a number of important counterexamples
that show otherwise. Investigations of spherically symmet-
ric dynamical collapse models in general relativity for large
classes of matter fields, in four dimensional spacetimes,
indicate that there exist sets of initial data of nonzero
measure, at the epoch of the commencement of the
collapse, that lead to the formation of a locally naked
singularity. In these cases the trapped surfaces do not form
early enough to shield the singularity (or the spacetime
fireball) from external observers. It is also shown in these
studies that families of future outgoing nonspacelike

geodesics emerge from such a naked singularity, providing
a nonzero measure set of trajectories escaping away [3–5].
Though these counterexamples are mainly presented in the
case of spherical symmetry (with a few exceptions of
nonspherical models), they suffice to be relevant because if
the censorship is one of the key aspects of gravitation
theory, it should not depend on symmetries of spacetime.

A. The question

To avoid the unpleasantries of nudity, the obvious
question that arises (influenced by higher dimensional
and emergent theories of gravity—e.g. string theory or
braneworld models) is as follows:
Question. Does the transition to higher dimensional

spacetimes (with compact or noncompact extra dimen-
sions) restrict the above-mentioned set of initial data that
leads to a naked singularity?
In other words, how does the number of spacetime

dimensions dictate the dynamics of trapped regions in the
spacetime? This question is important as most of the proofs
of the key theorems of black hole dynamics and thermo-
dynamics demand the spacetimes to be future asymptoti-
cally simple, which is not possible if the censorship is
violated [1]. If the locally naked singularities in four-
dimensional spacetime are naturally absent in higher
dimensions, then that will be an argument in favor of
higher dimensional (or emergent theories) of gravity, as in
those cases the important results of black hole dynamics
and thermodynamics would be more relevant.

B. Earlier works

To answer the above question, at least partially, one of
the authors of the present paper showed the following
important result [6,7]: The naked singularities occurring in
dust collapse from smooth initial data (which include those
discovered by Eardley and Smarr [8], Christodoulou [9],
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and Newman [10]) are eliminated when we make the
transition to higher dimensional spacetimes. The cosmic
censorship is then restored for dust collapse which will
always produce a black hole as the collapse end state for
dimensions D ≥ 6, under conditions such as the smooth-
ness of initial data from which the collapse develops, which
follows from physical grounds.
The physical reason behind the above result is that higher

dimensional spacetimes favor trapped surface formation
and the formation of horizons advance in time. Hence for
dimensions greater than five, the vicinity of the singularity
always gets trapped even before the singularity is formed,
and hence the singularity is causally cut off from any
external observer.
Several other works on higher dimensional radiation

collapse and perfect fluid collapse have been done [11–17],
where the matter field is taken to be of a specific form (for
example, perfect fluids with linear equation of state, pure
radiation, charged radiation, etc.). All of these studies give
an indication that higher dimensions do favor trapping and
hence the epoch of trapped surface formation advances as
we go to higher dimensions.

C. The present paper

The main criticism of the dustlike models or pure
perfect fluid models is that they are far too idealized.
For any realistic massive astrophysical body, which is
undergoing gravitational collapse, the pressure and the
radiative processes must play an important role together.
One of the known spacetimes that can closely mimic
such a collapse scenario is the generalized Vaidya
spacetime, where the matter field is a specific combi-
nation of type I matter [whose energy momentum tensor
(EMT) has one timelike and three spacelike eigenvec-
tors] that moves along timelike trajectories and type II
matter (whose energy momentum tensor has double null
eigenvectors) that moves along null trajectories. Thus, a
collapsing generalized Vaidya spacetime depicts the
collapse of usual perfect fluid combined with radiation.
Therefore the collapse scenario here is much closer to
what is expected for the collapse of a realistic astro-
physical star. In our earlier paper [18], we investigated
the gravitational collapse of generalized Vaidya space-
times in four dimensions and developed a general
mathematical framework to study the conditions on
the mass function such that future directed nonspacelike
geodesics can terminate at the singularity in the past. In
this paper we do the following:
(1) We extend the earlier results to any arbitrary N-

dimensional spacetimes. Though the general math-
ematical framework remains similar, the conditions
on the mass function and its derivatives for the
collapse leading to a locally naked singularity
change as we make a transition to higher dimen-
sional spacetimes.

