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We discuss the boundary effect of anomaly-induced action in two-dimensional spacetime, which is
ignored in previous studies. Anomaly-induced action, which gives the stress tensor with the same trace as
the trace anomaly, can be represented in terms of local operators by introducing an auxiliary scalar field.
Although the degrees of freedom of the auxiliary field can in principle describe the quantum states of the
original field, the principal relation between them was unclear. We show here that, by considering the
boundary effect, the solutions of classical auxiliary fields are naturally related to the quantum states of
the original field. We demonstrate this conclusion via several examples such as the flat, black hole, and the
de Sitter spacetime.
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I. INTRODUCTION

In the absence of a well-developed theory of quantum
gravity, the semiclassical approach, that is quantum field
theory in (classical) curved spacetimes, has been applied
widely to study quantum corrections to general relativity
[1]. The semiclassical approach, where the quantum diver-
gences of fields are covariantly renormalized, gives the
(one-loop) effective action. The expectation value of the
stress tensor of quantum matter fields can be also derived
with this procedure. The result suggests that, even in
conformal field theories, a nonzero trace of stress tensor
arises by the renormalization. This nonzero trace of stress
tensor is called the trace (or conformal) anomaly [1–3].
In principle, we can obtain the expectation value of

the stress tensor of quantum matter fields in this semi-
classical approach (i.e., the quantum field theory in curved
spacetimes). Meanwhile, we have a practical problem;
the calculation is so complicated that there is no explicit
expression of the effective stress tensor in general back-
ground spacetimes. We need to derive the effective stress
tensor individually in each spacetime that we are interested
in. Because of the complicated calculations, we usually
rely on, for instance, numerical and/or approximation
approaches, even in simple common spacetimes such as
Schwarzschild spacetime [4]. One way to tackle this
problem is rebuilding the corresponding anomaly-induced
action [5–7]. Although the anomaly-induced action is not
always equal to the (one-loop) effective action from the
original semiclassical approach, it can be expected and has

been checked in some specific cases that in two-dimensional
spacetime the anomaly-induced action can exactly
describe the stress tensor of the quantum field in a vacuum
state [8]. In four-dimensional spacetime, the anomaly-
induced action could not correctly reproduce the original
semiclassical result, but we would still be able to get at
least some feeling. This approach has been applied widely
to study the quantum stress tensor in curved spacetimes
[9,10], black-hole physics [8–11], and cosmology [12,13].
The anomaly-induced action is naturally built in nonlocal
form, and can be localized by introducing an additional
auxiliary1 scalar field [14,15]. Different solutions of the
auxiliary scalar fields could describe the effects of different
quantum states of the original conformal matter field.
Although there are attempts to find the correspondence
between the quantum states of the original field and the
solutions of the auxiliary scalar field, so far we have not
known the general principle behind it.
In this paper, we take into consideration the boundary

effect in the discussion of anomaly-induced action, which
has been neglected in previous works [5–9,16]. This effect
can be important, for instance, if we consider a black hole
spacetime. We sometimes construct a quantum field theory
only in the outside of the horizon. Then, the horizon is the
boundary of the spacetime where the quantum field theory
is defined. Moreover, the boundary effect is important even
at spatial infinities. In the construction of quantum field
theories in a spacetime with spatial infinities, we first
construct the quantum field theory in a finite region, and
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1The word, “auxiliary,” often is used for fields without physical
dynamics. Meanwhile, the auxiliary field here obeys an equation
of motion, and thus contains a dynamical degree of freedom.
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then take the limit where the boundary goes to the spatial
infinity. In this procedure, the boundary action manifestly
affects the result.
After deriving the generic form of the anomaly-induced

action with the boundary effect in two-dimensional space-
time, we apply the result to simple cases; the flat spacetime,
two-dimensional Schwarzschild black hole (a black-hole-
like spacetimewhich is corresponding to the time and radial
parts of the four-dimensional Schwarzschild black hole)
and de Sitter spacetime. We find a natural relation between
the quantum states of the original field and the solutions of
the auxiliary scalar field, after taking the appropriate limit
of the boundaries. For instance, in the flat space, taking the
limit where the boundary tangent to Rindler time goes to
the Rindler horizon, we have the stress tensor of the Rindler
vacuum state. In the similar analysis with the two-
dimensional Schwarzschild metric, we can naturally obtain
the stress tensors of the Boulware, Hartle-Hawking, and
Unruh states. In de Sitter spacetime, the stress tensors of
the Bunch-Davies state and the vacuum stress tensor in the
static coordinate are straightforwardly derived.
The structure of this paper is organized as follows. In

Sec. II, we give a short review of the trace (conformal)
anomaly and the anomaly-induced action (Polyakov action)
in two-dimensional spacetime. In Sec. III, we introduce the
boundary term. The boundary terms give the boundary
conditions for the auxiliary scalar field, which constrain on
the solutions of the auxiliary scalar field. In Sec. IV, as
examples, we apply our result to several common space-
times. We see that the boundary conditions lead to the stress
tensor of the naturally corresponding state. Finally, we give
a summary and discussion in Sec. V.

II. REVIEW OF ANOMALY-INDUCED ACTION

On a curved spacetime, the conformal anomaly appears
through the renormalization of the stress tensor. The
expectation value of the stress tensor diverges even
for the linear field theory2 and the renormalization is
required. The counterterms represented by in geometric
forms are introduced for the renormalization and, in
even-dimensional spacetime, the anomalous contribution
appears in the gravitational equation. This contribution
violates the conformal symmetry even if the original action
for the fields possesses the symmetry, and thus it is called
the conformal (or trace) anomaly [1–3]. The action rebuilt

from this anomalous contribution is written by the nonlocal
and geometric functions. Meanwhile, by introducing scalar
fields, the classical action for the anomalous terms can be
expressed in a local form. The local form is useful for
applicative discussions, such as cosmology. In this section,
we briefly review the idea of the effective local action for
the trace anomaly [9,14].
We first consider a Lagrangian of a scalar field in

n-dimensional spacetime:

Lcl ¼ −
1

2
∇μϕ∇μϕ −

1

2
ðm2 þ ξRÞϕ2; ð1Þ

where m is the mass of the scalar field and ξ is a
dimensionless constant. The effective Lagrangian including
the one-loop contributions for this scalar field can be
derived as [1]

