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We investigate which Jordan frame FðRÞ gravity can describe a type IV singular bouncing cosmological
evolution, with special emphasis given near the point at which the type IV singularity occurs. The
cosmological bounce is chosen in such a way that the bouncing point coincides exactly with the type IV
singularity point. The stability of the resulting FðRÞ gravity is examined and in addition, we study the
Einstein frame scalar-tensor theory counterpart of the resulting Jordan frame FðRÞ gravity. Also, by
assuming that the Jordan frame metric is chosen in such a way so that, when conformally transformed in the
Einstein frame, it yields a quasi–de Sitter or de Sitter–Friedmann–Robertson–Walker metric, we study the
observational indexes which turn out to be consistent with Planck 2015 data in the case of the Einstein
frame scalar theory. Finally, we study the behavior of the effective equation of state corresponding to the
type IV singular bounce and after we compare the resulting picture with other bouncing cosmologies, we
critically discuss the implications of our analysis.
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I. INTRODUCTION

Bouncing cosmology [1–10] provides us with an appeal-
ing solution of the initial singularity problem, which is a
rather unwanted feature in cosmological theories. This is
because, in the context of bouncing cosmology, the
Universe contracts until a minimal radius is reached, and
after that point it expands. Therefore, the Universe never
collapses to a singular point, thus avoiding the initial
singularity. The cosmological bounces can appear in two
main categories, the Loop Quantum Cosmology [11] matter
bounce theories [12] and also in theories that make use of
scalar fields in order to avoid singularities and generate
bounces [1–9,12]. In addition to these, modified gravity
also offers a consistent description of bouncing cosmology
[10,13]. In the context of bouncing cosmology, the accel-
eration and thermal history of our Universe are consistently
described (see Refs. [1,2] for review on this issue) and also
certain CMB anomalies on large angular scale find a
satisfactory explanation [14]. In order for a bounce to
occur in standard Einstein-Hilbert gravity, the null energy
condition has to be violated, something that is only possible
for physical systems for which the Hamiltonian is bounded
from below [15]. Some drawbacks that come along with the
appealing features of the bounces are that, bouncing
cosmologies suffer from ghost and primordial instabilities
during the contracting phase, rendering the contracting
phase a problematic era during the evolution. The issue of
the contracting phase is known as BKL instability [16].
Ghost instabilities can be resolved in the context of
Galileon and ghost condensate models [3,17], and the

issue of the contracting phase is successfully resolved in the
context of the ekpyrotic contraction theories [4,5,18].
Actually, as was shown in Ref. [18], the BKL instability
issue can be successfully resolved in the context of an
ekpyrotic contraction.
On the other hand, the initial singularity is not the only

type of singularity that may occur in a cosmological theory,
since there exist other types of milder singularities, which
are called sudden [19–23] or finite time singularities
[24,25]. The initial singularity is a crushing type singu-
larity, in which the strong energy theorems [26] apply and
geodesics incompleteness occurs at these points. However,
in the context of finite time singularities, only the big rip
[27,28] is of the crushing type, with the rest of the finite
time singularities being milder, and also geodesics incom-
pleteness does not necessarily occur for the noncrushing
types singularities. In the context of general relativity,
crushing type singularities occur during the process of
gravitational collapse, and several conjectures have been
proposed that point out the need to protect the rest of the
Universe from these naked singularities with a “cloth.” This
is the cosmic censorship hypothesis [29], which up to date
has not been proved yet. For an informative account on this
issue see [30–32]. In cosmology however there is no way to
“dress” these singular points, therefore the complete under-
standing of their nature and implications is compelling. It
seems that the noncrushing type singularities offer a good
testing ground for the complete understanding of finite time
singularities and their consequences in the cosmological
evolution of our Universe. In Refs. [33–35], we studied the
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type IV finite time singularities and their implications in the
cosmological evolution (especially, after inflation), in the
context of single scalar [33], or multiple scalar fields
[34,35]. In this paper we study how a type IV singular
bouncing cosmology can be generated from a general pure
FðRÞ [36–41] gravity, with pure meaning so that no matter
fluids are assumed to be present. An important assumption
we make is that the bouncing point coincides with the point
where the type IV singularity occurs. We are particularly
interested in finding the FðRÞ theory which generates the
bounce near the bouncing point, which is also the point at
which the type IV singularity occurs. For a list of reviews
and important papers on FðRÞ theories of gravity, the reader
is referred to [36–38]. In order to reveal which Jordan frame
FðRÞ gravity can successfully describe the singular bounce
near the type IV singularity, we use some very well-known
reconstruction techniques [39–41], and as we demonstrate,
the resulting Jordan frame FðRÞ gravity is an R2 gravity
plus cosmological constant. Having found this form of the
FðRÞ gravity, we also investigate the Einstein frame
implications of this FðRÞ gravity, assuming a quasi–de
Sitter solution in the Einstein frame. The observational
implications of the Einstein frame canonical scalar theory
are also studied in detail. Finally, we also study the
behavior of the effective equation of state (EOS) corre-
sponding to the type IV singular bounce solution and
compare the resulting picture with other bouncing
cosmologies.
This paper is organized as follows: In Sec. II we present

in brief all the essential information with regards to finite
time singularities and also we discuss our motivation to use
a type IV singularity for our study. In Sec. III we study the
general properties of the type IV singular bounce we use in
the forthcoming sections, and in Sec. IV, using well-known
reconstruction techniques, we investigate which FðRÞ
gravity can successfully describe the type IV singularity
near the singularity point, which we chose to coincide with
the bouncing point. The stability of the resulting solution is
also discussed at the end of the section. In Sec. V, we study
the Einstein frame canonical scalar-tensor theory corre-
sponding to the Jordan frame FðRÞ gravity we found in
Sec. IV. In addition, we also investigate the observational
indices of the Einstein frame scalar theory, assuming that a
quasi–de Sitter solution or a de Sitter solution exists in the
Einstein frame. In Sec. VI, we perform a full analysis of the
EOS corresponding to the type IV singular bounce under
study, and also we compare the behavior of the type IV
singular bounce, to other bouncing cosmologies. Finally, a
critical discussion on the results along with the concluding
remarks follow in Sec. VII.

A. Geometric background conventions

Before we start, it is worth mentioning the background
geometric conventions we use in this article. We initially
work in the Jordan frame for all FðRÞ gravities we discuss,

and we adopt the metric formalism approach [37]. In
addition, we assume that the background geometry consists
of a pseudo-Riemannian manifold, which locally is a
Lorentz metric, a flat FRW one, with line element

ds2 ¼ −dt2 þ a2ðtÞ
X
i

dx2i : ð1Þ

In this geometric background, the Ricci scalar reads,

R ¼ 6ð2H2 þ _HÞ; ð2Þ

with HðtÞ denoting as usual the Hubble rate, and the “dot”
denotes differentiation with respect to the cosmic time t.
Finally, we choose the affine connection on this manifold to
be the Levi-Civita one, which is a metric compatible,
symmetric and torsionless.

II. FINITE-TIME SINGULARITIES ESSENTIALS

The classification of finite-time cosmological singular-
ities was extensively done in a formal way in Refs. [24,25],
and we briefly recall the basic features of this classification,
adopting the notation of Refs. [24,25]. There are four types
of finite time cosmological singularities, the type I, II, III
and IV singularities, and these are classified in the
following way [24,25]:

(i) Type I (known as “big rip singularity”): This type of
cosmological singularity is the most severe among
finite time cosmological singularities and it is a
singularity of crushing type. It occurs when as the
cosmic time approaches a specific time (ts), that is
when t → ts, the effective energy density ρeff, the
scale factor aðtÞ, and also the effective pressure peff
diverge, that is, a → ∞, ρeff → ∞, and jpeff j → ∞.
For an important stream of papers with regards to the
big rip singularity, the reader is referred to
Ref. [24,27,28]

(ii) Type II (known as “sudden singularity”) [20,22]:
This singularity occurs when, as the cosmic time
approaches t → ts, only the scale factor a and the
effective energy density ρeff take bounded values,
that is, a → as, ρeff → ρs, with both as; ρs < ∞,
with the effective pressure diverging as t → ts, that
is, jpeff j → ∞. This case for example occurs when
the second and higher derivatives of the scale factor
diverge.

(iii) Type III: This singularity occurs when, as the cosmic
time approaches t → ts, only the scale factor re-
mains finite a → as, but both the effective energy
density and the corresponding effective pressure
diverge, that is, jpeff j → ∞ and ρeff → ∞. Equiv-
alently, this means that the first and higher deriva-
tives of the scale factor diverge.