(2) Using explicit examples we show that there exist
classes of mass functions that lead the collapsing star
to a naked singularity in four dimensions that will
necessarily end in a black hole end state in dimen-
sions greater than four. The reason for this remains
the same as in dust models: formation of trapped
surfaces is favored in higher dimensions, and hence
the vicinity of the central singularity gets trapped
even before the singularity is formed. This gives a
definite indication that the dynamics of trapped
regions do depend on the spacetime dimensions
for a large class of matter fields and the occurrence
of trapped surfaces advance in time in higher
dimensions.

Unless otherwise specified, we use natural units
(c ¼ 8πG ¼ 1) throughout this paper; latin indices run
from 0 to N − 1. The symbol ∇ represents the usual
covariant derivative and ∂ corresponds to partial differ-
entiation. We use the ð−;þ;þ;þ;þ;…Þ signature and
the Ricci tensor is obtained by contracting the first and
the third indices of the Riemann tensor

Ra
bcd ¼ Γa

bd;c − Γa
bc;d þ Γe

bdΓa
ce − Γe

bcΓa
de: ð1Þ

The Hilbert-Einstein action in the presence of matter is
given by

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λ − 2Lm�; ð2Þ

variation of which gives the Einstein field equations as

Gab þ Λgab ¼ Tab: ð3Þ

II. HIGHER DIMENSIONAL GENERALIZED
VAIDYA SPACETIME

The spherically symmetric line element for an N-
dimensional generalized Vaidya spacetime is given as

ds2 ¼ −
�
1 −

2mðv; rÞ
rðN−3Þ

�
dv2 þ 2dvdrþ r2dΩ2

ðN−2Þ; ð4Þ

where

dΩ2
ðN−2Þ ¼

XN−2

i¼1

�Yi−1
j¼1

sin2ðθjÞ
�
ðdθiÞ2 ð5Þ

is the metric on the ðN − 2Þ sphere in polar coordinates
with θi being spherical coordinates. mðv; rÞ is the gener-
alized mass function related to the gravitational energy
within a given radius r [19], which can be carefully defined
so that the energy conditions are satisfied. The coordinate v
represents the Eddington advanced time where r is decreas-
ing towards the future along a ray v ¼ Const. (ingoing).
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When N ¼ 4, the line element reduces to the generalized
Vaidya solution [20] in four dimensions.
Defining the following quantities,

_mðv; rÞ≡ ∂mðv; rÞ
∂v ; m0ðv; rÞ≡ ∂mðv; rÞ

∂r ;

we can write the nonvanishing components of the Ricci
tensor as

Rv
v ¼ Rr

r ¼
m00ðv; rÞ
rðN−3Þ −

ðN − 4Þm0ðv; rÞ
rðN−2Þ ; ð6aÞ

Rθ1

θ1
¼ Rθ2

θ2
¼ � � � ¼ RθðN−2Þ

θðN−2Þ ¼
2m0ðv; rÞ
rðN−2Þ : ð6bÞ

The Ricci scalar is given by

R ¼ 2m00ðv; rÞ
rðN−3Þ þ 4m0ðv; rÞ

rðN−2Þ ; ð7Þ

while the nonvanishing components of the Einstein
tensor are given by

Gv
v ¼ Gr

r ¼ −
ðN − 2Þm0ðv; rÞ

rðN−2Þ ; ð8aÞ

Gr
v ¼

ðN − 2Þ _mðv; rÞ
rðN−2Þ ; ð8bÞ

Gθ1

θ1
¼ Gθ2

θ2
¼ � � � ¼ GθðN−2Þ

θðN−2Þ ¼ −
m00ðv; rÞ
rðN−3Þ : ð8cÞ

The EMT can be written in the form [21]

Tμν ¼ TðnÞ
μν þ TðmÞ

μν ; ð9Þ

where

TðnÞ
μν ¼ μlμlν; ð10aÞ

TðmÞ
μν ¼ ðρþ ϱÞðlμnν þ lνnμÞ þ ϱgμν: ð10bÞ

In the above,

μ ¼ ðN − 2Þ _mðv; rÞ
rðN−2Þ ; ρ ¼ ðN − 2Þm0ðv; rÞ

rðN−2Þ ;

ϱ ¼ −
m00ðv; rÞ
rðN−3Þ ; ð11Þ

with lμ and nμ being two null vectors,

lμ ¼ δ0μ; nμ ¼
1

2

�
1 −

2mðv; rÞ
rðN−3Þ

�
δ0μ − δ1μ; ð12Þ

where lμlμ ¼ nμnμ ¼ 0 and lμnμ ¼ −1.

