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Here we investigate the gravitational lensing in the strong field limit of a Schwarzschild black hole with a
solid deficit angle owing to a global monopole within the context of the f(R) gravity theory. We obtain the
expressions of the deflection angle and time delay in the forms of elliptic integrals and discuss the
asymptotic behavior of the elliptic integrals to find the explicit formulas of the angle and time difference in
the strong field limit. We show that the deflection angle and the time delay between multiple images are
related not only to the monopole but also to the f(R) correction y by taking the cosmological boundary
into account. Some observables such as the minimum impact parameter, the angular separation, the relative
magnification, and the compacted angular position are estimated as well. It is intriguing that a tiny
modification on standard general relativity will make a remarkable deviation on the angle and the time lag,
offering a significant way to explore some possible distinct signatures of the topological soliton and the

correction of Einstein’s general relativity.
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I. INTRODUCTION

Gravitational lensing is an important astrophysical
application of general relativity and a powerful probe to
the gravitational source, lens object, and spacetime struc-
ture [1-6]. We can make use of gravitational lensing to
investigate the distant stars no matter if they are bright or
dim. If the lens is massive enough, like a black hole,
electromagnetic radiation can get very close to the object
while the deflection angle exceeds 37/2 [7], and it encodes
the information from the strong field caused by a compact
body. In this circumstance, a sequence of images (called
relativistic images) is formed on both sides of the optical
axis due to large deflections of light more than 2z apart
from the so-called primary and secondary images observed
in the weak gravitational field and formed due to a small
deflection of light rays [8].

In general, the deflection angle of photons passing close
to a compact and massive source is expressed in integral
forms, so it is difficult to discuss the detailed relation
between the angle and the gravitational source or the
spacetime geometry. Alternatively, we perform the calcu-
lation of the integral expression in the strong field limit
where the minimum distance a photon is able to approach
the black hole. The analytic method proposed by Bozza
[9-14] is to expand the integral expression towards the
photon sphere which showed that there exists a logarithmic
divergence of the deflection angle in the proximity of the
photon sphere. The strong gravitational lensing was treated
in a Schwarzschild black hole and a Schwarzschild black
hole and a Reissner-Nordstrom black hole [9], a GMGHS
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charged black hole [15], a spinning black hole [16], a
braneworld black hole [17], the deformed Horava-Lifshitz
black hole [18], and the black hole with a global monopole
[19]. In addition to Bozza’s scheme, the explicit calculation
of elliptic integrals is also valid and powerful and was used
in the description of the strong deflection of a massive
particle around the supermassive black hole [20].

If photons propagate from the emitter to the observers
along different rays, then the light travel time correspond-
ing to every image is obviously different. The lag time
between the multiple images is called the time delay.
Generally, travel time is not observable. However, in the
situation of an appearance of multiple images, the time
delay can be observed if the intrinsic luminosity of the
source is time dependent. Therefore, the luminosity varia-
tions can be used to describe the geometry of the lens which
is related to the images as a relative temporal phase. As an
advantage, time delay is a one-dimensional quantity and
can be used to test the underlying cosmological expansion
[5]. The measurement of time delay provides a probe of the
Hubble constant [3,21]. The general approximative expres-
sions of the time delay between relativistic images in strong
field limits for asymptotically flat spacetime without a
cosmological horizon has been presented in [22].

Several types of topological objects such as domain
walls, cosmic strings, and a monopole may have been
formed during the vacuum phase transition in the early
Universe [23,24]. These topological defects appeared due
to a breakdown of local or global gauge symmetries. A
global monopole is a spherically symmetric topological
defect formed in the phase transition of a system composed
by a self-coupling triplet of a scalar field whose original
global O(3) symmetry is spontaneously broken to U(1).

© 2015 American Physical Society
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The properties of the metric outside a monopole are
investigated in [25], which also shows that the monopole
exerts practically no gravitational force on nonrelativistic
matter, but the space around it has a solid angle, and all
light rays are deflected at the same angle. We have
considered the gravitational lens equation for the massive
global monopole in the strong field limit to exhibit the
correlation between the deflection angle and the deficit
solid angle subject to the monopole model parameters in
standard general relativity [19].

