
Improved fast-rotating black hole evolution simulations with modified
Baumgarte-Shapiro-Shibata-Nakamura formulation

Hwei-Jang Yo,1 Zhoujian Cao,2 Chun-Yu Lin,3 and Hsing-Po Pan1
1Department of Physics, National Cheng-Kung University, Tainan 701, Taiwan

2Institute of Applied Mathematics and LSEC, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

3National Center for High-Performance Computing, Hsinchu 300, Taiwan
(Received 23 November 2014; published 21 July 2015)

Different formulations of Einstein’s equations used in numerical relativity can affect not only the
stability but also the accuracy of numerical simulations. In the original Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation, the loss of the angular momentum, J, is non-negligible in highly spinning
single black hole evolutions. This loss also appears, usually right after the merger, in highly spinning binary
black hole simulations, The loss of J may be attributed to some unclear numerical dissipation. Reducing
unphysical dissipation is expected to result in more stable and accurate evolutions. In the previous work
[H.-J. Yo et al., Phys. Rev. D 86, 064027 (2012).] we proposed several modifications which are able to
prevent black hole evolutions from the unphysical dissipation, and the resulting simulations are more stable
than in the traditional BSSN formulation. Specifically, these three modifications (M1, M2, and M3)
enhance the effects of stability, hyperbolicity, and dissipation of the formulation. We experiment further in
this work with these modifications, and demonstrate that these modifications improve the accuracy and also
effectively suppress the loss of J, particularly in the black hole simulations with an initially large ratio of J
and a square of the ADM mass.
DOI: 10.1103/PhysRevD.92.024034 PACS numbers: 04.25.D-, 04.30.Db, 04.70.Bw, 95.30.Sf

I. INTRODUCTION

Development of numerical relativity was rapid after the
breakthroughs in 2005 and 2006 (see, e.g., [1–3]).
Numerical relativity has now become an indispensable
and effective tool in the research of general relativity
and relativistic astrophysics. It has been extensively
studied in several areas and applied to the construction
of gravitational waveform template banks for detection [4],
to the kick phenomena of general binary systems [5–10],
and to astrophysical problems such as the equation of state
of neutron stars [11–16], electromagnetic counterparts of
gravitational waves [17–19], gamma ray bursts [20,21],
accretion disks [22,23], and so on. These applications
and numerical investigations demand increasingly greater
accuracy, besides stability; thus, it is important and
necessary to unremittingly refine the formulations and
schemes.
Among the methods to enhance the stability and accu-

racy in numerical relativity, the 3þ 1 formulation of
Einstein’s equations is favored by many researchers. The
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation [24,25] is the most popular scheme, and it is usually
implemented in first-order-in-time and second-order-in-
space finite-differencing codes. Many works have been
focused on modifying the original BSSN formulation to
achieve better numerical stability and accuracy [26–31].
For example, borrowing the ideas of the generalized
harmonic (GH) formulation [1,32], the Z4 conformal
(Z4c) formulation [33], and the traceless-conformal and

covariant Z4 (CCZ4) formulation [34] both show good
constraint damping behavior [35–38].
There is still room to improve the BSSN

formulation to obtain better stability and accuracy; e.g.,
see Refs. [26–28,39–41]. In [42], we adopt a different
approach from the CCZ4 and Z4c formulations to modify
the BSSN formulation. The basic idea is to suppress the
numerical error by adding combinations of constraint terms
to the field equations in the BSSN formulation, without
changing the solution analytically, to modify the leading
terms of the field equations. And we demonstrated that our
modifications achieved more stable simulations than the
traditional BSSN formulation. Specifically, our last work
[42] showed improvements in constraint damping and in
the late-time behavior of the gravitational waveforms. In
this work, we would like to emphasize the effectiveness of
these modifications on the evolution of the black holes with
higher spins, hoping to meet the demand of modeling
extreme sources for the gravitational wave detection.
It was found in [43] that the angular momentum decays