(iv) Type IV: This type of singularity is the most mild
among all the three aforementioned types of finite
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time singularities, and we focus on this type of
singularity in the following. For a detailed study on
this finite time singularity, see Ref. [24]. This
singularity occurs when, as the cosmic time ap-
proaches ts, all the cosmological physical quantities
remain finite, that is, the effective energy density
ρeff → ρs, the effective pressure jpeff j → ps and the
scale factor a → as, but the higher derivatives of the
Hubble rate diverge.

In the next section we further analyze, in brief, our
motivation to use the type IV kind of finite time cosmo-
logical singularity for our analysis of the singular bounce.

A. Why choosing a type IV singularity: Brief discussion

As we already mentioned, among all the types of finite
singularities which we presented previously, the most
mild is the type IV, with mild referring to the geodesics
incompleteness issue that might occur at finite time
singularities. The crushing type singularities, such as the
big rip [27] or the initial singularity [26], always lead to
severe phenomena, which when considered classically,
these are flaws of the theory, like the singularity in the
Coulomb potential in classical electrodynamics. For these
singularities, the energy theorems are violated, therefore
these can be seen as either flaws of the theory or indicators
that a new, quantum maybe, theory describes the physical
system at the energies that these correspond.
On the other hand, the type IV singularity is less harmful

since no geodesic incompleteness necessarily occurs and also
all the energy theorems of Hawking and Penrose [26] are
satisfied, so these singularities are not so severe. However,
their presence and possible consequences should be scruti-
nized in order to fully understand what these singularities
indicate. In this paper we study a bouncing cosmology that
has in its evolution a type IV singularity. Notice that in
bouncing cosmology no initial singularity appears, so the
only singularity that occurs during the bounce evolution is the
type IV. These appealing properties of the type IV singularity
motivated us to realize a nonsingular bouncing cosmology by
using a Jordan frame FðRÞ gravity.

III. DETAILED DESCRIPTION
OF THE BOUNCE SOLUTION

In this section we present the type IV singular bouncing
cosmology that we extensively study in the following
sections. Before we start, it is worth recalling the basic
properties of the bouncing cosmologies. For details on this,
see Refs. [1–6].
A cosmological bounce consists from two eras, a

contraction era and an expansion era. At the beginning,
and during the contraction, the scale factor decreases, that is
_a < 0, until the Universe reaches a minimal radius, where
_a ¼ 0, it bounces off and starts to expand, with _a > 0. The
fact that the Universe reaches a minimal radius is what

renders the bouncing cosmology so appealing, since the
initial singularity is avoided in this way and there exists
also the possibility of describing successfully early time
acceleration [7–9,12], thus avoiding the standard descrip-
tion with inflationary models.
Let us assume that the bouncing point occurs at a cosmic

time ts. When the Hubble rate is taken into account, in the
contracting phase, which means that t < ts the Hubble rate
is negative HðtÞ < 0, at the bouncing point becomes equal
to zero, HðtsÞ ¼ 0, while for t > ts, the Hubble rate is
positive, HðtÞ > 0.
The singular bounce we consider in this paper has the

following scale factor,

aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ
; ð3Þ

where we normalized the scale factor to be equal to one at
the bouncing point, that is aðtsÞ ¼ 1, and also ε and f0 are
constant parameters, with the values that ε is allowed to
take to be specified shortly. The Hubble rate corresponding
to the scale factor (3) is equal to

HðtÞ ¼ 2ð1þ εÞf0ðt − tsÞ2εþ1: ð4Þ

Note that in the Planck unit system, the Hubble rate is
measured in eV, the time is measured in ðeVÞ−1, so the
parameter f0 is measured in ðeVÞ2εþ2. However, we
express time in seconds, so the Hubble rate is measured
in ðsecÞ−1 and consequently the parameter f0 is measured
in ðsecÞ−2ε−2. We adopt these units in the rest of this paper.
Taking into account the classification of singularities we

presented in the previous section, the type IV singularity
occurs when the exponent in Eq. (4), is 2εþ 1 > 1, which
means that ε > 0, so for all positive values of the parameter
ε. However, we assume that ε < 1, in which case the
bounce (3) is a small deformation of the well-known [36]
bouncing cosmology,

aðtÞ ¼ ef0ðt−tsÞ2 : ð5Þ

Notice that the type IV singularity occurs at t ¼ ts, which is
exactly the bouncing point.
It is worth elaborating on the type IV singularity caused

by the structure of the Hubble rate (4). Set for simplicity
2εþ 1 ¼ β, so that the Hubble rate becomes,

HðtÞ ¼ 2ð1þ εÞf0ðt − tsÞβ: ð6Þ

Let us see for which values of β the type IV occurs. In the
list below we quote all the possibilities for a finite
singularity to occur, for various values of the parameter β,

(i) β < −1 corresponds to the type I singularity.
(ii) −1 < β < 0 corresponds to type III singularity.
(iii) 0 < β < 1 corresponds to type II singularity.
(iv) β > 1 corresponds to type IV singularity.
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The type IV singularity case occurs when β > 1. This can
be easily seen, since in the type IV case, the singularity
occurs when the higher derivatives of the Hubble rate are
divergent, which means that

dnHðtÞ
dtn

→ ∞; ð7Þ

for some n ≥ 2. Let us compute the lowest derivative for
which the type IV singularity could occur, which is for
n ¼ 2,

d2HðtÞ
dt2

¼ 2ð1þ εÞf0βðβ − 1Þðt − tsÞβ−2; ð8Þ

which is clearly divergent when 1 < β < 2. If β > 2, then
the second derivative of the Hubble rate is finite, but the
third derivative becomes divergent,

d3HðtÞ
dt3

¼ 2ð1þ εÞf0βðβ − 1Þðβ − 2Þðt − tsÞβ−3: ð9Þ

In order for the bounce (3) to be a deformation of the
bounce (5), we assume that ε < 1. Since β ¼ 2εþ 1, this
means that certainly β > 1 but also that β < 2, so
1 < β < 2, which means that the second derivative of
the Hubble rate (4), is divergent [see Eq. (8)].
Consequently a type IV singularity occurs for 0 < ε < 1

2

and for these values of ε, the bounce (3) is a deformation of
the bounce (5), since ε < 1. We have to note that we also
restrict ourselves to positive values of the parameter ε.
Before we proceed, we need to address another issue

where a possible inconsistency might occur. Throughout
the article we assume that 0 < ε < 1

2
and the values that ε is

allowed to take are chosen is such a way so that the scale
factor and the Hubble rate never become complex. With
regards to the scale factor, this would require that the
exponent of t − ts in Eq. (3), takes the following form,

ðt − tsÞ2ðεþ1Þ ¼ ðt − tsÞ 2n
2mþ1; ð10Þ

with n and m being arbitrary integers appropriately chosen
so that 0 < ε < 1

2
. One convenient choice that never makes

the scale factor complex but also renders the parameter ε
smaller than one, is for n ¼ 12 and m ¼ 5. In this case, the
scale factor (3) reads

aðtÞ ¼ ef0ðt−tsÞ
24
11 ¼ ef0ððt−tsÞ24Þ

1
11 ; ð11Þ

which is never complex, for all t.1 For the choice of n and
m, the parameter ε reads ε ¼ 1

11
, so we use this value

hereafter. For ε ¼ 1
11
, the Hubble rate reads

HðtÞ ¼ 2ð1þ εÞf0ðt − tsÞ2εþ1

¼ 2ð1þ εÞf0ðt − tsÞ2εðt − tsÞ ¼ ðt − tsÞ
¼ 2ð1þ εÞf0ðt − tsÞ2211ðt − tsÞ; ð12Þ

which clearly never takes complex values (for the same
reason as in the scale factor case, since ðt − tsÞ2411 ¼
ððt − tsÞ24Þ 1

11) but can become negative for t < ts due to
the last term ðt − tsÞ. Having cleared out this vague spot, let
us see now how the scale factor and the Hubble rate behave
as functions of cosmic time. To this end, we choose,
for illustrative purposes only, ts ¼ 10−35 sec, ε ¼ 1

11
and

f0 ¼ 0.001 ðsecÞ−2ε−2. In Fig. 1, we plot the time depend-
ence of both the scale factor (3) and of the Hubble rate (4).
As we can see, all the qualitative features of the bounce are
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FIG. 1 (color online). The scale factor aðtÞ (left plot) and the Hubble rate (right plot) as a function of the cosmic time t, for
ts ¼ 10−35 sec, ε ¼ 1

11
and f0 ¼ 0.001 ðsecÞ−2ε−2, for aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ

.