However, subject to the fact of the accelerated expan-
sion of the Universe, the metric with f(R) modification
describes the spacetime more completely. The theory of
f(R) gravity is a type of modified gravity theory first
proposed by Buchdahl [26] and has been applied to explain
the accelerated-inflation problem instead of adding dark
energy or dark matter [27-29]. The gravitational field of
a global monopole in the modified gravity theory has been
discussed [30]. Further, in [31], they find that the presence
of the parameter associated with the modification of gravity
is indispensable in providing stable circular orbits for
particles. The nonvanishing modified parameter y also
bring a cosmological horizon as a boundary of the Universe
to the spacetime described by the f(R) monopole metric,
but the spacetime without gravity modification is asymp-
totically flat. It should be noticed that the asymptotically
flat spacetime is an essential condition for the derivation of
gravitational lensing in both weak field limits [32] and
strong field limits [9]. Here we use the elliptic integrals to
rewrite the expressions of the deflection angle and the time
delay which contain polynomials for three or higher order.
This method further presents the analytic results when the
test particle is close to the photon sphere whether or not the
size and scale of the observable universe exist.

In this paper, we plan to probe the strong gravitational
lensing in terms of the deflection angle of the light and time
delay of multiple images in the strong field limit on the
massive source swallowing a global monopole governed by
f(R) theory. In the next section, we give a brief introduc-
tion about the metric considered here. In Sec. III, the
integral form of the deflection angle of the light ray is
derived. We discuss the asymptotic behavior of the elliptic
integrals to present the expression of the deflection angle
at the position close to the photon sphere, and we perform
the numerical estimation of observables as well. In Sec. IV,
we put forward the time delay in this background with
double horizons as elliptic integrals. Further, we calculate
the strong-limit time delay by means of the series repre-
sentations of elliptic integrals. Finally, we discuss our result
in Sec. V.

II. THE SCHWARZSCHILD BLACK HOLE
WITH A f(R) GLOBAL MONOPOLE

The simplest model that gives rise to the global monop-
ole is describes by the Lagrangain [26]
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The triplet of the field configuration showing a monopole is

xa

B = (), @
where x“a® = r2. Here, A and 5 are model parameters. This
model has a global O(3) symmetry, which is spontaneously
broken to U(1). In order to couple this matter field to the
gravitational field equation in the f(R) theory and obtain
their spherically symmetric solution, we adopt the line
element as follows:

ds* = A(r)df* — B(r)dr* — r*(d0* + sin’0dg?*).  (3)

In the f(R) gravity theory, the action is given by [30]

where f(R) is an analytical function of the Ricci scalar R
and x = 872G, G is the Newton constant, g is the determi-
nant of the metric tensor, and §,, is the action associated
with the matter fields. According to the metric formalism,
the field equation leads to

F(R)R,y ~» (R) g — V.V, F(R) + g F(R)

w Ty = KTm/w ,

(5)

where F(R) = df(R)/dR, and T,,, is the minimally
coupled energy-momentum tensor. Under the weak field
approximation, which assumes the components of a metric
tensor like A(r) =1+a(r) and B(r) =1+ b(r) with
|a(r)| and |b(r)| being smaller than unity, the field equation
is solved in [31]. Finally, the metric is found,

2GM
A(r) =B7'(r) = 1 — 82Gn? - T Wor. (6)

Here, the modification theory of gravity corresponds to a
small correction on the general relativity like F(R(r)) =
1 +w(r) with w(r) < 1. It can also be taken as the
simplest analytical function of the radial coordinate
w(r) = yor. In this case, the factor y, reflects the deviation
of standard general relativity. Here, the correction yr in
the metric is linear, which is different from those in cases
such as de Sitter spacetime and the Reissner-Nordstrom
metric, etc. It should be noted that for a typical grand
unified theory, the monopole parameter # is of the order
10'® GeV, which means 827Gy ~ 107>, The mass param-
eter is M ~ M., which is very small.

