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Singularities are common features of general relativity black holes. However, within general relativity,
one can construct black holes that present no singularities. These regular black hole solutions can be
achieved by, for instance, relaxing one of the energy conditions on the stress-energy tensor sourcing the
black hole. Some regular black hole solutions were found in the context of nonlinear electrodynamics,
the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar
wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-
wave description with the classical geodesic scattering of a stream of null geodesics, as well as with
the semiclassical glory approximation. We obtain that, for some values of the corresponding black hole
charge, the scattering cross section of a Bardeen black hole has a similar interference pattern to a
Reissner-Nordström black hole.
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I. INTRODUCTION

Black holes (BHs) are among the most interesting
objects of general relativity (GR). Although GR is a highly
nonlinear theory, BHs come out of it with a very simple
structure. Standard GR BH solutions are parameterized by
their mass, charge and angular momentum [1] (see, e.g.,
Refs. [2,3] for interesting counterexamples of the previous
statement). Although related to the earliest predictions of
GR, the strong field regime of BHs is still an experimental
challenge [4–6]. Notwithstanding, the observational data
presently available suggest that BHs populate basically all
the galaxies in the Universe [7].
Although very successful in explaining the available

data, standard GR BHs suffer from one of the main
problems of GR: the presence of singularities. Hawking
and Penrose indeed showed that, for some hypotheses on
the gravitational collapse, the formation of singularities in
BHs would be unavoidable [8,9]. These singularities were
conjectured by Penrose to be hidden by a horizon [10,11],
and were claimed to be possibly avoided within an
improved theory of gravity (extension or modification
of GR) [12].
The study of BHs without singularities can help us to

understand the role played by singularities in astrophysics.
Still within GR, one can obtain BHs without singularities—
dubbed regular BHs—by relaxing one of the energy
conditions on the stress-energy tensor. Bardeen proposed
the first regular BH solution [13], which was later identified
as a solution for a nonlinear magnetic monopole [14]. Since
then, other regular BHs appeared in the literature, in

different scenarios (see, e.g., Refs. [15–17], and references
therein). Moreover, regular BHs can be relevant in the
context of quantum gravity [18,19], and some of them
reproduce the quantum weak field regime of GR [20].
Studies of scattering by BHs have been extensively made

[21]. Reference [22] presented the results of the scattering
of all basic massless (spin 0, 1=2, 1 and 2) fields by
Schwarzschild BHs. Moreover, the shadows of BHs
[23,24] may become visible with future telescopes, like
the Event Horizon Telescope [25], and the scattering of
light, considering wave and semiclassical approximations,
may be important in anticipating subtle characteristics of
the shadows. However, a careful study of the scattering of
fields by regular BHs is still lacking in the literature [26].
The line element of the Bardeen BH can be written as

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where the lapse function fðrÞ is given by

fðrÞ ¼ 1 − 2Mr2

ðr2 þ q2Þ3=2 : ð2Þ

The Bardeen BH has a structure similar to the Reissner-
Nordström (RN) BH (see, e.g., Ref. [15]). For q < qext ¼
4M=ð3 ffiffiffi

3
p Þ (henceforth, without loss of generality, we

shall assume q ≥ 0), the spacetime has two horizons;
and for q ¼ qext, the horizons degenerate, characterizing
the extremal case. Following Ref. [28], we shall display our
results in terms of the normalized charge Q ¼ q=qext [29].
It is interesting to note that the variation of the charge of

the regular BH changes considerably the deflection angle of
light rays [30]. In Fig. 1 we plot null geodesics coming
from infinity with an impact parameter of b ¼ 5.2M, for

*caiomacedo@ufpa.br
†ednilton@pq.cnpq.br
‡crispino@ufpa.br

PHYSICAL REVIEW D 92, 024012 (2015)