Leff ¼
i
2
lim
x→x0

Z
∞

m2

dm02GDS
F ðx; x0;m02Þ; ð2Þ

where GDS
F is the DeWitt-Schwinger representation of the

Feynman propagator GF. By the DeWitt-Schwinger expan-
sion, this effective Lagrangian can be expanded as

LeffðxÞ ≈
1

2ð4πÞn=2
X∞
j¼0

ajðxÞmn−2jΓ
�
j −

n
2

�
; ð3Þ

where aj’s are written in the geometric forms:

a0ðxÞ ¼ 1; ð4Þ

a1ðxÞ ¼
�
1

6
− ξ

�
R; ð5Þ

a2ðxÞ ¼
1

2

�
1

6
− ξ

�
2

R2 þ 1

180
ðRμναβRμναβ − RμνRμνÞ

−
1

6

�
1

5
− ξ

�
□R; …: ð6Þ

Thegamma functionΓðj − n=2Þ divergeswhen its argument
is naught or a negative integer, and thus we must introduce
counterterms to renormalize these divergent parts.
Since these divergences mostly stem from the curvature

effect of spacetime, we expect that the counterterms are
written with the geometric forms. Indeed, we can introduce
the corresponding counterterms to cancel all divergent parts
of the effective Lagrangian. The renormalized effective
Lagrangian is defined as

Lren ≔ Leff − Lct; ð7Þ

where Lct is the Lagrangian of the counterterms. The
renormalized stress tensor is derived to be

2This divergence appears even in the flat spacetime, which is
the vacuum energy. In a theory without gravity we can just ignore
it because it is coupled only with gravity. In a gravitational theory,
however, since it can be the source of gravity, we need to
renormalize it. Usually, we assume that the renormalized vacuum
energy is tiny, which might explain the acceleration of the
Universe. Nevertheless, there is no natural reason for its small-
ness, which is the well-known cosmological constant problem.
This issue is beyond the scope of this paper and we will not dwell
on it further.
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hTμνiren ≔
−2ffiffiffiffiffiffi−gp δSren

δgμν
¼ −2ffiffiffiffiffiffi−gp δ

R
dnx

ffiffiffiffiffiffi−gp
Lren

δgμν
: ð8Þ

In order to take advantage of conformal symmetry, here-
inafter we will consider a conformally coupled scalar field,

i.e., the case with ξðnÞ ≔ ðn−2Þ
4ðn−1Þ, and m ¼ 0. Due to the

conformal symmetry, the classical stress tensor is traceless.
In even-dimension, however, the renormalized stress tensor
for the conformal scalar field has a nonzero trace

gμνhTμνiren ¼ −
akðxÞ
ð4πÞk with k ¼ n

2
; k ∈ N; ð9Þ

originating from the counterterms. This term manifestly
violates the conformal symmetry, and thus it is called the
trace (or conformal) anomaly.
Hereinafter, we investigate the case in 2-dimensional

spacetime as the simplest example. We start with the
derivation of the nonlocal action for this anomalous con-
tribution. The Wess-Zumino (WZ) action is useful for this
derivation, which is defined as

ΓWZ½ḡ; σ� ≔ S½ḡ� − S½g�; ð10Þ
with

ḡμν ≔ expð−2σÞgμν: ð11Þ
Due to the conformal symmetry, before introducing counter-
terms, the action is conformally invariant, i.e., we have
Seff ½ḡ� ¼ Seff ½g�. This makes the relation of the renormalized
WZ action to that for the counterterms as

ΓWZ½ḡ; σ� ¼ Sren½ḡ� − Sren½g�
¼ ½Seff ½ḡ� − Seff ½g�� − ½Sct½ḡ� − Sct½g��
¼ 0 − ½Sct½ḡ� − Sct½g��: ð12Þ

From the WZ action we could read the form of the
renormalized action Sren. However, the renormalized action
derived from the WZ action has ambiguity; adding con-
formally invariant terms Sconf to the obtained action Sren, the
new action Sren þ Sconf still gives the same WZ action. This
ambiguity is supposed to be partially related to the degrees of
freedomof the quantum state.Meanwhile, all information of
the trace anomaly is definitely included in Sren, and thus the
renormalized action that we can read from the WZ action is
called the anomaly-induced action Sanom, i.e.,

ΓWZ½ḡ; σ� ¼ Sanom½ḡ� − Sanom½g�: ð13Þ

In the case of a conformally coupled scalar field in two-
dimensional spacetime, the divergent parts of the effective
Lagrangian (2) is written as

Sct ¼
−1
24π

lim
n→2

Z
d2x

ffiffiffiffiffiffi
−g

p R
ðn − 2Þ : ð14Þ

As mentioned above, the effective action is conformal
invariant. However, this counterterm designed in 2þ ε
dimension is not conformal invariant (even for n → 2).
Therefore after renormalization, the renormalized action is
no longer conformal invariant and results in a nonzero trace
of energy-momentum tensor [1]. Substituting this counter-
term into Eq. (12), we can derive the WZ action as

ΓWZ½ḡ;σ�¼
1

24π
lim
n→2

�R
d2x

ffiffiffiffiffiffi
−ḡ

p
R̄−
R
d2x

ffiffiffiffiffiffi−gp
R

n−2

�

¼−
1

24π

Z
d2x

ffiffiffiffiffiffi
−ḡ

p ½σR̄−σ□̄σ�

¼ 1

96π

Z
d2x
Z

d2x0
ffiffiffiffiffiffi
−ḡ

p ffiffiffiffiffiffiffi
−ḡ0

p
R̄ðxÞD̄2ðx;x0ÞR̄ðx0Þ

−
1

96π

Z
d2x
Z
d2x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p
RðxÞD2ðx;x0ÞRðx0Þ:

ð15Þ
From Eq. (13) and Eq. (15), we can find

Sanom½g� ¼
1

96π

Z
d2x
Z

d2x0
ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p
RðxÞD2ðx;x0ÞRðx0Þ;

ð16Þ
where D2 is the inverse operator of D’Alembert
operator, i.e.,

□D2ðx; x0Þ ¼ −
δðx − x0Þffiffiffiffiffiffi−gp : ð17Þ

In the last equality of Eq. (15), we have imposed the
symmetric condition of D2, i.e., D2ðx; x0Þ ¼ D2ðx0; xÞ, and
used the relation