We choose that both the observer and the gravitational
source lie in the equatorial plane with condition € = 7. The
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whole trajectory of the photon is limited to the same plane.
On the equatorial plane, the metric reads

ds* = A(r)dt* — B(r)dr* — C(r)d¢?, (7)
where
C(r) =r’. (8)

We note that with the presence of a nonzero y,, a
cosmological horizon

1
ot (1 ~82Gr 4/ (1-82Gr?)? - 8GM1//0> 9)
Yo

appears beside an event horizon

T, = L <1 — 872G — \/(1 — 87Gn?)? — 8GMW0>-
Yo

(10)

The nonvanishing modified parameter y also brings a
cosmological horizon as a boundary of the Universe to the
spacetime described by the f(R) monopole metric, but the
spacetime without gravity modification is asymptoti-
cally flat.

III. THE DEFLECTION ANGLE OF A MASSIVE
SOURCE WITH A f(R) GLOBAL MONOPOLE

The deflection angle for the electromagnetic ray coming
from the source to the observer can be expressed as a
function of the closest approach [33],

a=1(ry) -, (11)
where
I(ro) = IoL(ro) + I s(ro)
B Do | dg Dis| dg
_[0 Edw[o Dlar. (12)
and

dg _ VB(r) (13)
d C(r) A(r ’
TVC)y C(<r0)) A((ro)) -1

Here, rq is the minimum distance from the photon path
to the source, Dq; is the distance of the lens from
the observer, and D;g is the distance of the lens from
the source. We should note that ry < Do < r. and
ro < Dig < r.. It requires that the deflection angle be
infinite, meaning that the denominator of expression (13) is
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equal to zero. To achieve this aim, we solve the equation
C(r) _ A
C(r) — A(r)
[34,35]. Certainly, the closest approach distance r, must
be larger than the radius of the photon sphere or the photon
will move around the gravitational source forever instead if
escaping from the source. The radius of the photon sphere
in the f(R) global monopole metric is given by

to obtain the radius of the photon sphere

_ 1-82Gn* — /(1 - 82Gn?)* — 6GMyy,
Yo

O(y). (14)

m

L 3GM
1= 82Gn?

When we neglect the influence from f(R) theory yw, = 0,
the photon sphere radius (14) will recover to that of the
metric by a massive object involving a global monopole
within the frame of Einstein’s general relativity [19]. It can
be checked as r, < r,, < r., which indicates that a photon
sphere will survive for the spacetime with two horizons.

For the conservation of angular momentum, at r = r,
we define the impact parameter related to the minimum
approach by [33]

(15)

The angular separation can be approximately expressed by
0= DLOL The minimum impact parameter corresponding to

the radius of the photon sphere will, thus, be

3

-
m= z . (16
Y \/—wor%n + (1 - 82Gp?)r,, —2GM (16)

Now we rewrite the integral expression for the deflection
angle (16) with the help of elliptic functions. First, we
introduce the notation like u = % leading to

1 1 1 1
Uy =—, Uy =—, Uop = —, Urs =
o T ToL rLs
(17)
The deflection angle (11) becomes
[ du
uor \/2GM (u = ug) (u — uy) (u — uy)
u d
! ! —z  (18)

ws \/2GM (u = ug) (u — uy) (u — uy)

where
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2= uem

[T

where the upper “4-” sign belongs to u; and the lower
sign belongs to u,. According to Ref. [36], the two integral
parts of Eq. (18) can be written as

Up du
ugs(uoL) \/2GM(M - MO)(” - Ml)(u - ”2)
1 2
1) 20
\/F\/m F( LS(OL)> q) (20)

Here, F(Sis01) q) is an elliptic integral of the first kind
(361,

dLsioL) da
F(bisio)-q) = | N
[ dx o
0 VI=2)(1 -2’
where

. (I/l] — I/lz)(u() - MLS(OL))
5 _ 22
S O s(oL) \/(”0 — uz)(ul - MLS(OL))’ ( )