1550-7998=2015=92(2)=024012(8) 024012-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.024012
http://dx.doi.org/10.1103/PhysRevD.92.024012
http://dx.doi.org/10.1103/PhysRevD.92.024012
http://dx.doi.org/10.1103/PhysRevD.92.024012


different values of the BH charge. The behavior is quali-
tatively similar to the case of RN BHs [31]. We see that,
adjusting the BH charge, we can have scattering in
basically any direction.
The remainder of this paper is organized as follows: In

Sec. II we review the main aspects of the classical geodesic
scattering and semiclassical glory approximation to com-
pute the differential scattering cross section. In Sec. III we
present the partial-wave method used to compute the
scattering cross section of planar massless scalar waves.
In Sec. IV we present the results for the scattering of planar
massless scalar waves impinging upon a Bardeen regular
BH, comparing the three different approaches used to
compute the scattering cross section. In Sec. V we end
up with our final remarks. Throughout this work we use
G ¼ c ¼ ℏ ¼ 1 and metric signature ð−;þ;þ;þÞ.

II. CLASSICAL SCATTERING AND
SEMICLASSICAL GLORY

In this section we investigate the scattering by BHs
by using two approaches: classical geodesic scattering and
the semiclassical glory approximation. These approaches
allow us to foresee some of the aspects of the scattering
cross section obtained within the full partial-wave
analysis.

A. Geodesic scattering

The analysis of null geodesics in the Bardeen spacetime
can be seen in Ref. [28]. For the classical approximation
of the scattering, we may consider a stream of parallel
null geodesics coming from infinity. In this case, the
analysis of Ref. [32] suits the problem of classical scatter-
ing by Bardeen BHs. The classical scattering cross section
is given by

dσ
dΩ

¼ 1

sin χ

X
bðχÞ

���� dbðχÞdχ

����; ð3Þ

where bðχÞ is the impact parameter associated with a
scattering angle χ. The summation in Eq. (3) is such that
we also consider the case in which the null geodesic rotates
(one or many times) around the BH before going to infinity
(for instance, see the solid curve of Fig. 1). It is interesting to
note that the classical scattering formula given by Eq. (3)
describes very well the planar-wave case for small scattering
angles, although it gives discrepant results for moderate-to-
high scattering angles, as we shall see in Sec. IV.
Let us now obtain bðχÞ through a geodesic analysis.

Without loss of generality, we shall restrict the geodesic
motion to the plane θ ¼ π=2. From the line element (1), we
can write, for null geodesics

�
du
dφ

�
2

¼ 1

b2
− fð1=uÞu2; ð4Þ

where we have defined u≡ 1=r, b≡ L=E is the impact
parameter given in terms of the constants of motion

E ¼ f_t and L ¼ r2 _φ; ð5Þ

and the overdot denotes differentiation with respect to an
affine parameter of the curve.
Differentiating Eq. (4) with respect to φ, we obtain

d2u
dφ2

¼ −u2

2

dfð1=uÞ
du

− ufð1=uÞ: ð6Þ

Solving Eq. (6) with the appropriate boundary conditions,
one can obtain the geodesics followed by massless par-
ticles, such as the ones shown in Fig. 1. The smallest
positive root of the right-hand side of Eq. (6) corresponds to
the radius of the critical orbit for null geodesics, uc ¼ 1=rc.
Substituting its value in the right-hand side of Eq. (4) and
setting it to zero, we obtain the impact parameter associated
with the critical orbits, bc. Going the other way around, i.e.,
choosing a value b > bc, the smallest root of the right-hand
side of Eq. (4) is u0 ¼ 1=r0, where r0 is the turning point—
or the radius of maximum approximation—of the geodesic.
Finally, by integrating Eq. (4) in the case of scattered

geodesics, we obtain

α ¼
Z

u0

0

�
1

b2
− fð1=uÞu2

�−1=2
du: ð7Þ

The deflection angle following directly from Eq. (7) is
given by

ΘðbÞ ¼ 2αðbÞ − π: ð8Þ

By inverting Eq. (8), one obtains bðΘÞ, and substituting it
in Eq. (3), one obtains the classical scattering cross section.
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FIG. 1 (color online). Geodesics approaching a Bardeen BH
from infinity with an impact parameter of b ¼ 5.2M, for different
values of the BH charge. The Schwarzschild case (Q ¼ 0) is also
exhibited (solid line).
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Plots of the classical scattering cross section obtained by
Eq. (3) are exhibited in Fig. 2, where we compare the
Bardeen cases with the Schwarzschild one. We see from
Fig. 2 that the increase of the BH charge contributes to an
increase of the BH classical scattering cross section.