Equation (9) is taken as a generalized energy momentum
tensor for the generalized Vaidya spacetime, with the
component TðnÞ

μν being considered as the matter field that
moves along the null hypersurfaces v ¼ constant, while

TðmÞ
μν describes the matter moving along timelike trajecto-

ries. If the EMT of Eq. (9) is projected to the orthonormal
basis, defined by the vectors

Eμ
ð0Þ ¼

lμ þ nμffiffiffi
2

p ; Eμ
ð1Þ ¼

lμ − nμffiffiffi
2

p ;

Eμ
ð2Þ ¼

1

r
δμ2; E

μ
ðNÞ ¼

1

r sin θ1 sin θ2 sin θ3 � � � sin θðN−2Þ δ
μ
N;

ð13Þ
it can be found [20] that the symmetric EMT can be given
as the N × N matrix,

½TðμÞðνÞ� ¼

2
666666664

μ
2
þ ρ μ

2
0 � � � 0

μ
2

μ
2
− ρ 0 0 0

0 0 ϱ 0 0

..

. � � � 0 ϱ ..
.

0 0 0 � � � ϱ

3
777777775
: ð14Þ

For this fluid the energy conditions are given as [1]
(1) The weak and strong energy conditions:

μ ≥ 0; ρ ≥ 0; ϱ ≥ 0; ðμ ≠ 0Þ: ð15Þ

(2) The dominant energy condition:

μ ≥ 0; ρ ≥ ϱ ≥ 0; ðμ ≠ 0Þ: ð16Þ

These energy conditions can be satisfied by suitable
choices of the mass function mðv; rÞ.

III. HIGHER DIMENSIONAL COLLAPSE MODEL

In this section, we examine the gravitational collapse of a
collapsing matter field in the generalized Vaidya spacetime
when a spherically symmetric configuration of type I and
type II matter collapses at the center of symmetry in an
otherwise empty universe which is asymptotically flat far
away [22].
If Kμ is the tangent to nonspacelike geodesics with

Kμ ¼ dxμ
dk , where k is the affine parameter, then Kμ

;νKν ¼ 0

and

gμνKμKν ¼ β; ð17Þ

where β is a constant that characterizes different classes of
geodesics with β ¼ 0 for null geodesic vectors, β < 0 for
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timelike geodesics and β > 0 for spacelike geodesics [22].
Here we consider the case of null geodesics, that is, β ¼ 0.
We calculate the equations dKv=dk and dKr=dk using

the Lagrange equations given by L ¼ 1
2
gμν

dxμ
dk

dxν
dk and Euler-

Lagrange equations

∂L
∂xa −

d
dk

� ∂L
∂xa;k

�
¼ 0: ð18Þ

In the case of the higher dimensional generalized Vaidya
spacetime, these equations are given by

dKv

dk
þ
�ðN − 3Þmðv; rÞ

rðN−2Þ −
m0ðv; rÞ
rðN−3Þ

�
ðKvÞ2 ¼ 0; ð19aÞ

dKr

dk
þ _mðv; rÞ

rðN−3Þ ðKvÞ2 ¼ 0: ð19bÞ

All other components are considered to be 0. If we follow
[23] and write Kv as

Kv ¼ Pðv; rÞ
r

; ð20Þ

then using KμKν ¼ 0 we get

Kv ¼ dv
dk

¼ Pðv; rÞ
r

; ð21aÞ

Kr ¼ dr
dk

¼ P
2r

�
1 −

2mðv; rÞ
rðN−3Þ

�
: ð21bÞ

IV. CONDITIONS FOR LOCALLY NAKED
SINGULARITY

The nature (a locally naked singularity or a black hole)
of the collapsing solutions can be characterized by the
existence of radial null geodesics coming out of the
singularity [15,22].
The radial null geodesics of the line element (4) can be

