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We construct a massive spin-2 theory in 2þ 1 dimensions that is immune to the bulk-boundary unitarity
conflict in anti-de Sitter space and hence amenable to holography. The theory is an extension of
topologically massive gravity (TMG), just like the recently found minimal massive gravity (MMG), but it
has two massive helicity modes instead of a single one. The theory admits all the solutions of TMG with a
redefined topological parameter. We calculate the Shapiro time delay and show that flat-space (local)
causality is not violated. We show that there is an interesting relation between the theory we present here
(which we call MMG2), MMG, and the earlier new massive gravity (NMG): namely, field equations of
these theories are nontrivially related. We study the bulk excitations and boundary charges of the conformal
field theory that could be dual to gravity. We also find the chiral gravity limit for which one of the massive
modes becomes massless. The virtue of the model is that one does not have to go to the chiral limit to
achieve unitarity in the bulk and on the boundary, and the log-terms that appear in the chiral limit and cause
instability do not exist in the generic theory.
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I. INTRODUCTION

Gravity in 2þ 1 dimensions has a counterintuitive
richness: on the one side, naive counting from the metric
leads to the conclusion that once gauge invariance (diffeo-
morphism invariance) is taken into account, no local
propagating degrees of freedom (gravitons or gravity
waves) exist, as in the case of Einstein’s gravity. On the
other hand, modifications of the theory, such as with higher
powers of curvature, introduce nontrivial local dynamics
along with, usually, massive gravitons. Therefore, while it
is very hard to get nonlinear, unitary, ghost-free massive
gravity in 3þ 1 dimensions with 5 degrees of freedom, it is
embarrassingly easy to get massive gravity with 2 degrees
of freedom in one lower dimension. By now there are
several 3D models: topologically massive gravity (TMG)
[1], new massive gravity (NMG) [2], and the recent
minimal massive gravity (MMG) [3,4]. TMG is a parity-
violating theory with a single spin-2 degree of freedom,
NMG has a massive spin-2 excitation with both helicities,
while MMG has a single massive parity-violating spin-2
excitation (same as TMG) but free of the bulk-boundary
unitarity conflict in anti-de Sitter (AdS) spacetime that
inflicts NMG and TMG. Ultimately, of course, research in
3D gravity aims at understanding or building “quantum
gravity” in the physically relevant spacetime. For this
purpose, obtaining a unitary, nontrivial gravity theory that
has a well-defined unitary conformal field theory on the
boundary is an important step. For example, NMG, which
has two massive bulk excitations just like General
Relativity in 4D (with a massless graviton), does not have
a unitary conformal field theory (CFT) on the boundary.

(Elaborate extensions of NMG could not resolve the issue
[5,6].) Hence, MMG stands alone as a curious nontrivial
case of a 3D gravity that potentially has a viable boundary
CFT. Here we shall construct another theory that has this
property and that propagates both helicities, albeit with
different masses.
This work was inspired by Ref. [3] and aimed to build a

3D gravity with two massive helicity-2 modes (instead of
the single one in MMG) that is free of the bulk-boundary
unitarity conflict. The construction led to interesting con-
nections between the existing massive gravity theories and
their chiral limits [7]. The field equations of MMG read

Gμν þ Λ0gμν þ
1

μ
Cμν þ

γ

μ2
Jμν ¼ 0; ð1Þ

where we have set the coefficent of the Einstein tensor to 1.
The Cotton and the J-tensors are given in terms of the
Schouten tensor, Sμν ¼ Rμν − 1

4
gμνR, as

Cμν ¼ ημ
αβ∇αSβν; Jμν ≡ 1

2
ημρσηναβSραSσβ; ð2Þ

where ημνσ is the totally antisymmetric tensor. As noted in
Refs. [3,8,9], unitarity ranges of the bulk excitations with
M2

g ¼ μ2ð1þ γ
2μ2l2Þ2 þ 1

l2; Λ ¼ −1=l2 and the unitarity

ranges of the boundary CFT’s central charges,

cR=L ¼ 3l
2G3

�
1þ γ

2μ2l2
� 1

μl

�
; ð3Þ

are compatible. The J-tensor introduced in Eq. (3), while
keeping TMG’s bulk properties intact, makes the boundary
theory unitary. It also has the following nonzero covariant
divergence:*btekin@metu.edu.tr
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∇μJμν ¼ ηνρσSστCρτ; ð4Þ

which vanishes for the solutions of the theory. The question
we ask is the following: is there another two-tensor that has
a similar on-shell vanishing divergence in 3D that can be
used to deform TMG to have two spin-2 degrees of
freedom? Posed this way, the answer seems somewhat
hard to get, but the dimensions in the problem give us a
hint. Next we construct this tensor.

