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The neutron split-beam interferometer has proven to be particularly useful in measuring Newtonian
gravitational effects such as those studied by Colella, Overhauser, and Werner (COW). The development of
the ring laser has led to numerous applications in many areas of physics including a recent general
relativistic prediction of frame dragging in the gravitational field produced by the electromagnetic radiation
in a ring laser. This paper introduces a new general technique based on a canonical transformation of the
Dirac equation for the gravitational field of a general linearized spacetime. Using this technique it is shown
that there is a phase shift in the interference of two neutron beams due to the frame-dragging nature of the
gravitational field of a ring laser.
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I. INTRODUCTION

Neutron interferometry has opened up a whole new
domain of research utilizing the wavelike nature of neutrons
to explore quantum mechanical effects. The general tech-
nique uses, at its core, some of the more basic fundamental
principles of quantum mechanics involving the de Broglie
wavelength and the interference of neutrons. The effect of
the Newtonian gravitational potential on the interference of
two neutron beams was tested in the Colella-Overhauser-
Werner (COW) experiment and found to agree with
predictions [1]. There are currently other interference
techniques, such as atom interferometry experiments, that
are affected by gravity. An example of this is the work by
Kasevich and Chu [2].
The gravitational field of a light beam was first con-

sidered in 1931 by Tolman et al. [3] where a test particle
was theoretically shown to deflect towards a thin beam of
passing light. Later, M. O. Scully (1979) [4] theoretically
considered an experiment where a test beam of light would
deflect towards an intense beam of light as a result of the
metric of the intense beam.
The development of the ring laser has led to numerous

applications in many areas of physics. One of us [5] solved
the linear Einstein field equations to obtain the gravita-
tional field produced by the electromagnetic radiation
of a unidirectional ring laser. It was shown that a massive
neutral spinning classical particle at the center of the ring
laser exhibited gravitational inertial frame dragging. The
post-Newtonian phenomenon of inertial frame dragging is
usually associated with the gravitational field generated by
rotating matter. An example of this is the prediction that a
satellite in a polar orbit around the earth should be dragged
around by the gravitational field generated by the rotation
of the earth. The recent results of the Gravity Probe B [6]
and LAGEOS experiments [7] have successfully indicated
the existence of this effect for matter. A comprehensive
survey of the many proposed experiments to test

gravitational frame dragging by matter can be found in
Ciufolini and Wheeler [8].
Tolman et al. [3] have emphasized that the gravitational

field generated by light has a number of significant
differences compared with the gravitational field of matter.
To our knowledge no analysis has yet been carried out
of the gravitational frame-dragging effect of circulating
light on the phase shift of two neutron beams. In this paper,
we present a new general technique giving the Foldy-
Wouthuysen transformed Hamiltonian for a Dirac particle
in the most general linearized spacetime metric. This
technique is then used for a theoretical analysis of the
interference shift of two neutron beams in the gravitational
field of a ring laser. This will illustrate the inertial frame-
dragging effect due to light in a quantum mechanical
interferometry context.

II. NEW GENERAL APPROACH TO THE
DIRAC EQUATION IN A LINEARIZED

GRAVITATIONAL FIELD

A. The Dirac equation in curved space

To begin to solve the problem of how a spinning neutron
will propagate in the curved space of the ring laser, we need
a covariant set of quantum equations. By starting from the
covariant Dirac equation and casting it into a Hamiltonian
wave equation form in the rest frame of the interferometer
apparatus, we can solve the wave equation, as Greenberger
and Overhauser did, using a similar perturbed solution that
is space dependent but not time dependent. By using the
Dirac equation, rather than the Klein-Gordan wave equa-
tion, we are not assuming that spin effects are negligible.
The Dirac equation in flat space is a Lorentz covariant

equation with a Dirac spinor type wave function as a
solution which can be written as [9]

iℏγðαÞ
∂

∂xðαÞ ψ −mcψ ¼ 0 ð1Þ
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or in a more convenient form,

