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The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love
numbers, which depend sensibly on the object’s internal structure. These numbers are known only for
static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning
compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a
spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin
of the object introduces couplings between electric and magnetic deformations and new classes of induced
Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can
acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the
spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably,
can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in
general relativity, which are due to the difficulty in separating the tidal field from the linear response of the
object in the solution, even in the static case. By extending the standard procedure to identify the linear
response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero
to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-
deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.
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I. INTRODUCTION

A. Context of this work

The relativistic theory of the tidal deformations of a
compact object and the dynamics of a tidally-distorted self-
gravitating body are fascinating and challenging problems
in general relativity, which have received considerable
attention in recent years. In a binary system at large orbital
separation, the tidal interaction is negligible and the two
objects can be treated as point particles. However, as the
orbit shrinks due to gravitational-wave emission, tidal
interactions become increasingly important, and deform
the multipolar structure of each object, their gravitational
field, and the orbital motion up to the merger, where tidal
deformations are dramatic and cannot longer be treated as
small perturbations. Such tidal effects can leave a detect-
able imprint [1,2] in the gravitational waveform emitted
by a neutron-star binary in the late stages of its orbital
evolution, this system being the main target of current-
generation gravitational-wave detectors [3–5].

The multipole moments of a compact object in a binary
system are deformed by the tidal field produced by its
companion. In Newtonian gravity, the constants of pro-
portionality between the multipole moments of a mass
distribution and the perturbing external tidal field in which
the object is immersed are known as tidal Love numbers
(see e.g. [6,7]). These numbers depend sensibly on the
object’s internal structure and can thus provide a mean to
understand the physics of neutron-star cores at ultranuclear
density [8,9]. Motivated by the prospect of measuring
the Love numbers through gravitational-wave detections
[1,2,10–20], and also by the need of improving gravita-
tional-wave templates (e.g. [21,22], cf. [23] for a review),
in recent years a relativistic theory of tidal Love numbers
has been developed with considerable success [2,24–28].
The tidal Love numbers of static neutron stars have been
computed for various realistic equations of state with great
precision [8,10], whereas Schwarzschild black holes (BHs)
were shown to have precisely zero tidal Love numbers [24]
and, therefore, the multipolar structure of a Schwarzschild
BH is unaffected by a perturbing tidal field. Very recently,
this result was extended beyond the perturbative level [28].
These investigations have experienced a second burst

of activity since the discovery of a set of relations among
the moment of inertia, the electric tidal Love number, and
the spin-quadrupole moment of a neutron star, which were

*paolo.pani@roma1.infn.it
†leonardo.gulatieri@roma1.infn.it
‡andrea.maselli@roma1.infn.it
§valeria.ferrari@roma1.infn.it

PHYSICAL REVIEW D 92, 024010 (2015)

1550-7998=2015=92(2)=024010(27) 024010-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.024010
http://dx.doi.org/10.1103/PhysRevD.92.024010
http://dx.doi.org/10.1103/PhysRevD.92.024010
http://dx.doi.org/10.1103/PhysRevD.92.024010


remarkably found to be almost independent of the equation
of state [29,30]. These relations have been studied and
extended in various scenarios [31–41] and allow us to
compute two elements of the triad once a single one is
measured. For example, a single measurement of the tidal
Love number of a neutron star would allow us—provided
independent measurements of the mass and spin are
available—to compute the moment of inertia and the
spin-quadrupole moment. Further, universal relations have
also been discovered, relating the mass quadrupole
moment, the current octupole moment, and higher-order
multipole moments [42–46].
A further motivation to study tidal interactions in

gravitational systems comes from the relativistic dynamics
of an extreme-mass ratio inspiral, i.e. a stellar-size compact
object being captured by a supermassive BH, which is one
of the main targets of future space-based detectors [47].
In the late stages of the inspiral before the plunge, the small
object can perform hundreds of thousands of cycles around
the supermassive BH, deforming the geometry of the latter
by an amount proportional to the mass ratio [48–51]. This
translates into changes to the orbital motion and to the
gravitational-wave phase which are comparable to self-
force [52] effects.
So far, the relativistic tidal Love numbers have been

considered only for nonspinning objects. This is clearly a
strong limitation, because compact objects in binary
systems are expected to possess a nonvanishing angular
momentum, and also because the coupling between the
spin and the tidal field can produce novel effects that have
been neglected in previous works.
In this paper, we start a long-term effort to compute the

tidal Love numbers of a spinning compact object and to
study the tidal deformability in the presence of spin. Some
complementary aspects of this complex problem have
been investigated in the past. The geometry of a tidally-
deformed, spinning BH was obtained in Ref. [53] by
integrating the Teukolsky equations, whereas Ref. [54]
studied the intrinsic geometry of a spinning BH distorted by
a small compact companion in the extreme-mass ratio limit.
The latter two papers considered arbitrary values of the
BH spin parameter. Very recently, Poisson computed the
geometry of a slowly-spinning BH distorted by a quad-
rupolar electric and magnetic tidal field to first order in the
BH spin [55]. He decomposed the tidal perturbations in
terms of irreducible potentials and extracted the tidal
moments through a matching to the post-Newtonian metric
of a binary system. Although perturbative in the spin, the
work of Ref. [55] provides physical insight on the spin-tidal
coupling and presents the deformed solution in a simple
and elegant way.

B. Executive summary

Here we summarize our main results and compare our
work with previous analyses. Given the complexity and

richness of the problem, the purpose of the present paper is
manifold. First, we wish to develop a framework to
compute the tidal Love numbers of spinning compact stars
and we present here the first necessary step in that direction.
This requires going beyond the analyses of Refs. [53–55],
which only considered tidal deformations of spinning BHs.
Similarly to Ref. [55], our framework is that of relativistic
perturbations of a spinning geometry in the slow-rotation
approximation [developed in Sec. II and in Appendix B].
Our results are valid to second order in the object’s angular
momentum. A perturbative expansion in the spin is a
reasonable assumption, first because neutron stars in binary
systems are expected to rotate slowly, and also because the
quadrupole moment (which describes the most relevant
tidal deformations) is quadratic in the angular momentum.
We find the general solution of Einstein’s equations

describing—in a closed analytical form—the exterior of a
slowly-spinning object deformed by a tidal field generated
by distant sources. Both the inner object and the distant
sources are stationary and axisymmetric, and Einstein’s
equations are linearized in the perturbations induced by the
tidal field. Since the general solution is a linear combina-
tion of independent solutions, it depends on a number of
arbitrary constants. The values of these constants should be
fixed by matching with the solution describing the interior
of the compact star, or by imposing regularity conditions at
the horizon if the central object is a BH.
The structure of the general solution before fixing the

constants allows us to discriminate the terms of the
spacetime metric describing the tidal field from those
describing the linear response of the compact object to
the latter. This discrimination is crucial to properly define
the mass and current multipole moments [56,57] (Ml and
Sl, respectively) of the central object in the buffer zone
[2,24,58,59]. Once the multipole moments are determined,
the Love number can be obtained as the coefficients of
proportionality between the multipole moments and the
tidal field, i.e. we define the quantities

λðMÞ
l ≡ ∂Ml

∂E0

; λðSÞl ≡ ∂Sl
∂E0

; ð1Þ

where E0 is the amplitude of the tidal field. Because we
include only linear corrections in the tidal field, the
quantities above are independent of E0.
As we discuss in Sec. III D 1, discriminating between the

tidal field and the linear response of the compact object is a
delicate issue, especially in the rotating case. Indeed, there
is always the freedom to incorporate part of the response
solution into the external tidal field, thus shifting the values
of the multipole moments and then of the Love numbers
(see e.g. [26,59–61]). To fix this ambiguity, here we follow
a prescription, which we believe is reasonable and it is
also consistent with previous literature on the subject
[2,24,25,62]. However, this prescription is more well
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founded when the inner object is a BH than when it is a star.
A more complete investigation of this delicate issue is left
for a future publication; in particular, it is important to
understand whether the Love numbers obtained with this
choice correspond to actual measurable quantities, such for
instance those appearing in post-Newtonian waveforms.
For our general solution, we extract the Geroch-Hansen

multipole moments [56,57] and compute the formal
expressions for the tidally-induced changes of the first
relevant mass and current moments from Eq. (1). As
discussed in detail in Sec. II, the spin of the object
introduces couplings between electric and magnetic defor-
mations and new classes of induced Love numbers emerge
[cf. Eqs. (50)–(55)]. In a future publication, the results
presented here will be used to explicitly compute the tidal
Love numbers (50)–(55) of a spinning neutron star to
second order in the spin.
When the object is a BH, the metric simplifies consid-

erably. In this case, we impose the boundary conditions by
requiring that the metric is regular at the horizon. The
explicit solution that we present in Sec. IVand Appendix F
extends that derived in Ref. [55] to include second-order
effects in the spin but—at variance with the solution of
Ref. [55]—is limited to the axisymmetric case and to the
case in which the magnetic quadrupolar component of the
tidal tensor is zero. As a by-product of our analysis, we
compute a novel family of tidal Love numbers of the Kerr
BH. Using the separation of tidal and response solutions
discussed above [cf. Sec. III D 1], we find that the multipole
moments of a tidally-distorted Kerr geometry are unaf-
fected by the tidal source to second order in the spin and
therefore the corresponding Love numbers (1) vanish [see
discussion in Sec. IVA]. This result extends the work of
Ref. [24], which found that the tidal Love numbers of a
Schwarzschild BH are zero [63].1 Working independently
from us, Landry and Poisson have recently obtained a
complementary result [62], namely they found that the
Love numbers of a Kerr BH are zero to first order in the
spin but, differently from ours, their results also include
nonaxisymmetric tidal perturbations and a quadrupolar
magnetic tidal field.
Finally, our analytical BH solution can be used to

compute easily the near-horizon deviations from a Kerr
geometry induced by the external tidal field. In Sec. IV, we
provide analytical expressions for the epicyclic frequen-
cies, curvature invariants and other geometrical quantities
which can be relevant to investigate the dynamics of a
binary system containing a spinning BH. We conclude in
Sec. V by discussing various interesting extensions of
our work.

C. Working assumptions

The relativistic dynamics of a spinning object immersed
in a tidal field is a challenging problem and we make a
number of working assumptions to treat it. For the reader’s
convenience, we list these assumptions below:

(i) The central object is slowly spinning, with dimen-
sionless spin parameter χ ≡ J=M2 ≪ 1, where M
and J are the object’s mass and angular momentum,
respectively. Our analysis is valid toOðχ2Þ. Neglect-
ing rotation and tidal deformations, the central is
object is spherically symmetric.

(ii) The tidal field varies slowly in time, so that time
derivatives in Einstein’s equations are small com-
pared to spatial derivatives. In practice, we consider
stationary tidal perturbations.

(iii) The object’s spin axis coincides with the axis of
symmetry of the tidal field, which is assumed to be
axisymmetric. This prevents the tidal field and the
spin axis from precessing [64], thus leaving the
geometry stationary. By adopting this assumption,
here we mostly focus on the axisymmetric case,
m ¼ 0, wherem is the azimuthal number of the tidal
perturbations. Our method might be extended to
the nonaxisymmetric case (describing, for instance,
the complete tidal field generated by an orbiting
companion), although precession introduces time
dependence in the problem. We note that, because
the background is axisymmetric, perturbations with
different values of m are decoupled from each other.
Therefore, our approach can describe the axisym-
metric tidal response of the object, regardeless of the
symmetries of the external tidal field.

(iv) The sources of the tidal field are localized at large
distance r0. Our vacuum solution is valid in the
region R < r ≪ r0, where R is the radius of the
object.

(v) The tidal field is weak: our results are valid to linear
order in the amplitude of the tidal field. Assuming
the tidal field is generated by a ring of mass mc [as
to satisfy the hypothesis of axisymmetry of point
(iii) above], our results are valid for mcM2=r30 ≪ 1.

(vi) For simplicity, we assume that the tidal field is
mostly electric and quadrupolar and consider l ¼ 2
polar tidal perturbations in the static case, where l is
the standard harmonic index. This assumption is not
crucial and can be easily lifted by including different
l multipoles and a magnetic component.

Through this work, we use G ¼ c ¼ 1 units.

II. FRAMEWORK: SLOW-ROTATION
EXPANSION

The linearized dynamics of a spinning perturbed object
in general relativity is a challenging problem because of
mode mixing in the perturbation equations. However,

1Very recently, the no-hair properties of tidally-distorted
Schwarzschild BHs have been proved also beyond the perturba-
tive regime [28].
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a perturbative expansion in the angular velocity of the
object can render the problem tractable. Our framework is
that of linear perturbations of a slowly-rotating star, that has
been initiated in Refs. [65–69] and recently extended and
put on firmer basis in the context of BH perturbations
[70,71] (see [72] for a review).
The basic idea is that slowly-rotating geometries are

“close enough” to spherical symmetry that an approximate
separation of the perturbation equations in radial and
angular parts becomes possible. The perturbation functions
are expanded in spherical harmonics and they reduce to a
system of differential equations where various couplings
between different multipolar indices l and between per-
turbations with different parity are introduced. The slow-
rotation approximation imposes some selection rules on
couplings between different multipoles and only a certain
number of higher multipoles contributes to a given order in
ϵa ¼ Ω=ΩK ≪ 1, where Ω is the uniform angular velocity
of the star and ΩK ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
is the mass-shedding

frequency.2 This makes the method well suited to inves-
tigate complicated systems of coupled equations, which can
be finally integrated by standard methods [72].
We consider a stationary, external tidal gravitational

field which is characterized in terms of the Weyl’s tensor
Cijkl evaluated in the local rest frame, Eij ¼ Ci0j0 and
Bij ¼ 1

2
ϵipqC

pq
j0 for the electric and magnetic tidal quadru-

pole moments, respectively. Because of our working
assumptions, it suffices to consider only stationary and
axisymmetric perturbations of the spinning background,
although our technique can be generalized to dynamical
perturbations of any spinning compact objects to arbitrary
order in the spin.

