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We consider here a full study of stellar dynamics from the brane-world point of view in the case of
constant density and of a polytropic fluid. We start our study cataloguing the minimal requirements to
obtain a compact object with a Schwarzschild exterior, highlighting the low and high energy limit, the
boundary conditions, and the appropriate behavior of Weyl contributions inside and outside of the star.
Under the previous requirements we show an extensive study of stellar behavior, starting with stars of
constant density and its extended cases with the presence of nonlocal contributions. Finally, we focus our
attention to more realistic stars with a polytropic equation of state, especially in the case of white dwarfs,
and study their static configurations numerically. One of the main results is that the inclusion of the Weyl
functions from brane-world models allows the existence of more compact configurations than within
general relativity.
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I. INTRODUCTION

Stellar astrophysics is one of the most characteristic
topics studied by general relativity (GR), which has helped
to describe the dynamic and evolution of stars with unprec-
edented success [1]. In addition, the matter inside a star may
be in some cases in extreme conditions generating compli-
cated high energy phenomena, principally in white dwarfs,
neutron stars, and others, and then a complete description of
the stellar properties requires the introduction of a particular
equation of state (EOS) like in the case of polytropes [2], or
even Bose-Einstein condensates [3].
Another interesting possibility in recent times is to

consider alternative theories of gravity and to look
for their particular signatures in stellar models, especially
for some of the extreme situations mentioned above. For
instance, the authors in [4] considered the corrections
induced by a Galileon Lagrangian in stars of constant
density. Another example is given by the so-called models
of brane worlds (see [5,6] for a good review) whose main
characteristic is the existence of branes (four-dimensional
manifolds) embedded in a five-dimensional bulk, the
known Randall-Sundrum (RS) models [7]. This particular
geometry allows a natural extension of Einstein’s equations
[8], and introduces new degrees of freedom through

quadratic terms of the energy-momentum tensor, the non-
local Weyl terms, and other fields that could live in the
bulk. This framework has been used for stars with a
constant density in [9], and also for polytropic matter with
a given relationship between the quantities arising from
the nonlocal Weyl terms in [10]. It has also been shown
that the exterior solution of these brane stars is not the
Schwarzschild one [9,11], and then the Weyl fluids in the
exterior of the stars can have a non-negligible influence in
the internal pressure and compactness of stellar objects.
More recently, the conditions for stellar stability in brane
stars were revisited in [12] for a set of hypotheses called the
minimal setup, which are consistent with a Schwarzschild
exterior. Also, see [13] for a study on the gravitational
collapse of brane stars.
We would like to mention here some experimental

constraints on brane-world models, most of them about
the so-called brane tension λ, which appears explicitly as a
free parameter in the corrections of the gravitational
equations mentioned above. As a first example we have
the measurements on the deviations from Newton’s law of
the gravitational interaction at small distances. It is reported
that no deviation is observed for distances l≳ 0.1 mm,
which then implies a lower limit on the brane tension in the
model Randall-Sundrum II: λ > 1 TeV4 [14]; it is impor-
tant to mention that these limits do not apply to the two-
branes case of the model Randall-Sundrum I (see [6] for
details). Astrophysical studies related with gravitational
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waves and stellar stability constrain the brane tension as
λ > 5 × 108 MeV4 [9,15], whereas the existence of black
hole x-ray binaries suggest that l≲ 10−2 mm [6,16].
Finally, from cosmological observations, the requirement
of successful nucleosynthesis provides the lower limit
λ > 1 MeV4, which is a much weaker limit as compared
to other experiments (other cosmological tests can be seen
in [17]).
With the previous background, this paper is dedicated to

the study of the stellar equations of motion that arise from
the formalism of brane-world theory, and the role of the
Weyl functions in the regular behavior of a stellar distri-
bution. It is important to remark that our main objective
is to consider models of stars as realistic as possible, and
for this reason we will follow conventional wisdom in this
regard: a Schwarzschild exterior, and regularity of all
functions involved. Based on these premises, we perform
numerical studies of the so-called extended Germani-
Maartens (GM) solution with constant density, and of a
polytropic fluid.
The organization of the paper is as follows. In Sec. II, we

describe the equations of stellar dynamics with branes,
emphasizing the high and low energy limits, boundary
conditions, and the role played by the Weyl functions in
providing consistent and regular solutions. Subsequently, in
Sec. III, we study the case of constant density and the
extended GM solution. Also, in Sec. IV we study poly-
tropic brane stars. Finally, in Sec. V we give some
conclusions and remarks.