II. THE NEW TENSOR: Hμν

Keeping in mind that we would like to deform TMG in
such a way that we keep its healthier bulk properties intact,
yet with a doubled number of excitations, we try the
following tensor,

Hμν ≡ 1

2
ημαβ∇αCν

β þ
1

2
ηναβ∇αC

μ
β: ð5Þ

It is easy to show that the divergence of the H-tensor is
exactly minus that of the J-tensor,

∇μHμν ¼ −∇μJμν ¼ ηνρσSρτCστ; ð6Þ

which is a priori quite unexpected since these two tensors
are quite different. For example, their explicit forms read

Jμν ¼ −SρμSρν þ SSμν þ
1

2
gμνðSρσSρσ − S2Þ;

Hμν ¼ □Sμν −∇μ∇νSþ gμνSρσSρσ − 3SμαSαν; ð7Þ

where S≡ gμνSμν. Before we build our theory by
deforming TMG with Hμν, let us look at some properties
of this tensor: first, it is traceless gμνHμν ¼ 0; second, for all
solutions of TMG, that is for γ ¼ 0 in (1), the H-tensor
reduces to the Cotton tensor:

Hμν ¼ −μCμν: ð8Þ

Third, as a consequence of Eq. (6), one has the following
Bianchi identity valid for all smooth metrics,

∇μðJμν þHμνÞ ¼ 0; ð9Þ

which then implies that the sum of the two tensors comes
from the variation of an action. Denoting the sum as
Kμν ≡ Jμν þHμν, one can show that this action is nothing
but the quadratic part of the NMG action [3] given as

I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
RμνRμν −

3

8
R2

�
; ð10Þ

which is a rather remarkable result. So, clearly, MMG is
built on “part” of the NMG equations in such a way that the
on-shell Bianchi identity is satisfied, even though the field

equations of MMG do not come from the variation of an
action with the metric being the only field. In general, one
can deform TMG by adding to its field equation the
2-tensor a1Jμν þ a2Hμν; for a1 ¼ a2 one has the NMG
deformed TMG that is generalized massive gravity [10]. A
proper combination of ai also gives the theory studied
in Ref. [11].
The above observation leads one to study the extension

of TMG with the “sister” of the J-tensor, that is, the H-
tensor. To avoid cluttering the notation, we will not
introduce any sign-adjusting parameters, and we study
the following equation,

Gμν þ Λgμν þ
1

μ
Cμν −

1

m2
Hμν ¼ 0; ð11Þ

which has a unique maximally symmetric, (A)dS vacuum
with R ¼ 6Λ (just like TMG) since the H-tensor is trace-
less. Observe that all the solutions of TMG also solve this
theory with the slight modification that one should shift the
topological mass as

μ →
μ

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ2

m2

r �
: ð12Þ

Unlike the case of MMG, ∇μHμν does not vanish for all
solutions, but it does so for a large class of solutions,
including all the metrics that solve TMG [12,13], such as
algebraic typesO;N;D, and some Kundt solutions [13,14],
and many more: for example, for all solutions of the form
Hμν ¼ f1Sμν þ f2SμρS

ρ
ν, where f1 and f2 are scalars built

on the curvature and they are not necessarily constant, but
one has the condition that Hμν is traceless. In general,
among the solutions of Eq. (1), one should take only the
ones that satisfy ηνρσSτσ□Sρτ ¼ 0, which restricts the
solution space to TMG plus a large class of solutions
including MMG’s solutions when Hμν ¼ ~Jμν, where the
tilde refers to the traceless part. As we are particularly
interested in a holographically better behaved extension
of TMG with two massive gravitons, Eq. (11) is a
good candidate supplemented with the constraint
ηνρσSτσ□Sρτ ¼ 0, which we now explore more.