B. Glory scattering

The interference that occurs between scattered partial
waves with different angular momenta is not taken into
account by the classical formula (3). In order to obtain a
scattering cross section that takes into account the inter-
ference processes, we need to perform a wave analysis of
the problem. Before going into the full wave analysis,
however, it is interesting to apply an approximate method
that works remarkably well for high scattering angles
(θ ∼ π) and that captures some key features of the scattering
cross section in this regime, including the interference
process: the semiclassical glory approximation [33].
Indeed, one of the main advantages of this semiclassical
approximation is that one can find an analytical formula
that gives some physical insight for the width of interfer-
ence fringes in the scattering cross section as well as the
intensity of the scattered flux for θ ∼ π. As a semiclassical
approximation, it is valid for ωM ≫ 1, although it can still
reproduce remarkably well some results for ωM ∼ 1.
The semiclassical formula for the glory scattering by

spherically symmetric BHs is given by [33]

dσsc
dΩ

¼ 2πωb2g

���� dbdθ
����
θ¼π

J22sðωbg sin θÞ; ð9Þ

where bg is the impact parameter of backscattered rays
(θ ¼ π), J2sðxÞ is the Bessel function of the first kind
(of order 2s), and s is the wave spin. In our case, since
we are considering a scalar wave, s ¼ 0. We note that there
are multiple values of bg corresponding to the multiple
values of the deflection angle, namely Θ ¼ π þ 2nπ, with
n ¼ 0; 1; 2…, that result on backscattered rays. All the rays
scattered close to the backward direction (θ ∼ π) contribute

to the glory scattering, but the most important contribution
comes from the n ¼ 0 case. The next contribution, n ¼ 1,
has an intensity that is about 0.2% of the n ¼ 0 one in
the Schwarzschild case, and about 0.8% in the case of the
extreme Bardeen BH. This is a consequence of the
derivative jdb=dθjθ¼π in Eq. (9) getting rapidly suppressed
as n increases. In fact, the values of bg for rays that pass
multiple times around the BH are very close to each other
and also to bc. Here, we consider only the most important
contribution to the glory scattering.
Once we have the knowledge of the glory scattering

formula, Eq. (9), we only need to determine bg and
jdb=dθjθ¼π in order to obtain the glory scattering cross
section. Therefore, we apply Newton’s method and numeri-
cal integration to obtain the parameters bg and jdb=dθjθ¼π .
Numerical results for rc, bc, bg and b2gjdb=dθjθ¼π are
presented in Fig. 3. From these results and Eq. (9), we may
expect that (i) interference fringes get wider and (ii) back-
scattered flux intensity is enhanced for higher values of the
BH charge. Expectation (i) comes from the fact that the
interference fringe width is inversely proportional to bg, as
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FIG. 2 (color online). Left panel: Classical scattering cross section of Bardeen BHs, with Q ¼ 0.5; 0.8 and 1, and for the
Schwarzschild BH (Q ¼ 0). Right panel: Classical scattering cross section of Bardeen BHs, normalized by the Schwarzschild case.
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FIG. 3 (color online). Glory scattering parameters for Bardeen
BHs with varying charge, considering only the dominant con-
tribution (Θ ¼ π). We note that, with the exception of
jdb=dθjθ¼π , all the important parameters related to the glory
scattering decrease monotonically with the increase of Q.
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indicated by the argument of the Bessel function in Eq. (9).
Moreover, Fig. 3 shows that bg decreases monotonically
as Q increases. We also note from Eq. (9) that the
scattering intensity is proportional to b2gjdb=dθjθ¼π , and
to the wave frequency. As shown in Fig. 3, although bg
decreases monotonically with the increase of Q,
b2gjdb=dθjθ¼π increases monotonically with Q, justifying
expectation (ii).
The above analysis may be compared with the results