Uy — Uy

e 23
9=\ T (23)

When the photon travel paths are near the source, the
deflection angle will be bigger. If the angle is greater than
27, the photons will circle the massive source several times
before they reach the observers. When the minimum
distance from the photon travel paths to the source r
approaches the radius of the photon sphere, the parameters
(22) and (23) will be

sin 5LS(OL)|u0:um =1 (24)

and

4luy=u,, = 1- (25)

The asymptotic behavior of an elliptic integral of the first
kind is [36]

. 4 SLs(oL)
limF(3s(or)-q) = 1“\/14_—612 — Incot———
Lo(l-). (26)

The result is independent of the position of the source
or the observer under the strong field condition, thus,

IoL(ro = 1) = Iis(ro = 7).

<1 — 872G — 2GMuy + \/ 1 — 82Gn?)? + 4(1 — 872G )GMuy — 8GMyry — 12(GMuy) > (19)

|

Within the region just containing the photon sphere, we
expand the deflection angle expression (19) in virtue of the
properties of elliptic functions,

a(f) = —aln <9§OL - 1) +b+0(y -y, (27)

where the coefficients of the deflection angle are

= : (28)
[(1 = 87Gr?)? = 6GMysq):
1
b=2a {5 Ino + 3In2 + [n3
ks 872G + /(1 = 82Gn?)? — 6GM1//0} B
V(1 = 82G?)? — 6GMyr,,
(29)

Here we have used
7 1 3
rm o ym

B 12G*M?* = 20GMyor3, + 4(1 = 8aGn?) rawo — wirs,
8[=(1 = 82Gn*)r,, + 2GM + wor%]?

where

(31)

Figure 1 shows the deflection angle in the strong field limit,
y =Y, +0.003GM, for various values of v, and . We see
that a increases as GMys, increases.

We relate the position and the magnification to the strong
field limit coefficients for the sake of comparing our results
with the observable evidence. The position of the source
and the images are related through the lens equation derived
in [10] given by

D
B=0- D—(L)i Aa,, (32)

where  denotes the angular separation between the source
and the lens, and @ is the angular separation between
the lens and the image. The offset of the deflection angle
is expressed as Aa, = a(@) — 2nx by subtracting all the
times the photons run around the source. Because of
Ym <K Dop, the position of the nth relativistic image can
be approximated as
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o
0 0.02 0.04 0.06 0.08 0.10
X
Schwarzschild = - - - - 8 71:GT]2 =102——38 7'L'GT]2 =10"! |
FIG. 1. The dependence of the deflection angle on the f(R)

parameter with variation 8z7Gn*> = 1073, 1072, 107! in the strong
field limit with y =y, + 0.003GM.

Ym€n<ﬁ - 92)Dos

0, =6+ 33
aDysDo. ( )
where
b-2
e, = exp <M) (34)
a

and Dog = Dgp, + Dy, while the second term on the right-
hand side of Eq. (33) is much smaller than 69 and we
introduce 69 as a(6?) = 2nx. The magnification of the nth
relativistic image is the inverse of the Jacobian evaluated at
the position of the image and is obtained as

1 D
y, = ymen( =+ enz) oS ) (35)
apDysD

In the limit n — oo, the asymptotic position of approached
by a set of images 0, relates to the minimum impact
parameter as

Ym = Dor O (36)

As an observable, the angular separation between the
first image and the others is defined as

s=0,—0, =0,¢7%, (37)
where 0, represents the outermost image in the situation

that the outermost one is thought of as a single image and
all the remaining ones are packed together at 8. The ratio
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of the flux from the first image and the flux of all the other
images is

R = —'ul = 827”'

Z?:Z Hn (38)

According to ¢« < 1 and e ~ 1, these observables can be
written in terms of the deflection angle parameters, which
are presented in Eqs. (42) and (43). As another observable,
the magnification of the first image with the other images
can be, thus, defined as R,, = 2.5log R. We take the black
hole mass M = 2.8 x 10°M, in the center of our Galaxy
and D, = 8.5 kpc as the distance between the Sun and the
Galactic center.