A. Spinning background

Following Hartle and Thorne [73,74], the most general
stationary and axisymmetric3 metric gμν to Oðϵ2aÞ in
rotation can be written as

ds2 ¼−eν½1þ 2ϵ2aðj0þ j2P2Þ�dt2

þ 1þ 2ϵ2aðm0þm2P2Þ=ðr− 2MÞ
1− 2M=r

dr2

þ r2½1þ 2ϵ2aðv2 − j2ÞP2�½dϑ2þ sin2ϑðdφ− ϵaωdtÞ2�;
ð2Þ

where P2 ¼ P2ðcosϑÞ ¼ ð3 cos2 ϑ − 1Þ=2 is a Legendre
polynomial. The radial functions ν and M are of zeroth
order in rotation, ω is of first order, and j0, j2, m0, m2, v2
are of second order. We also introduce the functions e−λ ¼
1 − 2M=r and ω̄ ¼ Ω − ω at zeroth and first order in the
rotation, respectively. By plugging this decomposition into
the gravitational equations Rμν ¼ 0 and by solving the
equations order by order in ϵa, we obtain a system of
ordinary differential equations (ODEs) for the rotating
background [73,74]. To second order in the spin,4 the
vacuum background metric is given in Appendix A. This
solution describes the exterior of a spinning object, with
massM in the static case and dimensionless spin parameter
χ ≪ 1. As discussed below, the constants Ω, δm and δq
which appear in the solution are related to the angular
velocity of the central object and to Oðχ2Þ- corrections to
the mass and to the quadrupole moment, respectively.
The geometry given in Appendix A describes a slowly-

rotating Kerr BH as a particular case. In this case, regularity
of the metric at the Schwarzschild horizon r ¼ 2M imposes
δq ¼ 0, whereas δm can be set to zero without loss of
generality through a mass rescaling. Our coordinates differ
fromthemorestandardBoyer-Lindquistones. Inthemetric (2)
the horizon’s location is rþ ¼ 2M½1 − ϵ2aχ

2=8�, whereas the
ergoregion is located at rergo ¼ 2M½1 − ϵ2aχ

2 cosð2ϑÞ=8�.
Although thecoordinates are singular atr ¼ 2M, all curvature
invariants are regular outside the horizon.

B. Perturbations

Slowly rotating and oscillating compact objects can be
studied as perturbations of the axisymmetric, stationary
solutions discussed above. For completeness, here we
discuss the case of nonaxisymmetric perturbations with
azimuthal number m and harmonic index l ≥ jmj. Later,
we shall restrict to m ¼ 0. Scalar, vector and tensor field
equations in the background metric (2) can be linearized in
the field perturbations. Any perturbation function δX can be
expanded in a complete basis of spherical harmonics;
schematically, we have

δXμ1…ðt; r; ϑ;φÞ ¼ δXðiÞ
lmðrÞŶlmðiÞ

μ1… ðϑ;φÞ; ð3Þ

where we have imposed that the perturbations do not

depend on t explicitly and ŶlmðiÞ
μ1… is a basis of scalar,

vector or tensor harmonics, depending on the tensorial
nature of the perturbation δX. As in the spherically

symmetric case, the perturbation variables δXðiÞ
lm can be

classified as “polar” or “axial” depending on their behavior
under parity transformations.
The linear response of the system is fully characterized

by a coupled system of ODEs in the perturbation functions

2When considering BHs, the expansion parameter is naturally
ϵa ¼ χ. Hereafter we use ϵa as a bookkeeping parameter for the
expansion in the angular momentum.

3We also require the spacetime to be symmetric with respect to
the equatorial plane, and invariant under the “circularity con-
dition,” t → −t and φ → −φ, which implies gtϑ ¼ gtφ ¼ grϑ ¼
grφ ¼ 0 [75]. Note that, while the circularity condition follows
from Einstein and Maxwell equations in electrovacuum, it might
not hold true for other matter fields. 4This expansion has been recently extended to Oðϵ4aÞ [45].
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δXðiÞ
lm. In the case of a spherically symmetric background,

perturbations with different values of ðl; mÞ, as well as
perturbations with opposite parity, are decoupled. In a
rotating, axially symmetric background, perturbations with
different values of m are still decoupled but perturbations
with different values of l are not.
To second order, the perturbation equations read sche-

matically (see Ref. [72] for a pedagogical derivation)

0 ¼ Al þ ϵamĀl þ ϵ2aÂl

þ ϵaðQl
~Pl−1 þQlþ1

~Plþ1Þ
þ ϵ2a½Ql−1QlĂl−2 þQlþ2Qlþ1Ălþ2� þOðϵ3aÞ; ð4Þ

0 ¼ Pl þ ϵamP̄l þ ϵ2aP̂l

þ ϵaðQl
~Al−1 þQlþ1

~Alþ1Þ
þ ϵ2a½Ql−1QlP̆l−2 þQlþ2Qlþ1P̆lþ2� þOðϵ3aÞ; ð5Þ

where we have defined

Ql ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

4l2 − 1

s
; ð6Þ

and Al, Āl, ~Al, Âl, Ăl are linear combinations of the
axial perturbations with multipolar index l; similarly,
Pl, P̄l, ~Pl, P̂l, P̆l are linear combinations of the polar
perturbations with index l.
The structure of Eqs. (4)–(5) is interesting. In the limit of

slow rotation a Laporte-like “selection rule” [65] imposes
perturbations with a given parity and index l to couple only
to: (i) perturbations with opposite parity and index l� 1 at
OðϵaÞ; (ii) perturbations with same parity and same index l
up to Oðϵ2aÞ; (iii) perturbations with same parity and index
l� 2 at Oðϵ2aÞ. Furthermore, from Eq. (6) it follows that
Q�m ¼ 0, and therefore if jmj ¼ l the coupling of pertur-
bations with index l to perturbations with indices l − 1
and l − 2 is suppressed. This general property is known as
“propensity rule” [65] in atomic theory, and states that
transitions l → lþ 1 are strongly favored over transitions
l → l − 1. Note that the slow-rotation technique is well
known in quantummechanics and the coefficientsQl are in
fact related to the usual Clebsch-Gordan coefficients [72].

C. Axial-led and polar-led perturbations

Due to the coupling between different multipolar indices,
Eqs. (4)–(5) form an infinite system of coupled ODEs and
the spectrum of their solutions is extremely rich. However,
in special configurations the perturbation equations can be
greatly simplified, as we now show.
First, we expand the axial and polar perturbation

functions (schematically denoted as alm and plm, respec-
tively) that appear in Eqs. (4) and (5):

alm ¼ að0Þlm þ ϵaa
ð1Þ
lm þ ϵ2aa

ð2Þ
lm þOðϵ3aÞ

plm ¼ pð0Þ
lm þ ϵap

ð1Þ
lm þ ϵ2ap

ð2Þ
lm þOðϵ3aÞ: ð7Þ

The terms Ăl�2 and P̆l�2 in Eqs. (4)–(5) are multiplied by
factors ϵ2a, so they only depend on the zeroth-order

perturbation functions, að0Þl�2m, pð0Þ
l�2m. The terms ~Al�1

and ~Pl�1 are multiplied by factors ϵa, so they only depend

on zeroth- and first-order perturbation functions að0Þl�1m,

pð0Þ
l�1m, a

ð1Þ
l�1m, p

ð1Þ
l�1m.

Since in the nonrotating limit axial and polar perturba-
tions are decoupled, a possible consistent set of solutions

of the system (4)–(5) has að0ÞL�2m ≡ 0 and pð0Þ
L�1m ≡ 0,

where l ¼ L is a specific value of the harmonic index.
This ansatz leads to the “axial-led” [76] subset of
Eqs. (4)–(5):8>>>>>>>><
>>>>>>>>:

AL þ ϵamĀL þ ϵ2aÂL þ ϵaðQL
~PL−1 þQLþ1

~PLþ1Þ ¼ 0

PLþ1 þ ϵamP̄Lþ1 þ ϵaQLþ1
~AL ¼ 0

PL−1 þ ϵamP̄L−1 þ ϵaQL
~AL ¼ 0

ALþ2 þ ϵaQLþ2
~PLþ1 þ ϵ2aQLþ1QLþ2ĂL ¼ 0

AL−2 þ ϵaQL−1 ~PL−1 þ ϵ2aQLQL−1ĂL ¼ 0; ð8Þ

where the first equation is solved to second order in the
spin, the second and the third equations do not contain
zeroth-order quantities in the spin, and the last two
equations do not contain zeroth- and first-order terms in
the spin, i.e. aL�2 ¼ Oðϵ2aÞ. The truncation above is
consistent because in the axial equations for l ¼ L the
polar source terms with l ¼ L� 1 appear multiplied by a

factor ϵa, so terms pð2Þ
L�1m would be of higher order in the

axial equations.
Similarly, another consistent set of solutions of the same

system has pð0Þ
L�2m ≡ 0 and að0ÞL�1m ≡ 0. The corresponding

“polar-led” system reads8>>>>>>>><
>>>>>>>>:

PL þ ϵamP̄L þ ϵ2aP̂L þ ϵaðQL
~AL−1 þQLþ1

~ALþ1Þ ¼ 0

ALþ1 þ ϵamĀLþ1 þ ϵaQLþ1
~PL ¼ 0

AL−1 þ ϵamĀL−1 þ ϵaQL
~PL ¼ 0

PLþ2 þ ϵaQLþ2
~ALþ1 þ ϵ2aQLþ1QLþ2P̆L ¼ 0

PL−2 þ ϵaQL−1
~AL−1 þ ϵ2aQLQL−1P̆L ¼ 0: ð9Þ

Interestingly, within this perturbative scheme a notion of
“conserved quantum number” L is still meaningful: even
though, for any given L, rotation couples terms with
opposite parity and different multipolar index, the sub-
systems (8) and (9) are closed, i.e. they contain a finite
number of equations which fully describe the dynamics to
second order in the spin.
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The main assumption that leads to Eq. (8) [resp. Eq. (9)]
is that only axial (resp. polar) perturbations with harmonic
index L are activated at zeroth order in the rotation. In terms
of an external tidal field, we are assuming that such field is
a pure l ¼ L magnetic (resp. electric) state at zeroth order
in the rotation. This assumption would not hold if the
zeroth-order tidal field is a mixture between different l
states. In such case one has to deal with the full system
(4)–(5), which is much more involved. However, working
with the system (9) should provide a reliable approxima-
tion, because the electric quadrupolar (l ¼ 2) contribution
to the external tidal field is the dominant one.
The explicit form of the axial-led and polar-led systems

(8) and (9) for a spinning stationary and axisymmetric
object is derived in Appendix B and is available in a
Mathematica® notebook provided in the Supplemental
Material [77].

III. TIDAL DEFORMATIONS TO
SECOND-ORDER IN THE SPIN

Let us now focus on axisymmetric (m ¼ 0) stationary
perturbations, which are a particular case of those discussed
above and in Appendix B. The axial-led (resp. polar-led)
system (8) [resp. (9)] describes the second-order spin
corrections to a nonrotating object immersed in an l¼L
magnetic (resp. electric) tidal field, which we now com-
pute. For clarity, we focus on the dominant L ¼ 2 polar-led
perturbations, although the same procedure can be applied
to other values of L and to axial-led perturbations. As
discussed above, L ¼ 2 polar perturbations in the static
case couple to L ¼ 1 and L ¼ 3 axial perturbations to first
order in the spin, and to L ¼ 0, L ¼ 2 and L ¼ 4 polar
perturbations to second order in the spin. Within this
perturbative scheme, the perturbation equations at each
order are naturally written as inhomogeneous ODEs, where
the homogeneous part depends on differential operators
defined in the nonrotating case, whereas the sources depend
on the couplings between different perturbations. For this
reason, it is useful to present the equations in the static case
for generic values of L.
Unless otherwise written, henceforth we reabsorb the

bookkeeping parameter ϵa in χ.

A. Tidal perturbations at zeroth order

In the static case, axial and polar perturbations as
well as perturbations with different harmonic indices are
decoupled from each other. To zeroth order in the spin,
the axial and polar sectors of stationary perturbations
with l ¼ L ≥ 2 reduce to two single decoupled homo-
geneous ODEs [2,24]:

DP;L½HðLÞ
0 �≡HðLÞ

0

00 þ 2ðr−MÞ
rðr−2MÞH

ðLÞ
0

0

−
LðLþ1Þrðr−2MÞþ4M2

r2ðr−2MÞ2 HðLÞ
0 ¼ 0; ð10Þ

DA;L½hðLÞ0 �≡ hðLÞ0

00 þ
�
4M − rLðLþ 1Þ

r3ðr − 2MÞ
�
hðLÞ0 ¼ 0; ð11Þ

where we have defined the differential operators DP;L and
DA;L. The metric function KðLÞ is algebraically related to

HðLÞ
0 and its derivatives, whereas the functions HðLÞ

1 and

hðLÞ1 vanish at zeroth order in the spin and therefore
the polar perturbations are also static. Focusing for
simplicity on the L ¼ 2 polar sector, the explicit solution
reads [2,24]

Hð2Þ
0 ¼ 3αrðr − 2MÞ

M2
þ γ

2

�
3rðr − 2MÞ

M2
log

�
1 −

2M
r

�

−
2M
r

þ r

�
6

M
−

1

r − 2M

�
− 5

�
; ð12Þ

Hð2Þ
2 ¼ Hð2Þ

0 ; ð13Þ

Kð2Þ ¼ 3α

�
r2

M2
− 2

�
þ γ

��
3r2

2M2
− 3

�
log

�
1 −

2M
r

�

þ 3r
M

−
2M
r

þ 3

�
; ð14Þ

where α and γ are two integration constants, so that the
solution above is a linear combination of two independent
solutions.
The solution proportional to α diverges at large distances

and can be identified with the external tidal field [2,24,58],
whereas the solution proportional to γ naturally represents
the object’s linear response to the applied tidal perturbation
(see however Sec. III D 1 for a more detailed discussion).
As we shall discuss later, the constant γ is associated with
the tidally-induced quadrupole moment of the object in the
static case, whereas α is proportional to the axisymmetric
component of the electric quadrupolar tidal field (roughly
speaking, α ∼mcM2=r30 for a ring of mass mc at orbital
distance r0). The ratio γ=α is proportional to the L ¼ 2
electric Love number [2,24],

kð2Þel ¼ −
4γM5

15αR5
; ð15Þ

where R is the radius of the object. The constants α and γ
are proportional to each other, their ratio being determined
by matching the exterior solution above to the regular
solution describing the perturbed object’s interior. Thus, for
an object of given mass and composition, the Love number
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kð2Þel is uniquely determined. In the static case, the depend-
ence of the Love number on the stellar equation of state has
been discussed in detail in Refs. [1,2,8,10,24,29,30].
In case the central object is a BH, regularity of the

geometry at the Schwarzschild horizon rþ ¼ 2M imposes
γ ¼ 0, as can be directly seen from Eq. (12) or by
computing some curvature invariant at the horizon.
Therefore, the Love number (15) of a tidally-deformed
Schwarzschild BH is precisely zero. This is a general result,
which is valid for any L and for electric and magnetic tidal
perturbations [24]. In other words, the multipolar structure
of a static BH is not deformed by a perturbing tidal field
(very recently, this result has been extended to arbitrary
values of a static tidal field [28]).