II. STELLAR DYNAMICS WITH BRANES

Let us start by writing the equations of motion for an
embedded brane in a five-dimensional bulk using the RS II
model [7]. We first assume that the Einstein equations
are the gravitational equations of motion of the five-
dimensional universe,

GAB þ Λð5ÞgAB ¼ κ2ð5ÞTAB: ð1Þ

Following an appropriate computation, the modified four-
dimensional Einstein’s equation can be written as [6,8]

Gμν þ ξμν þ Λð4Þgμν ¼ κ2ð4ÞTμν þ κ4ð5ÞΠμν þ κ2ð5ÞFμν; ð2Þ

where κð4Þ and κð5Þ are, respectively, the four- and five-
dimensional coupling constants, which are related to each
other in the form: κ2ð4Þ ¼ 8πGN ¼ κ4ð5Þλ=6, λ is defined as

the brane tension, and GN is Newton’s constant. For
purposes of simplicity, we will not consider bulk matter,
which translates into Fμν ¼ 0, and discard the presence of
the four-dimensional cosmological constant, Λð4Þ ¼ 0, as
we do not expect it to have any important effect at
astrophysical scales (for a recent discussion about it see
[18]). Additionally, we will neglect any nonlocal energy

flux, which is allowed by the static spherically symmetric
solutions we will study below [6].
In the case of a perfect fluid, the energy-momentum Tμν

tensor, the quadratic energy-momentum tensor Πμν, and the
Weyl ξμν can be written as

Tμν ¼ ρuμuν þ phμν; ð3aÞ

Πμν ¼
1

12
ρ½ρuμuν þ ðρþ 2pÞhμν�; ð3bÞ

ξμν ¼ −
6

κ2ð4Þλ

�
Uuμuν þ Prμrν þ

U − P
3

hμν

�
; ð3cÞ

where p ¼ pðrÞ and ρ ¼ ρðrÞ are, respectively, the pres-
sure and density of the stellar matter of interest, U is the
nonlocal energy density,P is the nonlocal anisotropic stress
scalar, uα is the fluid four-velocity, which also satisfies the
condition gμνuμuν ¼ −1, and hμν ¼ gμν þ uμuν is orthogo-
nal to uμ. Under the assumption of spherical symmetry, the
metric can be written as

ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð4Þ

The equations of motion for stellar structure then are [9,12]

M0 ¼ 4πr2ρeff ; ð5aÞ

p0 ¼ −
1

2

B0

B
ðpþ ρÞ; ð5bÞ

V 0 þ 3N 0 ¼ −
B0

B
ð2V þ 3N Þ − 9

r
N − 3ðρþ pÞρ0; ð5cÞ

B0

B
¼ 2GN

r2

�
4πr3peff þM
1 − 2GNM=r

�
; ð5dÞ

where a prime indicates derivative with respect to r.
We have also defined V ¼ 6U=κ4ð4Þ, N ¼ 4P=κ4ð4Þ, and

AðrÞ ¼ ½1 − 2GNMðrÞ=r�−1, whereas peff and ρeff are
explicitly given by

peff ¼ p

�
1þ ρ

λ

�
þ ρ2

2λ
þ V
3λ

þN
λ
; ð6aÞ

ρeff ¼ ρ

�
1þ ρ

2λ

�
þ V

λ
: ð6bÞ

Now, we are in position to analyze the following important
points.

A. Numerical analysis

In order to have a numerical solution of the equations of
motion, we choose the following dimensionless variables:

x¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNM=R

p
ðr=RÞ; ρ̄¼ρ=hρeffi; p̄¼p=hρeffi; ð7aÞ
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λ̄¼ λ=hρeffi; V̄¼V=hρeffi2; N̄ ¼N =hρeffi2; ð7bÞ

for which Eq. (5) reads

M̄0 ¼ x2ρ̄eff ; ð8aÞ

p̄0 ¼ −
3

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

�
ðp̄þ ρ̄Þ; ð8bÞ

V̄ 0 þ 3N̄ 0 ¼ −
6

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

�
ð2V̄ þ 3N̄ Þ

−
9

x
N̄ − 3ðρ̄þ p̄Þρ̄0; ð8cÞ

where now a prime denotes derivatives with respect
to x, the mean effective density is just given by
hρeffi ¼ 3M=4πR3, and also

ρ̄eff ¼ ρ̄

�
1þ ρ̄

2λ̄

�
þ V̄

λ̄
; ð9aÞ

p̄eff ¼ p̄

�
1þ ρ̄

λ̄

�
þ ρ̄2

2λ̄
þ V̄
3λ̄

þ N̄
λ̄
: ð9bÞ

Note that the ratio ρ=λ is invariant under the change of
variables, ρ̄=λ̄ ¼ ρ=λ, and then we will omit the bar
whenever the ratio appears in the equations of motion.