right after the final black hole forms in the binary black hole
evolution simulations. For the single spinning black hole,
the angular momentum also decays when the dimensionless
spin s=m2 > 0.75 (compare the cases s=m2 ¼ 0.53 and
s=m2 ¼ 0.9 in Fig. 4 of [43]). This decay is neither due to
the resolution nor the initial separation of the binary [43]. In
contrast, the result from the SPEC code does not show this
tendency [44]. For comparing those results, we plot in
Fig. 1 χf ≡ sf=m2

f of the final black hole as a function of
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the initial spin parameter χi ≡ si=m2
i for the individual

black hole component. We find that they are consistent
when χi < 0.75 and, when χi getting larger, χf in the
traditional BSSN formulation becomes smaller than that in
the GH formulation. The difference should not be attributed
to whether the spectral method or the finite-differencing
method is used. However, it is still unclear if the issue
comes from the formulation itself or from the puncture
method. In this work we, therefore, try to resolve this
problem by simulating single and binary black hole
evolutions with the modified BSSN formulation as pro-
posed in [42]. We will show that the angular momentum
is more accurate and its conservation is much better than
in the traditional BSSN formulation. Via the better
conservation of the angular momentum, it is also expected
that the accuracy of the other related physical quantities
will be improved at the same time with the modified
formulation.
The rest of this work is organized as follows: In the next

section, we give an explicit description of the modifications
to the BSSN formulation, discuss the related accuracy
problems, and describe the numerical implementation.
We then report on the test results on the single spinning
black hole in Sec. III A. The results for a highly spinning
binary black hole are presented in Sec. III B, and the
discussion and summary are presented in Sec. IV.
Throughout the paper, geometric units with G ¼ c ¼ 1

are used. The Einstein summation rule is adopted unless
stated explicitly.

II. MODIFICATIONS AND NUMERICAL
IMPLEMENTATIONS

The BSSN formulation and the numerical recipes for
implementation have been described in details in previous
articles [27,40]. Here we only mention several major steps
that have usually been adopted [26,39] in the traditional
BSSN formulation:

(i) In order to enforce the algebraic constraints of the
unimodular determinant of ~γij, i.e., ~γ ¼ 1, and of the
tracelessness of ~Aij, i.e., ~γij ~Aij ¼ 0, the numerical

values of ~γij and ~Aij are replaced with ~γij → ~γ−1=3 ~γij,
~Aij → ~Ahiji after every time step, wherein the two
indices in the angle bracket hi are taken to be its
symmetric and traceless part.

(ii) The conformal connection functions ~Γi are pro-
moted to be independent variables in the BSSN
formulation, which leads to the Γ constraints
Gi ≡ ~Γi − ~Γi

g ¼ 0, where ~Γi
g ≡ ~γjk ~Γi

jk. The conven-
tional approach to enforce the Γ constraints is to
replace all the undifferentiated ~Γi with ~Γi

g.
(iii) The high-order Kreiss-Oliger (KO) method is em-

ployed to effectively dissipate the numerical noise.
These traditional approaches with suitable gauge condition
have enabled fruitful studies on the black hole problem. Yet
earlier investigations, e.g., [43], indicated that, in some near-
extreme situations, the traditional BSSN formulation is not
robust enough to conserve the constraints and global quan-
tities. We plan to test the following modifications which have
been introduced in [42] and compare the results from our
modifications with those from the traditional BSSN formu-
lation. The three proposed modifications are as follows:

A. Modification M1

Instead of replacing all the undifferentiated ~Γi with ~Γi
g,

M1 modifies the conformal three-connection appearing in
the right-hand side of all the field equations and changes the
linear terms in the field equation of ~Γi. The new conformal
three-connection in all field equations now takes the form