calculated using Eqs. (21a)–(21b). These geodesics are
given by the equation

dv
dr

¼ 2rðN−3Þ

rðN−3Þ − 2mðv; rÞ : ð22Þ

This differential equation has a singularity at r ¼ 0; v ¼ 0.
Using the same techniques utilized in [18,24,25], Eq. (22)
can be rewritten near the singular point as

dv
dr

¼ 2ðN − 3ÞrðN−3Þ

ðN − 3ÞrðN−3Þ − 2m0
0r − 2 _m0v

; ð23Þ

where

m0 ¼ lim
v→0;r→0

mðv; rÞ; ð24aÞ

_m0 ¼ lim
v→0;r→0

∂
∂vmðv; rÞ; ð24bÞ

m0
0 ¼ lim

v→0;r→0

∂
∂rmðv; rÞ: ð24cÞ

A. Existence of outgoing nonspacelike geodesics

We can clearly see that Eq. (23) has a singularity at
v ¼ 0, r ¼ 0. The classification of the tangents of both
radial and nonradial outgoing nonspacelike geodesics
terminating at the singularity in the past can be given by
the limiting values at v ¼ 0, r ¼ 0. The conditions for the
existence for such geodesics have been described in detail
in [18] using the concept of contraction mappings. The
existence of these radial null geodesics also characterizes
the nature (a naked singularity or a black hole) of the
collapsing solutions. If we let X be the limiting value at
r ¼ 0, v ¼ 0, we can determine the nature of this limiting
value on a singular geodesic as

X0 ¼ lim
v→0;r→0

X ¼ lim
v→0;r→0

v
r
: ð25Þ

Using a suitably chosen mass function, Eq. (23) and
l’Hopital’s rule, we can explicitly find the expression for
the tangent values X0 which governs the behavior of the
null geodesics near the singular point. Thus, the nature of
the singularity can then be determined by studying the
solution of this algebraic equation. This expression can be
calculated as

X0 ¼ lim
v→0;r→0

dv
dr

¼ lim
v→0;r→0

2ðN − 3ÞrðN−4Þ

ðN − 3ÞrðN−4Þ − 2m0
0 − 2 _m0X0

: ð26Þ

B. Apparent horizon

The existence of the apparent horizon, which is the
boundary of the trapped surface region in the spacetime
also determines the nature of the singularity. If at least one
value of the limiting positive values X0 is less than the slope
of the apparent horizon at the central singularity, then the
central singularity is locally naked with the outgoing radial
null geodesics escaping from the past to the future.
For the generalized higher dimensional Vaidya space-

time, the apparent horizon is defined by

2mðv; rÞ ¼ rðN−3Þ: ð27Þ

The slope of the apparent horizon can be calculated as
follows:
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2
dmðv; rÞ

dr
¼ ðN − 3ÞrðN−4Þ; ð28aÞ

2

�∂m
∂v

��
dv
dr

�
AH

þ 2
∂m
∂r ¼ ðN − 3ÞrðN−4Þ: ð28bÞ

Thus, the slope of the apparent horizon at the central
singularity is given by

XAH ¼
�
dv
dr

�
AH

¼ lim
v→0;r→0

ðN − 3ÞrðN−4Þ − 2m0
0

2 _m0

: ð29Þ

C. Sufficient conditions

We can now write the sufficient conditions for the
existence of a locally naked central singularity for a
collapsing generalized Vaidya spacetime in arbitrary dimen-
sions N, which we state in the following proposition:
Proposition 1. Consider a collapsing N-dimensional

generalized Vaidya spacetime from a regular epoch, with
a mass function mðv; rÞ, that obeys all physically reason-
able energy conditions and is differentiable in the entire
spacetime. If the following conditions are satisfied,
(1) The limits of the partial derivatives of the mass

function mðv; rÞ exist at the central singularity,
(2) There exist one or more positive real roots X0

of Eq. (26),
(3) At least one of the positive real roots of X0 is less

than the smallest root of Eq. (29), then the central

singularity is locally naked with outgoing C1 radial
null geodesics escaping to the future.

We emphasize here that all the previous works of higher
dimensional generalized Vaidya collapse [15–17] are spe-
cial cases of the general analysis presented above. In the
next section, we give a specific example to transparently
demonstrate the effect of transition to higher dimensions on
the nature of the central singularity.

