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We investigate the anti-de Sitter (AdS) counterpart to the well-studied de Sitter (dS) model for energy-
momentum space, viz “κ-momentum space” space (with a structure based on the properties of the κ-Poincaré
Hopf algebra). On the basis of previous preliminary results one might expect the two models to be
complementary: dS exhibiting an invariant maximal spatial momentum but unbounded energy, AdS a
maximal energy but unbounded momentum. If that were the case AdS momentum space could be used to
implement a principle of maximal Planck-scale energy, just as several studies use dS momentum space to
postulate ofmaximal Planck-scale spatial momentum.However, several unexpected features are uncovered in
this paper, which limit the scope of the expected complementarity, and interestingly they take different forms
in different coordinatizations of AdS momentum space. “Cosmological” AdS coordinates mimic the dS
construction used for κ-momentum space, and produce a Carrol limit in the ultraviolet. However, unlike the
κ-momentum space, the boundary of the covered patch breaks Lorentz invariance, thereby introducing a
preferred frame. In “horospherical” coordinateswe achieve full consistencywith frame independence as far as
boost transformations are concerned, but find that rotational symmetry is broken, leading to an anisotropic
model for the speed of light. Finally, in “static” coordinates we find a way of deforming relativistic
transformations that successfully enforces frame invariance and isotropy, and produces a Carrol limit in the
ultraviolet. Our results are also relevant for a long-standing debate on whether or not coordinate redefinitions
in momentum space lead to physically equivalent theories: our three proposals are evidently physically
inequivalent, leading to alternative models of Planck-scale effects. As a corollary we study the UV running of
the Hausdorff dimension of momentum space in the first and third model, obtaining different results.
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I. INTRODUCTION

In recent years findings in several areas of quantum-
gravity research (see, e.g., Refs. [1,2] and references therein)
have motivated the investigation of Planck-scale modified
dispersion relations (MDRs), and this has attracted interest in
MDRs as a possible avenue for Planck-scale phenomenology
associated with astrophysical and cosmological observations
[3–7]. It has become clear that some of the key predictions
arising fromMDRs depend crucially onwhether the relevant
framework breaks ormerely deforms relativistic symmetries.
A preferred-frame scenario is inevitable if the transformation
laws between inertial observers remain the standard special-
relativistic ones, since they only leave invariant the usual
Einsteinian dispersion relationE2 − p2 ¼ m2. However, it is
possible to introduce a deformation of relativistic symmetries
preserving the equivalence of reference frames and leaving
theMDRobserver-independent [8–10]. Notable examples of
such “DSR” (doubly-special, or deformed-special relativity)
scenarios include theories based on a maximally-symmetric
curvedmomentum space. This has been investigated in great
detail if momentum space has de Sitter geometry. Here we
seek to investigate momentum space with anti-de Sitter
geometry, a possibility which has so far received very little
attention in the literature (see, however, [11,12]). In doing so

we will uncover several significant differences between dS
and AdS models of momentum space.
If DSR-relativistic scenarios arise from maximally-

symmetric momentum space it is easy to see how one can
achieve compatibility between some MDRs and the laws of
transformation between inertial observers. One usually
introduces ordinary special relativity by taking as the starting
point the isometries of Minkowski spacetime, but one could
equally well start from the isometries ofMinkowski momen-
tum space. In either case one can derive the transformation
laws of momenta and spacetime coordinates by consistency
[13]. Since the isometries of de Sitter (or anti-de Sitter) space
can be seen as a deformation of the isometries of Minkowski
space, any set of transformation laws derived from the
isometries of de Sitter (or anti-de Sitter) momentum space
is as “relativistic” as special relativity (i.e. it abides by the
principle of the relativity of inertial frames). However, such a
construction entails a deformation of the transformation laws
between inertial observers, and these will leave invariant a
modified (deformed) dispersion relation.
Constructions based on de Sitter momentum space have

been extensively studied in the literature, with many
authors registering the expectation that the counterpart
AdS model would have properties easily obtainable from
those of dS momentum space. Several arguments suggest
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that the two models should be complementary, with dS
exhibiting an invariant maximal spatial momentum but
unbounded energy, and AdS a maximal energy but
unbounded spatial momentum. However, as we will show
in this paper, many crucial novelties arise in AdS curved
momentum space that are not captured by this expected
“complementarity.” Whereas previous arguments focused
exclusively on local properties of the two momentum
spaces, one of the key ingredients of our analysis is the
realization of the fact that different coordinates cover
different patches of the manifold, and that this leads
to different physical statements on what is the free theory.
A number of options appear, mimicking—or not—
constructions previously considered for dS. We will find
that in all of them AdS momentum space is qualitatively
very different from dS, the main point made in this paper.
An important reference for us is the so-called