B. High and low energy limits

There are two very clear limiting expressions of the
equations of motion in terms of normalized brane ratio λ̄, as
the latter represents the energy ratio of the brane tension
with respect to the mean energy density of the compact star
of interest; see Eq. (7b). It is usually assumed that the brane
corrections are measured in terms of the absolute value of
the brane tension λ, but in our study we find the brane ratio
λ̄ ¼ λ=hρeffi to have a more meaningful character for
compact objects in general.
Under this line of reasoning, we first present the low

energy limit of the equations of motion, represented by the
operation λ̄ → ∞, under which Eqs. (8a)–(8c) become the
usual Tolman-Oppenheimer-Volkoff (TOV) equations of
GR [1,2]:

M̄0 ¼ x2ρ̄; ð10aÞ

p̄0 ¼ −
3

x2

�
x3p̄þ M̄

1 − 6M̄=x

�
ðp̄þ ρ̄Þ; ð10bÞ

where the effective pressure and density are directly
represented by their normalized physical values.We have
called it the low energy limit because we are assuming that
the mean density of the star is much lower than the brane

tension λ, so that any brane corrections in the equations of
motion are highly suppressed by the brane energy scale. We
cannot say here whether the brane tension is at a very high
energy scale, or if it is just that the star density is not high
enough. In the strict sense, Eq. (8c) can still be considered
for the integration of the Weyl functions, but their values
will not make any difference in the final integration of the
physical variables.
There is also the high energy limit of the equations of

motion represented by λ̄ → 0, for which the effective
density and pressure read

ρ̄eff ≃ ρ̄2

2λ̄
þ V̄

λ̄
; ð11aÞ

p̄eff ≃ ρ

2λ
ð2p̄þ ρ̄Þ þ V̄

3λ̄
þ N̄

λ̄
: ð11bÞ

We can see that there is an overall factor of λ̄ in the above
expressions (11), which will also appear as such in Eq. (8) in
the high energy limit. The brane ratio can then be absorbed
in the equations ofmotion bymeans of the following change
of variables: M̄ → M̄λ̄1=2, and x → xλ̄1=2, and then we
finally find the equations ofmotion for the high energy limit:

M̄0 ¼ x2

2
ðρ̄2 þ 2V̄Þ; ð12aÞ

p̄0 ¼ −
3

x2

�
x3ðp̄ ρ̄þρ̄2=2þ V̄=3þ N̄ Þ þ M̄

1 − 6M̄=x

�
ðp̄þ ρ̄Þ;

ð12bÞ

V̄ 0 þ 3N̄ 0 ¼ −
6

x2

�
x3ðp̄ ρ̄þρ̄2=2þ V̄=3þ N̄ Þ þ M̄

1 − 6M̄=x

�

× ð2V̄ þ 3N̄ Þ − 9

x
N̄ − 3ðρ̄þ p̄Þρ̄0: ð12cÞ

In contrast to the TOVequations of GR in (10), we shall call
this case the high energy limit because the mean density is
much larger than the brane tension, even if we cannot say
whether this is because the brane tension attains a very small
energy value, or it is just that the star has such a large density
that the latter surpasses the energy scale of the brane tension.

C. Boundary conditions

The change of variables (7) is very appropriate to
explore the solutions of the TOV equations (8), as all
physical quantities involved are normalized in terms of
two important observables in stellar astrophysics, which
are the mass M and the radius R of the star. Furthermore,
these two parameters appear in the single combination
GNM=R that represents the compactness of the star. For
instance, the interior range of the new radial variable is
x ¼ ½0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GNM=R
p �, which means that the surface of the
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star is located at xðRÞ≡ X ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNM=R

p
. Also, the new

mass function changes to

M̄ðxÞ ¼ 1

3

�
GNM
R

�
3=2MðrÞ

M
; ð13Þ

and then the total mass is M̄ðXÞ ¼ ð1=3ÞðGNM=RÞ3=2. In
other words, the compactness of the star will determine the
mass and size of the numerical solutions.
The equations of motion will be integrated from the

center up to the surface of the star defined by the condition
pðXÞ ¼ 0; the latter only refers to the physical pressure,
and we will take it as a reasonable physical assumption
even though it is not necessarily required in the case of
brane stars. Finally, at the center of the star we will also
assume that M̄ → 0 as x → 0, so that there is not a
discontinuity of the different quantities in the center of
the star, and the central value of the pressure (or any other
related quantity) will be set as a free parameter that will
characterize the numerical solutions.
Even though we will not consider exterior solutions, we

must anyway take into account the information provided by
the Israel-Darmois (ID) matching condition, which for the
case under study can be written as [9]

ð3=2Þρ̄2ðXÞ þ V̄−ðXÞ þ 3N̄ −ðXÞ ¼ V̄þðXÞ þ 3N̄ þðXÞ;
ð14Þ

where the superscript −ðþÞ denotes the interior (exterior)
values of the different quantities at the surface of the star,
and we also assumed that ρ̄ðx > XÞ ¼ 0.
A desirable property we want in our solutions is a

Schwarzschild exterior, which can be easily accomplished
under the boundary conditions V̄þðXÞ ¼ 0 ¼ N̄ þðXÞ, as
for them the simplest solution that arises from Eq. (8c) is
the trivial one: V̄ðx ≥ XÞ ¼ 0 ¼ N̄ ðx ≥ XÞ. Thus, for the
purposes of this paper, we will refer hereafter to the
restricted ID matching condition given by