1Note that if we take the scale factor to be equal to

aðtÞ ¼ ef0ððt−tsÞ
1
11Þ24 , then for t < ts, the expression of the scale

factor contains ð−1Þ 1
11, which has one negative but real branch

and two complex branches, that is ð−1Þ 1
11 ¼ −1; 0.959493þ

0.281733i; 0.959493 − 0.281733i, so by keeping the real branch,
we obtain again a real number, since the resulting scale factor
contains ð−1Þ24, which is positive.
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satisfied, that is, before the bounceHðtÞ < 0, at the bounce
HðtÞ ¼ 0, and after the bounce HðtÞ > 0. In addition, the
contraction and expansion can be observed by looking at
the behavior of the scale factor, since for t < ts, the scale
factor decreases until a minimal value is reached at t ¼ ts,
and then for t > ts the Universe expands. Finally, in
Fig. 2, we plot the behavior of the second derivative of
the Hubble rate H00ðtÞ as a function of time, for
ts ¼ 10−35 sec, ε ¼ 1

11
and f0 ¼ 0.001 ðsecÞ−2ε−2. As

we can see, at the type IV singularity, the function
H00ðtÞ blows up for t → ts, as expected.

IV. BOUNCE SOLUTION FROM JORDAN
FRAME FðRÞ GRAVITY

The FðRÞ modified gravity theoretical framework can
realize cosmological scenarios that were, to some extent,
exotic for ordinary general relativity. Noteworthy is the fact
that reconstructed FðRÞ gravity models can have a direct
relation with viable gravity models based on the Khoury
chameleon scenario [42]. In this section, by using well-
known reconstruction techniques [39–41], we investigate
which FðRÞ gravity can generate the type IV singular
bouncing cosmology of Eq. (3). The focus will be given for
times near the type IV singularity, that is, when t → ts. For
important reviews and papers on the reconstruction tech-
niques, we consult [37,38] and references therein.
Consider the following Jordan frame FðRÞ gravity, with

action,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−gp
FðRÞ þ Sm; ð13Þ

where κ is related to Newton’s constant κ2 ¼ 8πG, and in
addition Sm denotes the action of all matter fluids present.
In the context of the metric formalism of FðRÞ gravity [37],
upon variation with respect to the metric gμν, we obtain the
following equations of motion,

Rμν − 1

2
Rgμν ¼

κ2

F0ðRÞ
�
Tμν þ

1

κ2

�
FðRÞ − RF0ðRÞ

2
gμν þ∇μ∇νF0ðRÞ − gμν□F0ðRÞ

��
; ð14Þ

where the prime denotes differentiation with respect to the
curvature scalar R and, as usual, Tμν is the energy
momentum tensor that receives contributions from all
matter fluids. By observing Eq. (14), it is obvious that
the energy momentum tensor receives an extra contribution
which originates from the FðRÞ gravitational sector. This
extra contribution, sometimes called the geometric contri-
bution, is what makes FðRÞ gravity a modified theory of
standard Einstein-Hilbert gravity. In particular, the extra
contribution to the energy momentum tensor is equal to

Teff
μν ¼ 1

κ2

�
FðRÞ − RF0ðRÞ

2
gμν þ∇μ∇νF0ðRÞ

− gμν□F0ðRÞ
�
: ð15Þ

In addition, we assume that the spacetime metric is the flat
FRW of Eq. (1).
Now we are interested in finding which pure FðRÞ gravity

can generate the cosmological evolution of the singular

bounce with the scale factor given in Eq. (3). With pure
FðRÞ, no matter fluids are assumed to be present. We make
use of quite well-known reconstruction techniques [39–41],
and we focus our study on cosmological times near the type
IV singularity, which occurs at t ¼ ts. Start from a general
pure FðRÞ gravity in the Jordan frame with action

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−gp
FðRÞ: ð16Þ

The first FRW equation can be obtained upon variation of
action (16), with respect to the metric tensor gμν, and reads

− 18ð4HðtÞ2 _HðtÞ þHðtÞḦðtÞÞF00ðRÞ þ 3ðH2ðtÞ

þ _HðtÞÞF0ðRÞ − FðRÞ
2

¼ 0: ð17Þ

The reconstruction technique we use involves an auxiliary
scalar field ϕ, which enters the action of Eq. (16) in the
following way:
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FIG. 2 (color online). The second derivative of the Hubble rate
H00ðtÞ as a function of the cosmic time t, for ts ¼ 10−35 sec,
ε ¼ 1

11
and f0 ¼ 0.001 ðsecÞ−2ε−2, for the bounce

aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ
.
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S ¼
Z

d4x
ffiffiffiffiffiffi−gp ðPðϕÞRþQðϕÞÞ: ð18Þ

In the absence of a kinetic term for the scalar field, this is
practically a nondynamical degree of freedom, which is why
we call it an auxiliary degree of freedom. By varying the
action of Eq. (18), with respect to ϕ, we obtain the following
algebraic relation,

P0ðϕÞRþQ0ðϕÞ ¼ 0; ð19Þ
with P0ðϕÞ ¼ dPðϕÞ=dϕ and Q0ðϕÞ ¼ dQðϕÞ=dϕ. This
equation is of particular importance, since it will provide
us with the function ϕðRÞ if it can be solved explicitly with
respect to the scalar field. This is a very important point for
the reconstruction method, since by finding ϕðRÞ, we can
substitute it in the following relation,

FðϕðRÞÞ ¼ PðϕðRÞÞRþQðϕðRÞÞ; ð20Þ
andhaveexplicitly theFðRÞgravity. Sowhatweneed toknow
is the explicit form of PðϕÞ and QðϕÞ, and in order to find
explicitly their functional form, the action (18)must be varied
with respect to themetric, sowe obtain the following relation:

0 ¼ −6H2PðtÞ −QðtÞ − 6H
dPðtÞ
dt

¼ 0;

0 ¼ ð4 _H þ 6H2ÞPðtÞ þQðtÞ þ 2
d2PðtÞ
dt2

þ 4H
dPðtÞ
dt

¼ 0: ð21Þ

Then, by eliminating the functionQðϕðtÞÞ from Eq. (21), we
get the following second-order differential equation,

2
d2PðtÞ
dt2

− 2HðtÞ dPðtÞ
dt

þ 4 _HPðtÞ ¼ 0: ð22Þ

Notice that inEqs. (21) and (22),weused thecosmic time t as a
variable of the functions PðϕÞ and QðϕÞ, instead of ϕ.

Practically, these variables are identified within the
reconstruction technique we are using, and the relation ϕ ¼
t is valid for a wide range of field values, since the actions
of Eqs. (16) and (18) are equivalent fromamathematical point
of view. For details on this account, see the Appendix of
Ref. [39]. So, for a known cosmological evolution with a
specified Hubble rate, the solution of the differential equa-
tion (22)yields the functionPðtÞ, andbysubstituting the result
of Eq. (21), we obtain the function QðtÞ.
Let us proceed to find an analytic form for the function

PðtÞ and then proceed to find the FðRÞ gravity near the type
IV singularity. By using the Hubble rate (4), the differential
equation (22) reads

2
d2PðtÞ
dt2

− 4f0ð1þ εÞðt − tsÞ2εþ1
dPðtÞ
dt

þ 8f0ð1þ εÞð1þ 2εÞðt − tsÞ2εPðtÞ ¼ 0: ð23Þ

Since we are interested in finding the FðRÞ gravity near the
type IV singularity, it is worth changing the variable t, to
the new one x, defined to be x ¼ t − ts. In this way, as t
approaches the singularity, the variable x approaches zero,
or schematically as t → ts, then x → 0. Using x as a
variable, the differential equation (23) becomes

d2PðxÞ
dx2

− 2f0ð1þ εÞx2εþ1
dPðxÞ
dx

þ 4f0ð1þ εÞð1þ 2εÞx2εPðxÞ ¼ 0; ð24Þ

which can be analytically solved by setting z ¼ x2εþ2 and,
hence, it becomes

ð2εþ 2Þ2z d
2PðzÞ
dz2

þ ð2εþ 2Þð−2f0ð1þ εÞzþ 2εþ 1Þ

×
dPðzÞ
dz

þ 4f0ð1þ εÞð1þ 2εÞPðzÞ ¼ 0: ð25Þ

The solution to this differential equation is

PðzÞ ¼ ð2zþ 2zεÞ 1
2ð1þεÞC1U

�
− 1þ 4ε

2ð1þ εÞ ; 1þ
1

2ð1þ εÞ ; f0z
�
þ ð2zþ 2zεÞ 1

2ð1þεÞC2Lm
n ðf0zÞ; ð26Þ

where the functions Uða; b; zÞ and Lm
n ðzÞ are the confluent hypergeometric function and the generalized Laguerre

polynomial, respectively, the parameters C1; C2 are constant arbitrary real numbers, and finally m and n stand for

n ¼ 1þ 4ε

2ð1þ εÞ ; m ¼ 1

2ð1þ εÞ : ð27Þ

In terms of the variable x, the function PðxÞ reads

PðxÞ ¼ ð2x2εþ2 þ 2x2εþ2εÞ 1
2ð1þεÞC1U

�
− 1þ 4ε

2ð1þ εÞ ; 1þ
1

2ð1þ εÞ ; f0x
2εþ2

�
þ ð2x2εþ2 þ 2x2εþ2εÞ 1

2ð1þεÞC2Lm
n ðf0x2εþ2Þ:

ð28Þ
Then, the function QðxÞ easily follows,
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QðxÞ ¼ 3 21þ
1

2þ2εf0x2þ2εð1þ εÞð1þ εÞ 1
2þ2ε ×

�
− f0ð1þ 4εÞC1

1þ ε
U

�
1 − 2ε

2þ 2ε
; 2þ 1

2þ 2ε
; f0x2ð1þεÞþ1

�

þ 1

1þ ε
x−2ð1þεÞð−ð1þ 4f0x3þ4εð1þ εÞ2ÞÞC1ÞU

�
− 1þ 4ε

2þ 2ε
; 1þ 1

2þ 2ε
; f0x2ð1þεÞþ1

�

þ C2ð2f0x2þ2εð1þ εÞLm1
n1 ðf0x2ð1þεÞþ1f0ÞÞ − ð1þ 4f0x3þ4εð1þ εÞ2ÞLm2

n2 ðf0x2ð1þεÞþ1ÞÞÞÞ
�
; ð29Þ

where we introduced the variables n1; m1 which are equal to

n1 ¼
−1þ 2ε

2ð1þ εÞ ; m1 ¼ 1þ 1

2þ 2ε
; ð30Þ

and also n2 and m2 which stand for

n2 ¼
1þ 4ε

2þ 2ε
; m2 ¼

1

2þ 2ε
: ð31Þ

Having at hand the functions PðxÞ andQðxÞ, in principle, by
substituting in Eq. (19), we can obtain the functional
dependence of x as a function of R. However, the form
of the functions PðxÞ and QðxÞ does not allow an easy
analytic manipulation of the resulting algebraic equation.
However, since we are interested in the behavior of the FðRÞ
near the bounce, and since this limiting case is reached in the
limit x → 0, we approximate P0ðxÞ and Q0ðxÞ near the
bouncing point. By taking the derivative of Eq. (28),
approximating the resulting expression in the limit x → 0,
and by keeping only the leading-order terms, the function
P0ðxÞ reads

P0ðxÞ≃ A

x2ðεþ1Þþ1
þOðxÞ; ð32Þ

wherewe introduced the constant parameterA, which can be
found in Appendix B.
By doing the same to the other functionQ0ðxÞ, we obtain

in the small x limit,

Q0ðxÞ≃ B

x2ðεþ1Þþ1
þ C þOðxÞ; ð33Þ

where the parameters B and C can be also found in
Appendix B, and also notice that only leading-order terms
were kept. Upon substitution of Eqs. (32) and (33) into
Eq. (19), we obtain the function xðRÞ,

x≃
�
− C
ARþ B

� 1
2ðεþ1Þþ1

: ð34Þ

Having xðRÞ at hand, the FðRÞ gravity near the type IV
singularity easily follows by making use of Eq. (20), so the
resulting expression of the FðRÞ gravity is

FðRÞ≃−A2

C
R2 − 2

BA
C

R − B2

C
þ C: ð35Þ

Therefore, the FðRÞ gravity that generates the bounce (3)
near the type IV singularity is a nearly R2 gravity [43]. We
can bring the resulting expression to be exactly an Einstein-
Hilbert gravity plus curvature corrections by appropriately
choosing the free parameter C1 to satisfy the following
constraint,

−2BA
C

¼ 1; ð36Þ

which holds true if C1 is chosen to be

C1 ¼ −
ð1þ 2ðεþ 1ÞÞ2Γ

�
2þ42ðεþ1Þ
1þ2ðεþ1Þ

�
Γ
�
3þ52ðεþ1Þ
1þ2ðεþ1Þ

�
12f0ð1þ 32ðεþ 1ÞÞ

×
1

ðð2þ 2ðεþ 1ÞÞΓ
�
3þ52ðεþ1Þ
1þ2ðεþ1Þ

�
Γ
�
1þ 1

1þ2ðεþ1Þ
�
− 2ð1þ 22ðεþ 1ÞÞΓ

�
2þ42ðεþ1Þ
1þ2ðεþ1Þ

�
Γ
�
2þ 1

1þ2ðεþ1ÞÞ
��

f0
1þ2ðεþ1Þ

�− 1
1þ2ðεþ1Þ

:

ð37Þ

The resulting FðRÞ gravity near the type IV singularity then
reads

FðRÞ≃ R −A2

C
R2 − B2

C
þ C: ð38Þ

Recall that we assumed ε ≪ 1, and by also assuming that
f0 > 0, it can easily be shown that the parameter C1 < 0.
Consequently, the parameter C, defined in Eq. (B2), is
negative; therefore, the coefficient in front of the R2 in
Eq. (38) is positive. It is worth redefining the coefficients of
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the FðRÞ gravity, for later convenience, so we introduce the
following new variables:

C0 ¼ − C
4A2

; Λ ¼ −B2

C
þ C: ð39Þ

Notice that, since C < 0, the coefficient C0 is positive. In
terms of the new coefficients, the Jordan frame FðRÞ
gravity for the bounce (3) near the type IV singularity
has the following form:

FðRÞ ¼ Rþ R2

4C0

þ Λ: ð40Þ

This Jordan frame FðRÞ gravity has a particularly interest-
ing Einstein frame counterpart since it corresponds to a
nearly R2 scalar theory in the Einstein frame. We discuss
this issue in detail in a later section.

A. Stability analysis of FðRÞ gravity solution

Having at hand the reconstructed FðRÞ gravity near the
bounce, it is a straightforward task to examine the stability
of the solution near the bounce. What is expected is that the
system of differential equations, when viewed as a dynami-
cal system, is unstable near the bounce, since the bounce is
not an ending state of the system but just a passing point
during the Universe’s evolution.
In order to address formally the instability issue, we use

the approach adopted in Refs. [39–41]. The starting point
of our analysis is the following equation,

2
d2PðϕÞ
dt2

− 2g0ðϕÞ dPðϕÞ
dt

þ 4g00ðϕÞPðϕÞ ¼ 0; ð41Þ

where in our case, gðϕÞ ¼ ðϕ − tsÞ2ðεþ1Þ. The expression in
Eq. (41) can be written as follows,

2
d2PðϕÞ
dϕ2

�
dϕ
dt

�
2 − 2

dPðϕÞ
dϕ

d2ϕ
dt2

− 2g0ðϕÞ dPðϕÞ
dϕ

�
dϕ
dt

�
2

þ 4

�
g00ðϕÞ

�
dϕ
dt

�
2

þ g0ðϕÞ d
2ϕ

dt2

�
PðϕÞ ¼ 0; ð42Þ

and accordingly can be recast as follows,

2

�
d2PðϕÞ
dϕ2

− g0ðϕÞ dPðϕÞ
dϕ

þ g00ðϕÞPðϕÞ
���

dϕ
dt

�
2 − 1

�

þ 2

�
dPðϕÞ
dϕ

þ 2g0ðϕÞPðϕÞ
�
d2ϕ
dt2

¼ 0: ð43Þ

We introduce the function δ to be equal to

δ ¼ dϕ
dt

− 1: ð44Þ

Practically, the parameter δ measures the exact way that
perturbations behave for the solutions we presented in the
previous section, with regards to PðϕÞ, if the system of
equations are treated as a dynamical system. In terms of δ,
Eq. (43) can be written as follows,

dδ
dt

¼ −ωðtÞδ; ð45Þ

with ωðtÞ standing for

ωðtÞ ¼ 2

d2PðϕÞ
dϕ2 − g0ðϕÞ dPðϕÞdϕ þ g00ðϕÞPðϕÞ

dPðϕÞ
dϕ þ 2g0ðϕÞPðϕÞ

				
ϕ¼t

: ð46Þ

Thereby, if ω > 0, the dynamical system of Eq. (45) is
stable, since the coefficient of the dynamical variable δ is
rendered negative. However, if ω < 0, the dynamical
system is unstable, since the perturbations grow in an
exponential-like way. Since we are interested in the limit
t → ts, the functional form of ωðϕÞ, near the type IV
singularity, where the bounce occurs, reads

ωðϕÞ≃ 2ð6þ εð7 − ððϕ − tsÞ2Þεð2þ x − 4εÞ þ 2εÞÞ
ðϕ − tsÞð−3þ ð−2þ 4ððϕ − tsÞ2ÞεÞεÞ

;

ð47Þ

which for ϕ≃ ts can be further approximated by the
following expression,

ωðϕÞ≃ 2ð6þ εð7þ 2εÞÞ
ðϕ − tsÞð−3 − 2εÞ : ð48Þ

As is obvious by looking at Eq. (48), ωðϕÞ is negative for
ϕ > ts, while it is positive for ϕ < ts, so the system is
conditionally unstable (as we anticipated), since the point
ϕ ¼ ts is a saddle point of the dynamical system (45).