for the glory scattering from RN BHs [31]. In the latter
case, bg decreases monotonically with the increase of the
BH charge, while jdb=dθjθ¼π increases monotonically
(cf. Fig. 9 of Ref. [31]). Therefore, considering the change
of the BH charge, the behavior of the parameters bg and
jdb=dθjθ¼π are qualitatively the same for Bardeen and RN
BHs. In the case of RN BHs, however, the combination
b2gjdb=dθjθ¼π does not increase monotonically with the
charge—as it happens for Bardeen BHs. Instead, the glory
scattering amplitude as a function of Q presents a local
minimum in the RN case (cf. Fig. 10 of Ref. [31]).
In Sec. IV, we compare results obtained from Eq. (9)

with partial-wave results, exhibiting excellent agreement in
the regime θ ≲ π.

III. PLANAR WAVE SCATTERING

Planar massless scalar waves, represented by the wave
function Φ, are described by the Klein-Gordon equation

1ffiffiffiffiffiffi−gp ∂að
ffiffiffiffiffiffi−gp

gab∂bΦÞ ¼ 0: ð10Þ

Here we shall be interested in monochromatic plane waves.
We have

Φω ¼
X
lm

ϕðrÞ
r

Ym
l ðθ;φÞe−iωt; ð11Þ

where Ym
l ðθ;φÞ are the scalar spherical harmonics.

Substituting Eq. (11) into Eq. (10), we obtain the following
radial equation:

�
− d
dr2�

þ VϕðrÞ − ω2

�
ϕðrÞ ¼ 0; ð12Þ

in which r� is the tortoise coordinate, defined through
dr� ¼ fðrÞ−1dr, and

VϕðrÞ ¼ f
�
lðlþ 1Þ

r2
þ f0

r

�
ð13Þ

is the scalar field effective potential. The scalar field
potential is localized, going to zero at both asymptotic
limits of r� (infinity and horizon) [28].

Plane waves coming from infinity can be described in
terms of the so-called in modes. These modes are purely
incoming from the past null infinity, obeying the following
boundary conditions:

ϕðrÞ ∼
�
RI þRωlR�

I ; as r� → þ∞ðr → þ∞Þ;
T ωlRII; as r� → −∞ðr → rhÞ;

ð14Þ

with

RI ¼ e−iωr�
XN
j¼0

AðjÞ
∞

rj
; ð15Þ

RII ¼ e−iωr�
XN
j¼0

ðr − rhÞjAðjÞ
rh ; ð16Þ

where jRωlj2 and jT ωlj2 are the reflection and transmission
coefficients, respectively. Flux conservation implies that
jRωlj2 þ jT ωlj2 ¼ 1. Note that the summations in Eqs. (15)
and (16) are required to keep track of the convergence of
the solutions. The numerical infinity and horizon are
chosen such that VϕðrÞ ≪ ω2 at the boundaries.
The scalar differential scattering cross section for

Bardeen BHs can be written in terms of partial waves as
[21]