�
γðαÞ

∂
∂xðαÞ þ k

�
ψ ¼ 0; ð2Þ

defining k. It has been shown by Weinberg [10] and Parker
[11] that the generally covariant form of Eq. (2) is

�
γðαÞξνðαÞ

� ∂
∂xν −

i
4
σðβÞðγÞξμðβÞξðγÞμ∶ν

�
þ k

�
ψ ¼ 0; ð3Þ

where the object,

DðαÞ ¼ ξνðαÞ

� ∂
∂xν −

i
4
σðβÞðγÞξμðβÞξðγÞμ∶ν

�
; ð4Þ

is a generally covariant spinor derivative, where

ξνðβÞξ
μ
ðαÞgνμ ¼ ηðαÞðβÞ ξνðβÞvν ¼ vðβÞ ξðβÞν vν ¼ vðβÞ ð5Þ

are the tetrad fields with the flat space indices α raised and
lowered by η and the general coordinate indices by g, while
the σ’s are objects with the commutation property

½σðαÞðβÞ; σðγÞðδÞ� ¼ ηðγÞðβÞσðαÞðδÞ − ηðγÞðαÞσðβÞðδÞ

þ ηðδÞðβÞσðγÞðαÞ − ηðδÞðαÞσðγÞðβÞ: ð6Þ

It can be shown that a suitable form for the σ’s are

σðαÞðβÞ ¼ i
2
½γðαÞ; γðβÞ�: ð7Þ

Equation (3) is a field equation which is form invariant
under general coordinate transformations of the ν indices,
with all other quantities being treated as scalars, and form
invariant under a Lorenz transformation of the locally flat
ðαÞ coordinates.

B. Foldy-Wouthuysen transformation

It has been discussed that the original Dirac theory in flat
space contains results that are difficult to relate to classical
physics. In fact, Foldy and Wouthuysen [12] found that by
applying a unitary transformation on the system these
problems can be alleviated and the theory is then capable
of independent 2-component solutions having definite
energy. For experiments, this means that you can properly
interpret the de Broglie wavelength in terms of the classical
particle velocity.
For a perturbed Hamiltonian H ¼ βmc2 þ ðc~α · ~pÞ þ ϵ

where ϵ ¼ ϵE þ ϵO may have both “even” and “odd” parts,
the Foldy-Wouthuysen transformation is

H ¼ βmc2 þ ðϵEÞ þ ðc~α · ~pþ ϵOÞ
¼ βmc2 þ EþO

E ¼ ϵE ð8Þ

O ¼ ðc~α · ~pþ ϵOÞ ð9Þ

ψ 0 ¼ eiSψ H0 ¼ eiSHe−iS S ¼ −i
β

2mc2
O: ð10Þ

If the odd term is smaller than mc2, we can expand the
exponential to low order. It can be shown that after the
transformation, keeping terms of order 1

m3c6
, the new

Hamiltonian has the form

H0 ¼ β

�
mc2 þ O2

2mc2
−

O4

8m3c6

�
þ E

−
1

8m2c4
½O; ½O;E�� þ β

2mc2
½O;E� − O3

3m2c4

¼ βmc2 þ E0 þO0: ð11Þ

The effect of the transformation is such that odd terms
appear in the new Hamiltonian of order 1

mc2 or higher. By
applying successive transformations, one can achieve
higher order relativistic corrections with the ability to drop
the lowest order odd terms leaving behind a purely even
Hamiltonian capable of 2-component spinor solutions with
definite energies. After two more transformations the
Hamiltonian achieves a purely even form of order 1

m2c4,

H000 ¼ β

�
mc2 þ O2

2mc2

�
þ E −

1

8m2c4
½O; ½O;E��: ð12Þ

It is this final form which we wish to use for spinning
particles in an interferometer.