III. GRAVITON SPECTRUM

Let us now find the particle spectrum about the (A)dS
vacuum. For this purpose let us rewrite the H-tensor as

Hμν ¼ □Gμν þ ðgμν□ −∇μ∇νÞSþ gμνG2
αβ − 3Gμ

αGαν

þ 2ðS − ΛÞGgμν − 6ðS − ΛÞGμν; ð13Þ

with the cosmological Einstein as Gμν ¼ Gμν þ Λgμν and
G ¼ − 1

2
ðR − 6ΛÞ. We have not yet used the field equation

R ¼ 6Λ. Linearization of Eq. (13) about the AdS back-
ground yields
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ðHμνÞL ¼ □̄GL
μν þ ðḡμν□̄ − ∇̄μ∇̄νÞSL − 2ΛḡμνSL − 3ΛGL

μν:

ð14Þ

And since for all solutions, SL ¼ 0, the linearized field
equations become�

−
1

m2
δβμ□̄þ 1

μ
ημ

αβ∇̄α þ
�
1þ 3Λ

m2

�
δβμ

�
GL
βν ¼ 0: ð15Þ

Since the linearized Einstein tensor is background diffeo-
morphism invariant, following Ref. [7], we can choose the
transverse traceless gauge that reduces the linearized
(cosmological) Einstein tensor to GL

μν ¼ − 1
2
ð□̄ − 2ΛÞhμν

and the field equations to

ð□̄− 2ΛÞ
�
−

1

m2
δβμ□̄þ 1

μ
ημ

αβ∇̄α þ
�
1þ 3Λ

m2

�
δβμ

�
hβν ¼ 0:

ð16Þ

Following Refs. [7,10], we can define four mutually
commuting operators:

ðDL=RÞμν ¼ δνμ � lημαν∇̄α;

ðDpiÞμν ¼ δνμ þ
1

pi
ημ

αν∇̄α; i ¼ 1; 2; ð17Þ

which can be used to rewrite Eq. (15) as

ðDLDRDp1Dp2hÞμν ¼ 0: ð18Þ

From this construction, one can find that the p parameters
satisfy

p1 þ p2 ¼ −
m2

μ
; p1p2 ¼ −m2: ð19Þ

with the solutions

p1;2 ¼ −
m2

2μ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ m4

4μ2

s
: ð20Þ

We must now relate the p parameters to the actual masses
of the gravitons. For this purpose, we can carry out two
computations. The first one is ðDLDRhÞμν ¼ 0, which says
that the massless modes in AdS satisfy ð□̄þ 2

l2Þhμν ¼ 0, as
one already knows from the linearized Einstein theory. The
second one is

ðD−pDphÞμν ¼ −
1

p2

�
□̄þ 3

l2
− p2

�
hμν ¼ 0; ð21Þ

which says that two massive gravitons have the following
masses:

m2
i ¼ p2

i −
1

l2
: ð22Þ

Assuming m2 ≥ 0, or m2 ≤ −4μ2, the Breiteinlohner-
Freedman (BF) [15] bound in AdS, m2

i ≥ − 1
l2, is satisfied,

ensuring the nontachyonic nature of these excitations. Now
our task is to compute the left and right central charges of
this parity-violating theory. This can be done by following
the Brown-Hennaux procedure and boundary conditions
[16] or a slightly modified version of the conserved charge
computation given in Refs. [17,18]. (See also Ref. [10].)
This somewhat lengthy computation yields

cR=L ¼ 3l
2G

�
1 −

1

2m2l2 − 1
� 2m2l2

μlð2m2l2 − 1Þ
�
; ð23Þ

which reduces to those of TMG as m2 → ∞. Both charges
are positive for

μl ≥
m2l2

m2l2 − 1
: ð24Þ

This is the unitarity condition on the boundary theory.
When the bound is saturated, cL ¼ 0 and the boundary
theory is chiral analogous to the pure TMG case [7]. At the
chiral point, the right central charge reads

cR ¼ 6l
G

ðm2l2 − 1Þ
2m2l2 − 1

; ð25Þ

and hence m2l2 − 1 ≥ 0 for cR ≥ 0. At the chiral point,
p1l ¼ 1 and p2 ¼ −m2l and so the masses of the bulk
excitations become

m1 ¼ 0; m2
2 ¼ m4l2 −

1

l2
: ð26Þ

Again, following the conserved charge construction given
in Refs. [17,18] and [8] as adjusted to the case at hand, one
can compute the energy (with mass parameter M) and the
angular momentum (with rotation parameter a) of the
Banados-Teitelboim-Zanelli black hole or any spacetime
that asymptotes to such a solution as