V. EINSTEIN FRAME ANALYSIS
OF THE FðRÞ BOUNCE

In the previous section we demonstrated that the Jordan
frame FðRÞ gravity of Eq. (40) can realize the bounce
cosmology of Eq. (3). In this section we show that the
Einstein frame counterpart of the FðRÞ gravity (40), is a
deformed form of R2 inflation in the Einstein frame (for a
similar approach to ours, see Ref. [44]). In particular, it
corresponds to a canonical scalar theory with a nearly R2

potential [43]. This kind of potentials were first studied in
[43]. We have to note that we do not assume that we start in
the Jordan frame with the scale factor of Eq. (3), but we
start with a convenient metric that, when conformally
transformed to the Einstein frame, it can generate nearly
Starobinsky inflation. We start off with the action of the
FðRÞ gravity (40),
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S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−ĝp
FðRÞ

¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−ĝp �
Rþ R2

4C0

þ Λ

�
; ð49Þ

where ĝμν is the Jordan frame metric tensor. We introduce
the auxiliary field A, so in terms of this auxiliary scalar, the
action (49) can be written as follows,

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi−ĝp
ðF0ðAÞðR − AÞ þ FðAÞÞ: ð50Þ

Upon variation with respect to the scalar A, the solution
A ¼ R is obtained; thus, the mathematical equivalence of

the actions (49) and (50) is verified. By using the canonical
transformation,

φ ¼ −
ffiffiffiffiffiffiffi
3

2κ2

r
lnðF0ðAÞÞ; ð51Þ

we are transferred to the Einstein frame. In Eq. (51), the
scalar field φ is the Einstein frame canonical scalar field.
Conformally transforming the Jordan frame metric ĝμν,

gμν ¼ e−φĝμν; ð52Þ

we obtain the Einstein frame scalar field action,

~S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

R
2κ2

− 1

2

�
F00ðAÞ
F0ðAÞ

�
2

gμν∂μA∂νA − 1

2κ2

�
A

F0ðAÞ −
FðAÞ
F0ðAÞ2

��

¼
Z

d4x
ffiffiffiffiffiffi−gp �

R
2κ2

− 1

2
gμν∂μφ∂νφ − VðφÞ

�
; ð53Þ

with the scalar potential VðφÞ being equal to

VðφÞ ¼ A
F0ðAÞ −

FðAÞ
F0ðAÞ2 ¼

1

2κ2
ðe

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
φRðe−

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
φÞ − e2

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
φF½Rðe−

ffiffiffiffiffiffiffiffiffi
2κ2=3

p
φÞ�Þ: ð54Þ

For the Jordan frame FðRÞ gravity (40), the canonical
scalar field potential of Eq. (54) becomes [44]

VðφÞ≃ C0 þ C2e
−2 ffiffi

2
3

p
κφ þ C1e

− ffiffi
2
3

p
κφ; ð55Þ

where the constant parameters C1 and C2 are related to C0

and Λ that appear in Eq. (40) as follows,

C1 ¼ −2C0; C2 ¼ C0 − Λ: ð56Þ
The canonical scalar field potential (55) corresponds to a

nearly R2 inflationary potential which, in the case that the
coefficient C2 is equal to C0, means that the potential
becomes exactly the R2 model potential in the Einstein
frame; that is,

VðφÞ ¼ C0ð1 − e
ffiffi
2
3

p
κφÞ2: ð57Þ

By no means does this imply that the bounce in the Jordan
frame with metric that has a scale factor (3) corresponds to
an inflationary solution when viewed in the Einstein frame.
That would require a very special conformal transformation
that may not necessarily lead to a de Sitter or even quasi–de
Sitter solution in the Einstein frame. An interesting scenario
occurs when the Jordan frame ĝμν is such that when
conformally transformed according to the transformation
(52), it becomes a de Sitter or quasi–de Sitter metric in the

Einstein frame, with the scalar potential being that of
Eq. (55). This is a quite appealing scenario, and in the next
section we consider the observational indices of this nearly
R2 model (55). Some interesting studies related to con-
formal transformation between frames and singularities can
be found in [45].

A. Observational indices of the Einstein
frame FðRÞ gravity

In this section we study the observational implications of
the Einstein frame canonical scalar field model with
potential that of Eq. (55). The potential of Eq. (55) in
view of the constraints (56) reads

VðφÞ ¼ C0 þ C2e
−2 ffiffi

2
3

p
κφ − 2C0e

− ffiffi
2
3

p
κφ: ð58Þ

For the canonical scalar theory in the Einstein frame,
assuming a flat FRW metric, the energy density and
pressure of the model are equal to

ρφ ¼ _φ2

2
þ VðφÞ; pφ ¼ _φ2

2
− VðφÞ; ð59Þ

where, as usual, the “dot” indicates differentiation with
respect to the cosmic time. The Friedmann equations in the
presence of the canonical scalar φ, are given by
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3H2

κ2
¼ _φ2

2
þ VðφÞ; − 1

κ2
ð2 _H þ 3H2Þ ¼ _φ2

2
− VðφÞ;

ð60Þ

and also the following second-order equation of motion for
the scalar field φ is satisfied,

φ̈þ 3H _φ ¼ −V 0ðφÞ: ð61Þ

Before getting to the detailed calculation of the observa-
tional indices for the model (58), it is worth presenting in
brief the essentials of the slow-roll approximation in
inflationary theories. For a detailed presentation of these
issues, the reader is referred to Refs. [46,47]. Historically,
the slow-roll approximation [48,49], was introduced in
order to solve the graceful exit of inflation problem and
nowadays is frequently used in most inflation predicting
theories. The slow-roll conditions are based on the follow-
ing constraint for the canonical scalar field,

1

2
_φ2 ≪ VðφÞ; ð62Þ

where it is assumed that this constraint holds true for a
sufficiently long period of time, with the latter feature being
model dependent nevertheless. The constraint of Eq. (62) is
called the first slow-roll condition, and it guarantees a long
and finite acceleration era. Furthermore, another constraint
has to be imposed on the first slow-roll condition, so that
the slow-roll accelerating era lasts for a sufficiently long
period of time, which is the following,

jφ̈j ≪
				 ∂VðφÞ∂φ

				: ð63Þ

The condition of Eq. (63) is called the second slow-roll
condition, which by taking into account the equation of
motion of the canonical scalar field, namely Eq. (61), in a
flat FRW background, becomes as follows:

jφ̈j ≪ 3Hj _φj: ð64Þ

In view of the two slow-roll conditions, namely Eqs. (62)
and (64), the equation of motion of the scalar field (61)
becomes

_φ≃− 1

3H
∂VðφÞ
∂φ ; ð65Þ

while the FRW equations of Eq. (60) read

3H2 ≃ κ2 VðφÞ; 3H _φ≃−V 0ðφÞ: ð66Þ

The two slow-roll conditions, namely Eqs. (63) and (64),
are shown to be equivalent to the following two relations,

�
V 0ðφÞ
VðφÞ

�
2

≪ 2κ2;

�
V 00ðφÞ
Vðφ2Þ

�
≪ κ2; ð67Þ

which accordingly can be recast as follows:

ϵ ≪ 1; η ≪ 1: ð68Þ
These two conditions (68) constitute the slow-roll con-
ditions. The parameters ϵ and η are known as the slow-roll
parameters, and these, in the context of slow-roll approxi-
mation, are formally defined to be equal to

ϵ ¼ 1

2κ2

�
V 0ðφÞ
VðφÞ

�
2

; η ¼ 1

κ2

�
V 00ðφÞ
Vðφ2Þ

�
: ð69Þ

Notice that the prime in all the equations above denotes
differentiation with respect to the canonical scalar field φ.
The observational indices that are currently scrutinized by
the Planck collaboration [50], are written in terms of the
slow-roll parameters. In particular, we are interested in the
spectral index of the primordial curvature fluctuations,
denoted as ns, and the tensor-to-scalar ratio, denoted as r,
which are expressed in terms of the slow-roll parameters
(69) in the following way [46,47],

ns ∼ 1 − 6ϵþ 2η; r ¼ 16ϵ: ð70Þ
Finally, the latest Planck (2015) observational data [50]
predict for the observational indices of Eq. (70) the
following values:

ns ¼ 0.9655� 0.0062; r < 0.11: ð71Þ

After this brief introduction to the slow-roll approximation
and related observational indices, we now proceed to the
phenomenological analysis of the Einstein frame canonical
scalar field theory counterpart of the FðRÞ gravity (40),
with Einstein frame canonical scalar potential (58). The
model of Eq. (58) was also presented in Ref. [44], to
which reference we refer the reader for further details. As it
can be shown, the minimum of the canonical scalar
potential (58), is at φ ¼ 0, since the critical point of the
equation V 0ðφÞ ¼ 0 is actually φ ¼ 0. Also, since the
second derivative of the potential at φ ¼ 0 is

