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We study an electric field created by a static electric charge near the higher-dimensional Reissner-
Nordstrom black hole. The relation between the static Green functions on the D-dimensional Reissner-
Nordstrom background and on the (D + 2)-dimensional homogeneous Bertotti-Robinson spacetime is

found. Using the biconformal symmetry we obtain a simple integral representation for the static Maxwell

Green functions in arbitrary dimensions. We show that in a four-dimensional spacetime the static Green

function obtained by the biconformal method correctly reproduces known results. We also find a closed

form for the exact static Green functions and vector potentials in the five-dimensional Reissner-Nordstrom

spacetime.
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I. INTRODUCTION

In this paper we continue studying fields created by static
charges placed in the vicinity of a higher-dimensional static
black hole. For this purpose we use the method of
biconformal transformations, which was developed in
our previous paper [1,2] in application to the case of scalar
charges in the Schwarzschild-Tangherlini and Reissner-
Nordstrom geometries.

A vector potential A, in a D-dimensional spacetime
with metric g,, (u,v=0,...,D —1) obeys the Maxwell
equations

Fw., = 4xJ*, (1.1)
Here coefficient 4z comes from the definition of the
Maxwell action in higher dimensions. In four dimensions
our choice of units corresponds to the conventional
Gaussian units. There is an ambiguity in generalizations
of the Maxwell equations to higher dimensions that
depends on a system of units and the definition of an
electric charge. In this paper charges are normalized in such
a way that the interaction force between two charges in D
dimensions reads

F,=0A,-0A,.

2 k4172

I((k+1)/2)

4z ee,

f = —, Q=
Q(D—2) I”D 2 (k)

(1.2)

Different choices of units in higher dimensions are also
used in the literature. For example, in the paper [3] authors
work in a different system of units, such that the force
between two charges e; and e, in the D-dimensional
Minkowski spacetime is given by
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(1.3)

Thus, our normalization of the charges and that of the paper
[3] are related as
Q
(D=2) ~>
= , 1.4
4n ¢ (14)
where the volume €2y, of k-dimensional sphere Sk is given
by (1.2).
In the Lorentz gauge V¥A, = 0 the Maxwell equations
become

62

DA, — RYA, = 4], (1.5)

Let us consider the potential created by a static electric
source J* = j(x)d),, where j(x) is the charge density in a
static spacetime described by the metric

ds®> = —a?dt* + g,,dx*dx",
X+ = (t,x7),

a=1,....D—-1,

a= a(x)v Gab = gab(x)' (16)

In the static case one can choose A, = 0 and Ay = Ay(x),

that is

A, = Agd). (1.7)

Then the Maxwell equations (1.1) for the potential A, boil
down to

R L1 1
OAy = 4nj, O=—20, (— \/ggaba,,). (1.8)
g (04

Here ¢ = det(g,,). The redshift factor a is connected
with the norm of the static Killing vector € as fol-

lows: a = /=& = /=g,
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We define the static Green function for the operator O as

the solution of the following equation:

N 1
OGO()(X, )C/) = Wgé(}c —x/).

Equation (1.8) is invariant under the following biconformal
transformations:

(1.9)

AO - Ao,
a=Q"a,

Yab = ngalw

j=Q22j, (1.10)
where n = D — 3 and Q is an arbitrary function of spatial
coordinates x“.

These biconformal transformations can be used to relate
solutions of the Maxwell equations on a physical metric to
solutions on a some other “reference” geometry. If the
reference spacetime is more symmetrical than the original
one, then there is a good chance to simplify the problem of
finding the Green function exactly. This approach, for
example, enabled us [4] to compute the Green functions of
static scalar and Maxwell fields on the background of the
Majumdar-Papapetrou spacetime, which describes a set of
extremally charged black holes. It was possible because the
higher-dimensional Majumdar-Papapetrou metric is bicon-
formally related to the flat Minkowski metric.