B. First-order corrections

The zeroth-order solution (12)–(14) sources the axial
perturbations with L ¼ 1 and L ¼ 3 through the second
and third equations in the system (9), yielding

DA;1½hð1Þ0 �≡ hð1Þ0

00 −
2

r2
hð1Þ0 ¼ Sð1ÞA ; ð16Þ

DA;2½hð3Þ0 �≡ hð3Þ0

00 −
4ð3r −MÞ
r2ðr − 2MÞ h

ð3Þ
0 ¼ Sð3ÞA ; ð17Þ

where DA;i are differential operators5 and SðLÞA are source
terms that are given in Appendix C. The axial metric

functions hð3Þ1 and hð1Þ1 vanish identically. As expected, the
sources are proportional to the coupling between the
background gyromagnetic term, gtφ, and the zeroth-order

function Hð2Þ
0 . It is easy to verify that the first-order

corrections to the polar perturbations are vanishing, so
Eq. (10) and the two equations above fully characterize
the polar-led L ¼ 2 system to first order in the spin. The
explicit solution of the equations above is given in
Appendix D. This solution depends on four new integration
constants, α1;3 and γ1;3, which arise from the homogeneous
problem associated with Eqs. (16) and (17), and that are
discussed in Sec. III D.

C. Second-order corrections

With the zeroth-order and the first-order solutions at
hand, from the first equation in the system (9) we can
compute the second-order correction to the metric coef-

ficient Hð2Þ
0 ðrÞ, which we denote by δHð2Þ

0 ðrÞ to distinguish
it from the zeroth order quantity. This correction satisfies
the following inhomogeneous ODE

DP;2½δHð2Þ
0 �≡ δHð2Þ

0

00 þ 2ðr −MÞ
rðr − 2MÞ δH

ð2Þ
0

0

−
2ð2M2 þ 3r2 − 6MrÞ

r2ðr − 2MÞ2 δHð2Þ
0 ¼ Sð2ÞP ; ð18Þ

where the source Sð2ÞP is also given in Appendix C. Note that

δHð2Þ
1 ¼ 0 [i.e. polar perturbations remain static also to

Oðχ2Þ], whereas δHð2Þ
2 and δKð2Þ are algebraically related

to δHð2Þ
0 and its derivatives.

Finally, to fully characterize the second-order correc-
tions, one needs to compute the last two equations in (9),
which define the second-order terms in the induced L ¼ 0
and L ¼ 4 polar sectors. The L ¼ 4 system reduces to the
second-order ODE

DP;4½δHð4Þ
0 �≡ δHð4Þ

0

00 þ 2ðr −MÞ
rðr − 2MÞ δH

ð4Þ
0

0

−
4ðM2 þ 5r2 − 10MrÞ

r2ðr − 2MÞ2 δHð4Þ
0 ¼ Sð4ÞP ; ð19Þ

where the source Sð4ÞP is given in Appendix C. Also in this
case the other L ¼ 4 polar components follow algebraically

from δHð4Þ
0 and its derivatives.

On the other hand, the L ¼ 0 polar system satisfies a
different set of equations (cf. Appendix B), which can be
reduced to the following first-order system:

δHð0Þ
0

0 þ δHð0Þ
2

r − 2M
¼ Sð0;0ÞP ; ð20Þ

δHð0Þ
2

0 þ δHð0Þ
2

r − 2M
¼ Sð0;2ÞP ; ð21Þ

and the sources Sð0;0ÞP and Sð0;2ÞP are given in Appendix C.
Remarkably, all the equations above can be solved

analytically. Schematically, the nonvanishing metric coef-
ficients to quadratic order in the spin read (reinstating the
bookkeeping parameter ϵa only in these equations)

gtt ¼ −eν
�
1þ 2ϵ2a

�
j0 þ j2P2 −

r2e−ν

2
ðΩ − ω̄Þ2

�

þϵ2aδH
ð0Þ
0 Y00 þ ðHð2Þ

0 þ ϵ2aδH
ð2Þ
0 ÞY20þϵ2aδH

ð4Þ
0 Y40

�
;

ð22Þ

gtφ ¼ −ϵar2ðΩ − ω̄Þsin2ϑþ ϵa sin ϑðhð1Þ0 Y10
;ϑ þ hð3Þ0 Y30

;ϑ Þ;
ð23Þ

5Note that, while DA;2 is obtained from the operator DA;L for
L ¼ 2, the operator DA;1 is different because L ¼ 1 perturbations
satisfy a different set of equations, as discussed in Appendix B.
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grr ¼
�
1 −

2M
r

�
−1

×

�
1þ 2ϵ2a

m0 þm2P2

r − 2M
þ ϵ2aδH

ð0Þ
2 Y00

þ ðHð2Þ
2 þ ϵ2aδH

ð2Þ
2 ÞY20þϵ2aδH

ð4Þ
2 Y40

�
; ð24Þ

gϑϑ ¼ r2½1þ 2ϵ2aðv2 − j2ÞP2 þ ϵ2aδKð0ÞY00

þ ðKð2Þ þ ϵ2aδKð2ÞÞY20þϵ2aδKð4ÞY40�; ð25Þ

gφφ ¼ sin2 ϑgϑϑ; ð26Þ

where we recall that Yl0 ¼ Yl0ðϑÞ are the scalar spherical
harmonics with m ¼ 0 and P2 ≡ 2

ffiffiffiffiffiffiffiffi
π=5

p
Y20 is a Legendre

polynomial. The radial functions ν, M, ω̄, j0, j2, m0, m2,

v2 are given in Appendix A; the radial functions hð1Þ0 and

hð2Þ0 are given in Appendix D; the radial functions Hð2Þ
0 ,

Hð2Þ
2 and Kð2Þ are given in Eqs. (12)–(14); whereas the

radial functions δHð0Þ
0 , δHð2Þ

0 , δHð4Þ
0 , δHð0Þ

2 , δHð2Þ
2 , δHð4Þ

2 ,
δKð0Þ, δKð2Þ, δKð4Þ are cumbersome and, to avoid typo-
graphical errors and help comparison, their full solution
is provided in an online notebook in the Supplemental
Material. Note that the only nonvanishing off-diagonal term
of the metric is gtφ and it only contains the background
gyromagnetic term and the axial perturbations with L ¼ 1
and L ¼ 3.

D. Description of the solution

Equations (22)–(26) fully describe the exterior metric of
a tidally-deformed spinning object to second order in the
spin and in the region R < r ≪ r0. Because the procedure
to obtain such solution is considerably involved, as a
nontrivial consistency check we have verified that the
explicit solution satisfies Einstein’s equations in vacuum,
Rμν ¼ 0, to quadratic order in the spin and to linear order in
the tidal perturbations.
The background Hartle-Thorne solution depends on the

parameters M, χ, Ω, δm and δq; the Oðχ0Þ tidal solution

depends on the constants α and γ; the OðχÞ tidal solution
depends on the constants α1;3 and γ1;3; finally, the Oðχ2Þ
tidal solution depends on the constants α0;2;4 and γ0;2;4. The
full solution depends on 17 free parameters, whose physical
meaning is summarized in Table I and will be discussed
in more detail below. Note that each pair of constants αl
and γl arises from the homogeneous problem associated
with the inhomogeneous equations for the corresponding
multipole l presented above.
As a representative example, we present here the explicit

form of the function δHð0Þ
0 , which is the most compact

among the second-order perturbations:

δHð0Þ
0 ¼ α0χ

2 þ γ0χ
2

2 − y
þ 8α1χ

2ffiffiffi
3

p ðy − 2Þ þ
2γ1χ

2ffiffiffi
3

p ðy − 2Þy3 þ αχ2
�
4ð6þ yð2y − 1Þð1þ yð6y − 1ÞÞÞffiffiffi

5
p ðy − 2Þy4

þ δq

�
3ð−4þ yð−4þ ðy − 2Þyð3ðy − 1Þy − 14ÞÞ þ 3ðy − 2Þ3y2ð2þ yÞcoth−1½1 − y�Þffiffiffi

5
p ðy − 2Þy

��

þ γχ2
�
36 − yð26þ 3yð2þ ðy − 1Þyð15y − 11ÞÞÞ þ 3

2
yð24þ yð−12þ yð12þ yð−32þ ð41 − 15yÞyÞÞÞÞ log½y−2y �
3

ffiffiffi
5

p ðy − 2Þy5

þ δq

2
ffiffiffi
5

p ðy − 2Þ2y2 ð24þ 2yð−20þ yð256þ 9yð−14þ ðy − 2Þ2 yÞÞÞ

þ6ðy − 2Þyð−4þ yð−6þ ðy − 2Þyð3ðy − 1Þy − 14ÞÞÞ log
�
y − 2

y

�
þ 9

2

�
y − 2Þ4y3ð2þ yÞ log

�
y − 2

y

�
2
��

; ð27Þ

TABLE I. List of the free parameters appearing in the tidally-
deformed metric of a spinning vacuum geometry for polar-led
L ¼ 2 perturbations. The subscript in αl and γl refers to the
multipole that is related to the specific constant. The precise
relation between the multipole moments and the constants γ and
γl is given in Eqs. (44)–(48).

Oðχ; αÞ
(0,0) M Mass
(1,0) χ Spin
(1,0) Ω Angular velocity of the object
(2,0) δm Spin-induced mass shift
(2,0) δq Spin-induced quadrupole-moment shift
(0,1) α External electric quadrupolar tidal field
(0,1) γ Static response to the external tidal field
(1,1) α1 External magnetic dipolar tidal field
(1,1) γ1 Tidally-induced spin shift
(2,1) α0 Constant shift of gtt at infinity
(2,1) γ0 Tidally-induced mass shift
(2,1) α2 External electric quadrupolar tidal field
(2,1) γ2 Tidally-induced quadrupole-moment shift
(2,1) α3 External magnetic octupolar tidal field
(2,1) γ3 Tidally-induced octupole-moment shift
(2,1) α4 External electric L ¼ 4 tidal field
(2,1) γ4 Tidally-induced hexadecapole-moment shift
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where y ¼ r=M. The parameters α0 and γ0 arise from the
homogeneous problem associated with Eqs. (20)–(21). The
constant α0 only appears in gtt and, as we discuss below,
can be eliminated through a time rescaling. The constants
α1 and γ1 are related to the source terms proportional to

the axial term with L ¼ 1, hð1Þ0 , which sources Hð0Þ
0 in

Eqs. (20)–(21) through a coupling with the spin of the
object, whereas the constants α and γ are related to the polar

terms with L ¼ 2 at zeroth order in the spin (namely Hð2Þ
0 ,

Hð2Þ
2 andKð2Þ) which couples to δHð0Þ

0 at second order in the
spin. Clearly, the structure of the solution reflects the
selection rules discussed in Sec. II.
More generically, the tidal corrections of the metric can

be schematically written as a linear combination of
independent solutions in the following form:

δgμν ¼ αδgðαÞμν þ γδgðγÞμν þ
X4
l¼0

½αlδgðαlÞμν þ γlδg
ðγlÞ
μν �; ð28Þ

where we have factored out the dependence on α, γ, αl and

γl. The first two functions δgðαÞμν and δgðγÞμν contain terms of
zeroth order in the spin and also terms of first and second
order in the spin which arise as the particular solutions of

the inhomogeneous equations; the functions δgðαlÞμν , δgðγlÞμν

with odd l containOðχÞ terms arising from the solutions of
the homogeneous problem and also Oðχ2Þ terms arising
from the particular solutions of the inhomogeneous equa-

tions; finally, the functions δgðαlÞμν , δgðγlÞμν with even l contain
only Oðχ2Þ terms.

1. Separating the tidal part from the linear response

Crucially, the only parts of the metric which diverge in

the far-field limit are δgðαÞμν and δgðαlÞμν , whereas the terms

δgðγÞμν and δgðγlÞμν yield an asymptotically-flat solution.
However, note that one cannot simply identify the terms
proportional to α and αl with those associated with the
external tidal field, and those proportional to γ and γl with
the linear response of the central objects. Such definition
suffers from an ambiguity because a trivial shift of the
integration constants

γ ¼ γ0 − αγ̂; γl ¼ γ0l − αγ̂l; ð29Þ

would transform Eq. (28) to the equivalent form6

δgμν ¼ α

�
δgðαÞμν − γ̂δgðγÞμν −

X4
l¼0

γ̂lδg
ðγlÞ
μν

�

þ γ0δgðγÞμν þ
X4
l¼0

γ0lδg
ðγlÞ
μν : ð30Þ

While the new solution proportional to α is still divergent at
large distances—and therefore α can still be identified with
the amplitude of the tidal field—the coefficients of the

subleading solutions δgðγÞμν and δgðγlÞμν have been shifted by
an amount proportional to α. In Sec. III E below we show
that such coefficients are related to the multipole moments
of the central object (but see discussion in Sec. III F). It is
therefore crucial to find a unique prescription to character-
ize the linear response of the system.
In the nonrotating case, this ambiguity was mentioned in

Refs. [26,60,61]. A rigorous way to identify the two
solutions uniquely is to perform an analytical continuation
in the number of spacetime dimensions d [61] or in the
multipolar index l [78]7 and to recognize that the general
solution for the gravitational potential at large distances
schematically reads [61,78]

δgtt ∼ αrlð1þ � � �Þ þ γr−l−dþ3ð1þ � � �Þ; ð31Þ

where the dots represent a series in M=r which can also
contain logarithmic terms and α and γ are integration
constants. Comparison with the Newtonian potential gen-
erated by an l-pole distribution allows us to identify the
first and the second solution as those describing the tidal
field and the linear response of the system, respectively. By
treating d or l as real parameters, the two solutions above
can always be distinguished without mixing of the possible
common powers in the series expansion. Such procedure
gives a precise proof of the identification done in
Refs. [2,24] for the nonrotating case. Indeed, it shows that
the α- and γ-solutions appearing in Eq. (12) precisely
describe the tidal field and the linear response of the object,
as anticipated.
Unfortunately, performing a similar analytical continu-

ation in the rotating case is impractical because the solution
of Eq. (12) for generic L is written in terms of Legendre
functions, which appear in the sources of Eqs. (16)–(17).
While, for any specific value of L, the latter equations
admit a solution in closed form, the same does not seem
true for generic L. Furthermore, the problem gets only more
involved to second order in the spin. For this reason, to
separate the tidal part from the linear response in the
general solution (28) we have adopted a different pro-
cedure. We fix the shifts in Eq. (29) such that the new
growing solution after the shift,

6As discussed below, a quadrupole-led electric tidal field at
infinity imposes αl ¼ 0. For clarity, we have already used this
condition in Eq. (30) and postpone its proof to Sec. III D 2.