“κ-momentum space,” a coordinatization of a certain patch
of de Sitter momentum space which has been found to have
remarkably good relativistic properties, and can be inspired
by the formal structure of the κ-Poincaré Hopf algebra
[14–17].1
As we observed in Ref. [18], κ-momentum space can be

viewed as the momentum space equivalent of the “cosmo-
logical” representationof dS spacetime.While our focus here
is on the AdS momentum space, an important source of
intuition for us is provided by these previous results on the dS
momentum space, and specifically the κ-momentum-space
construction, so we find appropriate to review those results
in Sec. II. Then in Sec. III A we find the corresponding
construction for AdS. In such “cosmological” coordinates a
simple representation for the Casimir invariant, momentum
space metric and integration measure is found. However,
unlike with dS, the boundary of the covered patch breaks
Lorentz invariance. If analyzed only at the level of infini-
tesimal transformations the model is DSR-relativistic, but a
breakdown of Lorentz invariance is noticed when consider-
ing finite Lorentz transformations. We know of no previous
examples in the literature of such subtle breakdown of
relativistic symmetries (see, however [19]).
Another possible approach mimicking the κ-momentum

space consists of using “horospherical” coordinates, which
cover a patch of AdS. We do this in Sec. III B, only to

encounter a similar problem to that found for cosmological
coordinates, but this time regarding the rotations. Similarly
to what happens for boosts in “cosmological” coordinates,
the boundary of the patch covered by horospherical
coordinates breaks invariance under rotations, and so the
theory is anisotropic. The ensuing formalism is somewhat
awkward, and the expression for the Casimir is far more
complex. However, we argue that this could be a good
model for encoding anisotropic MDRs and speed of light.
We should however bear in mind some potential pathol-
ogies: the model does not allow one spatial momentum to
take arbitrary negative values if we want to preserve
invariance under finite boosts.
In view of the symmetry breaking properties of these

two models, in Sec. III C we investigate an alternative
construction which does not purport to mimic the
κ-momentumspace.Weproposeasetofcoordinatesanalogous
to “static” coordinates in the spacetime picture. They cover the
whole ofAdS and do not break Lorentz invariance in anyway.
They lead to simple expressions for the metric, Casimir and
integration measure. As with the first model, we find a Carroll
limit in the UV, i.e.: the speed of light goes to zero in the UV.
As an application, in Sec. IV we briefly investigate the

issue of running of dimensionality for the first and third
model (the matter is far less obvious for the second model,
due to its anisotropy). We do this by choosing linearizing
coordinates and evaluating the measure of integration on
momentum space (a procedure described in [18,20], known
to match the spectral dimension in the UV limit in all cases
studied so far). We find that the two models exhibit running
to different dimensions, a particularly transparent indica-
tion of the fact that they are physically distinct models,
though both based on AdS momentum space.
Given that static coordinates have not been considered for

dS, for completeness in Sec. V we present them. We find that
they breakLorentz invariance in a fashion similar to that found
for AdS in cosmological coordinates. We also examine
running of dimensionality in the correspondingmodel, finding
a very suggestive result. In a concluding section we collect
the main results of this paper and discuss their implications.

II. DE SITTER MOMENTUM SPACE

As mentioned in the Introduction the action of relativistic
symmetries on momenta can be deformed if one considers a
maximally symmetric curved momentum space. A widely
studied example of deformed Poincaré symmetries reflect-
ing such nontrivial geometry of momentum space is the so-
called κ-Poincaré algebra [14,15,17]. Indeed, as first shown
in [21], in a κ-deformed framework momenta can be seen as
coordinates on a portion of de Sitter momentum space
defined as a four-dimensional hypersurface:

−P2
0 þ P2

1 þ P2
2 þ P2

3 þ P2
4 ¼

1

l2
; ð1Þ

embedded in five dimensional Minkowski space, with line
element:

1The main point is that on the portion of de Sitter momentum
space covered by such “κ-coordinates” the action of relativistic
symmetry generators on the momentum manifold can be inter-
preted in terms of the action of the quantum κ-Poincaré algebra.
Some nontrivial properties of the κ-Poincaré algebra, namely the
antipode and coproduct of the algebra elements, have a role in the
definition of the conservation laws in interactions of particles
whose momentum space is this “κ-momentum space.” Here, we
will not be concerned with this last aspect, as we are focusing on
the single-particle properties of momentum space. For the same
reason, we will not look for possible quantum-algebraic struc-
tures associate to AdS momentum space. In fact, in order to do
this, we would need to define the properties of multiparticle
systems as well, which goes beyond the scope of this work.
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ds2 ¼ −dP2
0 þ dP2

1 þ dP2
2 þ dP2

3 þ dP2
4; ð2Þ

selected by the inequality

P0 − P4 > 0; ð3Þ
where the “cosmological constant” is the inverse of the
parameter which governs the deformation of the algebraic
structures in κ-Poincaré, κ ¼ 1=l. The natural parametri-
zation of this submanifold, inherited by the bicrossproduct
basis of the κ-Poincaré algebra [22], is given by bicross-
product coordinates, which correspond in position space to
the “cosmological” or “flat slicing” rendition of de Sitter
space. They are related to the embedding coordinates via:

P0ðE; ~pÞ ¼
sinhðlEÞ

l
þ lp2

2
elE;

PiðE; ~pÞ ¼ −pielE;

P4ðE; ~pÞ ¼ −
coshðlEÞ

l
þ lp2

2
elE; ð4Þ

where p≡ j~pj. With these coordinates the line element
takes the familiar “cosmological” de Sitter metric form:

ds2 ¼ −dE2 þ e2lE
X3
j¼1

dp2
j ð5Þ

from which it is easy to infer the invariant integration
measure in momentum space:

dμðE; ~pÞ ¼ e3lEp2dEdp: ð6Þ
The deformed mass-shell is given by the intersection of a

plane P4 ¼ const with the momentum manifold:

−P2
0 þ ~P2 ¼ 1

l2
− P2

4 ¼ m2: ð7Þ

In Fig. 1 we show the κ-momentum space and the mass-
shells given by the above constraint. In the massless case,
using the relations above, it can be shown that the mass-
shell condition reads

C
�
1þ l2C

4

�
¼ 0; ð8Þ

where C is the Casimir invariant of the κ-Poincaré algebra in
bicrossproduct coordinates:

C ¼ −
4

l2
sinh2ðlE=2Þ þ elEp2: ð9Þ

Looking at the mass-shell, it is clear that one has to perform
a further restriction on the allowed range for the embedding
coordinates in order for the theory to be relativistic. In fact,
a crucial request is that any mass-shell is completely within
the allowed portion of de Sitter momentum space. Failure
to meet this condition would result in the possibility for
finite boosts to bring outside the allowed region some

points that were originally within it. The restriction one has
to enforce is given by the conditions

P0 > 0; P4 < 0: ð10Þ

However let us mention that at a field theoretic level the
Hopf algebraic structures of the κ-Poincaré algebra ensure
that the model is fully consistent without the further
restriction above [23].

A. Running of Hausdorff dimension of momentum
space for the κ-momentum space scenario

In [18] we showed that the κ-momentum space is
characterized by a running of its Hausdorff dimension when
going from the IR regime to theUV.We considered a general
Dþ 1 de Sitter manifold, and we allowed for the mass-shell
to be a generic function of the κ-Poincaré Casimir, para-
metrized as m2 ¼ Cð1þ l2γCγÞ. Here we review the argu-
ment found in [18] forUVdimensional running, specializing
to the D ¼ 3, γ ¼ 1 case, which is the one discussed in
the previous subsection (the exact coefficient of the
UV-dominant term in the mass-shell relation does not affect
the UV value of the Haussdorf dimension). In doing so, we
will add some remarks that will facilitate comparison with
the AdS constructions.
The phenomenon of dimensional running can be charac-

terized by choosing a set of “linearizing coordinates,”
rendering the dispersion relations trivial in the UV, and
examining the dimensionality associated with the integration
measure in such coordinates. The linearizing coordinates for
C, are [18]

FIG. 1 (color online). The portion of (2-dimensional) de Sitter
momentum space known as the “2D κ-mometum space.” The blue
plane is defined by the condition P0 − P4 ¼ 0, so the κ-mometum
space is on the upper-left side of the plane. The red lines represent
the mass-shells, defined by the condition P4 ¼ const. In order to
have the mass-shells completely within the allowed region one has
to further restrict to P0 > 0 and P4 < 0.
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~E ¼ 2 sinhðlE=2Þ
l

~pi ¼ pielE=2; ð11Þ
which in the UV limit (defined as E → ∞ and p → 1=l)
become:

~E ≈
elE=2

l

~pi ≈
elE=2

l
ð12Þ

(we note that in the UV limit ~E ≈ ~p, even off-shell). In terms
of the new coordinates the measure (6) is given by:

dμ ¼ ~E2 ~p2d ~Ed ~p: ð13Þ

As explained in [18], for on shell relations which in the UV
limit take the form C1þγ , one finds

dH ¼ 6

1þ γ
; ð14Þ

so in the case of interest here (γ ¼ 1) one finds that the
Hausdorff dimension runs to 3 in the UV.
Notice that we could obtain the same result by linear-

izing directly the on-shell relation that comes out of the
κ-momentum space construction, Eq. (7). This amounts to
choosing the embedding coordinates themselves as linear-
izing coordinates. In the UV, their relation to the bicross-
product coordinates is

~E ¼ P0 ≈
elE

2l
ð1þ l2p2Þ

~pi ¼ Pi ≈ pielE ð15Þ
where the approximate signs refer to the UV limit approxi-
mation. We note also here that in the UV limit ~E ≈ ~p, even
off-shell. The measure (6) in the new coordinates now reads:

dμ ¼ ~p2

~E
d ~pd ~E ð16Þ

from which we can directly read dH ¼ 3.2 The last descrip-
tion will be useful in establishing a comparison with AdS
constructions. It implies that if we take the MDR that comes

most naturally out of dS [i.e., Eq. (7)] thenwewould observe
dimensional reduction from Dþ 1 to D. This can be
equivalently obtained from C with γ ¼ 1.

III. ADS MOMENTUM SPACE

As with dS space, AdS momentum space can be
described as a four-dimensional hypersurface embedded
in a five-dimensional flat space, this time with signature
−;−;þ;þ;þ. The submanifold is now defined by:

−P2
0 þ P2

1 þ P2
2 þ P2

3 − P2
4 ¼ −

1

l2
ð18Þ

and the corresponding line element is

ds2 ¼ −dP2
0 þ dP2

1 þ dP2
2 þ dP2

3 − dP2
4: ð19Þ

A. Cosmological coordinates for AdS

In analogy with the κ-momentum-space construction
over dS we seek coordinates casting a portion of AdS in the
form of a cosmological metric (which is no longer a “flat
slicing,” as it was for dS). It can be shown (see the
Appendix) that the cosmological AdS coordinates are
defined by the following relation with the embedding
coordinates:

P0ðE; ~pÞ ¼
1

l
sinlE

P1ðE; ~pÞ ¼ p1 cosðlEÞ
P2ðE; ~pÞ ¼ p2 cosðlEÞ
P3ðE; ~pÞ ¼ p3 cosðlEÞ

P4ðE; ~pÞ ¼
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlpÞ2

q
coslE: ð20Þ

In these coordinates the metric reads:

ds2 ¼ −dE2 þ cos2ðlEÞ
�

dp2

1þ l2p2
þ p2dΩ2

�
: ð21Þ

The submanifold covered by these coordinates is defined
by the constraint −1=l ≤ P0 ≤ 1=l, or, if we require the
energy to be positive, 0 ≤ P0 ≤ 1=l. Using the line
element (21) we easily deduce the invariant integration
measure for AdS momentum space in these coordinates:

dμðE; pÞ ¼ cos3ðlEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2p2

p p2dEdp: ð22Þ

In analogy with dS, the mass-shell relation can be inferred
by imposing P4 ¼ const upon the surface condition:

2In the more general Dþ 1-dimensional case, and allowing
for redefinitions of the mass-shell with UV limit m2 ¼
l2γðP2

0 − ~P2Þ1þγ one would get

dH ¼ D
1þ γ

: ð17Þ
Note that this is another example of correspondence between the
UV Hausdorff dimension of momentum space and the UV limit
of the spectral dimension. The second one was computed in [24]
for the 4- and 3- dimensional cases, and the results are in
agreement with formula (17).
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−P2
0 þ ~P2 ¼ −

1

l2
þ P2

4 ¼ −m2: ð23Þ

From this we see that we must require that m ≤ 1=l. In
terms of the cosmological AdS cordinates the mass-shell
condition takes the form:

−
1

l2
sin2 lEþ p2 cos2ðlEÞ ¼ −m2: ð24Þ

In Fig. 2 we plot the submanifold of AdS covered by
cosmological coordinates as well as the mass-shells given
by the constraint (23).

1. Maximal energy and speed of light in the UV limit

The mass-shell condition given by Eq. (24) implies the
presence of a maximal energy in the theory (just like on the
κ-momentum space there is a maximal spatial momentum).
Let us consider a massless particle, in this case the
dispersion relation is given by

1

l
tanðlEÞ ¼ p ð25Þ

and it is evident that

E ≤ Emax ¼
π

2l
; ð26Þ

whereas there is no maximal spatial momentum. In
addition, we see that the speed of light goes to zero as
p → ∞

c ¼ dE
dp

→ 0: ð27Þ

This is nothing but the Carroll limit [25]. For massive
particles the mass shell can be written as:

cos2 lE ¼ 1 − l2m2

1þ l2p2
ð28Þ

(remember that the constraint m < 1=l must be satisfied).
As p → ∞ again we get E → Emax. Notice that if m ¼ 1=l
then the MDR does not fix the momentum, and the energy
saturates. A plot of the behavior of the MDR is shown
in Fig. 3.

2. Violation of Lorentz invariance

Despite the care taken not to introduce a preferred frame,
this has in fact sneaked in by virtue of the fact that the
boundary of the submanifold is not invariant under the
action of the Lorentz group. This is a crucial difference
between the analogous constructions for dS (for which the
boundary is P0 ¼ P4) and AdS (where the boundary is
jP0j ¼ 1=l). It might seem a subtle point, but the impli-
cations are obvious if we write down the Lorentz trans-
formations in momentum space.
These can be described as a nonlinear representation of

the Lorentz group, inferred from the standard ones as applied
to the embedding coordinates through the relations (20).
For a finite boost in the 1̂ direction, the explicit trans-

formation rules are

E0 ¼ 1

l
arcsin

�
γl

�
1

l
sinðlEÞ − vp1 cosðlEÞ

��
; ð29Þ

p0
1 ¼

γðp1 cosðlEÞ − v 1
l sinðlEÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2γ2ð1l sinðlEÞ − vp1 cosðlEÞÞ2
q ; ð30Þ

p0
2 ¼

p2 cosðlEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2γ2ð1l sinðlEÞ − vp1 cosðlEÞÞ2

q ; ð31Þ

FIG. 2 (color online). Portion of AdS momentum space covered
by cosmological coordinates. The condition for the allowed
region is −1=l < P0 < 1=l, which is the portion of the AdS
manifold between the two blue planes. The red lines represent the
mass-shells, defined by the condition P4 ¼ const.

1.5 1.0 0.5 0.5 1.0 1.5
p

0.2

0.4

0.6

0.8

1.0
E

FIG. 3 (color online). Dispersion relation for a massive particle
(28) in AdS momentum space with cosmological coordinates,
with l ¼ 1 and m ¼ 0.1.
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p0
3 ¼

p3 cosðlEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2γ2ð1l sinðlEÞ − vp1 cosðlEÞÞ2

q : ð32Þ

These can be shown to be generated by:

L01 ¼ p1 cosðlEÞ∂E þ 1

l
tanðlEÞ∂p1

: ð33Þ

It is obvious that there is something pathological with the
finite transformations: as the transformation for the energy
shows, there is clearly a maximal boost parameter, such that
any larger boost would bring the value of energy outside the
allowed range.
Another way to see that this framework is not invariant

under finite boosts is by noticing that any mass shell that
goes through the allowed region of the AdS manifold is not
completely included within that region (see Fig. 2), and
there is no way to further restrict the allowed region so as to
solve the problem. This means that for any value of the
mass and energy, there will always be a finite boost pushing
the particle outside the allowed range of parameters.
Yet another indicator of the breakdown of relativistic

invariance is the fact that not only is the energy E bounded,
but also the embedding one:

P0 ≤ P0max ¼
1

l
ð34Þ

and this is clearly incompatible with its standard trans-
formation rules under boosts. This is in sharp contrast with
the corresponding situation in de Sitter space, where p is
bounded, but not its embedding counterpart.