In this paper we use biconformal transformations to
compute the static Green functions of the Maxwell field on
the background of a generic higher-dimensional Reissner-
Nordstrom black hole.

II. POINT CHARGE NEAR A
HIGHER-DIMENSIONAL
REISSNER-NORDSTROM BLACK HOLE

Let us consider a static
D-dimensional metric of the form

spherically symmetric

ds? = ~f(r)de* + f~ (r)dr + Pda) . (20)

where n =D —3 and dw?,, is the line element on a
(n + 1)-dimensional unit sphere

da?,, = dO? + sin20,dw?,  dod =df?.  0,=0.
(2.2)
We denote 6y = ¢ € [0, 2z]. The other angular coordinates
9i>0 S {0, 77,'].
M Q2
f=1-—+=. (2.3)
"o

For real positive M and real Q, which satisfy the condition
|Q] < M, the metric (2.1)-(2.3) describes the geometry
of a higher-dimensional generalization of a spherically
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symmetric electrically charged black hole [5]. The
parameters M and Q are proportional to the Arnowitt-
Deser-Misner mass and charge of the black hole, respec-
tively. The coefficients of proportionality (see, e.g., [6])
depend on the dimensionality of the spacetime and on the
choice of units.

It is convenient to introduce a new radial variable p
related to the radial coordinate r as follows:

n
p:r”M7 /’t:\/MQ—sz

" =M + up.
(2.4)

Then the Reissner-Nordstrom metric (2.1)—(2.3) takes the
form

#(p*=1)

dr?
(M + pp)?

ds? = —

+ (M + pp)*r dp* +dwy, (| (2.5)

1
n*(p? = 1)
The horizon corresponds to p = 1, and its (gravitational)
radius r, is given by the expression rg = M + pu. The
surface gravity at the horizon is

nu
K= g (2.6)
g
Taking into account that
2
VP~ =1 , “2/n
GZW’ g7 = n*(p* = 1)(M + up) /",
g’ =M +Hﬂ)_2/"’
V=g’ =ay/g= (M + )"/ G
(2.7)

V90 = H(Sin 0",
Py

the equation for the Green function (1.9) takes the form

M
{”28/;(1‘4 + up)*0, +(p+—_ﬂlp)AZH Goo(x. x')
= nud(p = p')é(w, o). (2.8)

Here A" stands for the Laplace operator defined on the
unit (n + 1)-dimensional sphere $"*!.
If we use the ansatz

pp? = 1)(p” - 1)
(M+Mp)(M+W)

Goo(x,x') = H(x,x'), (2.9)

then the equation for H(x,x") becomes
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(n[(p* = 1) + 4pd, + 2] + AL Y H (x, ')

- —%6@ —p)8(w. o). (2.10)

p(p* =1

In order to solve this equation we use the following trick.
We first consider another equation for the static Green
function of a massive scalar operator (] — m? with the mass

m* = =2n*/a*> = -2/b? (2.11)
on a (D + 2)-dimensional homogeneous spacetime, which
is a direct product of the (n + 1)-dimensional sphere of a
radius a and a four-dimensional anti—de Sitter spacetime or,

in the Euclidean version, the hyperboloid H* of a radius
b=a/n.

di2 = df%, + a2dol,;, b= %
Xg = (p.0.0,$.0.0,_,.....0). (2.12)
1 _
da?, | = do> + sin®0,da3,
da} = d¢?, 0, =o. (2.14)

The Green function of a Euclidean massive operator

0 =g — m? (2.15)
defined on a (D + 2)-dimensional Bertotti-Robinson
spacetime can be obtained by the heat kernel method. In
order to calculate the function H(x, x") one has to find at
first the (D + 2)-dimensional Green function of the oper-
ator (2.15), which satisfies the equation