E ¼ 1

G

��
1 −

1

m2l2

�
M −

a
μl2

�
;

J ¼ 1

G

��
1 −

1

m2l2

�
a −

M
μ

�
: ð27Þ

Observe that at the chiral point, both E and J vanish, as is
the case in TMG [19].
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IV. SOLUTIONS OF THE
LINEARIZED EQUATIONS

At a generic point, since the four operators commute in
Eq. (18), the most general solution can be written as

hμν ¼ hLμν þ hRμν þ hm1
μν þ hm2

μν ; ð28Þ

each part satisfying the corresponding linear equation as

ðDhÞμν ¼ 0: ð29Þ

To find all the solutions, one must pick up a specific form of
the background metric. In the TMG case, all the solutions
were constructed in [7] using the SLð2; RÞ × SLð2; RÞ
symmetry of AdS3 written as

ds2 ¼ l2ð−cosh2ρdτ2 þ sinh2ρdϕ2 þ dρ2Þ: ð30Þ
The solutions will furnish a representation of the algebra
and can be built from the primary states given in [7]; they
remain intact for our case once the viable primary weights
(for massive modes) yielding bounded solutions are
adjusted as

ðh; h̄Þ ¼
�
3þ p1l

2
;
−1þ p1l

2

�
;

ðh; h̄Þ ¼
�
−1 − p2l

2
;
3 − p2l

2

�
; ð31Þ

with the conditions that p1l ≥ 1 and p2l ≤ −1 to ensure
hþ h̄ ≥ 2, which is needed for proper decay of solutions.
Of course one also has the usual Einstein modes with the
left- and right-moving massless gravitons as (2, 0) and
(0, 2), respectively. The primary solutions become

hμν ¼ e−iτðhþh̄Þe−iϕðh−h̄ÞFμνðρÞ ð32Þ

where

FμνðρÞ ¼ fðρÞ

0
BBB@

1 h−h̄
2

2i
sinhð2ρÞ

h−h̄
2

1
iðh−h̄Þ
sinhð2ρÞ

2i
sinhð2ρÞ

iðh−h̄Þ
sinhð2ρÞ − 4

sinh2ð2ρÞ

1
CCCA; ð33Þ

and

fðρÞ ¼ ðcosh ρÞ−ðhþh̄Þsinh2ρ: ð34Þ

All the other solutions of the theory can be constructed
from these primary states as descendants using the lowering
operators of the algebra.
At the critical point, one has the degenerationDm1 ¼ DL

and log-modes appear [20], now with the primary weights
becoming that of a massless left-moving graviton and a
massive graviton with

ðh; h̄Þ ¼
�
−1þm2l

2
;
3þm2l

2

�
: ð35Þ

Finally, let us compute the energies of the bulk excita-
tions to see that negative energies do not arise. The equation
for the linearized excitation [Eq. (16)] comes from the
variation of the action

I¼−
1

4

Z �
1

m2
ð□̄hμνÞ2þ

�
1−

5

m2l2

�
ð∇̄αhμνÞ2

−
1

μ

�
□̄þ 2

l2

�
hμνημαβ∇̄αhβν−

2

l2

�
1−

3

m2l2

�
h2μν

�
: ð36Þ

The Ostrogradsky procedure [21] leads to the following
bulk excitation energies (up to positive multiplicative
constants) that satisfy the field equations for the massless
modes