C. New general technique

We have a general procedure for expressing the Dirac
equation in a generally covariant form, Eq. (3), which is
influenced by the metric in which you are working hμν.
Further, in the event that all hμν go to zero, we then have the
flat space free particle Hamiltonian. This leads us to
interpret the additional terms arising from the metric
perturbations as a perturbing potential. We can rearrange
Eq. (3) to the form

iℏ
∂
∂tψ ¼ Hψ ¼ ½mc2 þ c~α · ~pþ fðhμνÞ�ψ : ð13Þ

If we now apply three FW transformations to the
Hamiltonian in Eq. (13), we will have a physical theory
in which we can find it easy to interpret observables such as
average position, momentum, velocity, and spin for sol-
utions that have positive definite energy.
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Previous authors have been interested in how GR can be
incorporated into the dynamics of a Dirac particle in a
particular metric. For comparison, we will briefly discuss
the goals and techniques of two such authors which
together illustrate the benefit of a more general approach.
Varju and Ryder [13] analyzed the Schwarzschild

solution in Cartesian coordinates and obtained the result

ds2 ¼ ð1 − 2ϕÞc2dt2 −
��

1þ 2
g1x1

c2

�
ðdx1Þ2

þ
�
1þ 2

g2x2

c2

�
ðdx2Þ2þ

�
1þ 2

g3x3

c2

�
ðdx3Þ2

�

−
2

c2
½ðg1x2 þ g2x1Þdx1dx2 þ ðg2x3 þ g3x2Þdx2dx3

þ ðg3x1 þ g1x3Þdx3dx1�; ð14Þ

where gi ¼ − ∂ϕ
∂xi c

2 and ϕ ¼ GMs
rc2 .

In this example, they were able to ignore all time-space
components in the metric h0i ¼ 0 while applying the
generalization procedure.
Hehl and Ni [14] studied a spinning particle in an

accelerating and rotating frame and obtained a line element
of the form

ds2 ¼ ðdx0Þ2
�
1þ 2~a · ~x

c2
þ
�
~a · ~x
c2

�
2

þ
�
~ω · ~x
c

�
2

−
�
~ω · ~ω
c2

�
ð~x · ~xÞ

�

−
2

c
dx0d~x · ~ω × ~x − d~x · d~x; ð15Þ

where ~a is the proper 3-acceleration and ~ω the proper
rotation experienced by the moving frame. In this example,
they were able to avoid complications of all spacial
perturbation components of the type hij in the generaliza-
tion procedure for the Dirac equation.
It is clear that the techniques of both authors [13]

and [14] share similarities in finding a physical Dirac
Hamiltonian in that gravity is incorporated into the theory
through the metric field, then the resulting Hamiltonian is
subjected to a FW transformation. It would prove useful for
future investigations of various metrics of different forms to
carry out the procedure for the most general form, meaning
to keep all 16 components (10 independent) of the metric
perturbation field hμν and express the FW transformed
Hamiltonian in curved space in terms of hμν and its
derivatives.
Since we are not eliminating any parts of the metric hμν,

we proceed to separate the Dirac equation (3) according to
whether an object contains the energy term h00, the rotation
time-space terms h0i, or the space-space cross terms hij
including the diagonal i ¼ j.

To start, we will make use of the following properties of
the tetrad fields Eq. (5) with a linearized metric,

ξνðβÞξ
μ
ðαÞgνμ ¼ ξνðβÞξ

μ
ðαÞðηνμ þ hμνÞ

¼ ηðαÞðβÞ

ξμðαÞ ¼ δμα −
1

2
hμα

ξðαÞμ ¼ δðαÞμ þ 1

2
hðαÞμ

ξðαÞμ ¼ ηðαÞμ þ
1

2
hðαÞμ

ξðαÞμ ¼ ηðαÞμ −
1

2
hðαÞμ; ð16Þ

and find the covariant derivative of the tetrad field that
appears in Eq. (3),

ξðβÞμ;α ¼
1

2

�∂hαμ
∂xβ −

∂hβα
∂xμ

�

−
i
4
σðσÞðβÞξμðσÞξðβÞμ;α ¼ −

i
4
σðσÞðβÞ

∂hσα
∂xβ ; ð17Þ

with the last step owing to the antisymmetric nature
of σðσÞðβÞ.
Inserting Eq. (17) into Eq. (3), we get