~Γi
jk → ~Γi

jk −
3

5
δihj ~Tki −

1

5
δihjGki þ

1

3
~γjkGi; ð1Þ

where R ~Ti ≡ ~Γk
ki ¼ ðln ffiffiffi

~γ
p Þ;i vanishes analytically, but

could be nonzero due to numerical error. This expression
is motivated by the unique algebraic decomposition for any
third-rank symmetric tensor with two indices. See [42] for
the details.
To change the behavior of the linear term in the field

equation of ~Γi, we replace the original field equations
of ~Γi with
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FIG. 1 (color online). Dimensionless spin parameter χf of the
final black hole as a function of the initial dimensionless spin
parameter χi of the individual black hole in the binary black hole
evolution for the BSSN and GH formulations. The data “BSSN”
given in [43] are calculated through the BAM code with BSSN
formulation and the finite-differencing method. The data “GH”
given in [44] are calculated through the SPEC code with GH
formulation and the spectral method. The data “BSSN before
decay” given in [43] are calculated through the LEAN code [43]
and correspond to the results right after the final black hole forms.
The data “MODBSSN” are calculated through the AMSS-NCKU
code in current work, and the modified BSSN formulation (check
the main context for more detail) is used.
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∂t
~Γi ¼ 2α

�
~Γi

jk
~Ajk −

2

3
ð~γijKÞ;j þ 6 ~Aijϕ;j

�
− 2 ~Aijα;j

þ βj ~Γi
;j − ~Γjβi;j þ ~γjkβi;jk þ

1

3
~γijβk;jk

þ 2

3
ðβk;k − 2αKÞ ~Γi − ð1þ ξÞΘðλiÞλiGi; ð2Þ

wherein ΘðxÞ is the step function

ΘðxÞ ¼
�
0 if x < 0

1 if x > 0
; ð3Þ

and λi is

λi ¼ 2

3
ðβk;k − 2αKÞ − βî;î −

2

5
α ~Aî

î: ð4Þ

Note that the index with hat, i.e., î, means that no index
summation is carried out with respect to this index. ξ is
chosen to be 1 in all cases in this work. This modification
plays an indispensable role in the whole modification
scheme to enhance both the stability and accuracy of the
system.
Notice that there is one term in Eq. (2) including a step

function, i.e., ð1þ ξÞΘðλiÞλiGi. Due to its switch character
and the possible sign fluctuation of the numerical value of
its argument λi when λi is close to zero, the step function
should be sensitive to the resolution used in simulations. So
we expect that this modification could significantly affect
the numerical convergence behavior of the modified BSSN
formulation.

B. Modification M2

The idea behind M2 is similar to that in obtaining
Eq. (1). The algebraic structure of ∂t ~γij, similar to the
algebraic structure of the conformal three-connection,
allows us to write the ~γij-field equation as

∂t ~γij → ∂t ~γij þ σβðiGjÞ −
1

5
~γijβ

kGk; ð5Þ

and we set σ ¼ 1=10 in this work. This modification
enhances the hyperbolicity of the system and effectively
propagates away the constraint violation residual.

C. Modification M3

This dissipation type of modification M3 is motivated
from [28]. The major difference is that we use the
symmetric traceless part of the partial derivative of the
momentum constraint (instead of the symmetric part of its
covariant derivative as in [28]) to rewrite the ~Aij-field
equation as

∂t
~Aij → ∂t

~Aij þ h2Mhi;ji; ð6Þ

wherein Mi is the momentum constraint and h is the grid
width. This modification provides a dissipation mechanism
on ~Aij and serves as a natural alternative to the KO
dissipation. In this work, we apply this modification instead
of the KO method to check its capability in dissipation and
also compare its effect with KOs.
There is a concern about the convergence of the whole

system with this modification. At first glance, Eq. (6) might
change the convergence order of a system to be only
second-order accurate at most since the addition term in the
equation, i.e., h2Mhi;ji, is only proportional explicitly to
h2. However, this is not the case. If one system is pth-order
convergent, then the momentum constraint Mi ≃ 0 will
converge to zero with the rate of hp. So will the termMhi;ji.
Therefore, if we combine the convergence order of Mhi;ji
and the multiplier h2, the term introduced in Eq. (6) will
converge to zero with the rate hpþ2, which is faster than the
rest of the system. Thus, this modification will not reduce
the convergence order of the system analytically.