dσ
dΩ

¼ jgðθÞj2; ð17Þ

where

gðθÞ ¼ 1

2iω

X∞
l¼0

ð2lþ 1Þ½e2iδlðωÞ − 1�Plðcos θÞ ð18Þ

is the scattering amplitude, with the phase shifts (δl)
given by

e2iδlðωÞ ≡ ð−1Þlþ1Rωl: ð19Þ

IV. RESULTS

In order to obtain the phase shifts to compute the
scattering cross section via the partial-wave method, we
have applied a fourth-fifth Runge-Kutta method to solve
the radial equation (12). We have typically started with the
near-horizon condition at rs ¼ 1.0001rh, and the outer
boundary (numerical infinity) chosen depends on the value
of l. Results were obtained with boundary conditions (14),
as well as with alternative conditions in terms of spherical
Hankel functions [see, e.g., Eq. (18) of Ref. [31]]. Both
conditions lead basically to the same results. Since the
sum in Eq. (18) does not converge very quickly, because of
the Coulomb characteristic of the problem, we have applied
the convergence method first introduced by Yennie et al.
[34], and first applied to the BH scattering problem by
Dolan et al. in Ref. [35].
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In Fig. 4 we show the scattering cross section for
Bardeen BHs with different charges (Q ¼ 0.5; 0.8; 1), as
well as for the Schwarzschild BH, and Mω ¼ 2. We see
that the fringe widths increase with the increase of the BH
charge. This, as anticipated by the semiclassical analysis of
Sec. II B, is in accordance with the fact that bg decreases
monotonically with the increase ofQ, as previously seen in
Fig. 3. The amount of scattered flux (on average) remains
basically the same. These general behaviors are similar to
the ones presented by the RN BHs [31].
Figure 5 presents comparisons of the numerical scalar

scattering cross sections for Bardeen BHs with the approxi-
mated geodesic and glory results. We see that the glory
results fit remarkably well the numerical results for large
angles (θ ≲ π), while the geodesic results fit well the small-
angle region. This very good agreement can also be
considered as a consistency check of our results.
The glory approximation can be used to capture most of

the features of the backscattered wave. Some caution,
however, should be taken when one considers the amount

of backscattered wave. To illustrate this, in Fig. 6 we plot
the amplitudes of the backscattered wave, for Mω ¼ 1; 2
and 3, computed through the partial-wave method and
through the glory approximation, as a function of the
Bardeen BH charge. We see that the results obtained via
the partial-wave method oscillate around the one obtained
using the glory approximation. This agrees with the ana-
lysis presented in Ref. [31] for RN BHs.
In Fig. 7 we compare the differential scattering cross

sections of Bardeen and RN BHs. While RN and Bardeen
BHs with the correspondent charge produce different
scattering patterns—illustrated by the top-left panel of
Fig. 7—we can have configurations with different charges
that produce almost the same scattering pattern. A sim-
ilarity of the patterns also happens in the case of absorption
cross sections, when the critical impact parameter (bc)
of the RN and Bardeen cases are the same [28]. Here,
however, the similarity of the scattering cross sections
intensifies when the bg’s for the RN and Bardeen cases
match. The similarities are illustrated in the top-right and
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FIG. 4 (color online). Scattering cross sections for Bardeen
BHs considering different BH charges. We also plot the
Schwarzschild case, for comparison. We see that the value of
the charge affects the fringe widths, while the (avarage) amount
of scattered flux remains basically the same.
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FIG. 5 (color online). Comparison of partial-wave, semiclassical glory and classical geodesic approaches for the differential scattering
cross section, forMω ¼ 3 (in the first two cases), and different values of the Bardeen BH charge [Q ¼ 0.5 (left) andQ ¼ 1 (right)]. The
semiclassical glory approximation reproduces very well the results for backscattered waves (θ ∼ π), while the classical approach works
well for small scattering angles.

 28

 30

 32

 34

 36

 38

 40

 42

 44

 0  0.2  0.4  0.6  0.8  1

d σ
/d

Ω
 /(

ω
M

3 )| θ
 =

 π

Q

glory
partial wave, Mω = 1.0
partial wave, Mω = 2.0
partial wave, Mω = 3.0

FIG. 6 (color online). Glory intensity in the backward direction
(θ ¼ π) as a function of the Bardeen BH charge. We see that the
amplitude computed through the partial-wave method oscillates
around the one computed through the glory approximation.