0 ¼
��

γð0Þ
�
1 −

1

2
h00

�
−
1

2
γðjÞh0j

� ∂
∂x0

þ
�
γðiÞ −

1

2
γðγÞhiγ

� ∂
∂xi −

i
4
γðαÞσðσÞðβÞ

∂hσα
∂xβ þ k

�
ψ :

ð18Þ

Rearranging to obtain a field equation of the form
iℏ ∂ψ

∂t ¼ Hψ , we rewrite Eq. (18) as

H ¼
�
1þ 1

2
h00

�
c~α · ~p − c~h · ~p

þ c
2
~α · h

↔
· ~p −

ic
2
~σ · ~h × ~pþ iℏc

4
½~α · ~∇h00 − ~∇ · ~h

− ð~α · ~∇Þð~α · h
↔
· ~αÞ þ ~∇ · h

↔
· ~α�

þ βmc2
��

1þ 1

2
h00

�
þ ~α · ~h

2

�
; ð19Þ

where h
↔

¼ hij, ~h ¼ h0i and we have introduced a common

convention that a dot product of two 3-vectors ~A · ~B is taken
to be the negative of the sum of a contravariant and a
covariant index,

~A · ~B ¼ −AiBi ¼ ΣAiBi; ð20Þ
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and by raising and lowering all indices with ημν, the
momentum vector is defined as

pi ¼ iℏ
∂
∂xi ¼ −iℏ

∂
∂xi : ð21Þ

Algebraically, Eq. (19) is exactly the same as a flat space
free particle piece plus a small perturbing energy. It,
therefore, inherits all of the issues of the mixing of energy
states and the inconsistent operator definitions due to the
persistent odd terms with odd powers of the ~α matrices. In
order to interpret any real particle mechanics from this
Hamiltonian, it is necessary to perform a FW transforma-
tion to attain an acceptable working theory.
Three consecutive FW transformations applied to the

Hamiltonian of Eq. (19) give

H000 ¼ βmc2
�
1þ1

2
h00

�
þð1þh00Þ

β

2m
ðpÞ2−c

2
~h · ~p

−
ic
2
~σ · ~h× ~p−

c
4
ℏ~σ · ~∇× ~hþ 3β

8m
iℏ~α · ~∇h00~α · ~p

þ β

8m
iℏ ~∇h00 · ~p−

ℏ2β

16m
ð∇Þ2h00þ

β

4m
iℏ~α · ~∇ ~α ·h

↔
· ~p

þ β

2m
h
↔
· ~p · ~pþℏ2β

8m
ð∇Þ2ð~α · h

↔
· ~αÞ

−
iℏβ
4m

~∇ð~α · h↔ · ~αÞ · ~p

−
ℏ2β

8m
~α · ~∇ ~∇ ·h

↔
· ~αþ iℏβ

4m
~∇ · h

↔
· ~p: ð22Þ

III. APPLICATION TO NEUTRON
INTERFERENCE IN THE GRAVITATIONAL

FIELD OF A RING LASER

A. Gravitational field of a ring laser

The linearized Einstein gravitational field equations in
the Hilbert gauge ∂μðhμν − 1

2
ημνhÞ ¼ 0 are

∂λ∂λ

�
hμν −

1

2
ημνh

�
¼ −κτμν; ð23Þ

where for electromagnetic radiation,

τμν ¼ −
1

4π

�
fμαfνα −

1

4
ημνfαβfαβ

�
; ð24Þ

and fαβ is the Maxwell field tensor. Since the trace of
Eq. (24) τμμ is zero, Eq. (23) can be rewritten as