D. Numerical implementation

The AMSS-NCKU code with the standard moving box
style mesh refinement [40,42,45] is used in this work. We
used ten mesh levels, all of which are fixed in the cases of
single black hole evolution, and the finest three levels are
movable in evolving the binary black holes (BBHs). In each
fixed level, we used one box with 128 × 128 × 64 grids
with assumed equatorial symmetry. The outermost physical
boundary is 512M, and this makes the finest resolution
h ¼ M=64. For the movable levels, two boxes with 64 ×
64 × 32 grids are used to cover each black hole. In the time
direction, the Berger-Oliger numerical scheme is adopted
for the levels higher than four.
The moving puncture gauge condition,

∂tα ¼ βiα;i − 2αK; ð7Þ

∂tβ
i ¼ 3

4
Bi þ βjβi;j; ð8Þ

∂tBi ¼ ∂t
~Γi − ηBi þ βjBi

;j − βj ~Γi
;j; ð9Þ

is used and has been shown to give good behavior for the
black hole simulations in [40]. In this paper we use
η ¼ 2M, with M being the ADM mass of the given
configuration.

III. NUMERICAL RESULTS

A. Single black hole tests

In this subsection, we test our modifications in spinning
single black hole (SBH) cases with respective initial
dimensionless spin parameters χ0 ≡ J0=M2

0 ¼ 0.53, 0.9,
and 0.923. To generate these sets of puncture initial data
with unit ADM mass, the bare mass and the spin parameter
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in the z direction are set to be m ¼ 0.872335, 0.3528, and
0.215898 and sz ¼ 0.53, 0.45, and 0.472466, respectively,
as the input for the TWOPUNCTURE solver. Note that χ0 ¼
0.923 is nearly the maximal spin that the conformally flat
Bowen-York initial data can achieve [46]. The global
quantities such as the ADM mass M and the angular
momentum J are calculated with the surface integrals at
R ¼ 50M, as described in [40].
The dimensionless spin parameter χ ≡ J=M2 for the

single black hole simulation is shown in Fig. 2 and Fig. 3.
For the cases with the traditional BSSN formulation, it
shows that the result is consistent with Fig. 4 of [43]. It is
also clear in the figures that the proposed modifications
greatly reduce the overall noise level and diminish the
fluctuation before t ¼ 200 for the high-spin case. The
curves of χ with the modified BSSN formulation show less
decay in each case. For the lower spin case, χ0 ¼ 0.53, the

curve for the modified BSSN formulation (red solid lines)
is basically the same as the one for the traditional BSSN
formulation (dashed lines). As the spin becomes higher, the
loss of the angular momentum is more severe. For the χ0 ¼
0.9 case, the dimensionless spin drops more than 11% to
0.7986 at t ¼ 1200 in the traditional BSSN formulation,
compared to the modified one in which χ drops less than
5%. This result indicates that the modified BSSN formu-
lation is capable of conserving the angular momentum
better than the traditional BSSN, especially for the high-
spin cases, i.e., χ0 > 0.75.
The time evolution of the dimensionless spin is shown in

the left panel of Fig. 3 for the near-extreme single black
hole with χ0 ¼ 0.923, which is nearly the maximal value
that the conformally flat Bowen-York data can achieve. The
dimensionless spin drops about 15% to 0.79 at t ¼ 1000 in
the traditional BSSN formulation, compared to the
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FIG. 2 (color online). Dimensionless spin parameter χ as a function of time for χ0 ¼ 0.53 (left column) and χ0 ¼ 0.9 (right column) in
the single black hole evolutions. The modified BSSN formulation (solid red line, marked as MODBSSN) is shown to produce less noise
in the spurious radiation as well as preserve χ better than the traditional BSSN formulation (dashed line, marked as BSSN) in the higher
spin case.
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FIG. 3 (color online). Left: Dimensionless spin parameter χ as a function of time for χ0 ¼ 0.923 in the single black hole evolution. The
modified BSSN formulation (solid red line, marked as MODBSSN) is shown to preserve χ better than the traditional BSSN formulation
(dashed line, marked as BSSN) in this near-extreme case. Right: Power spectrum of the corresponding data plotted in the left panel.
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modified case in which the change of χ is less than 5%. It
shows that the modified BSSN formulation is more
effective in conserving the angular momentum over the
traditional BSSN formulation, even in the fast-spinning
SBH case.
It is interesting to study the different effect on the