It is important that the strong field limit coefficients such
as a, b, and y,, are directly connected to the observables
like R,, and s. It is then possible for us to probe whether the
original general relativity needs to be generalized in virtue
of the strong field gravitational lensing for a Schwarzschild
black hole with a global monopole. From Figs. 2 and 3, by
increasing the monopole parameter, all curves of the
angular separation s and of the asymptotic position of
the set of outer images 0, rise while the R,, curves
decrease. In Fig. 4, the magnification of the relativistic
images decreases when GMy, increases and when 87Gn?
increases, which means that the difference of the flux from
the first image and the flux of all the other images reduces

120
100
80
0, 601

40

20 1

0 0.02 0.04 0.06 0.08 0.10 0.12
GM\VO

FIG. 2. The behavior of the compacted images’ position 6,
(u arc sec) on the dependence of the f(R) parameter as 87Gy> =
1073,1072,10~" when varying the dimensionless modification
parameter GMy,. We assume the black hole is located in our
Galactic center, so M = 2.8 x 106M® and Dgp = 8.5 kpc.

Schwazschild = - - - - 8 nan =102——38 nGn2 =10""

024004-5



JINGYUN MAN AND HONGBO CHENG
101

0 T T T T T 1
0 0.02 0.04 0.06 0.08 0.10 0.12
GM\|/O
Schwarzschild = - - - - 8 n;Gn2 =102——3g n'Gn2 =107!
FIG. 3. The angular separation between the first image and the

other compacted images s (u arc sec) as increasing functions of
GMy,. Here, M = 2.8 x 106M® and Do = 8.5 kpc.

due to the modification of the gravity theory. We present
the estimations in Table I to show how the appearance of
the deviation of standard general relativity enhances the
observables for strong gravitational lensing. For example,

0 0.05 0.10 0.15 0.20

GM\VO
Schwarzschild = - - - - 8 n:an =102 ——3g 7an2 =10""

FIG. 4. The magnification of the first image and all the other
images R, as decreasing functions of GMy. The relationship
between the ratio of the flux from the first image and the flux of
all the other images and the magnification of the first image with
the other images is R,, = 2.5log R.
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the angular separation between the first image and all the
other images for the f(R) Schwarzschild lens is 310 times
larger than the value for Schwarzschild lens, which means it
is unambiguous to distinguish the relativistic images. Once
observational devices catch such multiple images, it is
indispensable evidence to study the f(R) gravity. Hence,
the strong gravitational lensing for a massive source with a
global monopole is an efficient probe to enlarge the effect
of the deviation owing to the correction to Einstein’s
general relativity, although the correction itself is small.

IV. TIME DELAY IN STRONG GRAVITATIONAL
LENSING FOR THE MASSIVE SOURCE WITH
A f(R) GLOBAL MONOPOLE

For equatorial geodesics in spherically symmetric space-
time, the equation for the time and radial position for the
motion of photons around the gravitational source is given
by [37]

dr n \/B(r)
d o AN C(ry)
-

The duration that a photon emitted by a star or cluster
passes the lens and reaches the receiver is

(39)

. 4
o dr (40)

/DLS
ro

We substitute the metric (8) into Eq. (40) to find that

/DLS(DOL)
ro

\/(1 —8xGn?)ud —2GMui —wouy
(2GM):

dt
d

E r

o /“LS(”OL) du
Uy M(u—“3)(u—u4)\/(”—uo)(”—ul)(“—uz)’
(41)
with

1

Dy 501

UrsioL) > (42)

while

1
s 4 = 5 [(1 = 87GrP) & V(1 = 82Gi)? — 8GMy)
(43)
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TABLE I. Estimations for the variable observables such as the compacted angular position, the angular separation and magnification
of the first image and the other images, and the minimum impact parameter for a Schwarzschild lens in the center of the Milky Way or
for the lens with f(R) modification. The global monopole parameter is zero.