0Gy = —8P2(Xg, Xk). (2.16)
The hyperboloid H* is spherically symmetric. We show

that integration of G, over all angle coordinates &, on H*
gives

an+3

H(x, ') = / B /G5 Go(Xe XL). (2.17)

nu

This approach is similar to the case of a scalar field [1,2].
The difference is that the required static Green function in
the spacetime of a black hole is generated by the Green
function of the massive scalar operator, which is defined on
the H* x §"*! geometry.
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ITII. GREEN FUNCTIONS AND HEAT KERNELS

A. General formulas

The Euclidean Green function for the self-adjoint oper-
ator Og in any dimensions can be written in terms of the
heat kernel of this operator,

GolXs. Xp) = [ dsKo(slXe Xp). (31
0

Here the heat kernel K (s|Xg, Xg) is the solution of the

problem

(83 - O)KO(S|XE’X13) =0,

Ko(OlXp. Xp) = 5(Xe. Xp).  (32)
which satisfies the same boundary conditions with respect
to its arguments Xy and X as the Green function in
question.

Because the geometry of the (D + 2)-dimensional
Bertotti-Robinson spacetime has the form of a direct
sum of two homogeneous spaces, the heat K has a form
of a product of the heat kernels K+ and K¢ for the
reduced box operators defined on the hyperboloid H* and
on the sphere S"*!, respectively,

KO(S P> 9k’ 0n;p/’ é, ’ Hln)
= e"SK a(s]p, Ops ', 0,) K o1 (516, 0).

(3.3)

Both spaces H* and $"*! are homogeneous and isotropic and
the corresponding heat kernels are known explicitly [7].

In the case of the operator [Jz — m” defined on the

n + 5-dimensional Bertotti-Robinson metric (2.12) the

Euclidean Green function satisfies the equation

(O - m)Gp(Xp Xp) = —5(Xp. Xp).  (3.4)

Because of the symmetry of the metric, this Green function

is, in fact, the function of only two geodesic distances: y
between points on the hyperboloid and y on the sphere

Go(Xe: Xg) = Go (1 7)-

Explicitly, the equation for the (D + 2)-dimensional Green
function Gy, reads

(3.5)

1
{n2 [(p2 — 1)8/2, +4p0, + 5— 7 Afb} —a*m* + AZ)“}
p —

n*é(p — p')8(@, @')3(w, )
an+3 (pIZ _ 1)

xGylx,7) = (3.6)
B. Heat kernel on H*

The heat kernel of the four-dimensional Laplace operator
defined on the hyperboloid (2.13) of the radius b reads
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o f 1 0
KH4 (Sb() = _€—2s/b <2ﬂ'b2 m) KHZ (S|)() (37)

Here K, (s|y) is the heat kernel of the Laplace operator
defined on the two-dimensional hyperboloid H? of the
same radius

det, = b*|(p* = 1)'dp* + (p* — 1)do?). (3.8)
It reads [7]
V2b
Kiplsle) = o)
S —by?/(4s)

ye
d . 3.9
X/X y(coshy—cosh(;())‘/Q (39)

Here y is the geodesic distance between two points on the
H? of the unit radius b = 1. It is given by the relation

cosh(y) = pp’ —\/p* = 11/p"*> — 1 cos(c — o).

C. Heat kernel on S"*!

The heat kernel on a two-dimensional sphere S? of the
radius a reads [7]

(3.10)

261 2
— s/ (4a*)
KSZ(Sh/) - (47[5')3/2
) | . d (¢+2ﬂ'k) a*(p+27k)? ) (4s)
X Z (=1) (cosy — 1/2
Pt v y —cos¢)
(3.11)

Another equivalent representation of this kernel is

1
dra

® sl(i+1)
22 (21 + 1)P)(cosy)e .
1=

Ke(sly) = (3.12)

Here y is the geodesic distance between two points on the
unit $? (a = 1),

cosy = cos(6;) cos(#;) + sin(#,) sin(6)) cos(¢p — ¢').
(3.13)

The heat kernel on the three-dimensional sphere S° of the
radius a reads [7]