simulations between the fifth-order KO dissipation and
modification M3. From a naive observation on Fig. 2 and
the left panel of Fig. 3, we found that the KO method is
good at eliminating relatively higher-frequency numerical
noise. It can be seen that the result in the right panel of
Fig. 2 for the χ0 ¼ 0.9 case with the traditional BSSN
formulation (dashed line) is smoother than its counterpart
with the modified BSSN formulation (red solid line),
despite the spin drop in the former one. On the contrary,
the lower- frequency numerical noise appearing in the
traditional BSSN formulation is diminished significantly
with the modified BSSN formulation. This can also be
seen in the left panel of Fig. 2, wherein the two major
fluctuations at t ≈ 580 and t ≈ 1150 with the traditional
BSSN formulation (dashed lines) disappear with the
modified BSSN formulation. It also can be seen in the
right panel, wherein the severe fluctuations before t ≈ 150
with the traditional BSSN formulation are effectively
suppressed with the modified BSSN formulation. It has
a similar behavior as that shown in the left panel of Fig. 3.
To understand this phenomenon better, a Fourier analysis

method is applied to the χ0 ¼ 0.923 single black hole case.
In the right panel of Fig. 3, we show the corresponding
power spectrum of the data in the left panel. From this
power spectrum, we can see that the KO method in the
traditional BSSN formulation only dissipates some high-
frequency (f ∼ 0.34–0.43) noise better. For the noise most
other frequencies, the M3 method in the modified BSSN
formulation is much more efficient in dissipation. This
difference results in the different behavior in the left panel,
as we can see. The line for the traditional BSSN

formulation has larger amplitude oscillations with the
intermediate frequency. Similar results can be seen in
Fig. 2. The above result indicates that the KO dissipation
and M3 suppress the numerical noise in different frequency
ranges. It is noted that usage of M3 does not introduce any
artificial dissipation and, thus, the field equation of ~Aij is
analytically equivalent to the original.

B. Binary black hole tests

In this subsection, we apply our modifications to the
equal-mass black hole binary. Each black hole in the binary
has the spin aligned with the orbital angular momentum and
the dimensionless spin parameter χi ¼ 0.9 initially. As the
reference, we also run an equal-mass BBH with χi ¼ 0 for
each black hole. The initial parameters for each hole as the
input of the TWOPUNCTURE solver are listed in Table I.
First, we would like to check if our modifications give

any changes in these well-tested BBH cases compared to
the traditional BSSN formulation. Figures 4 and 5 show the
almost identical puncture trajectories and the l ¼ 2,m ¼ 2

mode of the Newman-Penrose scalar Ψ4 at R ¼ 50M for
the cases of χi ¼ 0 and χi ¼ 0.9. The l ¼ 2, m ¼ 2 mode
gives the major component of gravitational radiation during
the merger in the case of the binary black hole with spin
parallel to the orbital angular momentum. Here we only
show the real part of Ψ4. This result is expected in

TABLE I. Parameters for the binary black hole puncture initial
data.