7We are indebted to Jan Steinhoff for suggesting Refs. [61,78]
to us.
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δggrowingμν ¼ α

�
δgðαÞμν − γ̂δgðγÞμν −

X4
l¼0

γ̂lδg
ðγlÞ
μν

�
; ð32Þ

only contains a finite numbers of terms in a large-distance
expansion. As it turns out, when the central object is a BH
this prescription selects a unique solution for the shifts (29),
at least up to quadratic order in the spin. We claim that such
solution represents the physical solution of the tidal field,
whereas the remaining part represents the physical response
of the BH to the tidal field.
In the case in which the central object is a compact star,

this truncation only occurs up to first order in the spin.
Indeed, to quadratic order there appear infinite terms
proportional to αχ2δq in the far-field expansion of
δggrowingμν , which cannot be canceled by the shifts (29).
This reflects a certain arbitrariness in the definition of the
Love numbers of a spinning star, which we will investigate
in the future. In this case, we fix the shifts (29) such that the
far-field expansion of the growing solution contains a finite
number of terms, modulo those proportional to αχ2δq,
which arise from the particular solution of the inhomo-
geneous problem at second order in the spin.
Although the one just described is admittedly not a

rigorous prescription, it is nonetheless supported by the
following observations: (i) it allows us to identify correctly
the two pieces of Eq. (12) in the nonrotating case, in which
the unique solution is known. Indeed, it is clear from
Eq. (12) that γ̂ ¼ 0 is the only possibility. (ii) To first order
in the spin, it agrees with the recent results by Landry and
Poisson [62] that were obtained using an independent
prescription.8 In particular, our prescription automatically
implies that the tidal solution is regular in the exterior
spacetime, also when the central object is a BH. This is due
to the fact that possible terms in the form ∼ logðr − 2MÞ,
∼1=ðr − 2MÞ that might appear in gðαÞμν are precisely
removed using the prescription above. Finally (iii), our
procedure incorporates the idea that we “superimpose” a
well-behaved tidal field on a central object. The solution
corresponding to the tidal field, regardless of whether the
central object is a BH or a star, should not have a pole at
r ¼ 2M. We only allow poles arising from the coupling
with irregular background terms, which are those propor-
tional to αχ2δq discussed above.
In the rest of this paper, we will identify the tidal solution

and the linear-response solution through the procedure just
described and postpone a more rigorous analysis for future
work. For simplicity, we rename the rescaled constants as
γ0 → γ and γ0l → γl. Note that the physical meaning of the
constants listed in Table I refers to the solution after this
rescaling.

Finally, we observe that although the tidal solution
extracted through this procedure contains only a finite
number of terms in the series expansion in the BH case, it
can nonetheless contain terms with the same powers of
M=r as the linear-response solution. This is a peculiarity of
the spinning solution and does not occur in the static case.
For example, δggrowingμν contains up to M=r terms (which

also appear in δgðγ1Þμν ) to first order in the spin, and up to

ðM=rÞ5 terms (which also appear in δgðγ4Þμν ) to second order
in the spin.

2. Boundary conditions at infinity

The integration constants αl that appear in the vacuum
solution (28) have to be fixed by some physical require-
ment on the nature of the tidal field. Because we assume an
ðL ¼ 2Þ-leading external tidal field, we fix the constants αl
by imposing that the other leading L ≠ 2-contributions
vanish.
Let us start by the first-order corrections in the spin. The

large-distance behavior of the gyromagnetic term reads

gtφ → α3χM

�
1

56

r4

M4
−

5

84

r3

M3
þ 1

21

r2

M2

�
Y30
;ϑ sin ϑ

þ α1χ
r2

M
Y10
;ϑ sin ϑþO

�
r
M

�
: ð33Þ

The leading-order terms proportional to Y30
;ϑ and Y10

;ϑ would
respectively correspond to some spurious L ¼ 3 and L ¼ 1
magnetic tidal perturbations [24] and we eliminate them by
fixing α3 ¼ 0 ¼ α1. Note that the constants γ1 and γ3 do not
appear in the leading-order behavior at large distance and
are therefore not associated to possible components of the
tidal field.
Likewise, to second order in the spin, the dominant

large-distance behavior of the gtt metric component reads

gtt → α4χ
2Y40ðϑÞ r4

M4
þO

�
r3

M3

�
:

This leading term is related to a possible L ¼ 4 component
of the external electric tidal field, which we eliminate by
fixing α4 ¼ 0. Again, the constant γ4 does not affect this
leading-order behavior and it is indeed related only to
nondivergent terms.
In a similar way, we fix α2 by requiring that the leading-

order behavior of the component gtt → r2 at large distances
is not affected by the spin. This has to be the case because
the leading-order behavior is related to the components of
the tidal field, which does not depend on the properties
of the central object, as discussed below. Finally, the
constant α0 appearing in Eq. (27) can be eliminated through
a time rescaling t → ð1þ ηχ2Þt, where η is a constant to be
fixed. To second order in the spin, this rescaling only affects

8We are indebted to Phil Landry and Eric Poisson for sharing
their results with us which have helped in revising the argument
above.
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the coefficient gtt and not the gyromagnetic term gtφ,
because the latter is of the order χ, so corrections would
be cubic in χ. Without loss of generality, we use this gauge
freedom to fix

2
ffiffiffi
π

p
η ¼ −α0 þ

�
6

ffiffiffi
5

p
α −

39ffiffiffi
5

p γ

�
δq; ð34Þ

which completely cancels the term α0 in the metric and also
simplifies the angular dependence of some subleading term
in the gtt coefficient at large distances. Henceforth, we will
enforce the time rescaling just described and that αl ¼ 0
(l ¼ 1;…; 4). Thus, the free parameters of the tidal
perturbations reduce to α, γ and γl (l ¼ 0;…; 4).
To check the asymptotic behavior of the solution, let us

identify the tidal field in terms of the metric components.
First, we consider the large-distance expansion of our
solution after fixing the constants αl,

1þ gtt → 3αY20ðϑÞ
�
r2

M2
− 4ð1þ δmχ2Þ r

M

þ4ð1þ 2δmχ2Þ
�
þ � � � ;

gtφ → −3
ffiffiffi
5

π

r
αχsin2ϑ

�
rþ 3þ 5 cosð2ϑÞ

4

�
þ � � � ;

grr − 1 → 3αY20ðϑÞ r2

M2
þ � � � ;

gϑϑ
r2

− 1 → 3αY20ðϑÞ
�
r2

M2
− 8

ffiffiffi
π

p ð1þ 2δmχ2Þ
�
þ � � � ;

together with the exact relation gφφ ¼ sin2 ϑgϑϑ. In the
expansion above, we neglected terms of the order M=r or
higher, which depend on α, γ and γl. Note that the time
rescaling discussed above has been used both to eliminate
α0 and to make the subleading, Oðr0Þ, tidal term of gtt
proportional to Y20ðϑÞ. With a different gauge choice, the
angular dependence would not factor out.
From the large-distance expansion above we can identify

the tidal field. In a suitable gauge, the large-distance
behavior of a vacuum spacetime distorted by a quadrupolar
tidal field reads [2,24,59,64]

gtt → −1 − Eijxixj þ � � � ; ð35Þ

gti → −
2

3
ϵijkBj

lxkxl þ � � � ; ð36Þ

gij → δij½1 − Eijxixj� þ � � � ; ð37Þ

where ϵijk is the Levi-Civita symbol, Eij and Bij are the
electric and magnetic tidal quadrupole moments, respec-
tively, and xi are Cartesian coordinates. We can now
transform to spherical coordinates, xi ¼ rni, with

ni ¼ ðsin ϑ cosφ; sin ϑ sinφ; cosϑÞ, and decompose the
tidal tensor as [2]

Eij ¼
X2
m¼−2

EmY2m
ij ðϑ;φÞ; ð38Þ

where Y2m
ij ðϑ;φÞ are symmetric traceless tensors [58]

related to the usual spherical harmonics by Y2mðϑ;φÞ ¼
Y2m

ij ðϑ;φÞninj. By plugging this decomposition into
Eqs. (35)–(37), transforming the metric to spherical coor-
dinates, and comparing with the leading-order asymptotic
behavior of our solution, it is straightforward to identify

E0 ¼ −
3α

M2
; Em≠0 ¼ 0; Bij ¼ 0: ð39Þ

The gtφ coefficient in the large-distance expansion above
contains only subleading terms which are not related to a
magnetic quadrupole tidal moment, but are due to the frame
dragging effect. The fact that the only nonvanishing
component of the tidal field is E0 is a consistency check
of our solution, since we imposed a pure electric and
axisymmetric quadrupolar tidal field. For a tidal source of
mass mc at a distance r0, E0 ∼mc=r30 [55,79] and Eq. (39)
gives α ∼mcM2=r30, as previously anticipated.

E. Multipole moments

In order to extract the multipole moments [7,58] from
our solution, we have to remove the tidal fields, as in the
nonrotating case [2,24,59,64]. This is done by identifying
the solutions corresponding to the tidal field and to the
linear response of the system as discussed in Sec. III D 1
and by setting to zero the constants corresponding to the
unique growing solution thus defined, i.e., by fixing
α ¼ αl ¼ 0. As discussed in Sec. III D 1, the remaining
solution is asymptotically flat. In this way, we determine
the spacetime’s response to the tidal field.9

We follow Ryan’s approach to compute the Geroch-
Hansen multipole moments [56,57] in a gauge-invariant
way through the geodesic properties of an axisymmetric,
asymptotically-flat spacetime [80–82]. Ryan found that a
low-velocity expansion of the energy change per logarith-
mic interval of the orbital frequency is completely deter-
mined by the multipole moments of a Ricci-flat solution.
Such quantity is defined as

9We remark that one cannot simply read off the multipole
moments from the components of the full solution, following e.g.
the prescription of [58]. Indeed, this prescription requires that the
metric is expressed in asymptotically mass-centered Cartesian
coordinates and, most importantly, that the spacetime is asymp-
totically flat. None of these conditions is satisfied by the full
metric (28).
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ΔE≡ −Ω
∂Ep

∂Ω ; ð40Þ

where Ω is the angular velocity of an equatorial circular geodesic with specific energy Ep. The large-distance expansion of
ΔE reads [45,80]

ΔE ¼ v2

3
−
v4

2
þ 20

9

S1
M2

0

v5 −
�
27

8
−
M2

M3
0

�
v6 þ 28

3

S1
M2

0

v7 −
�
225

16
−
80

27

S21
M4

0

−
70

9

M2

M3
0

�
v8

þ
�
81

2

S1
M2

0

þ 6
S1M2

M5
0

− 6
S3
M4

0

�
v9 −

�
6615

128
−
115

18

S21
M4

0

−
935

24

M2

M3
0

−
35

12

M2
2

M6
0

þ 35

12

M4

M5
0

�
v10

þ
�
165

S1
M2

0

þ 1408

243

S31
M6

0

þ 968

27

S1M2

M5
0

−
352

9

S3
M4

0

�
v11

−
�
45927

256
þ 123

14

S21
M4

0

−
9147

56

M2

M3
0

−
93

4

M2
2

M6
0

− 24
S21M2

M7
0

þ 24
S1S3
M6

0

þ 99

4

M4

M5
0

�
v12 þOðv13Þ; ð41Þ

where v≡ ðM0ΩÞ1=3 is the linear velocity, Ml are the
Geroch-Hansen mass multipole moments, whereas Sl are
the Geroch-Hansen current multipole moments [56,57].
Note that these moments are equivalent [83] to the multi-
pole moments defined by Thorne [58] using asymptotically
mass-centered Cartesian coordinates, and that the defini-
tions above are all gauge invariant.
For the asymptotically-flat, stationary and axisymmetric

spacetime discussed here and written as ds2 ¼ gμνdxμdxν,
we have

Ω ¼
−gtφ;r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgtφ;rÞ2 − gtt;rgφφ;r

q
gφφ;r

; ð42Þ

Ep ¼ −
gtt þ gtφΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt − 2gtφΩ − gφφΩ2
q : ð43Þ

By using the definitions above and inverting the function
v ¼ vðrÞ, we obtain the expression of ΔE given in
Appendix E. By comparing Eq. (E1) with Eq. (41), we
can identify the nonvanishing multipole moments to
quadratic order in the spin:

M0

M
¼ 1þ δmχ2 −

γ0 þ 12
ffiffiffi
5

p
γδq

4
ffiffiffi
π

p χ2; ð44Þ

S1
M2

¼
�
1þ

ffiffiffi
3

p
γ1 − 2

ffiffiffi
5

p
γ

4
ffiffiffi
π

p
�
χ; ð45Þ

M2

M3
¼

�
4

5
δq − 1

�
χ2 −

2γffiffiffiffiffiffi
5π

p −
χ2

280
ffiffiffi
π

p ½195
ffiffiffi
7

p
γ3

þ 4
ffiffiffi
5

p
ð28γ2 þ γð135þ 56δmþ 76δqÞÞ�; ð46Þ

S3
M4

¼ −
3

ffiffiffi
7

p
γ3 þ 44

ffiffiffi
5

p
γ

28
ffiffiffi
π

p χ; ð47Þ

M4

M5
¼ 65

ffiffiffi
7

p
γ3 þ 4ð420γ4 −

ffiffiffi
5

p
γð221þ 432δqÞÞ

2940
ffiffiffi
π

p χ2;

ð48Þ

Note that, because the expansion (41) contains more
coefficients than multipole moments, the comparison with
Eq. (E1) is also a nontrivial consistency check of our
solution, because some relations between the coefficients of
the small-v expansion are fixed through Einstein’s vacuum
equations.
Interestingly—due to the coupling to L ¼ 3 axial and

L ¼ 4 polar terms discussed in Sec. II—the tidal field
introduces a nonvanishing current octupole S3 and a
nonvanishing mass hexadecapole M4 even if the back-
ground solution does not possess such moments to second
order in the spin. Clearly, such corrections would add to the
(spin-induced) S3 and M4 terms appearing in the back-
ground solution to third and to fourth order in the spin,
respectively [45]. However, since we neglect terms higher
than second order in the spin, S3 and M4 are absent from
our background solution, and only appear in the tidally-
induced deformation. This is similar to the nonspinning
case, in which the tidal field induces a quadrupole moment
[the first term in Eq. (46)] even if the central object was
originally spherically symmetric.
The result above provides a practical definition of the

tidally-induced multipole moments of the spacetime. Once
the exterior metric is matched to the interior solution, the
constantsM, χ, δm, δq, γ and γl can be extracted and can be
related to the multipole moments of the external spacetime
using the definitions above.
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F. Note on the definition of multipole moments

In Sec. III D 1 we have discussed some subtleties and
some degree of arbitrariness in separating the solution
describing the external tidal field from that describing the
response of the system, even at the linearized level.
We wish here to comment on some further technical
issue which is related to the definition of the multipole
moments.
Our procedure is based on the fact that the perturbation

equations are linear and, therefore, the two solutions
mentioned above independently solve Einstein’s vacuum
field equations. However, even if the full perturbed solution
behaves—by definition—linearly, the multipole moments
of the spacetime might be mixed among the two solutions.
In other words, the multipole moments of the central object
might in principle be contaminated by the external solution.
An example of this fact is the static and axisymmetric Weyl
solution, whose line element reads

ds2 ¼ −e2Udt2 þ e2ðk−UÞðdρ2 þ dz2Þ þW2e−2Udφ2;

ð49Þ

where U, k and W depend only on ρ and z. It is easy to
prove that Einstein’s equations impose the potentialU to be
a harmonic function in flat space, ∇2U ¼ 0. Therefore, in
this case a linear combination of two solutions (say U1 and
U2) is still a solution of the Laplace equation. However, the
resulting moments will in general be a nonlinear combi-
nation of the moments of the individual solutions [56]. To
linear order, U1 and U2 can be considered as small
perturbations and therefore nonlinear terms can be
neglected. However, this example shows that a mixing
between two independent solutions can occur in the
computation of the multipole moments.
For this reason, it is not clear whether the moments of the

linear-response solution are the true moments of the
deformed compact object. We stress that this limitation
is not a prerogative of our approach. The same criticism
equally applies to the static case (see Ref. [25] for a
discussion). Although our procedure is reasonable and fully
equivalent to previous approaches, we believe that a more
rigorous analysis is needed to solve this important issue,
even in the static case. This would likely require a fifth
order post-Newtonian expansion of the field equations for a
binary system, which is currently not available for generic
mass ratios, in order to determine the quantities which
actually appear in the post-Newtonian gravitational wave-
forms. Indeed, the definition of the tidal Love numbers in a
relativistic theory would remain mostly academic without a
proper connection to observable quantities.
Leaving these problems for future work, in the following

we simply follow the standard procedure to define the tidal
Love numbers.