ð3=2Þρ̄2ðXÞ þ V̄−ðXÞ þ 3N̄ −ðXÞ ¼ 0: ð15Þ

For completeness, we just note that the exterior solutions
of the metric functions are given by the well-known
expressions BðrÞ ¼ A−1ðrÞ ¼ 1 − 2GNM=r. In addition,
it can be shown from Eq. (5d) that the interior solution
of the lapse function, in terms of the normalized variables
(7), is given by

BðxÞ
1 − 2GNM=R

¼ exp

�
−
Z

X

x
dx

6

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

��
;

ð16Þ

and then we will not solve it explicitly in any of the cases
presented below.

The numerical recipe described above will be applied to
different cases and configurations in Secs. III and IV. The
results that will be obtained will have a universal character,
as they will not depend upon the particular values of the
mass and radius of a given star, but they will represent
general classes of stars according to their common com-
pactness GNM=R. This will allow us to reach wide general
conclusions about the physical properties of the different
configurations by means of numerical methods.

D. Weyl functions

It must be noticed that the interior solutions cannot
evade the presence of the Weyl terms even if the exterior
solution is Schwarzschild. For example, let us put by
hand that N̄ ðxÞ ≡ 0. If the density is constant
ρ̄ðXÞ ≠ 0, the ID matching condition (15) implies that
V̄−ðXÞ¼−ð3=2Þρ̄2ðXÞ, and then the full solution must
be [9]

Vðx < XÞ ¼ −ð3=2Þρ2ð1þ p=ρÞ4: ð17Þ

The full consequences of this nonlocal energy density V are
explored in Sec. III B below.
Even the condition of a Schwarzschild exterior together

with ρ̄ðXÞ ¼ 0 does not directly imply that the Weyl
functions must vanish in the interior, as it can be shown
[12] that in such a case Eq. (8c) must have the following
solution:

Vðx < XÞ ¼ 3

B2ðxÞ
Z

X

x
B2ðρ̄þ p̄Þρ̄0dx; ð18Þ

which accomplishes the boundary condition V−ðXÞ ¼ 0
and is also regular at x ¼ 0. This is particularly important
for all cases in which the density is not constant, as we shall
see below for the polytropes in Sec. IV.
In the opposite case when V̄ðxÞ≡ 0 and the density is

constant, the ID matching condition (15) implies that at the
surface of the star, N̄ −ðXÞ ¼ −ð1=2Þρ̄2ðXÞ, and then
Eq. (8c) integrates into

N ðx < XÞ ¼ −
1

2

�
X
x

�
3

ðpþ ρÞ2: ð19Þ

Needless to say, this solution diverges at the center of the
star and cannot be considered as a useful interior solution.
That is, in the case of constant density there is not a regular
interior solution with the only presence of the nonlocal
anisotropic stress N .
There is though a nondivergent interior solution of N if

we drop the condition of constant density, which is

N ðx < XÞ ¼ 1

BðxÞx3
Z

x

0

Bx3ðρ̄þ p̄Þρ̄0dx: ð20Þ
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But the ID matching condition (15) now indicates that at
the surface of the star we must have ρ̄ðXÞ ≠ 0, or either give
up the Schwarzschild exterior. In consequence, the only
interior solution of the nonlocal anisotropic stress under the
conditions of a Schwarzschild exterior, and nonconstant
density with ρ̄ðXÞ ¼ 0, which are the conditions we expect
to have in realistic stars, is the trivial one: N ðxÞ≡ 0 (see
also [12]).
There are other possibilities that have been explored in

the specialized literature, like for instance a relationship
between the Weyl functions in the form N ¼ σV, where σ
is a constant parameter [10]. Clearly, the solutions (17) and
(18) are special cases for which σ ¼ 0. In the general case,
Eq. (8c) can be written as

ð1þ3σÞV̄ 0 ¼−
B0

B
ð2þ3σÞV̄−

9

x
σV̄−3ðρ̄þ p̄Þρ̄0; ð21Þ

as long as σ ≠ −1=3. If the density is constant, then there is
a solution which is similar to Eq. (19):

V̄ ¼ C½ðpþ ρÞ2ð2þ3σÞx−9σ�1=ð1þ3σÞ; ð22Þ
where C is an integration constant that could be determined
with the help of the ID matching condition (15). However,
this solution is not appropriate for the interior of the star
because, as it happened too for Eq. (19), it diverges in the
center of the star (x ¼ 0).
We can also consider the case of nonconstant density, in

which case we find a similar solution to Eq. (20):

N ðx<XÞ¼ ½BðxÞ−2ð2þ3σÞx−9σ�1=ð1þ3σÞ

×
Z

x

0

½B2ð2þ3σÞx9σ�1=ð1þ3σÞðρ̄þ p̄Þρ̄0dx: ð23Þ

Even though this solution is well behaved in the interior of
the star, it needs a nontrivial boundary condition at the
surface as dictated by the ID matching condition (15), and
for that we require either to have ρ̄ðXÞ ≠ 0, or to give up the
Schwarzschild exterior.
We see that the imposition of a Schwarzschild exterior

has strong consequences for the interior solutions of the
Weyl functions, mostly because it is difficult in general to
find for them a well-behaved interior solution. The most
problematic case is that of the anisotropic stress function
N , and for this reason we will not take it into account as
part of the brane gravitational corrections, but assume that
the latter are only given by the quadratic corrections of the
density ρ̄2 and the nonlocal energy density V.