L
K (sly) = Wé’“/
(y + 27k)e a®(y+2mk)?/ (4s)
. (3.14
X Zk_z_:oo siny (3.14)
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where y is the geodesic distance between two points on the
unit $® (a = 1),
cosy = cos(6,) cos(#) + sin(6,) sin(6))

X [cos(0;) cos(8)) + sin(8;) sin(8;) cos(¢p — ¢')].
(3.15)
The heat kernels on all higher-dimensional spheres S"*!

can be derived from K¢ and K using the relations [see
[7], Egs. (8.12)—(8.13)]

/1 9\
mem—ew< ——j K (sly),

2ma® dcosy
n odd, (3.16)
a1 9\
Kol =5 (Gra ) Kol
n even. (3.17)
D. Heat kernel and Green functions on H* x §"t1

For computational reasons, we also use another Green
function, which is the Green function of the Laplace

operator defined on the D-dimensional Euclidean
Bertotti-Robinson space H? x S+
ds? = A2, + adw?,,, b= % (3.18)
e, = b? 1 ———dp* + (p* — 1)do?|. (3.19)
o= 1 P P .

In the latter case the corresponding Euclidean Green
function, which we denote G, satisfies the equation

Op(X, X)G = —6(X, X'), XY= (p.6.6,,....0).

(3.20)

Because of the symmetries of the Bertotti-Robinson space-
time, the Green function G and the heat kernel K of the
operator [ are functions of only the geodesic distances y
and y between the points on the sphere and on the
hyperboloid, respectively. One can write explicitly

{ [(p —1)32 + 290, et

2
—570(p = p')d(c — o')é(w, o).

62} +A"+1}G(;( 7)
(3.21)

Using (2.11), (3.7), (3.16), and (3.3) one can express the
heat kernel for the (D + 2)-dimensional massive scalar
operator O in terms of that of the D-dimensional massless
operator [,
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2

Kololrn) = = (o gomir ) KO

27a’® O coshy

r), (322)

where we put b = a/n. The heat kernel K(s|y, ) is that of
the massless scalar Euclidean D’ Alembert operator. It has
been calculated in [1,2].

The Green function of the scalar operator is the integral
over the proper time s of the corresponding heat kernel

Solrr) = [T dsKolslrr). (323
Therefore, one can write
n? 0 _
Go(sr) =~ <—27m2 Jcoshy COSh)() G(y,7). (3.24)

Note that in this relation both G;, and G are considered as
functions of y and y. On the other hand one has to keep in
mind that the geodesic distances y on H* and H? are quite
different functions of coordinates on these hyperboloids.
One should also remember that the corresponding static
Green functions are defined as integrals of G, and G over
the Euclidean time ¢ with different measures. The scalar
Green function G(y,y) has been calculated in our
papers [1,2].
Taking into account that

/d%a VIaa3(..) =0,
(3.25)

/d3&) V6 8(@,@') =1,

we obtain

an+3
H(x,x') =

= /d3cb V9 Go (2. 7)- (3.26)

The spherical symmetry of the @ allows one to choose the
coordinates on this sphere such that y depends only on the
angle o on the sphere. In these coordinates for any function

().
/ o> /3 () == 21 A 7 dosi’of (). (3.27)

Thus

an+3

2z
2
ey A dosin®eGy, (x.7)

an+1 o
=- / dosin’c
npJo

H(x,x')=2n

Glr.y). (3.28)

Ocoshy

Thus one can formally express the static Green function
for the Maxwell field in terms of the scalar Green function
G(y.y) of the scalar field, which has been calculated in
[1,2].
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ﬂZ(pz _ 1)(p/2 -1 a"tl
(M + pp)(M + pp') np

2r 0 _
dosin® G(y,7).
X A osin Gacosh)( (r.7)

Goo =

(3.29)

E. Even dimensions

In even dimensions the exact static Green function can be
represented in the form

@(ZJ’):al 1 < 0

(n+1)/2 330
A,. .
ntl 2(2;;)"7+3 O cos y) " ( )