G. Tidal Love numbers of a spinning object

It is clear from Eqs. (44)–(48) that the external tidal field
modifies various multipole moments of the spacetime.
Because such corrections are necessarily linear in the tidal

field E0, we define various tidal Love numbers λðMÞ
l and λðSÞl

as follows [cf. Eq. (1)]:

λðMÞ
0 ¼ −

∂E0
γ0 þ 12

ffiffiffi
5

p ∂E0γδq

4
ffiffiffi
π

p Mχ2; ð50Þ

λðSÞ1 ¼
ffiffiffi
3

p ∂E0
γ1 − 2

ffiffiffi
5

p ∂E0γ

4
ffiffiffi
π

p M2χ; ð51Þ

λðMÞ
2 ¼ −

2∂E0γM
3ffiffiffiffiffiffi

5π
p −

M3χ2

280
ffiffiffi
π

p ½195
ffiffiffi
7

p ∂E0γ3

þ 4
ffiffiffi
5

p
ð28∂E0γ2 þ ∂E0γð135þ 56δmþ 76δqÞÞ�;

ð52Þ

λðSÞ3 ¼ −
3

ffiffiffi
7

p ∂E0γ3 þ 44
ffiffiffi
5

p ∂E0γ

28
ffiffiffi
π

p M4χ; ð53Þ

λðMÞ
4 ¼ M5χ2

2940
ffiffiffi
π

p ½65
ffiffiffi
7

p ∂E0γ3 ð54Þ

−4ð420∂E0γ4 þ
ffiffiffi
5

p ∂E0γð221þ 432δqÞÞ�; ð55Þ

where ∂E0 denotes derivative with respect to E0 ∝ α
[cf. Eq. (39)]. Because the quantities above are linear in
the tidal field, the derivatives with respect to E0 are just
numbers (see Sec. III H below). The first term in Eq. (52) is
proportional to the standard electric quadrupolar Love
number (15) and it is the only term that does not depend
on the spin. The other terms in Eq. (52), as well as
Eqs. (50)–(51) and Eqs. (53)–(55), are novel spin-induced
corrections.
The tidally-induced corrections to the multipole

moments are linear- (or higher-) order quantities in the
spin. For an electric quadrupolar tidal field, the mass
quadrupole gets tidal-induced corrections at quadratic order
in the spin, i.e. the corrections enter at the same order of the
spin-induced quadrupole moment of the Kerr metric. On
the other hand, both the current octupole S3 and the mass
hexadecapole M4 get tidally-induced corrections which
enter at lower order in the spin than the spin-induced
corrections, which would enter at Oðχ3Þ and Oðχ4Þ,
respectively [45].
More precisely, to quadratic order in the spin, the tidal

correction toM2 is suppressed by a factor α ≪ 1 relative to
the undeformed spin-induced term. However, the tidal
corrections to S3 and M4 are dominant with respect to
higher-order spin-induced corrections [45] whenever
χ2 ≲ α. This condition is consistent with our perturbative
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scheme because both α and χ are small perturbation
parameters, although it might be difficult to match in
practice, except for extremely slow rotations which
would however make the spin-induced tidal Love numbers
(50)–(55) almost zero.
Finally, here we focused on the most interesting case of

the tidal Love numbers associated with a quadrupolar
electric tidal field. Nonetheless, there is no reason to expect
qualitatively different results for other components of the
tidal field. The selection rules discussed in Sec. II suggest
that an axisymmetric electric tidal field with multipole l
would introduce corrections to the mass multipole moment
Ml to Oðχ0Þ and Oðχ2Þ, to the mass multipole moments
Ml�2 to Oðχ2Þ, and would introduce corrections to the
current multipole moments Sl�1 to OðχÞ. Likewise, we
expect that a magnetic tidal field with multipole l would
introduce corrections to the current multipole moment Sl to
Oðχ0Þ and Oðχ2Þ, would modify the moments Sl�2 to
Oðχ2Þ, and would introduce corrections to the mass multi-
pole moments Ml�1 to OðχÞ. A natural extension of our
work is to compute these novel families of Love numbers.10

In particular, an axisymmetric magnetic tidal field with
l ¼ 3 should modify the mass quadrupole momentM2 by a
term linear in the spin and linear in the intensity of the tidal
field. Because such term enters at linear order in the spin, it
might be the dominant deformation of the mass quadrupole
M2, although it would be suppressed by the fact that the
octupolar magnetic component of the tidal field is much
smaller than the quadrupolar electric component for typical
sources.

H. Extracting the Love numbers
of a spinning object

In general, computing the Love numbers (50)–(55)
requires a numerical integration of the perturbation equations
in the interior of the central object and a matching procedure
with the analytical exterior solution discussed here.
If the central object is a self-gravitating fluid, the interior

solution consists of the metric perturbations and the fluid
perturbations, the latter vanishing in the exterior. By
requiring regularity at the center of the object and con-
tinuity at the surface, the Love number (15) in the static

case can be extracted [2] from the ratio Hð2Þ
0

0=Hð2Þ
0

evaluated at the radius R of the star and by using the
analytical solution (12). Likewise, the constants γl
(l ¼ 0; 1;…; 4) can be extracted from δHð0Þ

0 ðRÞ, hð1Þ0 ðRÞ,
δHð2Þ

0 ðRÞ, hð3Þ0 ðRÞ and δHð4Þ
0 ðRÞ, respectively, and using the

analytical solution presented in this work. After this
matching, the parameters γ and γl will be necessarily
proportional to α ∝ E0 and, therefore, the dependence on E0

of the Love numbers (50)–(55) disappears, as expected.
One can conveniently factorize the E0-dependence in the
constants, by defining say γ0 ≡ δmtidalE0, and the matching
procedure would then allow to extract δmtidal, which
represents a mass shift induced by the tidal field at
quadratic order in the spin, similarly to the parameter
δm that represents a mass shift purely induced by the
angular momentum of the background solution. Similarly,
the tidal Love numbers (50)–(55) also depend on the

coupling between the static Love number kð2Þel ∝ γ=α and
the quadrupole shift δq, which also appears at Oðαχ2Þ.
In a subsequent work, we will apply this procedure to

compute the tidal Love numbers (50)–(55) for a spinning
neutron star. In the next section, we will instead focus on
the case in which the central object is a BH, which can be
remarkably solved analytically.

IV. TIDALLY-DISTORTED SPINNING BHS

The solution discussed above becomes much more
tractable in the BH case. The latter can be obtained by
requiring regularity of the solution across and outside the
event horizon. Because the Hartle-Thorne coordinates
[73,74] in which our ansatz (2) is written are singular at
r ¼ 2M, the regularity of the metric perturbations is
slightly more subtle than in a regular set of coordinates
as, e.g., that adopted in Ref. [55]. Nonetheless, to ensure
regularity one can compute some curvature invariant, such
as the Kretschmann scalar RabcdRabcd and the Pontryagin
density �RR≡ 1

2
ϵabefRabcdRcd

ef, and impose regularity at
the singular point.
For the background solution given in Appendix A,

regularity imposes δq ¼ 0 whereas δm can be set to zero
without loss of generality through a redefinition of the mass
of the background solution. Furthermore, as previously
mentioned, regularity also imposes γ ¼ 0 in the solution
(12)–(14). It is also easy to show that the curvature
invariants are divergent at r ¼ 2M unless

γ2 ¼ γ3 ¼ γ4 ¼ 0: ð56Þ

Due to the parity properties of our solution, regularity of the
Kretschmann scalar fixes the constants γ2 and γ4 related to
the even-parity (polar) perturbations, whereas regularity of
Pontryagin density fixes the constant γ3 associated with the
odd-parity (axial) perturbations. As shown in Eqs. (44) and
(45), the constants γ0 and γ1 are related to tidally-induced
mass and spin shifts, respectively, and can be set to zero
without loss of generality in the BH case, because they can
be reabsorbed in the definition of mass and spin of the
background Kerr metric. After imposing γ0 ¼ γ1 ¼ 0 and
the conditions (56), the Kretschmann scalar reads

10Note that an electric (resp. magnetic) tidal field with odd
(resp. even) values of l would generate perturbations which
break the reflection symmetry of the background (2). Consis-
tently with the argument just presented, such components of the
tidal field would induce multipoles such as M3, S2, etc.., which
are identically vanishing in the case of a solution with reflection
symmetry as the one discussed here.
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M4RabcdRabcd ¼ 48

y6
þ

ffiffiffi
5

π

r
18α

y3
½1þ 3 cosð2ϑÞ� þ 72χ2

y10
ð2þ y − 6y2 − ð8y2 þ y − 6Þ cosð2ϑÞÞ

þ 27αχ2

4
ffiffiffiffiffiffi
5π

p
y10

½ð104þ yð112 − yð856þ yð783þ yð45y − 311ÞÞÞÞ

− 4ð104þ yð−104þ yð48þ 5yð79þ 5ðy − 1ÞyÞÞÞÞ cosð2ϑÞ
− 5ð40þ yðyðyð65þ yð31þ 35yÞÞ − 56Þ − 48ÞÞ cosð4ϑÞ�;

and is regular everywhere except at r ¼ 0. A similar
regular expression can be obtained for the Pontryagin
density. Note that the Kretschmann scalar can also be

decomposed in spherical harmonics as M4RabcdRabcd ¼P
2
i¼0 f2iðrÞY2i0ðϑÞ, where f0;2;4ðrÞ are radial functions.

The exact regular metric of a tidally distorted spinning BH
to second order in the spin is given in Appendix F.
As a consistency check, we have verified that, to first

order in the spin, our solution reduced to that found by
Poisson in Ref. [55] in the axisymmetric case with zero
magnetic quadrupolar component of the tidal field.
The transformation between our coordinate system and
the null coordinates of Ref. [55] is given in Appendix D,
Eqs. (D3)–(D6).

A. Love numbers of a Kerr BH

We can now compute the tidal Love numbers for a
spinning BH. By imposing regularity through δq ¼ γ ¼ 0,
using Eq. (56), and setting δm ¼ γ0 ¼ γ1 ¼ 0, from
Eqs. (44)–(48) we obtain

∂M2

∂E0

¼ ∂S3
∂E0

¼ ∂M4

∂E0

¼ 0; ð57Þ

together with the equations ∂M0∂α ¼ ∂S1∂α ¼ 0, which just
represent the freedom of rescaling the mass and spin of
the background metric. Therefore, we immediately obtain
that the Love numbers of a Kerr BH are zero as in the
Schwarzschild case [24,28] and as recently found to first
order in the spin by Landry and Poisson [62]. We note that
the separation of solutions discussed in Sec. III D 1 is
crucial to obtain such result. Any other prescription would
account for a shift as in Eq. (29) which would modify the
Love numbers. Therefore, the prescription given above is
the unique one that yields zeroth Love numbers for a Kerr
BH to second order in the spin. On the light of these results,
it is also natural to conjecture that the Love numbers of a
Kerr BH are zero to any order, at least in the axisymmetric
case considered here.
As a by-product of the BH uniqueness and no-hair

theorems [84,85] (see also [86–88]), the multipole
moments of any stationary BH in isolation can be written
as [57],

Ml þ iSl ¼ Mlþ1ðiχÞl: ð58Þ

All moments with l ≥ 2 can be written in terms ofM0 ¼ M
and S1 ¼ J through the above relation. Therefore, any
independent measurement of three multipole moments (e.g.
the mass, the spin and the mass quadrupole M2) is a null-
test of the Kerr metric and, in turn, it might provide the first
genuine strong-gravity confirmation of general relativity
[89–92]. Our results (together with those of Ref. [62]) show
that the no-hair relations (58) are robust not only to
nonperturbative effects in the tidal field [28], but also to
perturbative tidal-spin interactions. In other words, the
relation (58) holds also for a slowly-rotating BH immersed
in a weak tidal field and it can therefore be interpreted as a
generalization of the no-hair theorems for stationary,
tidally-deformed spinning BHs.