V 00ð0Þ ¼ − 4C0κ
2

3
þ 8C2κ

2

3
ð72Þ

which is positive when C2 >
C0

2
, the critical point φ ¼ 0 is a

global minimum of the potential VðφÞ. We recall here that
the inflationary evolution of the canonical scalar field φ
goes as follows: during the inflationary era, the scalar field
has very large values (φ) and inflation ends when the slow-
roll parameters of Eq. (69) become of the order one.
Eventually, the field tends to the value φ, which corre-
sponds to the minimum of the potential. For the potential
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(58), the Eqs. (65) and (66) in the slow-roll approximation
become

3H2

κ2
≃ γ − 2e−

ffiffi
2
3

p
κφγ þ 4C2e

−2 ffiffi
2
3

p
κφκ2

4κ2
;

3H _φ≃− e−2
ffiffi
2
3

p
κφðe

ffiffi
2
3

p
κφγ − 4C2κ

2Þffiffiffi
6

p
κ

; ð73Þ

where for convenience we introduced the parameter γ,
which is defined in terms of C0 as follows:

γ ¼ 4κ2C0: ð74Þ

Since during inflation the canonical scalar field has large
values (φ → ∞), the FRW equations and the scalar field
equations (73) become

H2 ≃ γ

12
; 3H _φ≃

�
γffiffiffiffiffiffiffi
6κ2

p
�
e−

ffiffi
2
3

p
κφ; ð75Þ

where we ignored subdominant terms and, more impor-
tantly, assumed that

γ2 ≫ C2κ
2; ð76Þ

which ensures that a quasi–de Sitter solution can be
achieved. So during inflation, where φ → ∞, the slow-roll
indices read

ϵ ¼ 4

3ð−2þ e
ffiffi
2
3

p
κφÞ2

; η≃ 4

3j2 − e
ffiffi
2
3

p
κφj

: ð77Þ

The inflationary era ends for the value of φ, for which the
parameter ϵ (or η) becomes of order one, that is,
ϵðφendÞ≃ 1, which for the parameter ϵ appearing in
Eq. (77), occurs for

φend ≃−
ffiffiffi
3

2

r
1

κ
ln

�
2 −

ffiffiffi
4

3

r �
: ð78Þ

By using Eq. (77), the observational indices can be written
as follows,

ns ≃ 1þ 8

6 − 3e
ffiffi
2
3

p
κφ

− 8

ð−2þ e
ffiffi
2
3

p
κφÞ2

;

r≃ 64

3ð−2þ e
ffiffi
2
3

p
κφÞ2

: ð79Þ

We can write these by using the e-folding number as
follows (see also [44]):

ns ≃ 1 − 2

N
; r≃ 12

N2
: ð80Þ

In order to see this, recall that the e-folding number in the
slow-roll approximation is defined to be equal to

N ≃ κ2
Z

φ�

φend

VðφÞ
V 0ðφÞ dφ; ð81Þ

where φ� is an initial value of the scalar field φ which is
assumed to be φ� ≫ φend. By using this approximation, we
obtain

N ¼ 3

4
e
ffiffi
2
3

p
φ�κ; ð82Þ

for which value the slow-roll parameters become

ϵ ¼ 4

3ðe
ffiffi
2
3

p
κφ� Þ2

; η≃ 4

3je
ffiffi
2
3

p
κφ� j

; ð83Þ

and by combining Eqs. (82) and (83), we easily obtain
Eq. (80). Then, by looking at Eq. (80), in order to achieve
for example N ¼ 60 e-folding, it is required that the initial
value of the scalar field is approximately φi ≃ 1.07

κ2
(see also

[44] for details). The resulting picture is compatible with
the 2015 Planck data [50], since for N ¼ 60, we obtain that
ns ≃ 0.9665 and r≃ 0.0029. In conclusion, as was also
pointed out in detail in [44], the resulting picture is pretty
much like the standard R2 model, with the only difference
being traced to the fact that the minimum of the potential is
nonzero. Therefore, the FðRÞ gravity model of (40), which
describes a Jordan frame R2 gravity plus cosmological
constant, in the Jordan frame can give rise to the singular
bounce of Eq. (3), and when the metric in the Jordan frame
is appropriately chosen, the same model can give rise to an
Einstein frame inflationary potential which is a modifica-
tion of the R2 model, with observational indices compatible
with current observational data.

VI. THE EFFECTIVE EQUATION OF STATE FOR
THE SINGULAR BOUNCE AND COMPARISON

WITH NONSINGULAR BOUNCE

Having studied the FðRÞ gravity that can generate the
type IV singularity, in this section we study in detail the
EOS corresponding to the singular bounce of Eq. (3). For
both a standard Einstein-Hilbert gravity background and a
modified gravity background,2 the EOS for a Hubble rate
HðtÞ is defined to be [37]

weff ¼ −1 − 2 _HðtÞ
3HðtÞ2 ; ð84Þ

so for the Hubble rate of Eq. (4), the EoS reads

2Equation (84) is valid when the FðRÞ geometric contribution
is viewed as a perfect fluid; see Appendix A for details.
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weff ¼ −1 − ð1þ 2εÞ
3f0ð1þ εÞðt − tsÞ2ð1þεÞ : ð85Þ

In Fig. (3) we plot the EOS parameter as a function of time,
for ε ¼ 1

11
, f0 ¼ 0.0001 ðsecÞ−2ε−2 and ts ¼ 10−35 sec. As

we can see, the EOS describes a phantom evolution for
t < ts, at t≃ ts it develops a singularity at some time
during the phantom era, and for t > ts slowly by slowly
goes from the phantom era to the de Sitter evolution.
Therefore, for t ≫ ts and t ≪ ts, the evolution is nearly de
Sitter. This singular behavior in the deep phantom era has
also been observed in other bouncing models, too; see for
example [6]. We briefly discuss this issue later on. We can
also study the behavior of the EOS analytically in various
limits of the cosmic time. Let us start with the case that the
bouncing point, and simultaneously the point that the type
IV singularity occurs, is very small, that is ts=t ≪ 1. In
such a case, for large t values, and specifically for all
cosmic times that t ≫ ts, the EOS would become

weff ¼ −1 − ð1þ 2εÞ
3f0ð1þ εÞðtÞ2ð1þεÞ ; ð86Þ

which for large t describes de Sitter acceleration that
slightly crosses the phantom divide. Moreover, for times
near the type IV singularity, that is t≃ ts, the EOS becomes
singular, as it can be seen from Eq. (85). This can also be
seen in Fig. 3. Now consider the case that ts ≫ t, in which
case, when t≃ ts, the same singular behavior occurs and
the EOS evolves rapidly in the deep phantom era. For
cosmic times much smaller than ts, that is ts ≫ t, the EOS
is approximately equal to

weff ¼ −1 − ð1þ 2εÞ
3f0ð1þ εÞt2ð1þεÞ

s

; ð87Þ

which again describes nearly de Sitter but slightly crosses
to the phantom state. It is worth examining another
interesting scenario, in which the EOS evolves to the
singular phantom state after our present epoch, which is
roughly tp ≃ 1017 sec. In that case the EOS up to our era is
nearly de Sitter and evolves to phantom near the type IV
singularity. For example let ts ¼ 1019 sec. Then, for t < ts,
the EOS is of nearly de Sitter type and as t → ts, the
EOS becomes rapidly phantom. This can also be seen in
Fig. 4, left panel, where we used f0 ¼ 10−28 ðsecÞ−2ε−2.
In the right panel we have plotted the EOS for
f0 ¼ 10−15 ðsecÞ−2ε−2. Observe that the “throat” of the
EOS graph becomes smaller, as the value of f0 increases.
So, practically, according to the left plot scenario of Fig. 4,
this scenario suggests that the EOS can possibly and
simultaneously cross the phantom divide, with a functional
behavior that resembles a a Dirac function. This seems
somehow like a simultaneous and peculiarly sudden change
in the state of the Universe as a whole. It would be
interesting to model such a behavior with a Dirac delta
function at the transition, to see the differences between the
bounce model (3) and the Dirac delta function model, but
we defer this task to a future work. In the plots of Fig. 4,
there appear many “−1,” and this is due to the fact that the
values of the EOS are very close to −1, with the differences
appearing after 12 decimal places. In order to have a more
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FIG. 3 (color online). The equation of state corresponding to
the cosmological bounce aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ

, as a function of
time, for ε ¼ 1

11
, f0 ¼ 0.0001 ðsecÞ−2ε−2 and ts ¼ 10−35 sec.
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FIG. 4 (color online). The equation of state corresponding to the cosmological bounce aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ
, as a function of time, for

ε ¼ 1
11
, f0 ¼ 10−32 ðsecÞ−2ε−2 (left), f0 ¼ 10−28 (right) and ts ¼ 1019 sec.
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clear picture of this, in Table I we present the exact
values of the EOS for various times and for
f0 ¼ 10−32 ðsecÞ−2ε−2, where the differences between
various points can explicitly be seen. Furthermore, in
Table II we present the corresponding exact EOS values
for f0 ¼ 10−28 ðsecÞ−2ε−2. In order to have a clear picture
of the behavior of the EOS, in Fig. 5 we plot the behavior
of the function ðweff þ 1Þ × 1014 as a function of the
cosmic time for f0 ¼ 10−32 ðsecÞ−2ε−2 (left) and f0 ¼
10−28 ðsecÞ−2ε−2 (right). In these plots, the differences of
the EOS in the two cases can be clearly seen. The vertical
line in the plots of Fig. 5 corresponds to the
value t ¼ 1019 sec.
Let us now in brief compare the behavior of the EOS

corresponding to the singular bounce (3) to the one
corresponding to the bounce (5). The two models as we
now explicitly demonstrate are qualitatively similar, with

the only difference being that the two models are generated
by different FðRÞ gravities in the Jordan frame. For an
account on the bounce (5), see [36]. For the bounce (5), the
EOS reads

weff ¼ −1 − 1

3f0ðt − tsÞ2
: ð88Þ

In Fig. 6 we plotted the time dependence of the bounce (5),
for f0 ¼ 0.0001 ðsecÞ−2ε−2 and ts ¼ 0. As is obvious from
Fig. 6, and as we already mentioned, the qualitative
behavior of the bounces (3) and (5), are very much alike.
It is of particular importance to notice the appearance of a
singularity in the EOS of the two bounces and also that both
bounces in the limit t ≫ ts asymptotically approach a de
Sitter evolution. Moreover, near the bouncing point the two
bounces generate a phantom EOS. Notice, however, that
the bounce of Eq. (5) is not singular at all (the derivative of
the Hubble rate is constant and all higher derivatives are
simply zero). But what does a singularity in the equation of
state indicate? In the next section, we briefly discuss this
issue, and by using some illustrative examples, always in
the context of bouncing cosmologies, we try to shed some
light on the issue.
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FIG. 5 (color online). The function ðweff þ 1Þ × 1014 corresponding to the cosmological bounce aðtÞ ¼ ef0ðt−tsÞ2ð1þεÞ
, as a function of

time, for ε ¼ 1
11
, f0 ¼ 10−32 ðsecÞ−2ε−2 (left), f0 ¼ 10−28 ðsecÞ−2ε−2 (right) and ts ¼ 1019 sec.

TABLE I. Exact values of the EOS for f0 ¼ 10−32 ðsecÞ−2ε−2.
t (sec) weff

t ¼ 5 × 1018 weff ¼ −1.000000000000058
t ¼ 6.1 × 1018 weff ¼ −1.000000000000099
t ¼ 7 × 1018 weff ¼ −1.000000000000175
t ¼ 8 × 1018 weff ¼ −1.000000000000425
t ¼ 1.1 × 1019 weff ¼ −1.000000000001927
t ¼ 1.5 × 1019 weff ¼ −1.000000000000058

TABLE II. Exact Values of the EOS for f0 ¼ 10−32 ðsecÞ−2ε−2.
t (sec) weff

t ¼ 5 × 1018 weff ¼ −1.000000000057529
t ¼ 6.1 × 1018 weff ¼ −1.000000000012679
t ¼ 7 × 1018 weff ¼ −1.000000000175356
t ¼ 8 × 1018 weff ¼ −1.000000000424738
t ¼ 1.1 × 1019 weff ¼ −1.000000001927141
t ¼ 1.2 × 1019 weff ¼ −1.000000000424738
t ¼ 1.5 × 1019 weff ¼ −1.000000000057529
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FIG. 6 (color online). The equation of state corresponding to
the cosmological bounce aðtÞ ¼ ef0ðt−tsÞ2 , as a function of time,
for f0 ¼ 0.0001 ðsecÞ−2ε−2 and ts ¼ 0 sec.
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A. Brief discussion on singularities in the effective
equation of state in general bouncing cosmologies

In this section we discuss the issue of singularities of the
EOS in the context of a bouncing cosmology. Apart from
the singular bounce which we studied in this paper, there
also exist other bouncing cosmologies, such as the super-
bounce [4,10,13] and the matter bounce [12] scenarios. It is
worth discussing briefly how the EOS behaves in these
bouncing cosmologies. We start off with the matter bounce
scenario [12], for which the scale factor reads

aðtÞ ¼
�
3

2
ρct2 þ 1

�1
3

; ð89Þ

and the corresponding Hubble rate is equal to

HðtÞ ¼ 2tρc
2þ 3t2ρc

; ð90Þ

where ρc is the critical energy density. This parameter
frequently occurs in the LQCmatter bounce scenario, and it
can take various values depending on the model under
study (see, for example, p. 17 of [51], for a detailed
discussion). The matter bounce cosmology described by
the Eqs. (89) and (90) has all the bouncing cosmology
features we described earlier, as can also be easily verified
by looking at Fig. (7), where we plotted the time depend-
ence of the scale factor aðtÞ and of the Hubble rateHðtÞ, as
a function of time, for ρc ¼ 106 J=m3. Of course, in the
matter bounce case, the bouncing point is t ¼ 0. The EOS
corresponding to the matter bounce scenario reads

weff ¼ −1 − 2 _HðtÞ
3HðtÞ2 ¼ − 2

3t2ρc
: ð91Þ

Clearly, the EOS (91) is singular at the bouncing point
t ¼ 0. The case of the matter bounce scenario is very
similar to the singular bounce case we studied in this paper,
with scale factor given in Eq. (3) and also to the bounce of

Eq. (5) studied in [36]. In addition, the quintom bounce
studied in Ref. [6] has exactly the same characteristics as
the singular bounce we studied in this article and also as the
matter bounce scenario; although in [6], the standard
Einstein Hilbert gravity was employed, with regards to
the FðRÞ content of the theory. Notice that in all three
aforementioned cases, the EOS is singular at the bouncing
point, which seems to be a repeating pattern, common in
certain types of bouncing cosmologies. We need to stress
that a singular EOS in astrophysical systems is a rather
peculiar feature which never occurs, so in principle, the
same would be expected in cosmological theories. So what
we need to understand is what does that singularity in the
EOS indicates and how it is related to the finite time
singularities we presented in a previous section. Also we
have to note that in both the matter bounce and singular
bounce case, the Hubble rate vanishes at the bouncing
point, so probably a singularity in the EOS is unavoidable,
unless this is somehow cancelled if H2 behaves in the same
way as _H. However, for the functional forms of the Hubble
rate in matter bounce and the singular bounce cases, this
requirement is not fulfilled. In addition, note that the fact
that the EOS parameter weff is singular does not always
imply that the effective pressure and/or effective energy
density are singular, too [24,52]. Both of them may be
regular, while the effective pressure and effective energy
density might be finite.
For example, there exist some other bouncing cosmol-

ogies in the literature, such as the superbounce [4,10,13],
for which the requirement that H2 behaves in the same way
as _H occurs. In this case, no singularity occurs in the EOS.
It is worth recalling this case in brief for completeness.
In the superbounce scenario [4,10,13], the scale factor is
equal to

aðtÞ ¼ ðt − tsÞ
2

c2 ; ð92Þ

and the corresponding Hubble rate is equal to
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FIG. 7 (color online). The scale factor aðtÞ (left plot) and the Hubble rate (right plot) as a function of the cosmic time t, for
ts ¼ 10−35 sec, and ρc ¼ 106 J=m3 for aðtÞ ¼ ð3
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HðtÞ ¼ 2

c2ðt − tsÞ
; ð93Þ

where c is a dimensionless parameter, which is assumed to
satisfy c >

ffiffiffi
6

p
in order for the superbounce to occur(see

[13] and references therein). The superbounce (92) clearly
describes a bouncing cosmology, having most of the
properties of a bounce we described in a previous section,
with the only exception being that at the bouncing point
t ¼ ts, the Hubble rate is not zero but diverges. This can
also be verified by looking at Fig. (7), where we plotted the
time dependence of the scale factor and of the Hubble rate,
for c ¼ ffiffiffi

7
p

and ts ¼ 10−35 sec. As we can see in Fig. (8),
the scale factor is never singular and the Universe contracts
for t < ts and expands for t > ts, where at t ¼ ts no
singularity occurs. In addition, the EOS for the super-
bounce (92) is equal to

weff ¼
1

3
ð−3þ c2Þ; ð94Þ

which is constant. So in the superbounce case, only the
Hubble rate is singular, with the EOS being nonsingular
and constant and this occurs because H2 and _H behave in
the same way as functions of the cosmic time. This is in
contrast to the singular bounce we studied in this paper (3),
the bounce (5) which was studied in [36] and also the
quintom bounce which was studied in [6]. Notice that in all
three aforementioned cases, at the bouncing point t ¼ ts,
the Hubble rate vanishes, that is, HðtsÞ ¼ 0. Someone
could claim that for example, the singularity in the EOS, is
due to the reason thatHðtsÞ ¼ 0, which is true in both cases
of the bounces. So provisionally, we could claim that the
singularity in the EOS is, at a first glance, not directly
related to the finite time cosmological singularities in the
case that the type IV singularity is taken into account and
only that. This, however, should be carefully studied in
more detail and, therefore, the need for a complete under-
standing of the relation between the finite time singularities
and the EOS singularities is compelling. This, however,

exceeds the purposes of this paper, and we hope to address
this issue concretely in a future work.