∂λ∂λhμν ¼ −κτμν: ð25Þ

For a thin laser beam in the configuration of Fig. 1 with a
polarization in the z direction, the Maxwell tensor fμν

components are

f30ð1Þ ¼ f30ð2Þ ¼ f30ð3Þ ¼ f30ð4Þ ¼ Ez ð26Þ

f13ð1Þ ¼ −f13ð3Þ ¼ −By ð27Þ

f32ð2Þ ¼ −f32ð4Þ ¼ Bx; ð28Þ

while all other components are zero.
Assuming a thin laser beam of linear energy density ρ,

the nonzero metric components for the ring laser are shown
[5] to be

h00 ¼ −
κρ

4π
½ϕð1Þ þ ϕð2Þ þ ϕð3Þ þ ϕð4Þ� ð29Þ

h01 ¼ −
κρ

4π
½ϕð1Þ − ϕð3Þ� ð30Þ

h02 ¼ −
κρ

4π
½ϕð2Þ − ϕð4Þ� ð31Þ

h11 ¼ −
κρ

4π
½ϕð1Þ þ ϕð3Þ� ð32Þ

h22 ¼ −
κρ

4π
½ϕð2Þ þ ϕð4Þ�; ð33Þ

with the definitions

ϕð1Þ ¼ ln

�
−xþ aþ ½ðx − aÞ2 þ y2 þ z2�12

−xþ ½x2 þ y2 þ z2�12
�

ð34Þ

ϕð2Þ ¼ ln

�
−yþ aþ ½ðx − aÞ2 þ ðy − aÞ2 þ z2�12

−yþ ½ðx − aÞ2 þ y2 þ z2�12
�

ð35Þ

ϕð3Þ ¼ ln

�
−xþ aþ ½ðx − aÞ2 þ ðy − aÞ2 þ z2�12

−xþ ½x2 þ ðy − aÞ2 þ z2�12
�

ð36Þ

ϕð4Þ ¼ ln

�
−yþ aþ ½x2 þ ðy − aÞ2 þ z2�12

−yþ ½x2 þ y2 þ z2�12
�
; ð37Þ

FIG. 1. Ring laser with side length a.
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with subscripts in parentheses indicating the particular
beam path in Fig. 1.

B. Neutron interference in the gravitational
field of a ring laser

Now that we have an “even” Hamiltonian for a Dirac
particle perturbed by a general gravitational metric pertur-
bation Eq. (22), we can calculate the phase shift of a free
particle due to this perturbation. We do this in the same
manner as Greenberger and Overhauser [15] with the
purpose of finding the phase shift of two particle paths
of a split beam interferometer for comparison at a recom-
bination point. The phase shift is of the form

Ψ ¼ Ψ0eiδϕ ¼ M0eið
~k0·~xþδϕ−ω0tÞ; ð38Þ

where M0 is a 2-component spinor column matrix with
norm M†

0M0 ¼ 1.
This gives a solution for δϕ in the same manner as the

Schrödinger case, in the form of a time integral over the
path of a free particle trajectory

δϕð~xÞ ¼ −
1

ℏ

Z
Tð~xÞ

0

dt0H0ðt0Þ; ð39Þ

where the H0 is the perturbed energy function Eq. (22) and
Tð~xÞ is the elapsed time for the free particle to reach ~x. We
will use Eq. (39) to find the phase shift of each particle
beam and then their difference at the recombination point.
Our procedure then is to use H000 from Eq. (22) for the

specific metric of the ring laser, Eq. (29) through Eq. (37).
This H000 will be used as the perturbing potential in
Eq. (39). Considering this metric does not have off-

diagonal space-space components hij, all h
↔

terms in
Eq. (22) can be simplified. Using the first-order effect
hμνpi ¼ hμνiℏ∇iiðk10x1 þ k20x

2 þ k30x
3Þ ¼ hμνℏki0, we also

drop first and second derivatives of hμν for large k0,
meaning, ∂2hμν

∂ðjk0jxiÞ∂ðjk0jxjÞ ≪
∂hμν

∂ðjk0jxkÞ ≪ hμν.