B. Properties of the solution

The BH solution given in Appendix F is an analytical
(albeit perturbative) solution of Einstein’s vacuum equa-
tions and, as such, it is interesting per se. It is therefore
relevant to study this solution more in detail, e.g. by
computing various geometrical and geodesic quantities
related to this spacetime. Let us start by computing the
intrinsic geometry at the horizon. The horizon location is
defined as the largest root of grr and reads

rþ ¼ 2M

�
1 −

χ2

8
−

3αχ2

2
ffiffiffiffiffiffi
5π

p
�
; ð59Þ

Although the horizon location does not depend on the
coordinates ϑ and φ, its intrinsic geometry is not spherical.
To compute the intrinsic metric, we consider the spatial
section dt ¼ 0 of the metric (2) at r ¼ rþ. In the slowly-
rotating limit, we obtain

ds2t¼const;r¼rþ ¼ gϑϑðr ¼ rþ; ϑÞdΩ2; ð60Þ

and therefore the intrinsic geometry is spherical only when
gϑϑ evaluated at r ¼ rþ does not depend on ϑ. Using the
solution (F4), the Ricci curvature of the intrinsic geometry
reads
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M2Rintr ¼
1

2
−
3

8
χ2 cosð2ϑÞ þ 3

4

ffiffiffi
5

π

r
α½1þ 3 cosð2ϑÞ�

−
9αχ2

128
ffiffiffiffiffiffi
5π

p ½1þ 172 cosð2ϑÞ þ 115 cosð4ϑÞ�;

ð61Þ

and is constant only in the nonrotating and undeformed
case. The intrinsic curvature is shown in Fig. 1 for different
values of χ and α.
It is also interesting to look at the geodesic structure

of the spacetime. For a stationary and axisymmetric
spacetime, one can define the potential

VðrÞ≡ −g−1rr E2
p½E2

pUðr; π=2Þ þ 1�; ð62Þ

where Uðr;ϑÞ ¼ gtt − 2lgtφ þ l2gφφ, Ep is the energy per
unit mass of a point particle [given in Eq. (43)], and l is the
proper angular momentum. For a circular, equatorial orbit
at r ¼ rc, Ep and l can be determined by imposing
VðrcÞ ¼ V 0ðrcÞ ¼ 0, where the prime indicates differentia-
tion with respect to r. The solution for Ep is given in
Eq. (43). The further condition V 00 ¼ 0 yields the location
of the innermost stable circular orbit (ISCO), r ¼ rISCO.
Furthermore, by considering small perturbations of a

circular, equatorial orbit, one finds the epicyclic frequen-
cies Ωr and Ωϑ governing small oscillations in the radial
and in the ϑ direction, respectively. These read

Ω2
r ¼

ðgtt þ ΩgtφÞ2
2grr

∂2U
∂r2

�
rc;

π

2

�
; ð63Þ

Ω2
ϑ ¼

ðgtt þΩgtφÞ2
2gϑϑ

∂2U
∂ϑ2

�
rc;

π

2

�
: ð64Þ

Using Eqs. (42), (63) and (64), it is straightforward to show
that, in our case, the explicit form of the orbital and
epicyclic frequencies reads

MΩ ¼ 1

y3=2
þ

ffiffiffi
5

π

r
3ðy3 − 2Þα

8y3=2
−

χ

y3
þ 9αχ

2
ffiffiffiffiffiffi
5π

p
y3

þ ð3þ yÞð3y − 2Þχ2
4y11=2

þ 3ð180þ yðyðyð177þ ð101 − 15yÞyÞ − 174Þ − 110ÞÞαχ2
32

ffiffiffiffiffiffi
5π

p
y11=2

; ð65Þ

ðMΩrÞ2 ¼
y − 6

y4
þ

ffiffiffi
5

π

r
3ðy − 2Þð−2 − 13yþ 4y2Þα

4y3
þ 6ð2þ yÞχ

y11=2
þ 3ð−12þ 34y − 240y2 þ 120y3 þ 15y4Þαχ

4
ffiffiffiffiffiffi
5π

p
y11=2

þ ð48 − 66y − 47y2 − 3y3Þχ2
2y8

−
3ð960 − 216yþ 8y2 − 924y3 þ 675y4 þ 434y5Þαχ2

16
ffiffiffiffiffiffi
5π

p
y8

; ð66Þ

ðMΩϑÞ2 ¼
1

y3
−

ffiffiffi
5

π

r
3ðy − 2Þ2ð2y − 1Þα

4y3
−

6χ

y9=2
−
3ð74 − 120yþ 30y2 þ 15y3Þαχ

4
ffiffiffiffiffiffi
5π

p
y9=2

þ ð−6þ 25yþ 9y2Þχ2
2y7

þ 3ð−120þ 1048y − 948y2 þ 57y3 þ 346y4Þαχ2
16

ffiffiffiffiffiffi
5π

p
y7

: ð67Þ

FIG. 1 (color online). The curvature of the intrinsic geometry
of a tidally-deformed spinning BH for different values of the spin
χ and of the intensity of the tidal field α. We used extreme
values of χ and α in order to magnify the effect of the
deformations. The coordinates ðX; YÞ are related to ðr; ϑÞ through
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
, Y=X ¼ tan−1 ϑ.
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By evaluating these frequencies at the ISCO, we obtain

MΩISCO ¼ 1

6
ffiffiffi
6

p þ 491

8

ffiffiffiffiffiffi
5

6π

r
αþ

�
11

216
−

6671α

48
ffiffiffiffiffiffi
5π

p
�
χ

þ
�

59

648
ffiffiffi
6

p þ 5819

864

ffiffiffiffiffiffi
5

6π

r
α

�
χ2; ð68Þ

MΩISCO
ϑ ¼ 1

6
ffiffiffi
6

p þ 37

ffiffiffiffiffiffi
5

6π

r
αþ

�
1

24
−

35209α

288
ffiffiffiffiffiffi
5π

p
�
χ

þ
�

57539α

864
ffiffiffiffiffiffiffiffi
30π

p þ 79

1296
ffiffiffi
6

p
�
χ2; ð69Þ

whereas the ISCO radial epicyclic frequency ΩISCO
r

vanishes to second order in the spin, as in the undeformed
Kerr case.

C. Tidal versus spin effects

Our results can be used to estimate the effects of spin and
tidal deformations on the BH geometry. The analysis of this
section will be mostly qualitative, a more detailed study
will appear elsewhere. Let us assume that the tidal field is
generated by a source of mass mc at a distance r0 from the
central BH.11 In this case, E0 ∼mc=r30 and Eq. (39) yields

α ∼
mcM2

r30
; ð70Þ

which is understood as an order of magnitude estimate. We
also assume mc ∼M so that α ∼ ðM=r0Þ3. In this case,

ΩISCO

ΩISCO
0

≈ 1þ 0.150χ0.2 þ 0.022χ20.2 þ 0.017r−330

− 0.004r−330 χ0.2 þ 0.00008r−330 χ
2
0.2; ð71Þ

ΩISCO
ϑ

ΩISCO
ϑ;0

≈ 1þ 0.123χ0.2 þ 0.015χ20.2 þ 0.010r−330

− 0.003r−330 χ0.2 − 0.0002r−330 χ
2
0.2; ð72Þ

where each denominator denotes the corresponding
frequency evaluated at χ ¼ α ¼ 0, χ0.2 ¼ χ=ð0.2Þ and
r30¼r0=ð30MÞ. As expected, tidal corrections are small

because the tidal field is suppressed by the third power of
the orbital distance. However, for r0 ≈ 30M (i.e., α ∼ 10−5)
and χ ≈ 0.2, the linear tidal correction is comparable to the
quadratic in spin correction and they both correct the static,
undeformed result by a few percent.
With the normalization of χ and r0 adopted above, the

correction linear in the spin and in the tidal field—which
arises from the spin-tidal coupling—is of the order of 0.5%,
whereas the correction quadratic in the spin and linear in
the tidal field is much smaller, of the order of 0.02%. Note,
however, that our metric is valid in the limit r ≪ r0,
whereas the frequencies above are evaluated at the
ISCO, rISCO ∼ 6M, which is only moderately smaller than
r0 ∼ 30M. For this reason, our discussion is intended only
as an order-of-magnitude estimate.

V. CONCLUSIONS AND EXTENSIONS

Computing the tidal Love numbers of a spinning neutron
star is an open problem with various potential applications
in classical general relativity and in gravitational-wave
astronomy. Here, we presented a framework to study
gravitational perturbations of a slowly-rotating geometry
to second order in the spin. We applied this technique to
study static, axisymmetric tidal perturbations of a spinning
object. Remarkably, the perturbation equations can be
solved analytically in vacuum. We provided the explicit
form of the metric describing the exterior geometry of a
spinning object distorted by an axisymmetric tidal field to
second order in the spin.
Because of spin couplings, an external quadrupolar

electric tidal field deforms the quadrupole moment M2

of the central object up to quadratic order in the spin, the
dipole and octupole current moments S1 and S3 to linear
order in the spin, and also deforms the monopole and
hexadecapole mass momentsM0 andM4 to quadratic order
in the spin. Correspondingly, for a spinning object a new
class of different Love numbers emerges, while the
standard Love numbers acquire spin-induced corrections.
When the central object is a spinning BH, the metric

simplifies considerably. Similarly to the nonrotating case,
we have shown that the multipole moments of a Kerr BH
are not affected by the tidal field at least up to quadratic
order in the spin, and thus the corresponding Love numbers
are zero. This implies that the no-hair relation (58) is not
affected by perturbative spin-tidal interactions. This result
is strongly based on the discrimination between the
solution describing the tidal field and that describing the
linear response of the central object, which we have
discussed in some detail. Furthermore, we provided the
metric describing a tidally-deformed Kerr BH in concise
form to second order in the spin and computed various
physical properties of the solution, including the epicyclic
frequencies and the intrinsic geometry of the event horizon.
These findings have potentially important implications

for gravitational-wave phenomenology with ground-based

11We recall that we are considering an axisymmetric tidal field.
Therefore, strictly speaking, our source should be a ring of mass
mc and radius r0. Nonetheless, the qualitative results of this
section would also apply to the more realistic case in which the
source is a companion star of mass mc at orbital distance r0. In
this case Em≠0 ≠ 0 and the tidal field sources both axisymmetric
and nonaxisymmetric deformations in the metric. By virtue of the
axisymmetry of the background, modes with different azimuthal
number m are decoupled from each other and the axisymmetric
components of the metric perturbations are exactly described by
our solution.
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detectors [3–5]. For example, current gravitational-wave
templates for compact binary inspirals adopt Love numbers
which are valid for nonspinning objects, neglecting the spin
corrections introduced here. In this context, it is crucial to
understand how the rotational Love numbers defined here
enter the gravitational waveforms, similarly to what has
been done in the past for the nonrotating case [1,10–20].
Our deformed BH solution might be of interest for null

tests of the Kerr geometry and tests of general relativity
based on various observations, e.g. tracing of BH shadows
with the Event Horizon Telescope [93], detection of
quasiperiodic oscillations in the signal emitted by accreting
BHs with the X-ray telescope LOFT [94,95], and obser-
vations of gravitational-wave from extreme-mass ratio
inspirals with eLISA [47,91,92]. A more detailed charac-
terization of the solution and its phenomenological appli-
cations are left for future work.
In a subsequent work [96], we plan to use the results

presented here to compute the Love numbers of a spinning
neutron star explicitly. This requires solving the perturba-
tion equations in the interior of the neutron star, taking into
account also fluid perturbations and matching the interior
solution with the exterior metric presented in this paper.
Another natural question we wish to answer is whether the
spin-induced corrections to the tidal Love numbers of a
neutron star satisfy some nearly-universal relations as their
static counterpart [29,30].
In this work, we focused on the most relevant, polar-led

L ¼ 2 perturbations, i.e. we assumed that the tidal field has
only a quadrupolar electric component at the leading order.
Extending our results to the axial-led sector (8) (thus
including a magnetic component of the tidal field) and
to other values of l is straightforward. As explained in the
end of Sec. IVA, novel families of Love numbers will
emerge and they would correct the multipolar structure of a
spinning neutron star or of a spinning BH in agreement
with the selection rules discussed in Sec. II.
Indeed, the corrections to the multipole moments of a

tidally-distorted spinning neutron star will modify the
approximate three-hair relations that exist for isolated
compact stars [43–45]. For example, the mass quadrupole
moment M2 would acquire OðχÞ corrections proportional
to the l ¼ 3 magnetic component of the external tidal field
and would acquire Oðχ2Þ corrections proportional to the
l ¼ 4 electric component of the external tidal field. Higher
multipole moments would also be modified accordingly to
the selection rules discussed in Sec. II. Such corrections
will be explicitly presented in a forthcoming publica-
tion [96].
Although our analysis extends part of the results of

Ref. [55] to quadratic order in the spin, we did not attempt
to identify the tidal moments of the source. It would be
interesting to complement our analysis by matching the
exterior solution presented here (which is valid in the
region R < r ≪ r0) to a post-Newtonian metric describing

the source of the tidal field in an overlapping region [55].
This would allow us to express the constant α in terms of
the source parameters up to a certain post-Newtonian order.
A major limitation of our results is the assumption of

axisymmetry, i.e. we restricted tom ¼ 0 tidal perturbations.
The tidal field produced by an orbiting companion is not
axisymmetric, so our results describe only the axisymmet-
ric part12 of such tidal interaction (the axisymmetry of the
background guarantees that modes with different m are
decoupled from each other). To second order in the spin, a
nonaxisymmetric tidal field would induce precession of the
central object’s angular momentum, introducing time
dependence in the problem. This effect can be avoided
by restricting the analysis to first order in the spin, as done
in Refs. [55,62]. In this case our method can be straight-
forwardly extended to compute the new Love numbers in
the m ≠ 0 case to linear order in the spin. In principle,
however, our method is also well suited to deal with time-
dependent perturbations and we hope to come back to this
interesting generalization in the future. Indeed, the slow-
rotation framework presented in this paper can be applied to
the case of time-dependent perturbations with only minor
modifications [72]. Such extension can be also relevant for
a variety of important problems, including the computa-
tions of the quasinormal modes of spinning neutron stars
[97,98] to second order in the spin.
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each other: differently from Ref. [62] we extended the
perturbative analysis to second order in the spin, but we
restricted to the axisymmetric case and did not include a
quadrupolar magnetic component of the tidal field.

APPENDIX A: BACKGROUND GEOMETRY
TO SECOND ORDER IN THE SPIN

Here we give the metric coefficients entering the
background geometry (2) to second order in the spin
[73,74]:

MðrÞ¼M; eνðrÞ ¼ 1−
2M
r

; ωðrÞ¼ 2χM2

r3
; ðA1Þ

m0ðrÞ ¼ χ2M

�
δm −

M3

r3

�
; ðA2Þ

m2ðrÞ ¼ −χ2
�

δmM
r − 2M

−
M4

r3ðr − 2MÞ
�
; ðA3Þ

m2ðrÞ ¼
M3χ2

r4
ð5M − rÞðr − 2MÞ

þ δqχ2

2M2r

�
MðM − rÞð3r2 − 2M2 − 6MrÞ

þ 3r2ðr − 2MÞ2tanh−1
�

M
r −M

��
; ðA4Þ

j2ðrÞ ¼
M3χ2ðM þ rÞ

r4

þ δqχ2

2M2rðr − 2MÞ
�
Mðr −MÞð3r2 − 2M2 − 6MrÞ

− 3r2ðr − 2MÞ2tanh−1
�

M
r −M

��
; ðA5Þ

v2ðrÞ ¼ −
M4χ2

r4
þ δqχ2

M

�
3ðr −MÞtanh−1

�
M

r −M

�

−
MðM2 þ 3r2 − 6MrÞ

rðr − 2MÞ
�
; ðA6Þ

themeaning of the various constants is explained in themain
text. Note that we have factored out the spin dependence of
the second-order terms, so that δm and δq are Oðχ0Þ
numbers which multiply terms proportional to χ2.