Schwarzschild f(R) (n = 0)

GMy,, 0 0.001 0.01 0.05 0.08 0.1 0.11 0.12
0 (uarc sec) 16.8 16.9 17.6 223 294 40.1 52.1 91.1

s (uarc sec) 0.29 0.30 0.36 0.90 243 6.90 16.06 90.15
et 5.196 5.220 5.445 6.896 9.080 12.369 16.103 28.147
R 6.82 6.46 6.35 5.76 5.17 4.62 4.25 3.74

where the 4 and — signs are subject to u3 and uy, respectively. According to Ref. [36], the integral parts of Eq. (41) can be
rewritten as

/MLS(”OL) du
Uy M(M_US)(”_’M)\/(”_uO)(u_”1)(”“”2)

2 us — uy
= —u)II{ o 2= —ug)F (6
u3(u3 - u4)(u1 - M3>(Mo - M3) Uy —up ) {(uo M1) ( LsoL)- 4 Uz — Uy ’ q) - (M3 Mo) ( LS(OL): q)}
+ 2 x |( e 254 ) + (—up)F (8 )
uy — u — —u
”3”4”1”0m 0 1 LS(OL)> 4 uo q 0 Ls(OL)» 4
2 x (o = ) B1si00), 2= ) + (14 = o) F(Busion. )
— Uy —u , ) Uy — U ) .
ug (3 — ug)(uy — ug)(Uo — uy) /Uy = Uty ‘ : LstoL)> 4 Uy — U 1 ! 0 Ls(oL). 4
(44)
Here, T1(5, n, q) is an elliptic integral of the third kind [36], N [(1 =826 u,, — 2GMu, — y]
a =
(ZGM)% Uy — Uy
6 da
I(s,n,q) = / ( -1 1
—cin2o) /1 — 2ein X +
’ (51 nsina) 1d s Uptiziy  uz(uz — uy)(uz — u,,)
sm X
= / . (45) ! )
2 — (1 _ 2.2 — , 49
o (1= n) /(T AT - g3) iy = )~ ) )
In the case of a large deflection angle, and b is a constant irrelevant to the impact parameter
belonging to the variance relativistic images. In the strong
$in d.s(o1) o =1, (46) gravitational field limit for a Schwarzschild black hole with
o=t a f(R) global monopole, the time delay of two images on
the same side of the lens is given,
while
ATS,,, = 2ay,,(n - m), (50)
. Dis| dt . DoL | dt
r(l,inrl,,, o dr dr = rll—{rrlm o dr dr. (47) and for the two images lying on the opposite side of the
lens,
Hence,
ATZm :2)’"1[”(”—’") _y]’ (51)
T = —aln <l - 1> +b+0(y—y,).  (48)  where
ynl
a
— =Y 52
where a " (52)
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TABLE II.
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Time delay between the first and second relativistic images for the black hole at the center of different galaxies in the case

of Schwarzschild spacetime or f(R) spacetime. The global monopole parameter is vanished here. All the masses and distances are taken

from [7,22,39].

Black hole in the Mass Distance Schwarzschild GMy, =0.12 GMy, =0.1
galaxy (Mg) (Mpc) ATS (min) ATY{? (min) AT (min)
Milky Way 2.8 x 10° 0.0085 75 40.6 17.9
NGC4486 (M87) 3.3 x10° 15.3 8839.3 47880.5 21040.4
NGC3115 2.0 x 10° 8.4 5357.1 29018.5 12751.8
NGC4374 (M84) 1.4 x 10° 15.3 3745.0 20312.9 8926.2
NGC459%4 1.0 x 10° 9.2 2678.6 14509.2 6375.9
NGC4486B (M104) 5.7 x 108 15.3 1526.8 8470.3 3634.2
NGC4261 4.5x 108 27.4 1205.4 6529.2 2869.1
NGC7052 3.3 x 108 58.7 883.9 4788.1 2104.0
NGC4342 (IC3256) 3.0 x 108 15.3 803.6 4352.8 1912.8
NGC3377 1.8 x 108 9.9 482.1 2611.7 1147.7
NGC0221 (M32) 3.4 x 10° 0.7 9.1 493 21.7
NGC0224 (M31) 3.0 x 107 0.7 80.4 4353 191.3
and n and m are the different times of the photons winding 2r