With these approximations, the perturbed energy func-
tion can be written in the simplified form

H0 ¼ mc2
1

2
h00 þ h00

β

2m
ðpÞ2 − c

2
~h · ~p

−
ic
2
~σ · ~h × ~pþ β

2m
h
↔
· ~p · ~p

¼ mc2

2
h00 þ

β

2m
h00ðpÞ2 −

cℏ
2
ðh01k10 þ h02k20Þ

−
icℏ
2

~σ · ~h × ~k0 þ
βℏ2

2m
fh11ðk10Þ2 þ h22ðk20Þ2g: ð40Þ

For a particle initially moving in theþx direction or theþy
direction, this can be expressed as

H0
x ¼

mc2

2
h00 þ

ℏ2

2m
h00ðk0Þ2 −

cℏ
2
h01k0

þ icℏ
2

ðσ3h02k0Þ þ
ℏ2

2m
h11ðk0Þ2 ð41aÞ

H0
y ¼

mc2

2
h00 þ

ℏ2

2m
h00ðk0Þ2 −

cℏ
2
h02k0

−
icℏ
2

σ3h01k0 þ
ℏ2

2m
h22ðk0Þ2: ð41bÞ

Since, to first order, the integral in Eq. (39) will be taken
over the path of the free particle, it can be rewritten as

δϕð~xÞ ¼ −
1

ℏ

Z
Tð~xÞ

0

dt0H0ðt0Þ k0
k0

¼ −
1

ℏk0

Z
Tð~xÞ

0

dt0H0ðt0Þm
ℏ
dx0

dt0

¼ −
m

ℏ2k0

Z
~x

0

dx0H0ðx0Þ: ð42Þ

We now aim to find the phase difference of two paths of a
split beam interferometer for the scenario depicted in Fig. 2.
Here we have a neutron beam split at point A, at which
point we will assume the free particle will enter the
perturbing region and is the point where we consider the
two beams to be coherent. The two beams will then travel
their separate paths, accumulating unique phase shifts
found using the line integral of Eq. (42), where at the
recombination point,D, we are interested in the measurable
difference

δϕABD − δϕACD

¼ −
m

ℏ2k0

�Z
ABD

dx0H0ðx0Þ −
Z
ACD

dx0H0ðx0Þ
�
: ð43Þ

FIG. 2 (color online). Ring laser with side length a and
interferometer.
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It should be noted that an additional effect, shown by
Mannheim [16], due to the acceleration of the reflecting
surfaces at points B and C has been considered but found to
not to contribute to lowest order in this setup.
To understand the results of these integrals, it will be

useful to look at the position dependence of the functions in
the integrands. According to Eq. (41a) and Eq. (41b),
whether the particle is traveling in the x direction or the y
direction, it will always experience a phase shift due to the
fmc2

2
þ ℏ2

2m ðk0Þ2gh00 term in Eq. (42). That this term will go
to zero can be shown visually by expressing the line
integral in Eq. (42) as an average of the integrand. This
can be written Z

x0

0

dx0H0ðxÞ ¼ H̄0Xtot; ð44Þ

where Xtot is the total length of the line of the integral, and a
barred quantity will be taken as the length average of that
quantity over the path of the integral. This means that we
can express the measurable phase difference between the
paths due to the h00 term as�Z

ABD
dx0h00ðx0Þ −

Z
ACD

dx0h00ðx0Þ
�

¼ Xtotfh̄00−ðABDÞ − h̄00−ðACDÞg: ð45Þ
Looking now at the function h00 in Fig. 3, we can see from
the symmetry of the function that the average value is the
same along the two paths, and the difference is zero in a
symmetrically designed interferometer. The h00 part of the
metric, in this experiment, will cause no measurable phase
difference.
It is a simple extension now to analyze the contribution

in Eq. (43) from the h11 and h22 parts of the metric. We can
write their contribution as

�Z
ABD

dx0ðh11 þ h22Þ−
Z
ACD

dx0ðh11 þ h22Þ
�

¼ fXABðh̄11AB − h̄11CDÞ − YBDðh̄22BD − h̄22ACÞg ¼ 0; ð46Þ

from the symmetry of the functions shown in Figs. 4
and 5.
The functions h01 and h02 will contribute to the phase

difference differently whether the particle is travelling
along the x direction or the y direction, as seen from
Eq. (41a) and Eq. (41b). We can follow the integrals more
carefully by explicitly showing the paths to be followed and
show that the only terms left are

4 h11

k

0

50

100
x

0

50

100y

10

8

6

4

FIG. 4 (color online). The function 4π
κρ h

11 ¼ −½ϕð1Þ þ ϕð3Þ� for a
ring laser of side length a ¼ 100 units. The bold contour
outlining the plotted area is at a distance of 1 unit from each
side of the ring laser.