2
ffiffiffiffiffiffi
−ḡ

p
□̄σ ¼ ffiffiffiffiffiffi

−ḡ
p

R̄ −
ffiffiffiffiffiffi
−g

p
R; ð18Þ

which is obtained from the conformal transformation (11).
This nonlocal anomaly-induced action can be localized

by introducing a real scalar field φ which is defined as

φðxÞ ≔
Z

d2x0D2ðx; x0ÞRðx0Þ: ð19Þ

Operating this by the D’Alembert operator, we can obtain3

□φ ¼ −R: ð20Þ

3Although the definition (19) seems equivalent to (20), for
derivation of Eq. (19) from Eq. (20) we need the double
integrations. Therefore Eq. (19) has information from Eq. (20)
and two integration constants, i.e., using a specific inverse
function D2 is indeed equivalent to choosing a specific particular
solution for Eq. (20) here. Meanwhile, in four-dimensional
spacetime, in order to derive the localized anomaly action, we
need to introduce two scalar fields [14,15]. They should share the
same Green function (inverse operator) analogous to D2. Thus,
the differential equations that two scalars should satisfy are no
longer independent.
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The degrees of freedom of the integration constants are
absorbed into those of the Green function D2ðx; x0Þ.
Equation (20) can be obtained from the following action

Sanom½g;φ� ¼
1

96π

Z
d2x

ffiffiffiffiffiffi
−g

p ½gμν∇μφ∇νφ − 2φR�: ð21Þ

We can check that this action is reduced to the anomaly
action (16) after substituting Eq. (19). This gives the same
dynamics as the nonlocal action (16). The corresponding
stress tensor can be obtained by the variation with respect to
the metric gμν, and its explicit form is

Tanom
μν ≔ −

2ffiffiffiffiffiffi−gp δSanom
δgμν

ð22Þ

¼ 1

24π

��
Rμν −

1

2
Rgμν

�
φ −∇μ∇νφþ gμν□φ

−
1

2
ð∇μφÞð∇νφÞ þ

1

4
gμνð∇αφÞð∇αφÞ

�
: ð23Þ

This trace is consistent with the well-known trace anomaly,

gμνTanom
μν ¼ 1

24π
□φ ¼ −

1

24π
R: ð24Þ

Therefore, it is concluded that scalar field action (21)
describes the anomalous contribution.

III. ANOMALY-INDUCED ACTION
WITH BOUNDARIES

In this section, we introduce the surface terms (i.e.,
the boundary effect), which was ignored in the previous
works [5–9,16]. The boundary effect is important not only
for bounded spacetimes but also for unbounded ones.
Considering a spacetime with a horizon, the surface term
fixes the boundary condition on the horizon. Meanwhile, at
the (spatial) infinity, the surface term constrains on the
asymptotic behavior.
We indeed need to take only timelike boundaries into

consideration. In the standard way to derive the classical
equation of motion, we take the variation of the action
while fixing the initial and final states. Even if the surface
terms on the spacelike boundaries (i.e., the initial and final
hypersurfaces) are introduced, the final form of the stress
tensor derived by the variation of the action is not affected.
We thus ignore the contribution of spacelike boundaries.

At first, let us consider the boundary part of action of the
conformally coupled scalar filed. Due to conformal sym-
metry, the action with boundary contribution should be
written as

Scl½g� ¼ −
1

2

Z
M

dnx
ffiffiffiffiffiffi
−g

p ½∇μϕ∇μϕþ ðm2 þ ξRÞϕ2�

−
Z
Σ
dn−1x

ffiffiffiffiffiffi
−γ

p
ξKϕ2; ð25Þ

From variation of this action, we can show the boundary
condition needed for ϕ is Neumann boundary condition,
i.e., nμ∇μϕ ¼ 0. The divergent part of the effective action
including the boundary contribution corresponding to
Neumann boundary condition is derived in [17,18].
Therefore in order to renormalize the divergent effective
action with boundary contribution via dimensional regu-
larization, in addition to Eq. (14) we should introduce
another boundary term. Then, the overall counterterm in
two dimensions has the following form

Sct½g� ≔
−1
24π

R
M d2x

ffiffiffiffiffiffi−gp
Rþ 2

R
Σ d

1x
ffiffiffiffiffiffi−γp

K

n − 2
; ð26Þ

where M is two-dimensional spacetime and Σ is the
timelike boundary. The boundary term in the numerator
is the Gibbons-Hawking term [19,20] and thus the numer-
ator overall is a conformal invariant term in two dimen-
sions. However, in a way similar to the previous case
without boundary, the counterterm introduced here is
defined in 2þ ε dimensions and is not conformal invariant.
For convenience in the later discussion, we introduce an

arbitrary scalar function fðxÞ which is unity on the
boundary and arbitrary elsewhere, i.e.,

fðxÞ ¼ 1; x ∈ Σ: ð27Þ

Using this scalar function, we rewrite the action of the
counterterms in

Sct½g� ¼
−1
24π

R
d2x

ffiffiffiffiffiffi−gp
Rþ 2

R
d1x

ffiffiffiffiffiffi−γp
fK

n − 2
: ð28Þ

As is the case in Eq. (12), the corresponding WZ action
is transformed into [21]

ΓWZ½ḡ; σ� ¼
1

24π
lim
n→2

�ðR d2x ffiffiffiffiffiffi
−ḡ

p
R̄þ 2

R
d1x

ffiffiffiffiffiffi
−γ̄

p
K̄Þ − ðR d2x ffiffiffiffiffiffi−gp

Rþ 2
R
d1x

ffiffiffiffiffiffi−γp
KÞ

n − 2

�

¼ −
1

24π

�Z
d2x

ffiffiffiffiffiffi
−ḡ

p ½σR̄ − σ□̄σ� þ
Z

d1xð ffiffiffiffiffiffi
−γ

p
σK þ ffiffiffiffiffiffi

−γ̄
p

σK̄Þ
�

¼ ∶Sanom½ḡ� − Sanom½g�: ð29Þ
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We have the relation analogous to Eq. (18)

2
ffiffiffiffiffiffi
−ḡ

p
L̄fσ ¼ ffiffiffiffiffiffi

−g
p ½Rþ 2∇μðnμfKÞ�
−

ffiffiffiffiffiffi
−ḡ

p ½R̄þ 2∇̄μðn̄μfK̄Þ�: ð30Þ

Here, nμ is the unit normal vector on boundary and does not
need to be fixed elsewhere. Lf is an operator defined as