. . ATZI - _DOLHOO’ (53)
around the black hole, and y is the angular separation c

between the source and the optical axis. The expression of
deflection angle (27) has been considered to obtain
Eq. (50). More commonly, if the source is highly aligned
with the lens, the gravitational lensing effects become more
prominent so that y ~ D61L < 2z [22,38]. Then Egs. (50)
and (51) are reduced to the same result provided in Ref. [22]
if we recover the physical units and consider the time delay
between the first image,

2001

1501

AT,
21 1001
GM
50
0 ‘ ‘ ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.10 0.12
GM‘VO

Schwarzschild = =+ - - 8 nG172 =102 ——3§ n,'Gr'2 =101

FIG. 5. The figure shows the time delay between the first and

second relativistic images as increasing functions of GMy,.

where c is the speed of light. However, we deduce Egs. (50)
and (51) under the strong field approximation using the
elliptic integral without rejection of the exponential terms
[22]. Tt should be noticed that the analytical results from
Eq. (53) were shown to have large percentage errors in [37].
We present our results in Table II. Since

f(R) R
ATy (54)
ATz.,1 Ym

where the superscripts f(R) and Sch represent the case of
spacetime with f(R) modification involved and Schwarzs-

child spacetime. We find AT’;IR ) =5.4x AT, if GMyry=
0.12. When GMyr = 0.11, AT} = 3.1 x ATS. When

GMy, =001, AT} =1.05x ATS. From Fig. 5,
either the deviation from standard general relativity or
the topological defect can enhance the time delay, although
the deviations are fairly tiny.

V. DISCUSSION

In this paper, we analyzed the gravitational lensing in the
strong field limit for the Schwarzschild black hole spacetime
with a solid deficit angle owing to a global monopole in the
context of f(R) gravity theory which produces one cosmo-
logical boundary because the expansion of the Universe is
currently undergoing a period of acceleration. We employed
several kinds of elliptic integrals to show the deflection angle
and time delay and further discussed the integrals in the
limiting case to reveal the dependence of the large angle and
time difference on the spacetime structure and the generali-
zation of standard general relativity. We found the f(R)
correction has significant effects on the gravitational lensing.
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For violating the asymptotic flatness, the spherically sym-
metric spacetime will not allow any particles to propagate
from or to infinity. We command, thus, that the distance
between the source and the lens should be restricted among
the radius of the photon sphere and the radius of the
cosmological horizon, ry < Dg; < r., and so does the
distance between the lens and the observer. If the minimum
approach is close enough to the radius of the photon sphere,
the photon will wind around the black hole several times
before escaping. This phenomenon is well known as the
gravitational lensing in strong field limits.

We presented the analytic expressions of the deflection
angle a and the time delay between relativistic images
AT, ,, in the strong field approximation and relationships
between the geometry and the observables such as the
angular separation s, the magnification of relativistic
images R,,, the compacted images position 0, and the
minimum impact parameter y,. We found the deviation
from standard general relativity enhances the effect of

PHYSICAL REVIEW D 92, 024004 (2015)

gravitational lensing. As the dimensionless variable GMy,,
increases, all of the deflection angles, the angular separa-
tion between the first image and the compacted images, the
minimum impact parameter, and the time delay increase.
We found the time delay between first two relativistic
images for Schwarzschild spacetime dominated by f(R)
gravity can be several times larger than the time lag for the
Schwarzschild lens. Considering the f(R) lens located
in the center of IC3256 as an example, the time delay of
the first and second images is more than three days if
the derivation of standard general relativity is large enough
to GMyy = 0.12. The effect from the correction to the
original gravity theory is evident, which provides us a way
to confirm whether Einstein’s general relativity needs to be
generalized.
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