χi 0 0.9

Bare mass 0.483 0.1764
~r �3.257ŷ �2.966ŷ
~p ∓0.133x̂ ∓0.12616x̂
~s 0 0.225ẑ
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FIG. 4 (color online). The puncture trajectory of the binary black hole evolution with initial χi ¼ 0 (left) and χi ¼ 0.9 (right). The
comparisons between the result with the traditional BSSN formulation (dashed line) and that with the modified BSSN formulation (solid
red line) are shown.
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developing new modifications since all of these formula-
tions are analytically equivalent to Einstein’s field equa-
tions and should give the same physics.
The ADM mass M, the angular momentum J, and the

dimensionless spin parameter χ are shown in Fig. 6 for the
BBH cases with the initial dimensionless spin χi ¼ 0 (left)
and χi ¼ 0.9 (right). After the merger at t ¼ 250 in the
χi ¼ 0 BBH case, M and J decrease by 4% and 27%,
respectively, due to the gravitational radiation. And the

dimensionless spin parameter after the merger is χ ¼ 0.68
at t ¼ 250 to χ ¼ 0.67 at t > 800. Thus χ decreases less
than 2% after t ¼ 250 until the end of simulation. It also
shows that the modified and traditional BSSN formulations
give the same result (in the left panel) in the initially slowly
spinning BBH case. In the χi ¼ 0.9 case, after the merger at
t ¼ 350, the gravitational radiation decreases the value of
M and J by 8% and 39%, respectively. As shown in the
right panel for the χi ¼ 0.9 case, χ in the traditional BSSN
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FIG. 5 (color online). The l ¼ 2,m ¼ 2mode of the Newman-Penrose scalar Ψ4 calculated at R ¼ 50M, with initial χi ¼ 0 (left) and
χi ¼ 0.9 (right). This mode is the major component of gravitational radiation during the merger in the binary black hole case with spin
parallel to the orbital angular momentum. Only the real part of Ψ4 is shown here. These two waveforms are almost identical for the
traditional BSSN formulation (dashed line, marked as BSSN) and the modified one (solid red line, marked as MODBSSN). A binary
with higher-spin black holes as its components takes more time in inspiral due to the spin hang-up effect.
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marked as MODBSSN) has better control than the traditional BSSN (dashed line) on the early noise level and the spin drop after merger
for the higher-spin case.
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formulation decreases more than 10% from t ¼ 350 to 800
(χ ≈ 0.75 in our extended run for t > 1900). This result
from the traditional BSSN formulation is consistent with
the discovery in [43] in which the final J will decay
considerably for χi ≥ 0.75. For the χi ¼ 0.9 case with the
modified BSSN formulation, χ decreases only by 1% from
t ¼ 350 to 800. The decrease is still less than 2% in the
extended run for t > 1900. The results in the BBH cases,
combined with that in the SBH cases, indicate clearly that
our modifications handle the highly spinning black holes
much better than the traditional BSSN formulation, while
yielding the same results as in traditional BSSN formu-
lation in the slowly spinning black hole cases.

C. Numerical convergence

For both the gravitational wave extraction and the
calculation of the global quantities, they are numerically
integrated on the sphere of radius r ¼ 50M. This finite
radius for integration could affect the accuracy of the
amplitude of the gravitational waveform Ψ4. However, the
effect from the integration sphere of finite radius should be
roughly the same with either the traditional BSSN formu-
lation or the modified one on any case. Since we are only
concerned about the relative difference between these two
formulations, the effect from the extraction radius becomes
unimportant. For the global quantities, e.g., the ADM mass
and the angular momentum, the integration sphere of finite
radius, e.g., r ¼ 50M, may result in some artificial drift as
shown in Fig. 6. Nevertheless, when an integration sphere
with larger radius is applied to the case, such drift
diminishes. Here we use the spinless binary black hole
case as an example in Fig. 7 for illustration. According to
Fig. 7, the results with r ¼ 50M are basically same as the
ones with r ¼ 80M and r ¼ 120M during the merger
phase. The drift in the case with r ¼ 50M only shows
during the ringdown stage. And the drift can be easily
diminished with larger radii, e.g., r ¼ 120M in Fig. 7.
However, in order to compare our result with the one in [43]
closely, in this work we still take the radius r ¼ 50M, same
as used in [43].