VII. CONCLUSIONS

In this paper we investigated which FðRÞ gravity can
generate a type IV singular bounce, which was chosen so
that the type IV singularity occurs at the bouncing point. As
we explicitly demonstrated, the FðRÞ gravity responsible for
the type IV bounce, near the singularity, has the form
FðRÞ ¼ Rþ αR2 þ Λ in the Jordan frame. We also found
the Einstein frame scalar theory counterpart corresponding to
the FðRÞ gravity and, having assumed a quasi–de Sitter
metric in the Einstein frame, we investigated the inflationary
properties of the resulting scalar theory in the Einstein frame.
As we evinced, the spectral indices of the resulting scalar
theory can be compatible with the recent Planck [50]
observations, and the theory itself is compatible with the
standard Einstein frame R2 inflation theory, with the only
difference being that the minimum of the potential is shifted.
We also performed a thorough analysis of the EOS

corresponding to the type IV singular bounce. As we
showed, the behavior of the singular bounce is similar to
other bounces that exist in the literature, such as the matter
bounce scenario [12] and the quintom bounce scenario [6].
At this point, it is worth discussing a quite interesting point
that resulted from our analysis. As we demonstrated, even
in the case of the type IV singular bounce, the EOS is
singular at the bouncing point, where the singularity
occurs, with the other two aforementioned bounces also
having this feature. In addition, as can be easily checked, in
the case of a type I singularity, the EOS can in some cases
be singular or regular at the point where the singularity
occurs and the same applies for the type II case.
Furthermore, it has been pointed out in the literature that
there exist points at which the EOS diverges, but both the
effective energy density and the effective pressure are finite
[52], so this would, in some sense, have nothing to do with
finite time singularities. As for the type II case, the EOS is
always singular. It would, therefore, be interesting to
address the question of whether the finite time singularities
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should be further classified by also taking into account the
EOS. This is also motivated by the fact that in most known
perfect fluids that are used in astrophysics, the EOS is never
singular, so the appearance of this singular behavior in
some cases, in a cosmological context, should be noticed
and used in some classifying way. This is also supported by
the fact that even in the big rip case, which is a crushing-
type singularity, the EOS can be regular, even though all
other quantities diverge. In any case, the singularity in the
EOS of perfect fluids used in cosmology should be further
studied in order to understand the implications this would
have at a theoretical and observational level. For a relevant
study on these issues, see [52].
Another important issue that we did not address is the

connection between the type IV singularities and bouncing
cosmology. Is it possible that a type IV singular cosmo-
logical evolution would lead to a bouncing cosmology? In
addition, is the EOS always singular in the case of a type IV
singular cosmological evolution? We hope to address these
issues formally in a future work.
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APPENDIX A: EOS FOR FðRÞ
MODIFIED GRAVITY

In this appendix, we demonstrate in detail that the
effective equation of state of the FðRÞ modified gravity,
for a flat FRW background, is given by Eq. (84), namely,

weff ¼ −1 − 2 _HðtÞ
3HðtÞ2 : ðA1Þ

For a detailed account on these issues, see also [37]
and references therein. We start off with the FRWequations
of motion, which can be derived from Eq. (14), and
these read,

3F0ðRÞH2 ¼ κ2ðρmþ ρrÞþ
ðF0ðRÞR−FðRÞÞ

2
− 3H _F0ðRÞ;

−2F0ðRÞ _H¼ κ2ðpmþ 4=3ρrÞþFF̈0ðRÞ−H _F0ðRÞ;
ðA2Þ

so by assuming that no matter fluids are present, the above
equations are modified as follows,

3F0ðRÞH2 ¼ ðF0ðRÞR − FðRÞÞ
2

− 3H _F0ðRÞ;
−2F0ðRÞ _H ¼ FF̈0ðRÞ −H _F0ðRÞ; ðA3Þ

The equations (A3) can be rewritten as follows,

3H2 ¼ ρDE; −2 _H ¼ ρDE þ PDE; ðA4Þ

where we defined the geometric energy density ρDE and the
geometric effective pressure PDE, as follows,

ρDE ¼ ðF0ðRÞR − FðRÞÞ
2

− 3H _F0ðRÞ þ 3H2

PDE ¼ FF̈0ðRÞ þ 2H _F0ðRÞ − ðF0ðRÞR − FðRÞÞ
2

þ 3ð3H2 þ 2 _HÞF0ðRÞ ðA5Þ

In this way, the contribution of the FðRÞ gravity can be
viewed as a perfect fluid’s one and the representation of the
FRW equations appearing in Eq. (17) can be viewed as a
mathematically equivalent perfect fluid representation of
the ones appearing in Eq. (A2). This is the reason why the
contribution of FðRÞ gravity to the FRW equations is said
to be owing to the existence of a geometric dark fluid. The
geometric effective energy density ρDE and the geometric
effective pressure density satisfy the continuity equation,

_ρDE þ 3HðρDE þ PDEÞ ¼ 0; ðA6Þ

The corresponding effective equation of state for the dark
fluid is defined to be equal to,

weff ¼
PDE

ρDE
; ðA7Þ

which owing to Eq. (A3) can be written as follows,

weff ¼ − 2 _H þ 3HðtÞ2
3H2

; ðA8Þ

which can easily be cast in the form of Eq. (A1). So for a
flat FRW metric, the modified gravity effective equation of
state can take the form of Eq. (A1), like in the ordinary
Einstein-Hilbert gravity in a flat FRW background.
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APPENDIX B: ANALYTIC FORM OF CONSTANTS

Here we present the full form of the constants appearing in Eqs. (32) and (33). The parameter A is equal to,

A ¼
f
− 1

2ð1þεÞ
0 ð2þ 2εÞ 1

2ð1þεÞC1Γ
�

1
2ð1þεÞ

�
2ð1þ εÞΓð− 1þ4ε

2ð1þεÞÞ
þ
f
− 1

2ð1þεÞ
0 C1ð2þ 2εÞ 1

2ð1þεÞð1þ 5εþ 2ε2ÞΓ
�
1þ 1

2ð1þεÞ
�

2ð1þ εÞ2Γð1 − 1þ4ε
2ð1þεÞÞ

: ðB1Þ

while the parameters B and C are equal to,

B ¼ 6f0ð1þ 4εÞC1

�
f0

2ðεþ 1Þ
�− 1

2ðεþ1Þ Γð1þ 1
2ðεþ1ÞÞðð2þ 2ðεþ 1ÞÞ − 2ð1þ 2ðεþ 1ÞÞΓð 1−2ε

2ðεþ1ÞÞÞ
ð2ðεþ 1ÞÞ2Γð 1−2ε

2ðεþ1ÞÞ
; ðB2Þ

C ¼ 6f
22ðεþ1Þþ1

2ðεþ1Þþ1

0 C1

ð2ðεþ 1ÞÞ3þ2ðεþ1Þ

 ð2ðεþ 1ÞÞð2þ 2ðεþ 1ÞÞΓð 1
2ðεþ1ÞÞ

Γð 1þ4ε
2ðεþ1ÞÞ

− 2ðεþ 1Þð1þ 4εÞ2Γð1þ 1
2ðεþ1ÞÞ

Γð 1−2ε
2ðεþ1ÞÞ

−
4ð1þ 2ðεþ 1Þ þ 2ðεþ 1Þ2ÞΓð1þ 1

2ðεþ1ÞÞ
Γð 1−2ε

2ðεþ1ÞÞ
þ
4ð1þ 2ðεþ 1ÞÞ2ð1þ 4εÞΓð2þ 1

2ðεþ1ÞÞ
ð1þ 2ðεþ 1ÞÞ

!
: ðB3Þ
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