SCATTERING BY REGULAR BLACK HOLES: PLANAR … PHYSICAL REVIEW D 92, 024012 (2015)

024012-5



bottom panels of Fig. 7, where we show the scattering cross
section for a RN BH withQ ¼ 0.753 and for a Bardeen BH
with Q ¼ 1, for different values of the frequency. The
scattering flux intensities are different for intermediate-to-
high scattering angles, while the interference widths are
essentially the same for all scattering angles.

V. FINAL REMARKS

We have computed the scalar scattering cross section of
regular Bardeen BHs. Numerical results were compared
with both geodesic and glory approximations, and we have
found excellent agreement within the validity limits of each
approximation.
From the glory approximation, it is known that the inter-

ference fringe widths depend inversely on the impact param-
eter of backscattered waves, bg. The classical analysis from
geodesics shows that bg decreases monotonically with the
increase of Q. Therefore, we expect that the interference
fringes get wider as Q increases. This was confirmed from
our numerical results obtained via partial-wave method.
Comparison of Bardeen BHs with RN BHs reveals that

the scattering of these two kinds of BHs can be similar but
not identical. By similar we mean that in both cases, the
scattering cross section presents (i) intense oscillations in
the near-backward scattering, (ii) rapidly growing flux
amount and smoother oscillations for smaller angles, and

(iii) similar results for very small scattering angles. (i) is a
consequence of the strong interference between rays
passing by the opposite sides of the BH, as it is well
described by the glory approximation in both cases. (ii) is a
consequence of the fact that for small scattering angles both
b and jdb=dθj increase as θ diminishes, and the difference
between paths followed by neighboring rays becomes
smaller, weakening interference effects. We can conclude
that the main contribution to the scattering cross section for
very small angles comes from rays with high impact
parameters [36]. We may treat such cases in the weak-
field regime, where the main contribution to the gravita-
tional interaction comes from the BH mass, i.e.,
fðrÞ ∼ 1 − 2M=rþOðr−nÞ, where n ¼ 2 in the case of
RN BHs, and n ¼ 3 in the case of Bardeen BHs. This
explains (iii), i.e., why, for BHs with the same mass, in the
regime of small angles, all results tend to be the same,
regardless of the nature and value of their charge.
The results presented in this paper reinforce in a way the

results presented in Ref. [28], implying the conclusion that
some properties of Bardeen BHs can be very similar to
those of RN BHs (with different charge). In this sense, we
conclude that it may be difficult to discriminate regular
BHs from the standard ones, as far as absorption and
scattering of scalar plane waves are concerned. It should be
interesting to extend the analyses presented here and in
Ref. [28] to the scattering and absorption of waves with

 0.1

 1

 10

 100

 1000

 20  40  60  80  100  120  140  160  180

dσ
/d

Ω
 M

−
2

θ (deg)

Mω = 3.0

Bardeen, extreme
RN, extreme

 0.1

 1

 10

 100

 1000

 20  40  60  80  100  120  140  160  180

dσ
/d

Ω
 M

−
2

θ (deg)

Mω = 0.5

Bardeen, extreme
RN, Q = 0.753

 0.1

 1

 10

 100

 1000

 20  40  60  80  100  120  140  160  180

dσ
/d

Ω
 M

−
2

θ (deg)

Mω = 1.5

Bardeen, extreme
RN, Q = 0.753

 0.1

 1

 10

 100

 1000

 20  40  60  80  100  120  140  160  180
dσ

/d
Ω

 M
−

2

θ (deg)

Mω = 3.0

Bardeen, extreme
RN, Q = 0.753

FIG. 7 (color online). Comparison between Bardeen and RN BH scalar scattering. Top-left panel: The case of extremal Bardeen and
RN BHs forMω ¼ 3.0. Top-right panel: Bardeen extreme BH scattering compared with the scattering from a RN BH with Q ¼ 0.753,
for Mω ¼ 0.5. Bottom panels: The same as the top-right panel, but with Mω ¼ 1.5 (left) and Mω ¼ 3.0 (right).
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higher spins and compare with recently obtained results for
RN BHs [37–41].
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