When n > 2, the functions A, (o, p,p’;y) are given by the
integral

e 1 sinh(2)
A= /;( w \/cosh(y) — cosh(y) \/cosh(¥) — cos(y)
(3.31)

At large values of y the integrand in (3.31) behaves like
exp[-y(n — 1)/(2n)]. Therefore, (3.31) is convergent for
any n > 2. In the case of the four-dimensional spacetime
(n=1) the integrand has to be modified to guarantee
convergence of the integral. For example, one can subtract
the asymptotic of the integrand, which does not depend on
y. Since (3.30) contains the derivative of A, over y, the
resulting Green function does not depend on the particular
form of the subtracted y-independent asymptotic. Thus, for
n = 1 one can choose

« 1
h /)( @ \/cosh(y) — cosh(y)
x sinh(y) ___sinh(y)
L/COSh(y) —cos(y) y/cosh(y) + 1] (3:32)

Taking into account (3.29) we obtain

o e -neEr-1y 1 1
(M + up)(M + up') 2(27)"3" nu

O N2 fosinod 3.33
X (8cosy> A 6sin“cA,,, (3.33)

where

(3.34)

n

= A
Ocoshy "

Thus we obtain
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- o0 1

A = /;( 2 \/cosh(y) — cosh(y)

5 0 { 1 sinh(2)

dy [sinh(y) y/cosh(%) = cos(y) '

(3.35)

Note that (3.35) remains to be valid for all n including
n = 1 case. In the latter case one has

~ 0
Al - Al'

~Foosy (3.36)

F. Odd dimensions

In odd-dimensional spacetimes we have

G 1 1 ) n/2 Qﬂd B
bv) = a \2(2n) <8cos y) A oPn

(3.37)
where
) 1 inh(2
B, = / dy o G (a9
Y yv/coshy —cosh y cosh(*) —cosy
Taking into account (3.29) one can write
_ PP -DE*-1) 1 1
O (M +up)(M + up') \/2(2m) 5
0 n/2 2r -
x (acos 7) A dosin’cB,,, (3.39)
where
~ 0
B, = B,. 3.40
" QOcoshy " (3.40)
~ o0 1
B, _/ dy
P v/coshy — cosh y
0 1 sinh(2
. inh,) | (3.41)
Jy [sinh(y) cosh() — cosy

IV. CLOSED FORM OF THE GREEN FUNCTION:
EXAMPLES

A. Four dimensions

In four dimensions (n = 1) the integral (3.32) reads [1,2]

B cosh(y) + 1
Ar=n (cosh(;() - cos(y)>'

Hence, according to (3.36)

(4.1)

PHYSICAL REVIEW D 92, 024023 (2015)

1

P —
coshy —cosy

(4.2)

The integral over ¢ in (3.33) can be taken explicitly and
we obtain the closed form for the static Green function

1
CooloeX) = = e+ ap) M+ )
pp' —cosy
8 ﬂ\/pz +p'? —2pp’cosy—sin2y_'u .
(4.3)

The last term —p/[47(M + pp)(M + pp')] in this formula
describes a zero mode contribution, which satisfies a
homogeneous equation. One should add an extra zero
mode contribution

C
4n(M + up)(M + pp')

(4.4)

with a coefficient C, such that the flux of the electric field
across any surface surrounding the charge and the black
hole does not depend on the position of the charge. This
leads to the final result for the static Green function in four-
dimensional Reissner-Nordstrom geometry,

1
4n(M + up)(M + pp')
pp’ —cosy
M 2 2 / 2 +M,
\/p + p'* = 2pp’ cosy — sin“y

Goo(x, ') = —

(4.5)

which satisfies the correct fall-off conditions at infinity.
This four-dimensional Green function was obtained earlier
in [8]. The vector potential created by a point charge e
placed at the point x’