V. A GENERAL LAURENT EXPANDABLE
MASS FUNCTION

We consider here a Laurent expandable mass function of
the generalized Vaidya spacetime in higher dimensions in
the general form as

2mðv; rÞ ¼ λ1m1ðvÞ − λ2
m2ðvÞ
rðN−3Þ − λ3

m3ðvÞ
rðN−2Þ þ � � � ; ð30Þ

where

mnðvÞ ¼ vð2Nþn−8Þ;

n ¼ 1; 2;… and λns are constants:

Using Eqs. (26) and (29), we get the expression of the
tangent to null geodesics X0 and tangent to the apparent
horizon XAH in higher dimensions as

X0 ¼
2ðN − 3Þ

ðN − 3Þ − ð2N − 7Þλ1Xð2N−7Þ
0 þ ðN − 3Þðλ2X2N−6

0 þ λ3X
ð2N−5Þ
0 þ λ4X

ð2N−4Þ
0 þ � � �Þ

: ð31Þ

XAH ¼ ðN − 3Þ − ðN − 3Þλ2Xð2N−6Þ
AH − ðN − 2Þλ3Xð2N−5Þ

AH − ðN − 1Þλ4Xð2N−4Þ
AH − � � �

λ1ð2N − 7ÞXð2N−8Þ
AH − ð2N − 6Þλ2Xð2N−7Þ

AH − ð2N − 5Þλ3Xð2N−6Þ
AH − � � �

: ð32Þ

These expressions can be written in the general form
as

X∞
n¼1

ðfnðN; λiÞXð2Nþn−7Þ
0 Þ þ ðN − 3ÞX0 − 2ðN − 3Þ ¼ 0;

ð33Þ

and

X∞
n¼1

gnðN; λiÞXð2Nþn−8Þ
AH − ðN − 3Þ ¼ 0; ð34Þ

where fnðN; λiÞ and gnðN; λiÞ are some functions of N
and the λis.
These expressions can explicitly be solved for X0 and

XAH using some specific values of n, N and λi s (see
Table I) and then one can make conclusions about the
nature of the singularity by using the following conditions:

TABLE I. Algebraic equations for X0 and XAH for different values of n and N.

n and N Expression for X0 Expression for XAH

n ¼ 1, N ¼ 4 λ1X2
0 − X0 þ 2 ¼ 0 XAH ¼ 1

λ1
n ¼ 2; N ¼ 4 λ2X3

0 − λ1X2
0 þ X0 − 2 ¼ 0 λ2X2

AH − λ1XAH þ 1 ¼ 0

n ¼ 2, N ¼ 5 2λ2X5
0 − 3λ1X4

0 þ 2X0 − 4 ¼ 0 2λ2X4
AH − 3λ1X3

AH þ 2 ¼ 0
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(i) If there is no positive real solution for X0, then there
are no outgoing null geodesics from the singularity
and the singularity is causally cut off from the
external observer.

(ii) If there is no real solution for XAH, then there are no
trapped surfaces and the singularity is globally
naked, provided there is at least one positive real
root of X0.

(iii) If there are one or multiple real solutions for XAH
with the smallest solution less than X0, then it can be
concluded that the collapse results in a black hole
end state.

(iv) If the smallest solution Min½XAH� is greater than any
one of the positive solutions of X0, then there will be
future directed null geodesics from the singularity
and hence the singularity is locally naked.

We can easily see from Table I that the general expression
obtained here contains the expressions for X0 and XAH
corresponding to Vaidya collapse in four dimensions
(n ¼ 1; N ¼ 4) [22,23], charged Vaidya–de Sitter in four
dimensions (n ¼ 2; N ¼ 4) [17] and charged Vaidya in five
dimensions (n ¼ 2; N ¼ 5) [16].