4 h00

k

0

50

100
x

0

50

100y

14

12

10

8

FIG. 3 (color online). Function 4π
κρh

00¼−½ϕð1Þþϕð2Þþϕð3Þþ
ϕð4Þ� for a ring laser of side length a ¼ 100 units. The bold
contour outlining the plotted area is at a distance of 1 unit from
each side of the ring laser.

4 h22

k

0

50

100
x

0

50

100y
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FIG. 5 (color online). The function 4π
κρ h

22 ¼ −½ϕð2Þ þ ϕð4Þ� for a
ring laser of side length a ¼ 100 units. The bold contour
outlining the plotted area is at a distance of 1 unit from each
side of the ring laser.
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δϕABD − δϕACD ¼ −
m

ℏ2k0

�Z
ABD

dx0H0ðx0Þ−
Z
ACD

dx0H0ðx0Þ
�

¼ −
m

ℏ2k0

�Z
AB

dx0
�
−
cℏ
2
h01k0þ

icℏ
2

ðσ3h02k0Þ
�
þ
Z
BD

dy0
�
−
cℏ
2
h02k0 −

icℏ
2

σ3h01k0

�

þ
Z
AC

dy0
�
−
cℏ
2
h02k0 −

icℏ
2

ðσ3h01k0Þ
�
þ
Z
CD

dx0
�
−
cℏ
2
h01k0 þ

icℏ
2

σ3h02k0

��

¼ m
ℏ2k0

cℏ
2
k0fXABh̄01AB þ YBDh̄02BD − XCDh̄01CD − YACh̄02ACg

þ m
ℏ2k0

icℏ
2

ðσ3k0Þf−XABh̄02AB þ YBDh̄01BD þ XCDh̄02CD − YACh̄01ACg

¼ mc
2ℏ

fXABðh̄01AB − h̄01CDÞ þ YBDðh̄02BD − h̄02ACÞg þ
imcσ3

2ℏ
f−XABðh̄02AB − h̄02CDÞ þ YBDðh̄01BD − h̄01ACÞg: ð47Þ

On comparing our final result Eq. (47) with Figs. 6 and 7,
we can see that the momentum terms are reinforced due to
the antisymmetric nature of those metric components. The
spin terms go to zero, not from the additive nature of the
expression in Eq. (47), but the figure shows that the values
h̄02AB; h̄

02
CD; h̄

01
BD; h̄

01
AC go to zero individually. From Eq. (41a)

and Eq. (41b), this evidently comes from the result of the
spin being precessed by the frame-dragging momentum
energy of the gravity generating source traveling perpen-
dicularly with respect to the momentum of the spinning
particle. Therefore, during a trip along any one leg of the
neutron beams path in Fig. 2, the particle feels the
momentum of the ring laser section behind it for the first
half of the leg, and in front of it for the last half, resulting in
no net accumulation.
Turning now back to Eq. (47), we can express the only

nonzero contribution to the total phase difference along the
two paths of the interferometer as, from the symmetry of

the functions, 4 times the magnitude of the effect along any
one leg to, thus, give

δϕABD−δϕACD ¼mc
2ℏ

fXABðh̄01AB− h̄01CDÞþYBDðh̄02BD− h̄02ACÞg

¼ 2mcLn

ℏ
h̄01AB

¼−
2mcLn

ℏ
κρ

4π
½ϕð1Þ−ϕð3Þ�AB

¼ 4mGρ
ℏc3

f−Ln½ϕð1Þ−ϕð3Þ�ABg; ð48Þ

where Ln is the length of one leg of the neutron beam.
The average function −Ln½ϕð1Þ − ϕð3Þ�, which is the

average value along the outside contour near the x axis
in Fig. 6, is a function of the relative dimensions of the ring
laser and the interferometer. This is a tunable parameter in
our result, Eq. (48). Also tunable is the power of the ring
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FIG. 6 (color online). The function 4π
κρ h