III. THE CASE OF CONSTANT DENSITY

One of the simplest possibilities of star models is that of
constant density ρ, which can be solved under different
gravitational schemes. In this section we will work out such
a case within the brane-world scheme and explain the

additional physical and boundary conditions that may be
needed in order to reach well-posed numerical solutions.

A. The case of the Germani-Maartens solution
of brane stars

To start with we consider here the GM interior solution,
which was thoroughly studied in [9], and that does not
take into account corrections induced by the Weyl terms:
V̄ ¼ 0 ¼ N̄ . The modified TOV equations are given again
by Eqs. (5a) and (5b) with the following identifications:
ρeff ¼ ρð1þ ρ=2λÞ, and peff ¼ pð1þ ρ=λÞ þ ρ2=2λ.
Because the density is constant, we find, in terms of the

variables in (7), that hρeffi¼ρð1þρ=2λÞ and then ρ̄eff ¼ 1.
Likewise, we find that ρ̄ ¼ ð1þ ρ=2λÞ−1, and then its value
is directly determined by the ratio ρ=λ. Notice that ρ̄ ≤ 1,
and that we recover ρ̄ ¼ 1 in the GR limit ρ=λ → 0.
The boundary conditions depend upon the compactness
of the star GNM=R, as in the case of GR, but also upon the
ratio ρ=λ, as expected in brane models. The exact solution
of the pressure function is [9]

p̄
ρ̄
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6M̄=X

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6M̄x2=X3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6M̄x2=X3

p
− 3ζ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6M̄=X

p ; ð24Þ

where ζ ≡ ð1þ 2ρ=λÞ=ð1þ ρ=λÞ. The brane ratio ρ=λ
lowers the maximum value of the compactness of the
star, and the numerical solutions satisfies the analytic
bound found from the exact GM solution: GNM=R ¼
ð1=2Þð1 − ζ2=9Þ. The GR limit is obtained when ρ=λ → 0:
GNM=R ≤ 4=9, whereas in the opposite direction ρ=λ →
∞ we obtain GNM=R ≤ 5=18.
According to the discussion in Sec. II D, the GM

solution cannot be matched to a Schwarzschild exterior,
and for that reason it is usually assumed that other exterior
solutions with the presence of the Weyl function must be
the correct ones for brane stars. However, it has been
recently shown [12], under very general conditions, that
the GM solution plays also the role of being the limiting
case of realistic stars when brane corrections are consid-
ered, and then gives an upper bound in the compactness of
stars with both brane corrections and a Schwarzschild
exterior.

B. The extended GM solution

We will now review the interior brane solution with
constant density, a Schwarzschild exterior, and a non-null
Weyl term V. This cases was also briefly considered in [9],
but lacks an analytical solution. The equations of motion
are again (8) with the following expressions for the
effective density and pressure:

ρ̄eff ¼ ρ̄

�
1þ ρ

2λ

�
−
3

2
ρ̄
ρ

λ
ð1þ p̄=ρ̄Þ4; ð25aÞ
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p̄eff ¼ p̄

�
1þ ρ

λ

�
þ ρ̄

2

ρ

λ
−
ρ̄

2

ρ

λ
ð1þ p̄=ρ̄Þ4: ð25bÞ

Here we have taken into account that the nonlocal energy
density is given by Eq. (17). As it can be seen in Eq. (25),
there are negative contributions in both the effective density
and pressure that originated from the presence of the Weyl
nonlocal energy, and the solutions now depend upon three
separate parameters: the constant density ρ, the brane ratio
ρ=λ, and the compactness of the star GNM=R.
As we expect to have pðxÞ > 0, then the effective density

must be an increasing function, ρeffðxÞ ≤ ρeffðXÞ, which
may even attain negative values at the interior points where
the pressure is largest. Moreover, we also infer from this
information that hρeffi < ρeffðXÞ ¼ ρð1 − ρ=2λÞ, and then
we expect that, in general, ρ̄ > ð1 − ρ=2λÞ−1. In contrast to
the GM case above, ρ̄ cannot be given a fixed value
beforehand and becomes a variable that must be adjusted
appropriately so that the numerical solutions accomplish all
boundary conditions. This time, however, the GR limit ρ̄ ¼
1 is a lower bound as ρ=λ → 0, which is an early indication
that the known GR upper bound on the star compactness
could, in principle, be surpassed by the new solutions.
The equations of motion are more easily solved if we