Lf ≔ ð−□þ∇μfnμnν∇νÞ: ð31Þ

The operator Lf satisfies the following relation with
arbitrary functions h1 and h2Z

d2x
ffiffiffiffiffiffi
−g

p
h1ðxÞLfh2ðxÞ ¼

Z
d2x

ffiffiffiffiffiffi
−g

p
h2ðxÞLfh1ðxÞ;

ð32Þ

and thus Lf is a self-adjoint operator. Using the relation
(30), we can read the nonlocal anomalous action from
Eq. (29)

Sanom½g� ¼
1

96π

�Z
d2x

Z
d2x0

ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p
ðRðxÞ

þ 2∇μðnμfKÞÞDfðx; x0ÞðRðx0Þ

þ 2∇0μðn0μf0K0ÞÞ − 4

Z
d2x

ffiffiffiffiffiffi
−g

p
fK2

�
: ð33Þ

Here, Df is the symmetric inverse operator of Lf, which is
defined by

LfDfðx; x0Þ ¼ −
δðx − x0Þffiffiffiffiffiffi−gp ; Dfðx; x0Þ ¼ Dfðx0; xÞ:

ð34Þ

As the derivation of the local anomaly-induced action in
the previous section, we introduce a real scalar field φ. The
scalar field φ is defined by

φ ≔
Z

d2x0
ffiffiffiffiffiffi
−g

p
Dfðx; x0Þ½R0 þ 2∇0

μðn0μf0K0Þ�: ð35Þ

Operating Lf to this equation, we have

Lfφ ¼ Rþ 2∇μðnμfKÞ: ð36Þ

Considering the following action

Sanom½g� ¼
1

96π

�Z
d2x

ffiffiffiffiffiffi
−g

p ½φLfφ − 2φðRðxÞ

þ 2∇μðnμfKÞÞ� − 4

Z
d2x

ffiffiffiffiffiffi
−g

p
fK2

�
ð37Þ

¼ 1

96π

�Z
d2x

ffiffiffiffiffiffi
−g

p ð−φ□φ − 2φRÞ

þ
Z

d2x
ffiffiffiffiffiffi
−g

p
f½ðnμ∇μφÞð−nν∇νφþ 4KÞ − 4K2�

þ
Z

d1x
ffiffiffi
γ

p ðφnμ∇μφ − 4φKÞ
�
; ð38Þ

this action gives Eq. (36) and, substituting Eq. (36), this
action is reduced into the nonlocal action (33). Therefore,
this is the localized anomaly action that we want.
Now we choose the useful form of the scalar function f.

Because f is an arbitrary function except that it should be
unity on the boundary, we can consider the following f
function:

fδðλÞ ≔
8<
:

1
2

h
cos
	
λπ
δ



þ 1
i
; ð0 < λ ≤ δÞ

0; ðλ ≥ δÞ
ð39Þ

where λ is the affine parameter4 for the geodesic orthogonal
to the boundary, and δ is a positive constant. Taking the
limit δ → 0, the anomalous action (38) becomes

Sanom½g� →
δ→0 1

96π

�Z
d2x

ffiffiffiffiffiffi
−g

p ð−φ□φ − 2φRÞ

þ
Z

d1x
ffiffiffi
γ

p ðφnμ∇μφ − 4φKÞ
�
: ð40Þ

It turns out that we have exactly the same action as the
previous one (21) expect for the additional boundary terms.
The boundary terms have no contribution on the stress
tensor except on the boundary, and thus the obtained form
of the stress tensor in M is the same as that without the
boundary term. Meanwhile, the boundary terms affect the
boundary condition for the scalar field φ. Equation (36) can
be rewritten in

−□φþ ðnμ∇μfδÞðnν∇νφÞ þ fδ∇μnμðnν∇νφÞ
¼ Rþ 2ðnμ∇μfδÞK þ 2fδ∇μnμK: ð41Þ

Taking the limit δ → 0, we find the equations for φ

□φ ¼ −R; ð42Þ

with the boundary conditions5

nν∇νφ ¼ 2K; x ∈ Σ: ð43Þ

4We set the affine parameter λ to be zero on the boundary.
5These equations can be also obtained from the action (40)

directly. Note that because −nν∇νfδ becomes Dirac delta
function in the limit δ → 0, the terms proportion to it in the
left-hand side and right-hand side of Eq. (41) should be balanced.
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This means that there is the additional boundary constraint
on φ which was not taken into consideration in the
previous works.

IV. APPLICATION TO VARIOUS SPACETIMES

In this section, we apply our result to several common
spacetimes, which are the flat, two-dimensional
Schwarzschild, and de Sitter spacetimes. Since any two-
dimensional spacetime can be described by the conformally
flat metric, we analyze the general conformally flat space-
time at first. Then, we see the application to the concrete
spacetimes.

A. General analysis

Any metric of two-dimensional spacetime can be written
in the conformal flat form:

ds2 ¼ Fðt; rÞð−dt2 þ dr2Þ: ð44Þ

We consider the case in which the boundaries exist on r ¼
r1 and r ¼ r2 ¼ r1 þ Lð> r1Þ. The normal vector on the
boundary is written in

nμ ¼ ð 0; F−1
2 Þ: ð45Þ

The Ricci scalar and extrinsic curvature on the boundary
are, respectively,

R ¼ F−1ð−∂2
t lnF þ ∂2

r lnFÞ; ð46Þ

K ¼ 1

2
F−3

2∂rF: ð47Þ

With the metric (44), Eq. (42) can be rewritten as

F−1ð−∂2
tφþ ∂2

rφÞ ¼ F−1ð−∂2
t lnF þ ∂2

r lnFÞ: ð48Þ

A particular solution of this equation is lnFð≕ φpÞ, and
thus the general solution for φ is derived as

φ ¼ φp þ φh; ð49Þ

φh ≔ A1rþ A2tþ A3 þ A0rt

þ
Z

∞

−∞
dω½c�ðωÞeiωte�iωr� þ

Z
∞

−∞
dω½d�ðωÞeωte�ωr�;

ð50Þ

where φh is the homogeneous solution satisfying□φh ¼ 0.
A0, A1, A2, A3 are real constants, c�ðωÞ are constant
functions satisfy c�ðωÞ ¼ c��ð−ωÞ, and d�ðωÞ are real
functions.
The boundary equation (43) becomes

F−1
2∂rφ ¼ F−3

2∂rF: ð51Þ

With this boundary condition, the solution (49) is con-
strained as

φ ¼ φp þ φ0; ð52Þ

φ0 ≔ A2tþ A3 þ
X∞
n¼−∞

cn cosðωnrÞeiωnt; ð53Þ

where ωn ¼ πn
L , n ∈ N, cn are constants satisfy cn ¼ c�−n.