01 ¼ −½ϕð1Þ − ϕð3Þ� for a
ring laser of side length a ¼ 100 units. The bold contour
outlining the plotted area is at a distance of 1 unit from each
side of the ring laser.
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FIG. 7 (color online). The function 4π
κρ h

02 ¼ −½ϕð2Þ − ϕð4Þ� for a
ring laser of side length a ¼ 100 units. The bold contour
outlining the plotted area is at a distance of 1 unit from each
side of the ring laser.
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laser which is generating the gravitational field. This is a
satisfying result for our theoretical work which shows that
there is an interference effect on two neutron beams in the
gravitational field of a ring laser.
A quick numerical estimate can be made. With typical

diffraction crystal sizes on the order of Ln ¼ 10−1 m and
assuming that the neutron beam can travel within 10−3 m of
the laser (same relative size as in Figs. 3 through 7) we can
estimate the term Ln½ϕð1Þ − ϕð3Þ�. Using a largest number
approach for the other tunable parameters, we will use the
power output of cutting edge CW lasers now exceeding
P ¼ 105 W [17]. Pulse lasers, while having high peak-
energy densities, do not provide a beam length long enough
to allow the neutron to complete its traversal through the
interferometer. Therefore, with these assumptions, an
estimated phase shift would be on the order of

ρ ¼ P
c
¼ 105 W

3.0 × 108 m
s

≈ 10−3
J
m

Ln½ϕð1Þ − ϕð3Þ� ≈ 100 m

4mGρ
ℏc3

f−Ln½ϕð1Þ − ϕð3Þ�ABg

¼
4ð10−27 kgÞð10−10 Nm2

kg2 Þð10−3 J
mÞ

ð10−33 kgm2

s Þð1025 m3

s3 Þ
≈ 10−32 rad: ð49Þ

Current neutron interference techniques have a phase
shift resolution on the order of 10−12 rad [18]. The order of
magnitude approximation in Eq. (49) using current exper-
imental design parameters shows that this effect is not
currently within the range of detection and that significant
increases in the size of the interferometer and the light
energy density, possibly by sending the laser many times
around the ring pattern, are needed. As Scully [4] put it
when reflecting on his beam deflection magnitude, “This
Gedanken experiment is clearly not an experimental call to
arms, but rather an argument that such experiments are
‘thinkable.’”

C. Conclusions

Motivated by the predictions and results of the COW
experiment for the phase shift of a Schrödinger particle due
to a Newtonian potential, we set out to find the analogous
procedure for a Dirac particle in the gravitational field of a
unidirectional ring laser. In pursuit of this goal, it was
necessary to evaluate the methods previously published in
calculating gravitational perturbations to the Dirac wave
function.
As pointed out in this paper, the procedure for expressing

the Dirac Hamiltonian in curved space used in our work has
been utilized by a number of authors for special cases
[13,14]. In our opinion, our presentation of the procedure is
much more general. It has often been the topic in these
papers to compare the Hamiltonian resulting from their
chosen metric to the work of others using different metrics.
The general form of Eq. (22) represents the final result of
any of those papers, but without the specific metric
components included or excluded. The method developed
in this paper provides an alternative general approach for
future investigations.
In Einstein’s metric theory, all energy, whether electro-

magnetic or material, will generate a gravitational field.
Although, as pointed out earlier, there are intrinsic
differences between the gravitational field generated by
light and that of matter [3]. In this paper, new techniques
were developed and applied to the calculation of the
interference of two neutron beams in the gravitational field
of a ring laser. The prediction of the interference shift of
neutrons due to the gravitational field of a ring laser in
Eq. (48) is new and provides, theoretically, an additional
test of general relativity and gravitational frame dragging
by light.
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