take the following change of variables:

x → xρ̄−1=2; M̄ → M̄ρ̄−1=2; w≡ p=ρ; ð26Þ

where w is the EOS, and then the Eq. (8) becomes

M̄0 ¼ x2
�
1þ ρ

2λ
−
3

2

ρ

λ
ð1þ wÞ4

�
; ð27aÞ

w0 ¼ −
3

x2

�
x3weff þ M̄

1 − 6M̄=x

�
ð1þ wÞ;

weff ¼
p̄eff

ρ̄
¼ w

�
1þ ρ

λ

�
þ ρ

2λ
½1 − ð1þ wÞ4�: ð27bÞ

The only free parameter that appears explicitly in
Eq. (27) is the brane ratio ρ=λ. Moreover, the outer
boundary conditions, see for instance Eq. (13), must be
adjusted to the values X ¼ ðGNM=RÞ1=2ρ̄1=2 and M̄ðXÞ ¼
ðGNM=RÞ3=2ρ̄1=2=3.
Examples of the numerical solutions allowed by Eq. (27)

are shown in Fig. 1 for the brane ratios ρ=λ ¼ 10−1; 10−6,
where it is confirmed that there are numerical solutions well
beyond the GR limit of GNM=R ≤ 4=9. We only consid-
ered cases in which the star has an overall positive mass, for
which it must also have a positive density at its surface. The
latter can be translated into the condition ρ̄effðXÞ > 0, and
then from Eq. (25a) we find the constraint ρ=λ < 1.
There are two main reasons for the surpass of the GR

limit. The first one is that the extra free parameter ρ̄ is only
bounded from below, and then it is at our disposal to find

numerical solutions that can surpass the GR limit for any
given value of the brane ratio ρ=λ. Correspondingly, the
second reason is that the effective density ρ̄eff is an
increasing function that can become as negative as neces-
sary in the interior of the star. Actually, as far as the
numerical experiments are concerned, the only true limit
that could be found for the numerical solutions is the
Schwarzschild one, GNM=R < 1=2.

IV. POLYTROPIC BRANE STARS

In this section we study brane stars with a polytropic
fluid and an EOS in the form pðrÞ ¼ KργðrÞ. Here,K is the
polytropic constant, and γ is the polytropic exponent, which
can be written in terms of the polytropic index n as
γ ≡ ðnþ 1Þ=n. For example, white dwarfs can be modeled
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FIG. 1 (color online). The profile of the integrated mass MðxÞ
corresponding to the extended GM solution with ratios ρ=λ ¼
10−1 (top) and ρ=λ ¼ 10−6 (bottom). We can see that the
extended GM solution allows the existence of stars with a
compactness beyond the GR limit but below the extreme
Schwarzschild limit GNM=R < 1=2. Notice that one reason
for that is that the mass function can acquire negative values
in the interior of the star for the most compact cases. See the text
for more details.
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by the polytropic index n ¼ 3, and neutron stars by
polytropes with an index in the range n ¼ 0.5–1 [19].
The equations of motion (8) can be simplified if we

follow the usual recipe for polytropes and make the
following change of variable for the density: ρ̄ ¼ θn, where
n is the polytropic index defined above. For the reasons
explained in Sec. II D, we set N̄ ¼ 0. Equation (8) is then
written in the form

M̄0 ¼ x2
�
θn
�
1þ θn

2λ̄

�
þ V̄

λ̄

�
; ð28aÞ

θ0 ¼ −
3

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

� ð1þ K̄θÞ
K̄ðnþ 1Þ ; ð28bÞ

V̄ 0 ¼ −
12

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

�
V̄

þ 9

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

�
nð1þ K̄θÞ2
K̄ðnþ 1Þ θ2n−1; ð28cÞ

where K̄ ¼ Khρeffi4=n and the effective pressure (9b) now
reads

p̄eff ¼ K̄θnþ1

�
1þ θn

λ̄

�
þ θ2n

2λ̄
þ V̄
3λ̄

: ð29Þ

It must be stressed that in our case the density parameter θ
gives an indication of the values of the density ρ with
respect to the mean value of the effective density hρeffi,
given by the dimensionless density ρ̄, in contrast to the
standard case in which the value of reference is the density
at the center of the star ρð0Þ.
It can also be shown that, again like in the standard case

of polytropes, the polytropic coefficient K̄ is a redundant
constant and can be hidden in the equations of motion. If
we further consider the following change of variables:

x → xK̄n=2; θ → θK̄−1; M̄ → M̄K̄n=2; ð30aÞ

p̄eff → p̄effK−n; λ̄→ λ̄K̄−n; V̄→ V̄K̄−2n; ð30bÞ
then Eq. (28) simply reads

M̄0 ¼ x2
�
θn
�
1þ θn

2λ̄

�
þ V̄

λ̄

�
; ð31aÞ

θ0 ¼ −
3

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

� ð1þ θÞ
ðnþ 1Þ ; ð31bÞ

V̄ 0 ¼ −
12

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

�
V̄

þ 9

x2

�
x3p̄eff þ M̄

1 − 6M̄=x

�
nð1þ θÞ2
ðnþ 1Þ θ2n−1; ð31cÞ

where

p̄eff ¼ θnþ1

�
1þ θn

λ̄

�
þ θ2n

2λ̄
þ V̄
3λ̄

: ð32Þ

Our main interest is the numerical solutions of stars with
a finite size, as determined by the boundary condition
pðXÞ ¼ 0, which in the case of the polytropes translates
into ρðXÞ ¼ 0, and from this into θðXÞ ¼ 0. In order to
avoid any singularities in the equations of motion at the
surface of the star, in particular for Eq. (31c), we must
constrain the values of the polytropic index in the range
n ≥ 1=2. Needless to say, such a constraint does not exist
either in the case of nonrelativistic (Newtonian) or rela-
tivistic (GR) polytropes. It must be noticed as well that the
boundary conditions should also be adjusted so that X¼
ðGNM=RÞ1=2K̄−n=2 and M̄ðXÞ¼ð1=3ÞðGNM=RÞ3=2K̄−n=2.
We now include brane corrections with the contribution

of one of the Weyl terms, with the boundary condition
V̄ðXÞ ¼ 0, so that the ID matching condition (14) allows a
Schwarzschild exterior for the polytrope and dictates that
the interior solution for the nonlocal energy density is given
by Eq. (18). As discussed in Sec. II B, the brane terms must
contribute to the effective density and pressure inside the
star, which means that we cannot have, in this case, a
counterpart of the GM solution, unless the Schwarzschild
condition was waived.
As in the cases studied in Sec. III, we will integrate

inwards the equations of motion under the same boundary
conditions presented in Sec. II C, with the central value of
θð0Þ being a free parameter that will help us to classify the
numerical solutions. The most compact star will be given
by the maximum in the plot of the compactness as a

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

M

x

λ=102 GN M/R=0.170
GN M/R=0.180
GN M/R=0.190
GN M/R=0.200
GN M/R=0.210
GN M/R=0.220
GN M/R=0.230

FIG. 2 (color online). Numerical solutions of the interior profile
of the mass M of polytropic brane stars, see Eq. (31), with
λ̄ ¼ 102. We can observe for GNM=R ≥ 0.180 that the mass
becomes negative, like in the constant density case shown in
Fig. 1. This is due to the contribution of the Weyl function V̄; see
text for more details.
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function of the central density: GNM=R vs θð0Þ. The value
of the compactness will be read off from the outermost
points of the numerical solution as GNM=R ¼ 3M̄ðXÞ=X,
whereas the polytropic coefficient can be calculated
from K̄ ¼ ½3M̄ðXÞ=X�1=n.
This time we have to give explicit values to the brane

tension λ̄ and the polytropic index n. For the latter, we
consider in the following sections the case of white dwarfs
with n ¼ 3, whereas the brane tension will remain free to
label the different brane star solutions.

A. Numerical solutions

Solutions for the high energy limit with λ̄ ¼ 102 allowed
by Eq. (31) are shown in Figs. 2 and 3. In particular, the
interior mass profileMðxÞ is shown in Fig. 2 for a range of

compactness: GNM=R ¼ 0.170–0.230, in which the main
feature we can observe is a change in sign close to the
center of the star forGNM=R ≥ 0.180. This behavior is due
to the contribution of the Weyl function V̄ in Eq. (31a).
Note that the same behavior occurs in the constant density
case in Sec. III B, so this type of effect from the Weyl
function is present also in more realistic stars.
On the other hand, numerical solutions with λ̄ ¼ 102 in

Fig. 3 show that for low compactness the effective density
has the expected decreasing behavior as we move outwards
from the center of the star. However, as the compactness
increases the maximum value of the density is displaced
from the center, and then the density profile is not just a
decreasing function. Also note that the effective density at
the center becomes negative forGNM=R ≥ 0.175. It is clear
that the geometric term V̄ contributes notoriously for large
values of the compactness in the high energy limit.
Thus, at least for the range of compactness we numeri-

cally explored, the contribution of theWeyl tensor affects the
internal configurations of the stars in such away that there is
no maximum for the compactness that can be reached,
except for the Schwarzschild bound GNM=R < 0.5. This
can be seen in Fig. 4, where we show the compactness
GNM=R of the solutions as a function of the central value
θð0Þ as defined in Eq. (28). As expected, for the cases λ̄ ¼
106; 105 the curves reach a value of maximum compactness
just as in the case of polytropic stars in GR.
However, as the value of λ̄ decreases it is possible to see