B. Horospherical coordinates

An AdS coordinate system which mimics more closely
the dS properties of the κ-momentum space is given by the
so-called horospherical coordinates [26,27]. In terms of
the embedding coordinates they read

P0 ¼
1

l
cosh ðlk0Þ þ

l
2
elk0kiki;

P4 ¼ elk0k1;

P2 ¼ elk0k2;

P3 ¼ elk0k3;

P1 ¼
1

l
sinh ðlk0Þ −

l
2
elk0kiki; ð35Þ

where now kiki ¼ −k21 þ k22 þ k23. It is easy to verify that
they satisfy constraint (18) but only cover the P0 þ P1 > 0
region, half AdS (see [27]). The spurious embedding
coordinate has to be timelike in this case and indeed it
is easily verified that this must be P0 since it diverges for
l → 0, the flat momentum space limit.

Let us note that k0 is now one of the components of the
spatial momentum, and k1 is the energy. It is physically
more transparent to write the new coordinates as:

P0 ¼
1

l
cosh ðlp1Þ þ

l
2
elp1ð−E2 þ p2

2 þ p2
3Þ;

P4 ¼ elp1E;

P2 ¼ elp1p2;

P3 ¼ elp1p3;

P1 ¼
1

l
sinh ðlp1Þ −

l
2
elp1ð−E2 þ p2

2 þ p2
3Þ: ð36Þ

In such coordinates the line element is given by

ds2 ¼ e2lp1ð−dE2 þ dp2
2 þ dp2

3Þ þ dp2
1; ð37Þ

and the associated integration measure is

dμ ¼ e3lp1dEdp: ð38Þ

Analogously to what we have done in the previous
subsections, we find the mass-shell condition by requiring
that the spurious timelike coordinate is constant, which in
this case amounts to asking P0 ¼ const:

P2
0 −

1

l2
¼ −~P2 þ P2

4 ¼ −m2: ð39Þ

Also here this implies that the mass cannot be arbitrarily
large, m ≤ 1

l. In terms of the embedding coordinates the
mass-shell condition reads:

−m2 ¼−e2lp1E2þe2lp1ðp2
2þp2

3Þ

þ
�
1

l
sinhðlp1Þ−

l
2
elp1ð−E2þp2

2þp2
3Þ
�

2

: ð40Þ

In Fig. 4 we plot the submanifold of AdS covered by
horospherical coordinates, as well as the mass-shells.
Despite the obvious anisotropy introduced by these coor-
dinates, a deformed description of rotations exists, and can
be derived in analogy of what was done for boosts in
cosmological coordinates. This means that the submanifold
is invariant under infinitesimal transformations. However,
one can see that the further restriction of the manifold to the
P1 > 0, P0 > 0 region has to be enforced in order to have
worldlines not exiting the manifold (i.e. to have invariance
under finite boosts). This in turn leads to a breakdown of
invariance under rotations, because of the condition P1 > 0
due to the fact that embedding coordinates transform
according to the standard Lorentz transformations.
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1. Anisotropic speed of light

It is interesting to look at the behavior of the speed of
light in this model. For notational simplicity we restrict to
the case of 2þ 1-dimensional AdS momentum space and
we write the spatial momenta in polar coordinates
p1 ¼ p cos θ; p2 ¼ p sin θ. The dispersion relation for a
massless particle reads

E2 ¼ 1

2l2
ð2e−2lpcosθ þ ð2þ l2p2sin2θÞ− e−lpcosθ·

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16−p2l2sin2θð4þ e2lpcosθð4þ 3l2p2sin2θÞÞ

q
Þ:

ð41Þ

The deformation of rotations which guarantee local invari-
ance of the manifold leads to a direction-dependent
dispersion relation and as a consequence to a direction-
dependent speed of light.
The general expression is quite complicated (a plot of its

angular dependence can be seen in Fig. 5), so here we only
write down the two special cases θ ¼ 0 (speed of light
along the p1 direction) and θ ¼ π=2 (speed of light along
the p2 direction)

cðp; θ ¼ 0Þ ¼ e−lp ð42Þ

cðp; θ ¼ π=2Þ ¼ lpð4þ 3l2p2 þ AÞ
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 2l2p2 − 2A

p ð43Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 8l2p2 − 3l4p4

p
. Note that the speed of

light becomes imaginary whenever p and θ are such that

the condition P1 > 0 is violated. This makes it impossible
to reach infinite speed of light in any direction. Strange as
this model might be it could be a good framework for
encoding fundamental anisotropy, with constraints on it
encapsulating observational facts, like those derived from
modern day versions of the Michelson-Morley experiment.
Occasional claims for cosmological anisotropy (e.g. [28])
could also be embedded in this model, but the matter is
beyond the scope of this paper.