The stress tensor of the trace anomaly (23) can be
transformed as

Tanom
μν ½φ ¼ φp þ φ0; gμν� ¼ T

φp
μν þ Tφ0

μν; ð54Þ

T
φp
μν ≔

1

24π

�
gμν□φp þ

1

4
gμνð∇αφpÞð∇αφpÞ

−
1

2
ð∇μφpÞð∇νφpÞ −∇μ∇νφp

�
; ð55Þ

Tφ0
μν ≔

1

24π

�
1

4
gμνð∇αφ0Þð∇αφ0Þ

−
1

2
ð∇μφ0Þð∇νφ0Þ − ∂μ∂νφ0

�
: ð56Þ

Note that there is no coupling term between φp and φ0, i.e.,
Tμν can be separated into φp part and φ0 part. As we will
see later, φp part indeed describes the vacuum polarization,
while φ0 part seems related to the excitations. Since all φ’s
in the stress tensor have at least one derivative, A3 does not
affect the stress tensor. Therefore, without loss of general-
ity, hereinafter we set A3 to be naught. Furthermore, if we
restrict φ0 to be A2t, the φ0 part of stress tensor (T

φ0
μν) would

become stationary. 6 This contribution is expected to be that
of the thermal state.

B. Examples

Here, we derive the concrete values of the stress
tensor in simple cases; the Minkowski, two-dimensional
Schwarzschild, and de Sitter spacetimes. We take various
boundary conditions and show that we can naturally get the
stress tensor of various vacuum states.

1. Minkowski (flat) spacetime

Minkowski spacetime is the simplest example. Let us
consider it first. There are two famous vacua: the
Minkowski vacuum (which is based on the Cartesian
coordinate) and the Rindler vacuum. The vacuum based
on the Cartesian coordinate is defined in the full region of
Minkowski spacetime (see Fig. 1), and thus we expect that
the boundaries exist at two spatial infinities. Meanwhile,
the Rindler vacuum is defined in the Rindler wedge

6T
φp
μν might not be stationary in general because of the time

dependence of Fðt; rÞ.
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(see Fig. 2). One boundary exists on the Rindler horizon
and the other is at spatial infinity. Moreover, for comparison
with the discussion of the two-dimensional Schwarzschild
spacetime that we will discuss later, we consider another
vacuum, which is the Unruh-like vacuum. This is just the
analog to the Unruh vacuum in the two-dimensional
Schwarzschild spacetime; one of the boundaries is the
white hole horizon, and the other is spatial infinity. The
corresponding region is the sum set of the Rindler patch
and the future Milne patch (see Fig. 3).
To describe each region, we write the Minkowski metric

in various forms:

ds2 ¼ −dt2 þ dx2 ¼ −dUfdVf ð57Þ

¼ −ρ2dufdvf
¼ −ρ2ð−dTR

2 þ dRR
2Þð¼ −ρ2dTR

2 þ dρ2Þ ð58Þ

¼ −VfdUfdvf ¼ Vfð−dTU
2 þ dRU

2Þ; ð59Þ

where

Uf ≔ t − x; Vf ≔ tþ x; ð60Þ

ρ ≔ ðx2 − t2Þ1=2;
uf ≔ − logð−UfÞ;
vf ≔ logVf;

TR ≔
1

2
ðvf þ ufÞ;

RR ≔
1

2
ðvf − ufÞ; ð61Þ

TU ≔
1

2
ðvf þ UfÞ; RU ≔

1

2
ðvf −UfÞ: ð62Þ

The metric forms (57), (58), and (59) describe the regions
of whole, Rindler patch and the sum set of the Rindler patch
and the future Milne patch of Minkowski spacetime, and
they are corresponding to the Minkowski vacuum, Rindler
vacuum, and Unruh-like vacuum, respectively.

Minkowski vacuum.—The Minkowski vacuum is the lowest
energy state defined in whole of Minkowski spacetime.
Therefore, we consider coordinate (57) with boundaries at
x ¼ x� and take the limit x� → �∞.
From Eq. (52), the general solution can be written in

φ ¼ A2tþ
Z

dωcðωÞ cos½ωx�eiωt: ð63Þ

FIG. 2. Region corresponding to the Rindler vacuum:
The ðTR; RRÞ coordinate covers only one quarter of
Minkowski spacetime (Rindler wedge) where TR ¼ constant
and RR ¼ constant curves are drawn in dashed and dotted lines,
respectively.

FIG. 3. Region corresponding to the Unruh-like vacuum: The
ðTU; RUÞ coordinate covers a half of Minkowski spacetime where
TU ¼ constant and RU ¼ constant curves are drawn in dashed
and dotted lines, respectively.

FIG. 1. Region corresponding to the Minkowski vacuum: The
ðt; xÞ coordinate covers the whole Minkowski spacetime where
t ¼ constant and r ¼ constant curves are drawn in dashed and
dotted lines, respectively.
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The stationary stress tensor can be obtained by setting
cðωÞ ¼ 0 as

Tμν ¼
1

24π

0
@ A2

2

4
0

0
A2
2

4

1
A in the ðt; xÞ coordinate: ð64Þ

As A2 ¼ 0, Tμν becomes the same as that of the Minkowski
vacuum, i.e., all components become zero. Meanwhile, A2

characterizes the temperature of the thermal equilib-
rium state.

Rindler vacuum.—The Rindler patch is described by the
metric (58). We consider the case where boundaries exist at
RR ¼ R� and take the limit R� → �∞. Then the solution
for φ becomes

φ ¼ 2RR þ A2TR þ
Z

dωcðωÞ cos½ωRR�eiωTR: ð65Þ

The stationary stress tensor (with respect to the Rindler
time) is realized if cðωÞ ¼ 0, and the corresponding stress
tensor is

Tμν ¼
1

24π

 −1þ A2
2

4
0

0 −1þA2
2

4

!
in the ðTR;RRÞcoordinate;

ð66Þ

¼ 1

24π

0
B@

ðA2
2
−4Þðx2þt2Þ
4ðx2−t2Þ2 − ðA2

2
−4Þxt

2ðx2−t2Þ2

− ðA2
2
−4Þxt

2ðx2−t2Þ2
ðA2

2
−4Þðx2þt2Þ
4ðx2−t2Þ2

1
CA

in the ðt; xÞ coordinate: ð67Þ

For A2 ¼ 0, the result is the same as that corresponding to
the Rindler vacuum state, and A2 characterizes the temper-
ature of the “thermal equilibrium state” based on the
Rindler vacuum. The condition A2 ¼ 2 gives the same
result as that corresponding to the Minkowski vacuum
state, and thus the vacuum of the Cartesian coordinate is a
thermal state based on the Rindler vacuum. This is
consistent with the Unruh effect; the Rindler observer feels
the thermal radiation in the Minkowski vacuum state.