A. Example: class of naked singularity in four
dimensions being eliminated in higher dimensions

In this section we consider a specific example that can be
easily generalized to an open set to show explicitly how a
naked singularity in four dimensions gets covered in higher
dimensions. Let us consider a scenario where n ¼ 4. In this
case the expression for X0 and XAH becomes

ð2N−7Þλ1X2N−6
0 − ðN−3Þλ2X2N−5

0 − ðN−3Þλ3X2N−4
0

− ðN−3Þλ4X2N−3
0 − ðN−3ÞX0þ2ðN−3Þ¼ 0; ð35Þ

and

ð2N − 7Þλ1X2N−7
AH − ðN − 3Þλ2X2N−6

AH − ðN − 3Þλ3X2N−5
AH

− ðN − 3Þλ4X2N−4
AH − ðN − 3Þ ¼ 0: ð36Þ

We can solve these equations numerically to get the
values of X0 and XAH in different dimensions. For our
calculations we took λ1¼5.0, λ2¼0.01, λ3¼2.3, λ4 ¼ 0.05.
From Table II we can easily see that in four dimensions, this
class of mass function leads to a naked singularity, as the

trapped surfaces do not form early enough to shield the
singularity from outside observers. However when we
make the transition to higher dimensions we see that the
value of the tangent to the outgoing null geodesic from
the central singularity is greater than the slope of the
apparent horizon curve at the central singularity. In this
case the outgoing null direction is within the trapped region
and hence the singularity is causally cut off from the
external observer. By the continuity of the mass function
considered above, this can be easily converted to an open
set in the mass function space, where this scenario con-
tinues to be true, and we explicitly prove this in the
following subsection.

B. Proof of existence of an open set of mass
functions with the above properties

Having found out a specific example of a mass function
for which the naked singularities in four dimensions are
eliminated when we go to a higher dimension, we would
now require to prove that such a mass function is generic in
the sense that there exists an open set of such mass
functions in the function space. Since this problem of
deducing the nature of the central singularity is reduced to
finding and comparing real roots of polynomials (35)–(36),
all we need to show here is that the real roots of these
polynomials are continuous functions of the coefficients.
To do this, first of all we observe that the roots that are

given in Table II are all of multiplicity one. This can be
easily seen by differentiating the lhs of (35)–(36) and
substituting the roots to find nonzero values. Now, for any
complex polynomial pðzÞ of degree n ≥ 1 with m distinct
roots fα1;…; αmg, (1 ≤ m ≤ n), let us define the quantity
R0ðpÞ as follows:

R0ðpÞ¼
(

1
2
; if m¼ 1:

1
2
min jαi−αjj; i≤ j≤m; if m> 1:

ð37Þ

We now state the well-known result of complex analy-
sis [26]:
Theorem 1. Let pðzÞ be a polynomial of degree n ≥ 1,

with real coefficients fμkg. Suppose α is a real root of pðzÞ
of multiplicity one. Then for any ϵ with 0 ≤ ϵ ≤ R0ðpÞ,
there exists a δðϵÞ > 0 such that any polynomial qðzÞ with
real coefficients νk and jμk − νkj ≤ δ has a real root β
with jα − βj ≤ ϵ.
The above theorem shows that if a polynomial pðzÞ with

real coefficients has a real root α of multiplicity one, then
any polynomial qðzÞ obtained by small (real) perturbations
to the coefficients of pðzÞ will also have a real root in a
neighborhood of α. That is, not only does the root depend
continuously on coefficients, but it also remains real, under
sufficiently small perturbations of coefficients.
This result directly translates to our problem of an open

set of mass functions in the mass function space. Once we

TABLE II. Values of X0 and Min½XAH� for different dimensions
for λ1 ¼ 5.0, λ2 ¼ 0.01, λ3 ¼ 2.3, λ4 ¼ 0.05.

N X0 Min½XAH�
4 0.204 1.472
5 1.806 0.526
6 1.902 0.672
7 1.948 0.751
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have a specific example as shown in Table II, any
perturbations around that will have the same outcome as
far as the nature of the singularities is concerned. Hence this
class of mass functions is not fine tuned, but quite generic
and the outcome is stable under perturbations.