C. “Static” coordinates

Static coordinates cover the full AdS manifold, and so
clearly they do not break Lorentz invariance, but rather
deform it. They can be defined from the embedding
coordinates via:

P0 ¼
1

l
sinðlEÞ coshðlp0Þ;

Pr ¼
1

l
sinhðlp0Þ;

P4 ¼
1

l
cosðlEÞ coshðlp0Þ; ð44Þ

where Pr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ P2

2 þ P2
3

p
. The line element in these

coordinates is

ds2 ¼ − cosh2ðlp0ÞdE2 þ dp02 þ 1

l2
sinh2ðlp0ÞdΩ: ð45Þ

We can also use an areal coordinate:

p ¼ sinhðlp0Þ
l

ð46Þ

resulting in:

FIG. 4 (color online). Portion of AdS momentum space covered
by horospherical coordinates. The condition for the allowed
region is P0 þ P1 > 0, which is the portion of the AdS manifold
on the lower-right side of the blue plane. The mass-shell is given
by P0 ¼ const. and is in red. Remember that now the P4

coordinate is the one related to energy and P1 is a spatial
coordinate.

1 2 3 4 5 6

1.00

1.05

1.10

c

FIG. 5 (color online). Speed of light in horospherical coor-
dinates as a function of θ, for l ¼ 1; p ¼ 0.1.
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P0 ¼
1

l
sinðlEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlpÞ2

q
;

Pr ¼ p;

P4 ¼
1

l
cosðlEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlpÞ2

q
; ð47Þ

for which the line element is

ds2 ¼ −ð1þ ðlpÞ2ÞdE2 þ dp2

1þ ðlpÞ2 þ p2dΩ: ð48Þ

Notice that invariance under (deformed) Lorentz
transformations is not spoiled if we ask the energy to be
positive, i.e. this requirement is compatible with the
deformed transformation rules. This can be seen from
(47): enforcing the positivity of E is equivalent3 to
enforcing the positivity of P0. But the embedding coor-
dinate P0 transforms with the standard Lorentz trans-
formations, so asking it to be positive works in the same
way as in the usual special relativistic case. Another
interesting feature of such coordinates is that the integration
measure is undeformed:

dμ ¼ p2dpdE: ð49Þ
We can find the mass-shell relation again by requiring that
P4 ¼ const:

−P2
0 þ ~P2 ¼ −

1

l2
þ P2

4 ¼ −m2; ð50Þ

which in static coordinates becomes:

−
sin2ðlEÞ

l2
½1þ ðlpÞ2� þ p2 ¼ −m2: ð51Þ

In order to explore the physics and UV limit we
consider massless particles. We see that their spatial
momentum is unbounded, but their energy tends to a
maximum:

p → ∞ ð52Þ

E → Emax ¼
π

2l
: ð53Þ

We take these limiting values as the UV limit of the model.
The speed of light is given by:

c ¼ dE
dp

¼ 1

1þ ðlpÞ2 ð54Þ

and in the UV limit this goes to zero, what is known in the
literature as the Carroll limit [25].

IV. UV DIMENSIONAL REDUCTION
IN ADS MOMENTUM SPACE

In a series of recent papers [18,20] we have shown that it
is possible to characterize the phenomenon of dimensional
reduction in the UV dispensing with the concept of spectral
dimension altogether. This is beneficial, as the latter
appeals to a fictitious time parameter, requires the
Euclideanization of the space, and is not always based
on a properly defined probability distribution. Instead we
showed that we could transfer all the nontrivial effects of
the MDRs into the measure, adopting linearizing variables
and then study the Hausdorff dimension of the energy-
momentum space in these variables. This is a physically
clearer procedure, and asymptotically (i.e. in the deep UV
limit) it produces results coinciding with those using the
spectral dimension in all known cases. Given the difficul-
ties in defining asymptotic spectral dimension for AdS
momentum space, we favor our procedure here.
As with [18,20] we shall be concerned with MDRs

which in the UV limit have the form:

Ω ¼ fðCÞ ≈ C1þγ ð55Þ

where C is the Casimir invariant of the theory. We will
examine the UV running of the Hausdorff dimension for
cosmological and static coordinates which have a clear UV
limit leaving aside the case of horospherical coordinates
whose anisotropic nature renders the notion of UV limit
ambiguous.

A. Cosmological coordinates

Following [18,20], we find linearizing variables in 2 steps:
first by assuming γ ¼ 0, then generalizing to γ ≠ 0. When
γ ¼ 0 (i.e. when the MDRs are just the Casimir) the
linearizing coordinates are just the embedding coordinates,
as in (20): ~E≡ P0; ~p≡ P. InDþ 1 space-time dimensions
themomentum space integrationmeasure in such variables is

d ~μ ¼ ~pD−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2ð ~p2 − ~E2Þ

q d ~Ed ~p; ð56Þ

which, in the UV limit (as defined above), becomes

d~μ ≈ ~pD−2d ~Ed ~p: ð57Þ

Therefore the Hausdorff dimension is reduced by 1.We note
that this is just the general measure studied in [18]:

dμð ~E; ~pÞ ∝ ~pDx−1 ~EDt−1d ~Ed ~p ð58Þ

with values Dt ¼ 1, and Dx ¼ D − 1.
If γ ≠ 0 the linearizing coordinates can be found by

following the “step 2” described in [18], but we stress that
the procedure here does not rely on Euclideanization. In3In this work we always assume l > 0.
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[18] we were dealing with an Euclideanized version of
momentum space (because we wanted to study the asymp-
totic coincidence of spectral and Hausdorff dimensions),
but the procedure carries through with a minimal adaptation
if we remain Lorentzian. All we need to do is introduce
hyperbolic (instead of spherical) polar coordinates:

~E ¼ r cosh θ ð59Þ

~p ¼ r sinh θ ð60Þ

so that the MDRs become

Ω ¼ r2ð1þγÞ: ð61Þ

We can then define a linearizing variable

r̂ ¼ r1þγ ð62Þ

such that:

dμ ∝ r̂
DtþDx
1þγ −1ðcos θÞDt−1ðsin θÞDx−1dr̂dθ ð63Þ

leading to the conclusion that in the UV:

dH ¼ Dt þDx

1þ γ
: ð64Þ

For the AdS model we are considering, this therefore
becomes:

dH ¼ D
1þ γ

: ð65Þ

B. Static coordinates

Similarly to what happens for the cosmological coor-
dinates, the linearizing coordinates for the model are the
embedding coordinates found in (47). The integration
measure is the same as (56). However the UV limit now
entails ~E ≈ ~p leading to an undeformed measure. This
model therefore has nontrivial physical effects (e.g. it has a
Carroll limit) but it does not present running of the
dimensionality, if γ ¼ 0. If γ ≠ 0 one can straightforwardly
calculate

dH ¼ 1þD
1þ γ

; ð66Þ

and we therefore have a nontrivial running of the
dimensionality.

V. DE SITTER MOMENTUM SPACE IN
STATIC COORDINATES

The first two models above arise from attempts to
construct four-momenta defined on AdS space using a
duality approach to dS space of momenta associated to
κ-Poincaré. The third model based on “static coordinates,”
however, was proposed without reference to a dS construc-
tion, so one might wonder what the equivalent dS model
would be. Aswe shall see, whilst static coordinates lead to an
AdS momentum space model which does not break any
symmetry, its dS counterpart breaks Lorentz invariance.
Static coordinates for dS may be built from:

P0 ¼
1

l
sinhðlEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðlpÞ2

q
;

Pr ¼ p;

P4 ¼
1

l
coshðlEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðlpÞ2

q
; ð67Þ

leading to metric:

ds2 ¼ −ð1 − ðlpÞ2ÞdE2 þ dp2

1 − ðlpÞ2 þ p2dΩ; ð68Þ

and an undeformed integration measure. The Casimir is

C ¼ −
sinh2ðlEÞ

l2
½1 − ðlpÞ2� þ p2 ¼ m2; ð69Þ

and we see that the theory has a maximum spatial
momentum, pmax ¼ 1=l, but unbounded energy, just like
the κ-Poincaré case. (This maximal momentum coincides
with the location of de Sitter’s horizon, in the counterpart
position space version of the space.)The UV limit may be
accordingly defined by:

p → pmax ¼
1

l
ð70Þ

E → ∞: ð71Þ

and in such limit the speed of light

c ¼ dE
dp

¼ 1

1 − ðlpÞ2 ð72Þ

goes to infinity in the UV.
All of these features are very similar to what is found in

κ-Poincaré in the bicrossproduct basis. However this model
breaks Lorentz symmetry in a way that mimics closely
what happens for cosmological AdS coordinates. Indeed
looking at the embedding coordinates (67), it is clear that
the maximum value of momentum is reflected into a
maximum value of the embedding coordinate Pr. Since
the embedding coordinates transform according to standard
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Lorentz transformations, this is inconsistent with the
relativity of inertial frames.
We conclude by noticing that this model also exhibits

running of dimensionality. Working out the integration
measure in linearizing coordinates, ~E≡ P0; ~p≡ Pr, leads
to:

d~μ ¼ ~pD−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − l2ð ~p2 − ~E2Þ

q d ~Ed ~p; ð73Þ

that in the UV limit becomes

d~μ ≈
~pD−1

~E
d ~Ed ~p: ð74Þ

Following our standard calculation, we find for the UV
Hausdorff dimension of momentum space

dH ¼ D
1þ γ

: ð75Þ

This is suggestively similar to what we found for AdS in
cosmological coordinates. It also matches the result
obtained for dS linearizing directly from the embedding
coordinates, as discussed in Sec. II.

VI. CONCLUSIONS

In this paper we took a first stab at defining a curved
momentum space based on AdS geometry, in analogy with
previous work for dS space. A number of significant
novelties were uncovered in the process.
The equivalent of the bicrossproduct basis was sought in

two ways. First, we noted that we can regard the bicross-
product basis as the momentum space counterpart of the
“cosmological” covering of dS, and sought similar coor-
dinates for AdS. We found that the equivalent construction
for momentum space AdS, while simpler than dS and
superficially more elegant, in fact breaks Lorentz invari-
ance instead of deforming it. The model must introduce a
preferred frame because the boundary of the corresponding
submanifold is no longer invariant under the action of the
Lorentz group. The ensuing model may thus be useful as a
way of encoding subtle frame-dependence due to the
boundary effects: the frame dependence is only obvious
with sufficiently large Lorentz transformations.
One can also look at the bicrossproduct momenta