The physical boundary used in simulations may also
affect the gravitational wave and the calculation of the
global quantities. In order to investigate such possible
effects, we have tested the simulations with further boun-
daries. Our results show that the effect from the boundary
condition is ignorable in the current work.
According to the arguments in Sec. II, analytically we do

not expect modification M3 to affect the convergence of the
system, and we do expect that modification M1 definitely
affects the system’s numerical convergent behavior due to
the switch character of the step function in Eq. (2). Here we
would like to both check the convergence order of the
system with the modified BSSN formulation and verify
these arguments numerically.
First, we show the system’s convergence with our

modifications in the left-side panels of Fig. 8, compared
with the one with the traditional BSSN formulation. Here
we use the χi ¼ 0 binary black hole case as an example for
demonstration. In the two plots we study the convergence
of the phase and the amplitude for the gravitational wave,
respectively. According to the plots, the traditional BSSN
formulation results in overall 3.3-order convergence for the
system in both the phase and amplitude of Ψ4, which is
roughly consistent with the ideal convergence of fourth
order with the numerical method used in this work. On the
other hand, it shows in the panels that the modified one
results in only first-order convergence for the system. Since
we already expect that some of our modifications will affect
the convergence of the system, the result is understandable,
although the order of convergence is still considered low.
And we can see from Fig. 8 that the numerical error with
the modified BSSN formulation is much smaller than the
one with the traditional BSSN formulation, especially in the
lower resolutions. This merit for the modified BSSN
formulation could compensate for its disadvantage of
having lower-order convergence. And the convergence
behavior showed in Fig. 8 is general for all the cases we
have considered in this work.
Second, we would like to confirm the theoretical analysis

that it is modification M1, not M3, in the modified BSSN
formulation which significantly affects the convergence
order. By using again the χi ¼ 0 binary black hole case as
an example, we show the result in the right-side panels of
Fig. 8. When we apply the traditional BSSN formulation þ
M1 to the case, the resulting convergence order is first
order, which is roughly the same as the convergence order
for the case with the whole modified BSSN formulation.
Meanwhile, when we apply the traditional BSSN formu-
lation þ M3 to the case, the resulting convergence order is
2.5, which is a little lower than the case with the pure
traditional BSSN formulation, but quite higher than the one
with the modified one.. The result tells that M1 is the key
modification which significantly affects the convergence
behavior of the system, as we expected. However, it also
shows that M3 lowers slightly the convergence order of the
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FIG. 7 (color online). Effect of the extraction radius on the
ADM mass integration. The plot corresponds to the spinless
binary black hole case. The r’s in the legend are the extraction
radii used in this case.
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system. This indicates that the convergence order of M3
might not be numerically as good as the expectation from
our analytical argument [47]. In conclusion, the cases with
our modifications have first-order convergence, which is
lower than the one with the traditional BSSN formulation,
but our modifications give more accurate results than the
traditional BSSN formulation at a given resolution, and
modification M1 is the key factor in our modifications’
effect on the convergence behavior.

IV. DISCUSSION AND SUMMARY

In this work, we applied our modifications of the BSSN
formulation to study the total angular momentum conser-
vation issue in black hole evolutions with the standard
Bowen-York puncture initial data. We found that the non-
negligible loss of angular momentum for highly spinning
black holes mentioned in [43] can be greatly cured with our
modifications. The improvements are obvious for near-
extreme cases, as in the SBH case shown in Fig. 2 and
Fig. 3 and the BBH case in Fig. 6. It has also been shown in
the previous section that the modified BSSN formulation
does not introduce any unphysical effects. Improving the
conservation of the angular momentum usually leads to
certain improvement on the accuracy of the results in black
hole evolutions. Therefore, we expect that our modifica-
tions will provide better performance in black hole evolu-
tion simulations than the traditional BSSN scheme.
ModificationM1 is the most important to the conservation