APPENDIX B: STATIONARY PERTURBATIONS
OF A SLOWLY-ROTATING
RELATIVISTIC OBJECT

In this Appendix we briefly present the derivation of the
field equations; to reduce the risk of typographical errors
and facilitate comparison with our results, we made the
entire calculation available online in the Supplemental
Material.
As a background, we consider the spinning geometry (2)

to second order in the rotation rate (cf. Appendix A) and we
consider a harmonic decomposition of the metric pertur-
bations as

δgμνðt; r; ϑ;φÞ ¼ δgoddμν ðt; r; ϑ;φÞ þ δgevenμν ðt; r; ϑ;φÞ
ðB1Þ

with

δgoddμν ¼

0
BBBBB@

0 0 hl0S
l
ϑ hl0S

l
φ

� 0 hl1S
l
ϑ hl1S

l
φ

� � −hl2
Xl

sinϑ hl2 sinϑW
l

� � � hl2 sinϑX
l

1
CCCCCA; ðB2Þ

δgevenμν ¼

0
BBBBB@

gð0Þtt Hl
0Y

l Hl
1Y

l ηl0Y
l
;ϑ ηl0Y

l
;φ

� gð0Þrr Hl
2Y

l ηl1Y
l
;ϑ ηl1Y

l
;φ

� � r2½KlYl þ GlWl� r2GlXl

� � � r2sin2ϑ½KlYl −GlWl�

1
CCCCCA; ðB3Þ

where asterisks represent symmetric components, gð0Þtt ¼ eν,

1=gð0Þrr − 1 − 2M=r, Yl ¼ Ylðϑ;φÞ are the scalar spherical
harmonics and we have defined

ðSlϑ; SlφÞ≡
�
−

Yl
;φ

sin ϑ
; sinϑYl

;ϑ

�
: ðB4Þ

ðXl;WlÞ≡
�
2ðYl

;ϑφ − cotϑYl
;φÞ; Yl

;ϑϑ − cotϑYl
;ϑ −

Yl
;φφ

sin2 ϑ

�
;

ðB5Þ

which are related to the vector and tensor spherical
harmonics, respectively. Here and in the following, a
sum over the harmonic indices l and m (such that
jmj ≤ l) is implicit.13 Under parity transformations

13Furthermore, from now on we will append the relevant
multipolar index l to any perturbation variable but we will omit
the index m, because in an axisymmetric background it is
possible to decouple the perturbation equations so that all
quantities have the same value of m.
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(ϑ → π − ϑ, φ → φþ π): polar and axial perturbations are
multiplied by ð−1Þl and ð−1Þlþ1, respectively. The odd
and even sectors are also referred to as “axial” and “polar”
and we shall use the two notations indistinctly. The
functions ðH0; H1; H2; K;G; η0; η1Þl and ðh0; h1; h2Þl only
depend on t and r and describe the polar parity metric
perturbations and the axial parity metric perturbations,
respectively. In the following, we adopt the Regge-Wheeler
gauge [99] and set ηli ≡Gl ≡ hl2 ≡ 0 through a gauge
choice.
Using this decomposition, we can solve vacuum

Einstein’s equations perturbatively in the spin. Because
of the transformation properties of the perturbation func-
tions, the linearized equations naturally separate into three
groups [66,72]. By denoting the linearized Einstein equa-
tions as δEμν ¼ 0, the first group reads

δEðIÞ ≡ ðAðIÞ
l þ ~AðIÞ

l cosϑþ ÂðIÞ
l cos2ϑÞYl

þ ðBðIÞ
l þ ~BðIÞ

l cos ϑÞ sinϑYl
;ϑ ¼ 0; ðB6Þ

where I ¼ 0; 1; 2; 3 corresponds to δEtt ¼ 0, δEtr ¼ 0,
δErr ¼ 0 and δEϑϑ þ δEφφ= sin ϑ2 ¼ 0, respectively. The
second group reads

δEðLϑÞ≡ ðαðLÞl þ ~αðLÞl cosϑþ α̂ðLÞl cos2ϑÞYl
;ϑ

− ðβðLÞl þ ~βðLÞl cosϑþ β̂ðLÞl cos2ϑÞ Yl
;φ

sinϑ

þðηðLÞl þ ~ηðLÞl cosϑÞ sinϑYl

þðξðLÞl þ ~ξðLÞl cosϑÞXlþ χðLÞl sinϑWl ¼ 0; ðB7Þ

δEðLφÞ≡ ðβðLÞl þ ~βðLÞl cosϑþ β̂ðLÞl cos2ϑþ ~ΔðLÞ
l sin2ϑÞYl

;ϑ

þðαðLÞl þ ~αðLÞl cosϑþ α̂ðLÞl cos2ϑþΔðLÞ
l sin2ϑÞ Yl

;φ

sinϑ

þðζðLÞl þ ~ζðLÞl cosϑÞ sinϑYlþ χðLÞl Xl

− ðξðLÞl þ ~ξðLÞl cosϑÞ sinϑWl ¼ 0; ðB8Þ

where L ¼ 0; 1 and the first equation corresponds to
δEtϑ ¼ 0 and δErϑ ¼ 0, whereas the last equation corre-
sponds to δEtφ ¼ 0 and δErφ ¼ 0. Finally the third group is

δEðϑφÞ ≡ ðfl þ ~fl cosϑÞ sin ϑYl
;ϑ þ ðgl þ ~gl cos ϑÞYl

;φ

þ klsin2ϑYl þ ðsl þ ŝlcos2ϑÞ
Xl

sin ϑ
þ ðtl þ t̂lcos2ϑÞWl ¼ 0; ðB9Þ

δEð−Þ ≡ ðgl þ ~gl cosϑÞ sin ϑYl
;ϑ − ðfl þ ~fl cos ϑÞYl

;φ

þ ~klsin2ϑYl − ðtl þ t̂lcos2ϑÞ
Xl

sinϑ
þ ðsl þ ŝlcos2ϑÞWl ¼ 0; ðB10Þ

corresponding to δEϑφ ¼ 0 and δEϑϑ − δEφφ= sin ϑ2 ¼ 0,
respectively. In the equations above, Xl and Wl are the
tensor spherical harmonics defined as in Eq. (B5). The
coefficients appearing in these equations are linear and
purely radial functions of the perturbation variables.
Furthermore, they naturally divide into two sets accord-
ingly to their parity:

Polar∶ AðIÞ
l ; ÂðIÞ

l ; ~BðIÞ
l ; αðLÞl ; α̂ðLÞl ; ~βðLÞl ; ~ηðLÞl ; ζðLÞl ; ξðLÞl ;ΔðLÞ

l ;

fl; ~gl; sl; ŝl; ~kl

Axial∶ ~AðIÞ
l ; BðIÞ

l ; βðLÞl ; β̂ðLÞl ; ~αðLÞl ; ηðLÞl ; ~ξðLÞl ; χðLÞl ; ~ζðLÞl ; ~ΔðLÞ
l ;

gl; ~fl; tl; t̂l; kl:

The explicit form of the coefficients is given in the online
notebook in the Supplemental Material. Note that the
coefficients above are purely radial functions, i.e., the
entire angular dependence has been completely factored
out in the linearized Einstein equations.

1. Separation of the angular dependence

The decoupling of the angular dependence of the
Einstein equations for a slowly-rotating star to first order
in the spin was performed by Kojima [66] (see also [65]) by
using the orthogonality properties of the spherical harmon-
ics. The procedure has been extended to the case of slowly-
rotating BHs to second order in Refs. [70,71]. Here we
adopt the same technique.
The decoupling is achieved by computing the following

integrals

0 ¼
Z

dΩY�lδEðIÞ; ðB11Þ

0 ¼
Z

dΩ
�
Y�l0

;ϑδEðLϑÞ þ
Y�l0

;φ

sinϑ
δEðLφÞ

�
; ðB12Þ

0 ¼
Z

dΩ
�
Y�l0

;ϑδEðLφÞ −
Y�l0

;φ

sin ϑ
δEðLϑÞ

�
; ðB13Þ

0 ¼
Z

dΩ
1

lðlþ 1Þ − 2

�
W�l0δEð−Þ þ

X�l0

sin ϑ
δEðϑφÞ

�
;

ðB14Þ
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0 ¼
Z

dΩ
1

lðlþ 1Þ − 2

�
W�l0δEðϑφÞ −

X�l0

sin ϑ
δEð−Þ

�
;

ðB15Þ

for I ¼ 0; 1; 2; 3 and L ¼ 0; 1. These integrals might be
evaluated analytically for generic ðl; mÞ by using the
properties of the spherical harmonics [66,70,71]. The
resulting equations have the form (4)–(5). For simplicity,
here we perform the integrals above explicitly. For exam-
ple, for l ¼ m ¼ 2 one obtains the system of equations
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7

ffiffiffi
3

p þ 2ig2 þ
3i~g3ffiffiffi

7
p þ 4k2

7
þ k4
7

ffiffiffi
3

p

þ i~k3ffiffiffi
7

p þ 10iŝ3ffiffiffi
7

p þ 22t̂2
7

þ 10
ffiffiffi
3

p
t̂4

7
¼ 0; ðB20Þ

which describe the full set of l ¼ m ¼ 2 perturbations to
second order in the spin. Similar equations can be found for
other values of l and jmj ≤ l.
To summarize, our decoupling procedure in the slow-

rotation limit allows us to obtain a system of 10 coupled,
ordinary differential equations. The mixing of different
angular functions in Eqs. (B6)–(B10) yields a mixing of
perturbation functions with multipolar indices l, lþ 1 and
l − 1 to first order in the spin and with multipolar indices
l, lþ 2 and l − 2 to second order, respectively. The
explicit form of the final radial equations is available online
in the Supplemental Material.

2. Perturbations with l ¼ 1 and l ¼ 0

In the derivation presented in this Appendix we have
always assumed l ≥ 2. However, in the rotating case axial
and polar perturbations with l ¼ 2 are respectively coupled
to polar and axial perturbations with l ¼ 3 and l ¼ 1 and
with axial and polar perturbations with l ¼ 0 and l ¼ 4.
Perturbations with l ¼ 0; 1 satisfy a different set of
equations than the one presented above. The perturbation
equations for l ¼ 1 can be found by neglecting Eqs. (B14)
and (B15) (which are clearly ill-defined when l ¼ 1) and
by using a residual gauge freedom in order to set Kð1Þ ¼ 0

and hð1Þ1 ¼ 0 in the ansatz for the metric [100,101]. For
l ¼ 0, only scalar polar perturbations exist and one can set

Kð0Þ ¼ 0 and Hð0Þ
1 ¼ 0 without loss of generality.

APPENDIX C: SOURCES FOR THE
INHOMOGENEOUS EQUATIONS

GOVERNING TIDAL DEFORMATIONS

The source terms entering the axial perturbations for
L ¼ 3 and L ¼ 1 read

Sð1ÞA ¼−
4M2χffiffiffiffiffi

15
p

r3ðr−2MÞðrðr−2MÞHð2Þ
0

0 þð2Mþ3rÞHð2Þ
0 Þ;

ðC1Þ

Sð3ÞA ¼ 2M2χffiffiffiffiffi
35

p
r3ðr − 2MÞ2 ðrð18M

2 þ 2r2 − 13MrÞHð2Þ
0

0

þ 2ðM2 − 2r2 þMrÞHð2Þ
0 Þ; ðC2Þ

whereas the source term entering Eq. (18) reads
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Sð2ÞP ¼ −
2χ

105M2r7ðr − 2MÞ3
�
rðr − 2MÞ

�
5χHð2Þ

0

0
�
9δqr6ð4r −MÞðr − 2MÞ2tanh−1

�
M

r −M

�
þMð270M8 − 36δqr8

þ 117δqMr7 − 3M2r6ð7δmþ 25δqÞ − 12δqM3r5 þ 6ð6 − 7δqÞM4r4 − 42M5r3 − 22M6r2 − 46M7rÞ
�

− 4
ffiffiffi
5

p
M4rðrð7

ffiffiffi
3

p
ð15M2 þ r2 − 9MrÞhð1Þ0

0 − 9
ffiffiffi
7

p
ð5M2 þ 2r2 − 3MrÞhð3Þ0

0Þ þ 14
ffiffiffi
3

p
ð−15M2 þ 2r2 þ 8MrÞhð1Þ0

þ 9
ffiffiffi
7

p
ð10M2 þ 12r2 − 17MrÞhð3Þ0 Þ

�
þ 10χHð2Þ

0

�
9δqr6ðr − 2MÞ2ð−10M2 þ 3r2 þ 6MrÞtanh−1

�
M

r −M

�
þMð−270M9 − 27δqr9 þ 27δqMr8 þ 9M2r7ð24δq − 7δmÞ þ 15M3r6ð7δm − 24δqÞ þ 6ð14δq − 3ÞM4r5

þ 12ð2δqþ 3ÞM5r4 þ 320M6r3 − 678M7r2 þ 376M8rÞ
��

: ðC3Þ

The source term entering Eq. (19) reads

Sð4ÞP ¼ −
4χ

35M2r7ðr − 2MÞ3
�
2rðr − 2MÞ

� ffiffiffi
5

p
χHð2Þ

0

0
�
3δqr6ðM þ 3rÞðr − 2MÞ2tanh−1

�
M

r −M

�
þMð15M8 − 9δqr8 þ 24δqMr7 − 3δqM2r6 − 10δqM3r5 þ ð9 − 14δqÞM4r4 þ 7M5r3 − 135M6r2 þ 167M7rÞÞ:

− 5
ffiffiffi
7

p
M4r2ð5M2 þ 2r2 − 3MrÞhð3Þ0

0 − 10
ffiffiffi
7

p
M4rð−5M2 þ 8r2 þ 5MrÞhð3Þ0

�

−
ffiffiffi
5

p
χHð2Þ

0

�
18δqr6ðr − 2MÞ2ð5M2 þ 2r2 − 10MrÞtanh−1

�
M

r −M

�
þMð60M9 − 36δqr9 þ 288δqMr8 − 678δqM2r7 þ 486δqM3r6 − 24M4r5 þ ð4δqþ 223ÞM5r4 − 768M6r3

þ 1112M7r2 − 600M8rÞ
��

: ðC4Þ

Finally, the source terms entering Eqs. (20)–(21) read

Sð0;0ÞP ¼ −
χ

30M2r6ðr − 2MÞ3
�
rðr − 2MÞ

� ffiffiffi
5

p
χHð2Þ

0

0
�
9δqr5ðr − 2MÞ2ð−6M2 þ 6r2 −MrÞtanh−1

�
M

r −M

�
þMð96M8 − 54δqr8 þ 171δqMr7 − 45δqM2r6 − 186δqM3r5 þ 6ð9δq − 1ÞM4r4 − 4ð3δq − 5ÞM5r3 þ 118M6r2