EL=R¼−
�
1−

1

m2l2
∓ 1

μl

�Z
d3x

ffiffiffiffiffiffi
−ḡ

p ∇̄0hανL=R∂th
L=R
μν ; ð37Þ

and for the massive modes

Emi
¼ −

�
1 −

1

m2l2
þm2

i

m2
∓ 1

μl

�Z
d3xηα0μhανmi

∂th
mi
μν : ð38Þ

The integrals are to be evaluated for all the solutions, which
were shown in [7] to yield negative values. Hence, all the
parentheses should be positive or zero; to have nonghost
excitations and the positivity of these terms should not
contradict with the positivity of the boundary theory
[Eq. (24)]. This can be achieved if

μl ≥
m2l2

ðm2 þm2
i Þl2 − 1

; ð39Þ

which is a weaker condition than Eq. (24) for m2
i ≥ 0.

Hence, unlike the case of TMG, one does not have to go to
the chiral limit to have a bulk-boundary unitary theory. This
is crucial since, not going to the chiral limit, one avoids the
problematic log-modes [20].
Finally, let us briefly discuss the issue of “causality”

along the lines nicely described in Ref. [22]. Higher
derivative terms, such as the ones introduced here, poten-
tially can bring causality-violating terms. To show that the
theory we presented is causal, following Ref. [22], we show
here that the Shapiro time delay of a test particle traversing a
shockwave created by a fast-moving particle has the correct
sign. As we shall be interested in local causality, flat space
considerations are sufficient. Given Tuu ¼ −jPujδðuÞδðxÞ,
to be the energy-momentum tensor of the fast-moving
particle that creates the shock wave, one has the metric
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ds2 ¼ −dudvþ hðu; xÞdu2 þ dx2, which solves Eq. (11)
with the above source, if

hðu; xÞ ¼ 2m2jPujδðuÞ
p2
1 − p2

2

�
1

jp1j
θðxÞe−jp1jx þ 1

p2

θð−xÞep2x

�
;

ð40Þ

where for the sake of definiteness we took the μ > 0;
m2 > 0 case; hence p1 ¼ −jp1j, p2 > 0 and p2

1 − p2
2 > 0,

which follow from Eqs. (19) and (20), and we have set
Newton’s constant κ3 ¼ 1. As this is a parity-violating
theory, the waves created to the left and to the right of the
particle differ, but they reproduce each other once μ → −μ
as expected. So, the test particle with momentum Pv suffers
different time delays depending on whether it passes the left
or the right of the source particle in the transverse direction.
Say the impact parameter is b; then the time delays are

Δvx>0 ¼
2m2jPuje−jp1jb

jp1jðp2
1 − p2

2Þ
;

Δvx<0 ¼
2m2jPuje−p2b

p2ðp2
1 − p2

2Þ
; ð41Þ

both of which are positive, keeping causality intact. This 3D
result is interesting, since for higher dimensions causality
violations in higher derivative theories were shown to be
avoided only with infinitely many massive higher spin
states [22], string theory being the unique example [23].

V. CONCLUSIONS

We have shown that there is a massive spin-2 theory that
is free of the bulk and boundary unitarity conflict in 3D.

Moreover, one does not have to go to the chiral gravity limit
to satisfy the unitarity, and hence no log-modes arise in the
generic theory. The theory has two helicity modes and it is
quite interestingly related to the single mode theory, that is,
the MMG, which hitherto has been the only known
nontrivial theory free of the bulk-boundary conflict in
AdS. The relation is as follows: NMG, a parity-invariant
massive-spin-2 theory with two massive modes, and which
suffers from the bulk-boundary unitarity conflict, gives
birth to two theories if its field equations are judiciously
split: one is MMG and the other one is the theory we
presented here, which one might perhaps call “MMG2.”
MMG2 is built on the traceless Hμν-tensor that we defined
here, and the theory has a unique and attractive feature
since these higher derivative theories typically have more
than one vacua that cannot be compared with each other, for
example, as far as their energy properties are concerned.
Second, all the solutions of the theory have constant scalar
curvature, which is also a property of TMG. All the
solutions of TMG also solve MMG2 once the topological
mass μ is tuned. Similar solution inheritance issues from
TMG to NMG and other more general theories have been
explored in Refs. [24,25]. We have not built a Lagrangian
for the theory, but following [3] this can be presumably
done with auxiliary fields.
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