Unruh-like vacuum.—In the Schwarzchild black hole space-
time, we are sometimes interested in the vacuum state
defined in the sum set of the outer region and the future
trapped region, which gives the Unruh state. To see the
correspondence between the Minkowski spacetime and the
two-dimensional Schwarzschild spacetime that we will
discuss later, it is useful to consider the corresponding
situation. That is, we consider the sum set of the Rindler
patch and the future Milne patch, which is described by the

metric (59). The boundaries are set at RU ¼ R� and we take
the limit R� → �∞. Then the solution for φ becomes

φ¼ lnðtþxÞþA2TUþ
Z

dωcðωÞcos½ωRU�eiωTU : ð68Þ

The stress tensor of the thermal state is expected to be
obtained with the condition cðωÞ ¼ 0:

Tμν¼
1

24π

0
@−1

2
þA2

2

4
−1

2

−1
2

−1
2
þA2

2

4

1
A in the ðTU;RUÞcoordinate;

ð69Þ

¼ 1

24π

0
B@

−4þA2
2
ððxþtÞ2þ1Þ

8ðxþtÞ2
−4−A2

2
ððxþtÞ2−1Þ

8ðxþtÞ2
−4−A2

2
ððxþtÞ2−1Þ

8ðxþtÞ2
−4þA2

2
ððxþtÞ2þ1Þ

8ðxþtÞ2

1
CA

in theðt;xÞcoordinate: ð70Þ

The terms depending on A2 appear in the diagonal part in
the ðTU; RUÞ coordinate, and it is traceless. This implies
that its energy flows along ∂TU

, and thus, a thermal gas
comoves along ∂TU

. The case with A2 ¼ 0 is expected to be
the vacuum state of the region that we consider. The stress
tensor has the off-diagonal term in the ðt; xÞ coordinate.
This means that we have energy flow in the vacuum state,
which is corresponding to the Hawking radiation in the
Unruh state of the black hole spacetimes.

2. Two-dimensional Schwarzschild spacetime

The vacuum polarization in the black hole spacetime is
one of the major interests in the quantum field theory on
curved spacetimes. As a simplified toy model, the two-
dimensional Schwarzschild spacetime is often investigated,
where we consider the same metric as the time and radial
components of the four-dimensional Schwarzschild space-
time. This geometry is not a solution of a gravity theory,7

but it is fixed by hand. The artificial spacetime is enough
for the discussion of the renormalized stress tensor. The
causal structure in this two-dimensional Schwarzschild
spacetime is the same as that in the four-dimensional
Schwarzschild spacetime, and thus qualitatively we can
expect that similar features of the vacuum polarization,
such as the Hawking radiation, appear. Here, we study the
vacuum polarization of the three familiar states; the
Boulware, Hartle-Hawing, and Unruh states.
In order to describe the corresponding regions to the

three states, we write the two-dimensional Schwarzschild
spacetime in various descriptions:

7In two-dimensional spacetime, general relativity is not well
defined.
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ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

¼
�
1 −

2M
r

�
ð−dt2 þ dr�2Þ

¼ −
�
1 −

2M
r

�
dudv ð71Þ

¼ −
32M3

r
e−

r
2MdUdV

¼ −
32M3

r
e−

r
2Mð−dTH

2 þ dRH
2Þ ð72Þ

¼ −
8M2

r

�
r
2M

− 1

�1
2

e
t−r
2MdUdv

¼ 8M
r

�
r
2M

− 1

�1
2

e
t−r
2Mð−dTU

2 þ dRU
2Þ; ð73Þ

where

r� ≔ rþ 2M ln

�
r
2M

− 1

�
; u ≔ t − r�;

v ≔ tþ r�; ð74Þ

U ≔ −e−u
4M; V ≔ e

v
4M; TH ≔

1

2
ðV þ UÞ;

RH ≔
1

2
ðV − UÞ; ð75Þ

TU ≔
1

2
ðvþ UÞ; RU ≔

1

2
ðv −UÞ: ð76Þ

The coordinates (71), (72), and (73) describe the outside
of the black hole (see Fig. 5), whole spacetime (see Fig. 4)
and the sum set of the outside and the future trapped region
(see Fig. 6), and they are corresponding to the Boulware,
Hartle-Hawking, and Unruh states, respectively. Comparing
these coordinates (71), (72), (73) and the transformations
(74), (75), (76) with those of the Minkowski spacetime (57),

(58), (59), (60), (61), and (62), we can read the analog of the
Boulware, Hartle-Hawing, and Unruh vacua to the Rindler,
Minkowski, and Unruh-like vacua in the Minkowski space-
time, respectively.

Hartle-Hawking vacuum.—The energy momentum tensor
of the Hartle-Hawking state [22,23] is defined in the whole
spacetime, which is regular even at horizons and infinity,
and thus state can be defined everywhere. Therefore, the
metric (72) is the corresponding metric, which is regular
everywhere. We set the boundaries at RH ¼ R� and take
the limit R� → �∞. Then the general solution (49) can be
written in

φ ¼ ln

�
1 −

2M
r

�
−

1

2M
r� þ A2TH

þ
Z

dωcðωÞ cos½ωRH�eiωTH : ð77Þ

Stationary stress tensor [in the (TH; RH)-coordinate sense] is
achieved if cðωÞ vanishes, and it becomes

TTHTH
¼ 1

24π

�
− 64M4

r4
e−

r
2Mþ
�
48M4

r4
þ 16M3

r3
þ 4M2

r2

�

× e−
r
MðRH

2 þ TH
2Þ þ A2

2

4

�
; ð78Þ

FIG. 6. Region corresponding to the Unruh vacuum: The
ðTU; RUÞ coordinate covers a half of two-dimensional Schwarzs-
child spacetime where TU ¼ constant and RU ¼ constant curves
are drawn in dashed and dotted lines, respectively.