JH = ed(x — x')5), (4.6)

reads

Ao(x) = 4dreGy(x, x'). (4.7)
B. Five dimensions

In five dimensions (n = 2) the Green function (3.39)
takes the form

sinh(3)

S 1
B, = d .
: /;( Y yv/coshy — cosh y cosh(3) — cosy

(4.8)
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v
272 (cosh?(y/2) — cos?y) /2

X [arctan( \/Cosh2(;()/527) - C082y> + ﬂ (4.9)

The Green function is

o K= -1) 1
O (M + up)(M + pp') 2¢/2(21)

0 2n ~
X ( ) / dosin’oB,,
ocosy) Jo

(4.10)

where

-~ o 1
Bz = / dy
P y/coshy —cosh y
o o] 1 sinh(3) '
Jy [sinh(y) cosh(5) — cosy

(4.11)

B, _V2 !
> 4 (cosh?(y/2) — cosZy)3/?

X |arctan (

cosy ) N 77,':|
\/cosh?(y/2) —cos’y) 2

V2 cosy
4 cosh?(y/2)(cosh?(y/2) — cos?y) (4.12)

The result of integration over ¢ in (4.10),

2 ~ 44/2
/ dosin’cB, = v2r

: onpr-n

can be expressed in terms of the elliptic integrals. The result
reads

u 0

0 = 222 (M + ) (M + ) Dcosy *14)
where
0 = —q[E(n, %) — 28(cos y)E(x)]
L (10 - 29(c0s K (1)
L D07 P0G, (4.15)
40

Here 9(x) is the Heaviside step function and
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p:\/pp’—\/pz—lwp’z—l—l—l—ZCOSzy/\/E,

q:\/pp’+\/p2—1\/p’2—1+1—2coszy/\/§,

po—\/pp’—\/pz—lx/p’z—lJrl/\/i

(Jo=\/pp’+\//)2—1\/ﬂ’2—1+1/\@

VG- p? o q .

> = siny = —sign(cosy).
q 90

(4.16)

Note that in spite of the appearance of the Heaviside step
function 9(cos y) in the expressions (4.15) the function Q is
continuous and smooth at y = z/2, so that the Green
function (4.21) is also continuous and smooth everywhere.

On has to add to Gy, a zero mode contribution of the
form

/
) (4.17)
4n*(M + pp)
in order to satisfy the boundary condition at infinity,
meaning that the total flux of the electric field through
the surface surrounding the electric charge should not
depend on the position of the charge. This condition
uniquely fixes the function C(p’).

When p — oo we get

0
S =1-y.
aCOSlepm p

(4.18)
Therefore, one has to add the zero mode (4.17) with

o M+ u
M+ pp'

(4.19)

to get a proper asymptotic of the Green function at infinity,

1 1

= - . 4.20
4725 4n*(M + up) ( )

G00|p—>oo =~

Finally we obtain the closed form for the static
Green function, satisfying the correct fall-off conditions
at infinity,

2
_ M+'u%_”f)cosyw
4m* (M + pp)(M + ')’

GOO - (421)

where
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W = —q[E(n,x) — 29(cos y)E ()]
q* + p?
2q

+ [F(n, ) — 28(cos 1)K ()], (4.22)

and the other parameters are defined by (4.16). This closed
form for the static Green function of the Maxwell field is
new. The vector potential created by a point charge e placed
at the point x’,

JH = es(x — x')5, (4.23)

is equal to

Ao(x) = dreGyy(x, x'). (4.24)
Here coefficient 4z comes from the normalization of the
charge in the higher-dimensional Maxwell equations (1.1).

V. NEAR-HORIZON LIMIT

In the vicinity of the horizon the gravitational field
becomes approximately homogeneous. In the limit of an
infinite gravitational radius the static Green function should
reproduce the result [9] for the Green function in the
Rindler spacetime up to the zero mode contribution,
because the topology of the Rindler horizon differs from
that of the black hole horizon. One should also take into
account that for the black hole the Killing vector is
normalized to unity at infinity, while in the Rindler
spacetime it is usually normalized to unity at the position
of an accelerated observer, located close to the horizon.