C. Numerical verification

We verify explicitly, with the aid of numerical calcu-
lations, the results in the previous subsection. We numeri-
cally solve Eqs. (35)–(36) to get the values of X0 and XAH
in different dimensions to show that there exists a set of
parameter intervals for which the mass function leads to a
naked singularity in four dimensions and a black hole in
higher dimensions. For example, some of the intervals are
f4.8< λ1< 5.25;0.009< λ2< 0.012;2.25< λ3< 2.38;λ4¼
0.05g with the range values shown in Table III and fλ1¼
5.2;0.009<λ2<0.012;λ3¼2.3;0≤λ4<0.4g as shown in
Table IV, we can easily see that in four dimensions, these
classes of mass function lead to a naked singularity, as the
trapped surfaces do not form early enough. However when
we make the transition to higher dimensions, the final
outcome is a black hole.

D. The result

As a result of our detailed analytical and numerical
investigations of the previous subsections, we can state the
following proposition:

Proposition 2. There exist classes of mass function in
generalized Vaidya spacetimes that produce a locally naked
central singularity in four dimensions, but this naked
singularity gets eliminated in higher dimensions due to
temporal advancement of trapped surface formation.

VI. SUMMING IT ALL UP

In this paper we extended our analysis of the gravita-
tional collapse of generalized Vaidya spacetime in four
dimensions [18] to spacetimes of arbitrary dimensions, in
the context of the cosmic censorship conjecture. We found
the sufficient conditions on the generalized Vaidya mass
function that generates a locally naked central singularity
that can causally communicate with an external observer.
We carefully investigated the effect of the number of
dimensions on the dynamics of the trapped regions, by
studying the slope of the apparent horizon curve at the
central singularity.
By considering specific examples, we showed that there

exist classes of mass functions for which a naked singu-
larity in four dimensions gets covered as we make the
transition to higher dimensional spacetime. Interestingly,
the reason for this is the same as in the case of dust collapse.
From our analysis here, we can easily see that for a wide
class of matter fields, a transition to higher dimensions
favors trapped surface formation and the epoch of trapping
advances as we go to higher dimensions. This makes it
so the vicinity of the central singularity is trapped even
before the singularity is formed, and hence it is necessarily
covered.
Therefore, we can safely conclude that for a large class of

matter fields, which includes both type I and type II matter,
transition to higher dimensions does indeed restrict the set
of physically realistic initial data that leads to the formation
of a locally naked singularity.
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TABLE III. Range forX0 andMin½XAH� for different dimensions:
f4.8<λ1<5.25;0.009<λ2<0.012;2.25<λ3<2.38;λ4¼0.05g.
N Range for X0 Range for Min½XAH�
4 0.194 < X0 < 0.213 1.377 < Min½XAH� < 1.483
5 1.789 < X0 < 1.818 0.517 < Min½XAH� < 0.534
6 1.884 < X0 < 1.915 0.665 < Min½XAH� < 0.678
7 1.930 < X0 < 1.962 0.745 < Min½XAH� < 0.756

TABLE IV. Range for X0 and Min½XAH� for different dimen-
sions: fλ1 ¼ 5.2; 0.009 < λ2 < 0.012; λ3 ¼ 2.3; 0 ≤ λ4 < 0.4g.
N Range for X0 Range for Min½XAH�
4 1.3934 < X0 < 1.3941 1.5010 < Min½XAH� < 1.5017
5 1.8406 < X0 < 1.8412 0.5184 < Min½XAH� < 0.5185
6 1.9387 < X0 < 1.9393 0.6658 < Min½XAH� < 0.6659
7 1.9865 < X0 < 1.9872 0.7431 < Min½XAH� < 0.7432

IS COSMIC CENSORSHIP RESTORED IN HIGHER … PHYSICAL REVIEW D 92, 024041 (2015)

024041-7



[1] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Spacetime (Cambridge University Press, Cambridge,
1973).

[2] R. Penrose, Rivista del Nuovo Cimento 1, 252 (1969).
[3] P. S. Joshi, Gravitational Collapse and Spacetime Singu-

larities (Cambridge University Press, Cambridge, 2007).
[4] J. P. S. Lemos, Phys. Rev. Lett. 68, 1447 (1992).
[5] R. Baier, H. Nishimura, and S. A. Stricker, Classical

Quantum Gravity 32, 135021 (2015).
[6] R. Goswami and P. S. Joshi, Phys. Rev. D 69, 104002

(2004).
[7] R. Goswami and P. S. Joshi, Phys. Rev. D 69, 044002 (2004).
[8] D. M. Eardley and L. Smarr, Phys. Rev. D 19, 2239 (1979).
[9] D. Christodoulou, Commun. Math. Phys. 93, 171 (1984).