FIG. 4. Region corresponding to the Hartle-Hawking
vacuum: The ðTH; RHÞ coordinate covers the whole two-
dimensional Schwarzschild spacetime where TH ¼ constant
and RH ¼ constant curves are drawn in dashed and dotted lines,
respectively.

FIG. 5. Region corresponding to the Boulware vacuum: The
ðt; rÞ coordinate covers one quarter of two-dimensional
Schwarzschild spacetime where t ¼ constant and r ¼ constant
curves are drawn in dashed and dotted lines, respectively.
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TRHRH
¼ 1

24π

�
64M4

r4
e−

r
2M þ

�
48M4

r4
þ 16M3

r3
þ 4M2

r2

�

× e−
r
MðRH

2 þ TH
2Þ þ A2

2

4

�
; ð79Þ

TTHRH
¼ TRHTH

¼ −1
24π

�
96M4

r4
þ 32M3

r3
þ 8M2

r2

�
e−

r
MðTHRHÞ;

ð80Þ

in the ðTH; RHÞ coordinate, and

Ttt ¼
1

24π

��
7M2

r4
−
4M
r3

þ 1

16M2

�
þ A2

2

64M2
ðRH

2 þ TH
2Þ
�
;

ð81Þ

Trr ¼
1

24π

��
1 −

2M
r

�
−2
�

1

16M2
−
M2

r4

�

þ A2
2

64M2

�
1 −

2M
r

�
−2
ðRH

2 þ TH
2Þ
�
; ð82Þ

Ttr ¼ Trt ¼
1

24π

�
A2

2

32M2

�
1 −

2M
r

�
−1
ðTHRHÞ

�
; ð83Þ

in the ðt; rÞ coordinate.
For A2 ¼ 0, the energy density is constant for the Killing

observer (whose trajectory is tangent to ∂t) outside the
black hole, and the stress tensor is the same as that of the
Hartle-Hawking vacuum state. A2 characterizes the thermal
excitation based on the Hartle-Hawking vacuum.

Boulware vacuum.—The Boulware vacuum [24] has the
same asymptotic behavior as the Minkowski vacuum, while
the stress tensor diverges on the horizon. Thus, the state
(and the quantum theory) is defined only outside the
horizons. The metric (71) is the corresponding one. We
set the boundaries at r� ¼ r�� and take the limit r�� → �∞.
The form of the general solution (49) becomes

φ ¼ ln

�
1 −

2M
r

�
þ A2tþ

Z
dωcðωÞ cos½ωr��eiωt: ð84Þ

Imposing the stationary condition of the stress tensor, cðωÞ
should vanish and the stress tensor is derived as

Tμν ¼
1

24π

 −4Mrþ7M2

r4 þ A2
2

4
0

0 −M2

r4 þ
A2
2

4

!

in the ðt; r�Þ coordinate; ð85Þ

¼ 1

24π

0
@ −4Mrþ7M2

r4 þ A2
2

4
0

0 − M2

r2ðr−2MÞ2 þ
A2
2
r2

4ðr−2MÞ2

1
A

in the ðt; rÞ coordinate: ð86Þ

For A2 ¼ 0, the energy density has the minimum value,
which corresponds to the Boulware vacuum state. A2

characterizes the temperature of the thermal equilibrium
state based on the Boulware vacuum. Similar to the relation
between the Minkowski and Rindler vacua, for
A2 ¼ �1=ð2MÞ, the resulting stress tensor is the same as
that of the Hartle-Hawking vacuum state. That is, the
Hartle-Hawking vacuum state is a thermal equilibrium state
on Boulware vacuum.

Unruh vacuum.—In the Unruh vacuum state [25], we take
the Minkowski vacuum state at the past null infinity, while
the stress tensor is regular on the black hole horizon but not
on the white hole horizon. We can extend the state to the
inside of the black hole but not of the white hole. Therefore,
the corresponding region is the sum of the outside of
horizon and inside of black hole, which is described with
the metric (73). We set the boundaries at RU ¼ R� and take
the limit R� → �∞. Then, the general solution is written in

φ ¼ ln

�
1 −

2M
r

�
þ 1

4M
ðt − r�Þ þ A2TU

þ
Z

dωcðωÞ cos½ωRU�eiωTU : ð87Þ

The stationary stress tensor [in the (TU, RU) sense] is
obtained if cðωÞ vanishes and it is written as

TTUTU
¼ 1

24π

�
1

r4

�
−Mrþ 3

2
M2 − 16M3e

t−r
4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2M

− 1

r
þ 2M2e

t−r
2M

�
r
2M

− 1

�
ðr2 þ 4Mrþ 12M2Þ

�
þ A2

2

4
; ð88Þ

TRURU
¼ 1

24π

�
1

r4

�
−Mrþ 3

2
M2 − 16M3e

t−r
4M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2M

− 1

r
þ 2M2e

t−r
2M

�
r
2M

− 1

�
ðr2 þ 4Mrþ 12M2Þ

�
þ A2

2

4
; ð89Þ

TTURU
¼ TRUTU

¼ M
48πr4

ð−2rþ 3M − 2e
t−r
2Mðr − 2MÞðr2 þ 4Mrþ 12M2ÞÞ; ð90Þ

in the ðTU; RUÞ coordinate, and
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Ttt ¼
1

24π

��
1

32M2
þ 7M2

r4
−
4M
r3

�
þ A2

2

8

�
1þ r − 2M

32M3
e
r−t
2M

��
; ð91Þ

Trr ¼
1

24π

��
1 −

2M
r

�
−2
�
−M2

r4
þ 1

32M2

�
þ A2

2

8

��
1 −

2M
r

�
−2

þ
�
1 −

2M
r

�
−1 r

32M3
e
r−t
2M

��
; ð92Þ

Ttr ¼ Trt ¼
1

24π

�
− 1

32M2

�
1 −

2M
r

�
−1

þ A2
2

8

��
1 −

2M
r

�
−1

−
r

32M3
e
r−t
2M

��
; ð93Þ

in the ðt; rÞ coordinate.
The lowest energy state with respect to the ðTU; RUÞ

coordinate is realized for A2 ¼ 0, and then the stress tensor
is the same as that of the Unruh vacuum state. A2 describes
the thermal excitation for the Unruh observer (whose
trajectory is tangent to ∂TU

).