associated to κ-Poincaré as horospherical coordinates on
dS momentum space. Such coordinates can be introduced
also for AdS momentum space and we defined the
associated energy and momentum. We find that the
corresponding construction introduces spatial anisotropy
in momentum space and thus one must deform not only
Lorentz symmetry but also spatial rotations. However,
similarly to what happens in the “cosmological”

coordinates setting, the boundary is not invariant under
rotations, breaking isotropy. The result is awkward in
several other ways, including the fact that the speed of
light and the MDRs are anisotropic. So these first two
models do not present very compelling phenomenology
and, one might argue in particular, that the breaking of
isotropy introduced by the second model is not particularly
appealing.
A third construction, based on “static coordinates,”

whilst not mimicking the usual set up for κ-Poincaré space,
proves to be the best one conceptually and in terms of
simplicity. It leads to an undeformed integration measure
and a very simple Casimir invariant. It models a maximal
energy and unbounded spatial momentum without intro-
ducing a preferred frame. The speed of light goes to zero in
the UV limit, and this is achieved isotropically. We
advocate this construction as the most conservative model
for AdS momentum space. For completeness, in this paper
we have also considered a dS model based on static
coordinates, the counterpart to the last AdS model proposed
in this paper. Curiously the dS static model breaks Lorentz
invariance in a way similar to what happens to the AdS
model in cosmological coordinates.
As a first explicit application of these models we

investigated here the phenomenon of running of the
dimensionality. We did this by considering “linearizing”
coordinates (i.e. coordinates which render the dispersion
relations trivial) and evaluating the integration measure in
terms of them, to find the associated Hausdorff dimension.
This procedure was considered in the past [18,20], and
found to match the spectral dimension in the UV limit in all
cases studied. In this paper we found that the (Lorentz
breaking) AdS model based on cosmological coordinates
runs to:

dH ¼ D
1þ γ

ð76Þ

in the UV limit, whereas the (non-Lorentz breaking) model
based on static coordinates runs to:

dH ¼ 1þD
1þ γ

ð77Þ

showing further that the two models are physically distinct
models. It is curious that the equivalent result for dS in
static coordinates matches the result found for AdS in
cosmological coordinates [cf. Eq. (75) and Eq. (65)]. This
also matches the result for the κ-Poincaré space [24] if we
linearize the Casimir coming directly from the embedding
variables, as explained in the discussion leading to Eq. (17).
Could this be pointing us to an interesting duality?
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APPENDIX: DERIVATION OF COSMOLOGICAL
COORDINATES FOR ADS

One starts by setting [29]:

P0 ¼
1

l
sinlE;

Pi ¼ P̂i coslE;

P4 ¼ P̂4 coslE; ðA1Þ

where i ¼ 1; 2; 3 and Pμ are the embedding coordinates. In
this way Eq. (18) becomes a condition requiring the spatial
homogeneous leaves to be hyperboloids:

P̂2
i − P̂2

4 ¼ −
1

l2
: ðA2Þ

In terms of these coordinates the metric induced on the
4-surface is the cosmological rendition of (a portion of)
AdS:

ds2 ¼ −dE2 þ cos2ðlEÞdσ2 ðA3Þ
where the spatial metric is

dσ2 ¼ dP̂2
1 þ dP̂2

2 þ dP̂2
3 − dP̂2

4 ðA4Þ

subject to (A2). Introducing polar coordinates in the fP̂ig
space:

P̂1 ¼ p cos θ;

P̂2 ¼ p sin θ cosϕ;

P̂3 ¼ p sin θ sinϕ; ðA5Þ
ensures that p will be a comoving areal coordinate. Indeed,
then dσ2 ¼ dp2 þ p2dΩ2 − dP2

4, and dP2
4 can at most

correct the dp2 component of the metric. Specifically we
can solve (A2) as:

P̂4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2p2

p

l
ðA6Þ

and by differentiating and inserting in dσ2 we get the
cosmological form of the AdS metric:

ds2 ¼ −dE2 þ cos2ðlEÞ
�

dp2

1þ l2p2
þ p2dΩ2

�
: ðA7Þ

The explicit expression relating the two sets of coordinates
is therefore:

P0ðE; ~pÞ ¼
1

l
sinlE;P1ðE; ~pÞ

¼ p cosðlEÞ cos θ; P2ðE; ~pÞ
¼ p cosðlEÞ sin θ cosϕ; P3ðE; ~pÞ
¼ p cosðlEÞ sin θ sinϕ; P4ðE; ~pÞ

¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlpÞ2

q
coslE: ðA8Þ

This transformation can be abbreviated using notation:

P0ðE; ~pÞ ¼
1

l
sinlE;

PrðE; ~pÞ ¼ p coslE;

P4ðE; ~pÞ ¼
1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðlpÞ2

q
coslE; ðA9Þ

where the fPig are to be obtained from Pr via the usual
polar coordinate formulas. Then Eq. (A9) is valid in any
number D of spatial dimensions, as long as we employ the
standard polar coordinate D − 1 angles. In these coordi-
nates the AdS metric is

ds2 ¼ −dE2 þ cos2ðlEÞ
�

dp2

1þ l2p2
þ p2dΩ2

D−1

�
: ðA10Þ
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