[10] R. P. A. C. Newman, Classical Quantum Gravity 3, 527
(1986).

[11] S. G. Ghosh and A. K. Dawood, Gen. Relativ. Gravit. 40, 9
(2008).

[12] S. G. Ghosh and D.W. Deshkar, Astrophys. Space Sci. 310,
111 (2007).

[13] N. Dadhich, S. G. Ghosh, and D.W. Deshkar, Int. J. Mod.
Phys. A 20, 1495 (2005).

[14] S. G. Ghosh and R. V. Saraykar, Phys. Rev. D 62, 107502
(2000).

[15] S. G. Ghosh and N. Dadhich, Phys. Rev. D 64, 047501
(2001).

[16] K. D. Patil, Pramana J. Phys. 60, 423 (2003).
[17] A. Beesham and S. G. Ghosh, Int. J. Mod. Phys. D 12, 801

(2003).
[18] M. D. Mkenyeleye, R. Goswami, and S. D. Maharaj,

Phys. Rev. D 90, 064034 (2014).
[19] K. Lake and T. Zannias, Phys. Rev. D 43, 1798 (1991).
[20] A. Wang and Y. Wu, Gen. Relativ. Gravit. 31, 107 (1999).
[21] V. Husain, Phys. Rev. D 53, R1759 (1996).
[22] P. S. Joshi, Global Aspects in Gravitation and Cosmology

(Clarendon Press, Oxford, 1993).
[23] H. Dwivedi and P. S. Joshi, Classical Quantum Gravity 6,

1599 (1989).
[24] F. G. Tricomi, Differential Equations (Blackie & Son Ltd.,

London, 1961).
[25] L. Perko, Differential Equations and Dynamical Systems

(Springer-Verlag, Berlin, 1991).
[26] See for example http://users.ices.utexas.edu/alen/articles/

and the references therein.

MKENYELEYE, GOSWAMI, AND MAHARAJ PHYSICAL REVIEW D 92, 024041 (2015)

024041-8

http://dx.doi.org/10.1103/PhysRevLett.68.1447
http://dx.doi.org/10.1088/0264-9381/32/13/135021
http://dx.doi.org/10.1088/0264-9381/32/13/135021
http://dx.doi.org/10.1103/PhysRevD.69.104002
http://dx.doi.org/10.1103/PhysRevD.69.104002
http://dx.doi.org/10.1103/PhysRevD.69.044002
http://dx.doi.org/10.1103/PhysRevD.19.2239
http://dx.doi.org/10.1007/BF01223743
http://dx.doi.org/10.1088/0264-9381/3/4/007
http://dx.doi.org/10.1088/0264-9381/3/4/007
http://dx.doi.org/10.1007/s10714-007-0511-6
http://dx.doi.org/10.1007/s10714-007-0511-6
http://dx.doi.org/10.1007/s10509-007-9485-9
http://dx.doi.org/10.1007/s10509-007-9485-9
http://dx.doi.org/10.1142/S0217751X05021038
http://dx.doi.org/10.1142/S0217751X05021038
http://dx.doi.org/10.1103/PhysRevD.62.107502
http://dx.doi.org/10.1103/PhysRevD.62.107502
http://dx.doi.org/10.1103/PhysRevD.64.047501
http://dx.doi.org/10.1103/PhysRevD.64.047501
http://dx.doi.org/10.1007/BF02706148
http://dx.doi.org/10.1142/S0218271803003220
http://dx.doi.org/10.1142/S0218271803003220
http://dx.doi.org/10.1103/PhysRevD.90.064034
http://dx.doi.org/10.1103/PhysRevD.43.1798
http://dx.doi.org/10.1023/A:1018819521971
http://dx.doi.org/10.1103/PhysRevD.53.R1759
http://dx.doi.org/10.1088/0264-9381/6/11/013
http://dx.doi.org/10.1088/0264-9381/6/11/013
http://users.ices.utexas.edu/alen/articles/
http://users.ices.utexas.edu/alen/articles/
http://users.ices.utexas.edu/alen/articles/
http://users.ices.utexas.edu/alen/articles/