two anomalous features of the curves. First, they do not
show a maximum of the compactness for λ̄ < 104, but
rather suggest the existence of stellar configurations with a
compactness beyond the standard GR bound. Second, it is
not possible to find solutions beyond certain values of θð0Þ,
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FIG. 3 (color online). (Top) The effective energy density ρ̄eff as
a function of the radial coordinate x, which results from the
numerical solution of Eq. (31) for low compactness and λ̄ ¼ 102.
It can be seen that, as the compactness increases, the maximum of
the effective density is displaced from the center of the star.
(Bottom) The interior profiles of the effective density ρ̄eff for high
compactness. The effect of the Weyl term V̄ is sufficiently large to
change the sign of the effective density at the center; actually,
ρ̄effðx ¼ 0Þ < 0 for GNM=R ≥ 0.175.

FIG. 4 (color online). The compactness GNM=R as a function
of the central value θð0Þ for the polytropic configurations
obtained from Eq. (31). It can be seen that the compactness of
the polytropic star with n ¼ 3 is not bounded as λ̄ → 0. For λ̄ ¼
106; 105 the curves coincide with that of polytropes in GR.
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which suggest that the central value of the effective density
ρeffð0Þ must decrease for large values of the compactness.
This is also shown, for example, in Fig. 3, where we can
observe that ρð0Þ is not always the maximum value of the
effective density inside the star. For such configurations,
the contribution of the Weyl term V to the effective density
becomes important for small values of the brane tension, in
a similar manner as for the extended GM case studied in
Sec. III B.
The curves in Fig. 4 represent families of equilibrium

configurations that share the same value of λ̄ ¼ λ=hρeffi,
and this suggests that we can use real dwarf stars as
gravitational laboratories to constrain the value of the brane
tension λ. We show in Table I the measured values of the
massM and radius R of several white dwarfs as reported in
the recent literature [20], which we use in order to calculate
their mean density hρi ¼ 3M=4πR3 in units of MeV4. We
must recall that one of our main assumptions is that the
mean density in our numerical solutions takes into account
the brane corrections; see Sec. II A. Thus, if we now
consider that the white dwarfs in Table I should belong to
any of the theoretical curves in Fig. 4 without an anomalous
behavior, we can conclude that λ̄ > 104. This can be
translated into the lower bound λ > 104 MeV4, which is
consistent with other constraints estimated from astrophys-
ics and cosmology [5,6].

V. CONCLUSIONS AND REMARKS

In this paper we studied the equilibrium configurations
of stars with gravitational corrections in brane-world
models, and provided numerical solutions when neces-
sary. For that we considered the high and low energy
limits of the equations of motion to show the threshold
between GR and brane worlds, and explored the appro-
priate boundary conditions to obtain general conclusions
about the physical properties of the different stellar
configurations.
Our analysis took into account the corresponding Weyl

functions which provide nonlocal terms in the pressure and

density, and which can have noticeable effects in diverse
features of a star. This study allows us to relinquish the
nonlocal anisotropic stress under the conditions of a
Schwarzschild exterior and nonconstant density, which
are conditions rightly expected for a real star.
As an initial test, we revisited the case of constant

density, corresponding to the GM solution, but later studied
the so-called extended GM solution, for which stars exist
with a compactness beyond the standard GR bound. This is
due mainly to the existence of the nonlocal terms which
provoke the appearance of negative values of the effective
density and mass in the interior of the star.
We then considered the case of a white dwarf star

modeled with a polytropic EOS and index n ¼ 3. In
similarity with the extended GM case, our results proved
the existence of dwarf stars with a compactness beyond the
GR limit, because of the presence of nonlocal terms. Also,
the compactness of dwarf stars is not bounded as the brane
tension tends to zero, which corresponds to the high energy
limit, while in the low energy limit we recovered the
classical compactness reported in the literature for the case
of GR. All these results are in agreement with the study in
[12], where it was shown that one of the main requirements
for the existence of an upper bound in the compactness of a
star is that the effective energy density in the interior should
be a decreasing function. Finally, under the assumption
that observed white dwarfs must belong to a family of
equilibrium configurations without an anomalous behavior,
we were able to suggest a lower bound for the brane tension
that is in agreement with other constraints reported
previously.
The results presented were based on a clear method-

ology that makes the equations of motion of brane worlds
more tractable in numerical terms that in other analyses in
the literature. As noted, the presence of brane corrections
modifies in a notorious way the compactness, mass, and
other physical characteristics in stellar dynamics, even
under the assumption of a Schwarzschild exterior.
Extended studies along the lines suggested in this paper
can be used to constrain the value of the brane tension
using observational data provided by stellar dynamics,
and with that to find evidence for the presence of extra
dimensions. As a final note, we cannot say if all the
configurations found would be gravitationally stable, but it
is very likely that those with a negative effective density in
the interior may not be able to prevent the collapse into
configurations well within the general bound found in [12].
This is work in progress that will be reported elsewhere.
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