− 300M7rÞÞ − 20
ffiffiffi
3

p
M4r3ðr − 2MÞhð1Þ0

0 þ 40
ffiffiffi
3

p
M4r2ð3r − 2MÞhð1Þ0

�

þ 2
ffiffiffi
5

p
χHð2Þ

0

�
9δqr5ðr − 2MÞ2ð2M3 þ r3 þ 5Mr2 − 7M2rÞtanh−1

�
M

r −M

�
þMð−96M9 − 9δqr9 − 18δqMr8

þ 186δqM2r7 − 273δqM3r6 þ 6ð10δqþ 9ÞM4r5 þ 2ð27δq − 95ÞM5r4 þ 6ð2δqþ 21ÞM6r3

þ 174M7r2 − 132M8rÞ
��

; ðC5Þ

Sð0;2ÞP ¼ χ

10M2r6ðr−2MÞ2
�
−rðr−2MÞ

� ffiffiffi
5

p
χHð2Þ

0

0
�
3δqr5ð12M3þ6r3−5Mr2−20M2rÞtanh−1

�
M

r−M

�
þMð80M7−18δqr7−3δqMr6þ51δqM2r5þ8δqM3r4þ2ðδqþ9ÞM4r3−64M5r2þ50M6rÞÞ

þ20
ffiffiffi
3

p
M4r3hð1Þ0

0−40
ffiffiffi
3

p
M4r2hð1Þ0

�
−2

ffiffiffi
5

p
χHð2Þ

0

�
3δqr5ð−4M4þ9r4−21Mr3−9M2r2þ32M3rÞtanh−1

�
M

r−M

�
þMð−80M8−27δqr8þ36δqMr7þ54δqM2r6−39δqM3r5þ6ðδq−3ÞM4r4−2ðδq−51ÞM5r3

−170M6r2þ150M7rÞ
��

: ðC6Þ
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APPENDIX D: EXPLICIT SOLUTION FOR A
TIDALLY-DEFORMED SPINNING VACUUM
GEOMETRY TO FIRST ORDER IN THE SPIN

Here we present the explicit solution for a tidally-
deformed spinning vacuum geometry to first order in the
spin. To zeroth order in the spin and in the tidal field, the
background solution was given in Appendix A. For L ¼ 2

polar-led tidal perturbations, the nonvanishing metric
components to zero order in the spin and to first order
in the tidal field are given in Eqs. (12)–(14). Finally, to first
order in the spin and in the tidal field, the only non-
vanishing metric functions are the following L ¼ 3 and
L ¼ 1 axial components:

hð1Þ0 ðyÞ ¼ ½2
ffiffiffiffiffi
15

p
y2αþ y3α1 þ γ1�

Mχ

y
þ Mχ

2
ffiffiffiffiffi
15

p
y2

�
−4 − 30ðy − 1Þy2 − 3yð4þ 5ðy − 2Þy2Þ log

�
1 −

2

y

��
; ðD1Þ

hð3Þ0 ðyÞ ¼ Mχ

3360y2
½192

ffiffiffiffiffi
35

p
γ þ yð528

ffiffiffiffiffi
35

p
γ − 420γ3 þ 20α3ðy − 2Þð3y − 4Þy3 þ 192

ffiffiffiffiffi
35

p
αð5y − 4Þ

− 15ð3ðy − 2Þyð3y − 1Þ þ 2Þyð36
ffiffiffiffiffi
35

p
γ þ 35γ3ÞÞ

�

−
Mχ

2240y
½525γ3ðy − 2Þð3y − 4Þy3 þ 4

ffiffiffiffiffi
35

p
γð5yð27ðy − 2Þy2ð3y − 4Þ − 16Þ þ 64Þ� log

�
1 −

2

y

�
; ðD2Þ

where again y ¼ r=M and α1;3 and γ1;3 are integration
constants related to the homogeneous problem associated
with Eqs. (16) and (17) [cf. main text, Eq. (28) and Table I].
An analytical solution can be found in closed form also to
second order in the spin, by solving Eqs. (18), (19), (20)
and (21) analytically, but it is too cumbersome to be
displayed here. The explicit form is given in a notebook
in the Supplemental Material.
The first-order solution generalizes that found by

Poisson [55] to the case of generic vacuum and reduces
to it in the BH case with m ¼ 0 and with a purely electric
quadrupolar tidal field. To linear order in the spin, the

coordinate transformation that brings our BH metric to the
axisymmetric, electric-led solution found in [55] reads14

t → v − r� − α

ffiffiffi
5

π

r
r3½1þ 3 cosð2ϑÞ�

8M2
; ðD3Þ

r → r; ðD4Þ

ϑ → ϑþ 3α

ffiffiffi
5

π

r
sinð2ϑÞð2M2 − r2Þ

8M2
; ðD5Þ

φ → φþ αχ

ffiffiffi
5

π

r
3v
2M

− χ

�
tanh−1

�
M

M − r

�
þM

r

�

þ 3αχ

4
ffiffiffiffiffiffi
5π

p
r

�
M − 5M cosð2ϑÞ þ 2r

�
log

�
r
M

�
− 11 log

�
2 −

r
M

���
; ðD6Þ

where dr=dr� ¼ 1 − 2M=r and the term proportional to the
light-cone time v in φ is needed to eliminate the gauge term
proportional to γd in Ref. [55]. In the notation of Ref. [55],

Eq
0 ¼ 3

4

ffiffi
5
π

q
α
M2, M and χ are the same quantities as the ones

we used, and we remark that the normalization of the
spherical harmonics in Ref. [55] differs from ours.

APPENDIX E: LOW-VELOCITY EXPANSION
OF THE ENERGY CHANGE ΔE

For our tidally-distorted vacuum solution, the low-
velocity expansion of the energy change ΔE per logarith-
mic interval of the orbital frequency, Eq. (41), reads

14Actually, our solution coincides with that found in [55] after
adding a term 4

5
M4

r4
in the function fd4 defined in Table III of

Ref. [55]. Such term, however, is arbitrary as it can be reabsorbed
in a shift of the body’s angular-momentum vector. We thank Eric
Poisson and Phil Landry for clarifying this point in a private
communication.
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ΔE ¼
�
M
3M0

þ δmMχ2

3M0

−
ðγ0 þ 12

ffiffiffi
5

p
γδqÞMχ2

12M0

ffiffiffi
π

p
�
v2 þ

�
−

M2

2M0
2
−
δmM2χ2

M0
2

þ ðγ0 þ 12
ffiffiffi
5

p
γδqÞM2χ2

4M0
2

ffiffiffi
π

p
�
v4

þ
�
2ð9M0

1=6 þM1=6ÞM5=2χ

9M0
8=3 þ ð9M0

1=6 þM1=6ÞM5=2ð−2 ffiffiffiffiffiffi
5π

p
γ þ ffiffiffiffiffiffi

3π
p

γ1M2Þχ
18M0

8=3π

�
v5

þ
�
−
27M3

8M0
3
−
γð5M0

1=6 þM1=6ÞM3

3M0
19=6

ffiffiffiffiffiffi
5π

p −
ð5M0

1=6ð20þ 243δm − 16δqÞ þ 4ð5 − 4δqÞM1=6ÞM3χ2

120M0
19=6

−
M3χ2

10080M0
19=6 ffiffiffi

π
p ð15M0

1=6ð−1701γ0 þ 224
ffiffiffi
5

p
γ2 þ 390

ffiffiffi
7

p
γ3 þ 4

ffiffiffi
5

p
γð270þ 112δm − 4951δqÞÞ

þ 2ð336
ffiffiffi
5

p
γ2 þ 585

ffiffiffi
7

p
γ3 þ 4

ffiffiffi
5

p
γð405þ 182δmþ 228δqÞÞM1=6Þ

�
v6

þ
�
2ð15M0

1=6 −M1=6ÞM7=2χ

3M0
11=3 þ ð15M0

1=6 −M1=6ÞM7=2ð−2 ffiffiffiffiffiffi
5π

p
γ þ ffiffiffiffiffiffi

3π
p

γ1M2Þχ
6M0

11=3π

�
v7

þ
�
−
225M4

16M0
4
þ 4γð−36M0

1=6 þM1=6ÞM4

9M0
25=6

ffiffiffiffiffiffi
5π

p þ M4χ2

540M0
13=3 ð−9M0

1=3ð520þ 3375δm − 384δqÞ þ 180M1=3

þ 4ð475 − 24δqÞðM0MÞ1=6Þ þ M4χ2

15120M0
13=3 ffiffiffi

π
p ð−9M0

1=3ð−23625γ0 þ 5376
ffiffiffi
5

p
γ2 þ 9360

ffiffiffi
7

p
γ3

þ 4
ffiffiffi
5

p
γð6200þ 4032δm − 67227δqÞ þ 560

ffiffiffi
3

p
γ1M2Þ þ 4ð3ð112

ffiffiffi
5

p
γ2 þ 195

ffiffiffi
7

p
γ3ÞðM0MÞ1=6

þ 4
ffiffiffi
5

p
γð−315M1=3 þ 2ð−1355þ 133δmþ 114δqÞðM0MÞ1=6Þ þ 70

ffiffiffi
3

p
γ1ð9M7=3 þ 89ðM0M13Þ1=6ÞÞÞ

�
v8

þ
�
27ð7M0

1=6 −M1=6ÞM9=2χ

4M0
14=3 þ M9=2χ

5040M0
31=6 ffiffiffi

π
p ð−1120

ffiffiffi
5

p
γðM0MÞ1=3

þ
ffiffiffiffiffiffiffi
M0

p
M1=6ð11026

ffiffiffi
5

p
γ þ 180

ffiffiffi
7

p
γ3 − 8505

ffiffiffi
3

p
γ1M2Þ þM0

2=3ð−76542
ffiffiffi
5

p
γ þ 3060

ffiffiffi
7

p
γ3 þ 59535

ffiffiffi
3

p
γ1M2ÞÞ

�
v9

þ
�
−
6615M5

128M0
5
þ γð−14871M0

1=6 þ 1781M1=6ÞM5

168M0
31=6

ffiffiffiffiffiffi
5π

p −
M5χ2

40320M0
16=3 ð3M0

1=3ð820120þ 3472875δm − 475872δqÞ

þ 8ð6160M1=3 þ ð−149555þ 21372δqÞðM0MÞ1=6ÞÞ − M5χ2

806400M0
16=3 ffiffiffi

π
p ðM0

1=3ð4
ffiffiffi
5

p
γð13449460þ 14276160δm

− 146740863δqÞ þ 5ð−10418625γ0 þ 2855232
ffiffiffi
5

p
γ2 þ 4980820

ffiffiffi
7

p
γ3 − 249600γ4 þ 1351680

ffiffiffi
3

p
γ1M2ÞÞ

− 4ð4
ffiffiffi
5

p
γð−616ð−115þ 12δqÞM1=3 þ 5ð−131085þ 89050δmþ 50508δqÞðM0MÞ1=6Þ

þ 5ðð85488
ffiffiffi
5

p
γ2 þ 148655

ffiffiffi
7

p
γ3 þ 4800γ4ÞðM0MÞ1=6 þ 160

ffiffiffi
3

p
γ1ð−154M7=3 þ 3071ðM0M13Þ1=6ÞÞÞÞ

�
v10

þOðv11Þ: ðE1Þ

By comparing Eq. (E1) with Eq. (41), we can identify the first multipole moments, Eqs. (44)–(48). Although not displayed
here, we have also computed the coefficients of v11 and v12 and checked that they agree with the expansion (41) once the
definitions (44)–(48) are imposed. This is a consistency check of our solution.

APPENDIX F: EXPLICIT SOLUTION FOR A TIDALLY-DEFORMED SPINNING BH
TO SECOND ORDER IN THE SPIN

When the central object is a BH, regularity at the horizon simplifies the metric perturbations considerably and the full
solution can be presented in compact form. The nonvanishing components of the line element (2) in the case of a spinning
BH deformed by a stationary, axisymmetric quadrupole-led tidal field to second order in the spin read
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gtt ¼ −1þ 2

y
þ χ2

y5
ð4 − 2y2 þ ð−6þ yþ 3y2Þsin2ϑÞ þ 3

8

ffiffiffi
5

π

r
ðy − 2Þ2α½1þ 3 cosð2ϑÞ�

þ 3αχ2

64
ffiffiffiffiffiffi
5π

p
y5

½104þ 112yþ 344y2 − 773y3 þ 558y4 þ 4ð−104þ 104yþ 152y2 − 305y3 þ 30y4Þ cosð2ϑÞ

þ 5ð−40þ 48yþ 40y2 − 75y3 þ 18y4� cosð4ϑÞÞ; ðF1Þ

gtφ ¼ −
2Mχ sinϑ2

y
−

3αMχ

4
ffiffiffiffiffiffi
5π

p
y
ð−12þ 15yþ 20y2 þ 5ð−4þ 5yÞ cosð2ϑÞÞ sin ϑ2; ðF2Þ

grr ¼
y

y − 2
−
χ2ð10 − 3yþ y2 þ 3ð10 − 7yþ y2Þ cosð2ϑÞÞ

2ðy − 2Þ2y3 þ 3

8

ffiffiffi
5

π

r
y2α½1þ 3 cosð2ϑÞ�

þ 3αχ2

448
ffiffiffiffiffiffi
5π

p ðy − 2Þ2y3 ½−896ð10 − 15yþ 7y2Þ þ 32ðy − 2Þð−55 − 4yþ 20y2 þ 10y3Þ½1þ 3 cosð2ϑÞ�

− ðy − 2Þð100þ 62y − 93y2 þ 6y3Þð9þ 20 cosð2ϑÞ þ 35 cosð4ϑÞÞ�; ðF3Þ

gϑϑ ¼ y2M2 −
ð2þ yÞM2χ2ð1þ 3 cosð2ϑÞÞ

2y2
þ 3

8

ffiffiffi
5

π

r
y2ðy2 − 2ÞαM2½1þ 3 cosð2ϑÞ�

−
αM2χ2

64
ffiffiffiffiffiffi
5π

p
y2

½−1008þ 36yþ 804y2 þ 321y3 þ 4ð−672þ 44yþ 540y2 þ 225y3Þ cosð2ϑÞ

þ 5ð−336 − 68yþ 252y2 þ 63y3Þ cosð4ϑÞ�; ðF4Þ

gφφ ¼ gϑϑ sin2 ϑ; ðF5Þ

where y ¼ r=M. This solution generalizes that found by Poisson [55] to quadratic order in the spin, but restricting to the
axisymmetric (m ¼ 0) case with a purely electric quadrupolar tidal field. The coordinate transformation between our
solution at that found in Ref. [55] is given in Appendix D.
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