3. de Sitter spacetime

Here, we consider the stress tensor in de Sitter spacetime.
In cosmology, de Sitter spacetime approximately describes
the beginning part of the Universe, i.e., inflation.
Meanwhile, de Sitter spacetime has the maximal symmetry,
and thus has intriguing features. Therefore, de Sitter
spacetime is interesting in both phenomenological and
theoretical viewpoints.
In de Sitter spacetime, two vacua, the vacuum of the

static chart and the Bunch-Davis vacuum, are often dis-
cussed. We describe de Sitter spacetime with two different
coordinates,

ds2 ¼ −ð1 −H2r2sÞdt2s þ ð1 −H2r2sÞ−1dr2s
¼ ð1 −H2r2sÞð−dt2s þ dr2�s Þ ð94Þ

¼ −dt2f þ e2Htfdr2f ¼ 1

H2η2
ð−dη2 þ dr2fÞ; ð95Þ

where

r�s ≔
tanh−1ðHrsÞ

H
; ð96Þ

rf ≔ re−Htf ; η ≔ −
e−Htf

H
;

tf ≔ ts þ
1

2H
log½H−1ð1 −H2r2sÞ�; ð97Þ

and “s” and “f” mean the static and flat slicing charts,
respectively. The vacua with the coordinates (94) and (95)
are corresponding to the vacuum of the static chart and the
Bunch-Davis vacuum, respectively.

Bunch-Davis vacuum.—The vacuum state of the flat
chart (95) is the so-called Bunch-Davis state [26]. The

flat chart (95) describes the region shown in Fig. 7. We set
the boundaries at rf ¼ r� and take the limit r� → �∞.
Then, the general solution (49) becomes

φ ¼ −2 lnðHηÞ þ A2ηþ
Z

dωcðωÞ cos½ωrf�eiωη: ð98Þ

The stationary stress tensor with respect to the conformal
time η is obtained for cðωÞ ¼ 0 as

Tμν ¼
1

24π

 −H2 þ A2
2

4
e−2Htf 0

0 e2HtfH2 þ A2
2

4

!

in the ðtf; rfÞ coordinate; ð99Þ

¼ 1

24π

�−e2HtfH2 þ A2
2

4
0

0 e2HtfH2 þ A2
2

4

�

¼ 1

24π

�−η−2 þ A2
2

4
0

0 η−2 þ A2
2

4

�

in the ðη; rfÞ coordinate: ð100Þ

FIG. 7. Region corresponding to Bunch-Davies vacuum: The
ðtf; rfÞ coordinate covers a half of de Sitter spacetime where
tf ¼ constant and rf ¼ constant curves are drawn in dashed and
dotted lines, respectively.
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The lowest energy state is realized for A2 ¼ 0, and then the
stress tensor becomes the same as that of the Bunch-Davis
vacuum. A2 describes the thermal state with respect to the
conformal time ∂η.

Vacuum of the static chart.—The static chart (94) describes
the region shown in Fig. 8. We set boundary at rs ¼ r� and
take the limit r� ¼ �∞. Then the general solution (49)
becomes

φ ¼ lnð1 −H2r2sÞ þ A2ts þ
Z

dωcðωÞ cos½ωr�s �eiωts :

ð101Þ

The stationary stress tensor with respect to the Killing
direction ∂ts is obtained for cðωÞ ¼ 0, and it is derived as

Tμν ¼
1

24π

0
@−2H2 þH4r2s þ A2

2

4
0

0 −H4r2s þ A2
2

4

1
A

in the ðts; r�sÞ coordinate; ð102Þ

¼ 1

24π

0
@−2H2 þH4r2s þ A2

2

4
0

0
−H4r2sþA2

2
=4

ð1−H2r2sÞ2

1
A

in the ðts; rsÞ coordinate: ð103Þ

Imposing A2 ¼ 0, the minimum energy state is realized and
the stress tensor becomes the same as that of the vacuum
state in static chart. A2 describes the thermal excitation on
the static chart. For A2 ¼ �2H, the resulting stress tensor
is the same as that of the Bunch-Davis vacuum state. That is,

the Bunch-Davis vacuum state is a thermal equilibrium state
based on static vacuum.

V. SUMMARY

In this paper, we have derived the anomaly-induced
action with the boundary effect by restoring the corre-
sponding boundary terms to Lagrangian for the counter-
terms. Although the boundary action seems not to revise
the stress tensor in the region within boundary, there are
indeed additional boundary constraints for the auxiliary
field φ. Therefore, even though the functional form of the
stress-tensor is the same as that without the boundary
effect, due to the constraint of the argument φ, the stress-
tensor is restricted. This effect has not been noticed before,
i.e., the degree of freedom in the general solution of φ and
the corresponding stress-tensor is actually much less than
what people have considered before.
As examples, we have applied our result to several

common spacetimes, flat, two-dimensional Schwarzchild,
and de Sitter spacetimes, with various different boundaries.
In the previous works [8,9], although it was shown that
the solution of auxiliary field can be tuned to describe the
quantum vacuum state correctly in several examples, the
principle for the correspondence behindwas unclear.Wehave
shown that, in the spacetime that we have considered, the
corresponding solution of the classical auxiliary field to the
quantum state of the original field is the vacuum state with
theproperboundaryconditions.Thisprocedureisquitenatural,
because any tuning of solutions is not required anymore.
It is interesting to apply our result to some other topics,

such as (dynamical) Casimir effect. Now since we know the
correct relation between quantum states of the original field
and the solution of the auxiliary field, we can deal with the
quantum effects on curved spacetime as the classical dynam-
ics of the auxiliary fieldφ. It can be expected that by using the
classical anomaly-induced action, we can discuss the back-
reaction problem in semiclassical approaches without both-
ering the complicated calculation. Another interesting
direction is the formulation of the anomaly-induced action
with boundary effect in four-dimensional spacetime. We
expect that this approach in four-dimensional spacetime
would be a powerful tool to investigate various physically
interested semiclassical problems, such as cosmology, semi-
classical physics on black hole spacetime, and so on. We
leave these interesting explorations as future works.
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FIG. 8. Region of the static chart: The ðts; rsÞ coordinate
covers one quarter of de Sitter spacetime where ts ¼ constant
and rs ¼ constant curves are drawn in dashed and dotted lines,
respectively.
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