A near-horizon limit can be derived by using the
expressions

2

n —
p = 1 +ﬁ22 + 0(rg4)7
g

1 _ npy
y:r—gle—xilJrO(rﬁ), K= (5.1)

and then taking the limit r, — oo, while the parameter a is
kept finite. The parameter ¢ has a meaning of a proper
acceleration of an observer. In the limit, when the size of the
black hole goes to infinity, the region in the vicinity of the
observer is described by a homogeneous gravitational field,
i.e., by the Rindler spacetime. The Rindler time coordinate
1 is chosen in such a way that the timelike Killing vector
" =067 has a unit norm at the position of an
observer z = a~ .
Then the metric (2.5) near the horizon takes the form
ds* = —a*Z2di® + dz? + dx} + O(rg?). (5.2)
The static Green function, corresponding to the rescaled
time 7, is G;; = lim,g%o(a/lc)Goo. Let us introduce the
notations
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R= /(=) + L 2,12

R:\/(z+z')2+|xL—x’l2
R

’

= . 53
2vzZ 33)
Then in four dimensions we get
a R>+R* Ma
Gii=—¢- - (5.4)

where Gj; is the static Green function corresponding to the
rescaled time coordinate 7. The last term in (5.4) is constant.
It comes from the zero mode contribution. In any case this
constant is a pure gauge. The boundary conditions at
infinity of the black hole and in the Rindler spacetime
are different; therefore, it is not surprising that zero mode
contributions may also differ in the near-horizon limit (see
discussion in [9]).

Similarly in five dimensions in the near-horizon asymp-
totic we obtain

av'zz [R? + R2 E (‘arcsin¢ 1
—_— —_— 1 s —
47> | R2R? e

1 ) 1 a
_?F<HI‘CSIHC,E>:| —W

3a2’2? 1 (53 4z a
8z R> \2°'2°77 R? 4r*kry’

Gii ==

(5.5)

When expressed in terms of the hypergeometric function,
this formula exactly reproduces Eq. (3.29) of the paper [9],
where the static Green function in a homogeneous gravi-
tational field was derived. The last term here is constant and
can be omitted, because it is a pure gauge.

VI. DISCUSSION

In this paper we found the relation between static
solutions of the Maxwell field equation on the background
of the D-dimensional Reissner-Nordstrom black hole and
on the background of the (D + 2)-dimensional homo-
geneous Bertotti-Robinson spacetime. Using the heat
kernel technique we obtained a useful integral representa-
tion for the electric potential created by a point static charge
in the Bertotti-Robinson spacetime and, hence, in the
Reissner-Nordstrom spacetime too. The method is very
similar to the method of biconformal transformations [1,2],
where the Green function and the potential created by static
scalar charges near Reissner-Nordstrom black holes have
been calculated.

In four- and five-dimensional cases we obtained the
exact static Green functions in the closed form (4.5) and
(4.21)-(4.22). In four dimensions it correctly reproduces

024023-8



BICONFORMAL SYMMETRY AND STATIC MAXWELL ...

the well-known result [8]. To the best of our knowledge the
closed form for the five-dimensional static Green function
is new. As a test of the obtained results, we demonstrated
that the derived static Green functions in a generic
Reissner-Nordstrom spacetime obey a correct near-horizon
limit [9]. The obtained integral representation and analyti-
cal expressions for exact Green functions can be used to
study the problem of the self-energy and self-force of point
electric charges in the background of higher-dimensional
static black holes. An interesting observation is that the
self-force and the self-energy of charged particles

PHYSICAL REVIEW D 92, 024023 (2015)

qualitatively differ in odd and even spacetime dimensions
[3,9-12]. In odd dimensions the self-force and the self-
energy of point charges contain terms logarithmic in the
distance to the horizon. These terms are related to the
biconformal anomalies (see discussion in [10-12]).
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