of the angular momentum since the field equation of the

conformal connection function ~Γi is closely related to the
(angular) momentum vector. We find that Eq. (2) and setting
ξ ¼ 1 gives quite robust and stable runs. But due to the switch
character of M1 and the possible sign fluctuation of the
numerical value of its argumentwhen the argument is close to
zero, the step function is sensitive to the resolution used in
simulations. So this modification significantly affects the
numerical convergence order of the modified BSSN formu-
lation. M2 is able to enhance the hyperbolicity of the system,
especially for the evolution of ~Γi. However, its mechanism
and the optimal choice of σ need further investigations.
Instead of the KO dissipation method used in the

traditional BSSN formulation, modification M3 is used
in the modified BSSN formulation in this work. We can see
in Sec. III that M3 is able to diminish effectively some
intermediate frequency noise with larger amplitude, while
the KO dissipation is good at eliminating the higher-
frequency numerical noise. To some extent, modification
M3 is complementary to the KO method in dissipating
numerical error. However, the advantage of M3 is that it
comes from the derivative of the momentum constraint.
Thus, applying M3 to the BSSN formulation is always
legitimate and safe as long as the momentum constraint
holds. In contrast, the application of the KO method is not
always safe since it is an artificial addition to the field
equation, although it is convenient and effective in numeri-
cal relativity. It is possible that usage of the KO method
leads to deviations of the numerical result from the solution
hypersurface, especially when the result is sensitive to the
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FIG. 8 (color online). Convergence of gravitational wave for the χi ¼ 0 binary black hole case. The left-side panels show the phase
differences and the amplitude differences ofΨ4, respectively, between the high and medium resolutions (solid line), and the medium and
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initial data. It will be a good idea to use both modification
M3 and the KOmethod in dissipating the numerical error in
future simulations.
As mentioned at the beginning of Sec. II, in order to

enforce the algebraic constraints of the unimodular deter-
minant of ~γij, and of ~Aij being traceless, the numerical
values of ~γij and ~Aij are replaced with ~γij → ~γ−1=3 ~γij, ~Aij →
~Ahiji after every time step in the traditional BSSN formu-
lation. However, the modification

~γzz →
1þ ~γyy ~γ

2
xz − 2~γxy ~γyz ~γxz þ ~γxx ~γ

2
yz

~γxx ~γyy − ~γ2xy
; ð10Þ

~Ayy →
~Ax

x þ ~Az
z þ ~Axy ~γ

xy þ ~Ayz ~γ
yz

~γyy
ð11Þ

is employed instead in [42] to enforce the two constraints.
The results in [42] have shown that this modification gains
better stability compared to the traditional BSSN formu-
lation. Differing with [42], in this work we use the
traditional recipe of ~γij → ~γ−1=3 ~γij, ~Aij → ~Ahiji instead of
applying the modification Eqs. (10) and (11). This is
because the denominators in Eqs. (10) and (11) can be
very small near the singularities and, thus, the numerical
values of the replaced ~γzz and ~Ayy can have unexpected
fluctuation that can crash the code. However, this modi-
fication can still be applied to the BSSN formulation if
there is no singularity or if an excision method is used in the
black hole evolution simulations.
In the modifications, we introduce some terms related to

the spacial resolution used in the numerical simulation.

These terms reduce the convergence order from fourth
order to first order in our implementation. But compared
with the traditional BSSN formulation, the numerical error
resulted in the modified BSSN formulation is still obvi-
ously smaller than the one from the traditional BSSN
formulation with a reasonably fine resolution.
In this work, we demonstrated the simulations with the

modified BSSN formulation in which the angular momen-
tum conservation is better than in the traditional BSSN
formulation. Thus, this modified BSSN formulation should
improve the accuracy in the punctured black hole evolutions.
Our modifications are imposed on the field equations of the
physical variables ~γij, ~Aij, and ~Γi, instead of the gauge
variables α and βi. Therefore, we expect that the modified
BSSN formulation can be applied generally to various
scenarios to give improved results in numerical relativity.
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