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In the standard perturbation theory (SPT) of self-gravitating Newtonian fluid in an expanding universe,
recurrence relations for higher-order solutions are well known and play an important role both in practical
applications and in theoretical investigations. The recurrence relations in Lagrangian perturbation theory
(LPT), however, have not been known for a long time. Recently, two different kinds of recurrence relations
in LPT have been proposed in limited cases. In this paper, we generalize those methods, and most generally
derive the recurrence relations, which are capable of including any initial condition in general models of
cosmology. The fastest-growing modes in the general relations are identified, and simplified recurrence
relations with accurate approximation for the time dependence are obtained.
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I. INTRODUCTION

The large-scale structure (LSS) of the Universe is an
important source of information about our Universe.
Theoretically understanding physical origins and statistical
properties of LSS is quite important in cosmology. The
driving force for the evolution of LSS is gravitational
instability. Initial density fluctuations are amplified by the
attractive force of gravity and cause the origin of the present
structure. The evolution of LSS is complicated for its
nonlinear nature of dynamics.
The nonlinear structure formation is complicated, and

the nonlinear dynamics in general is quite hard to analyti-
cally understand. When the nonlinearity is considered
weak, one can apply the perturbation theory. The linear
theory of gravitational instability describes the evolution at
sufficiently early stages or on sufficiently large scales of
LSS. The linear theory has been quite successful in
cosmology. Most observational signals from cosmic micro-
wave background (CMB) radiation are understood by the
linear theory, because the CMB radiation is emitted at a
sufficiently early time, when the amplitude of density
fluctuations are extremely small. While the amplitudes
of density fluctuations in the present Universe are large on
small scales, they are still small on large scales.
The linear theory of density fluctuations is relatively

simple to analyze, as each Fourier mode independently
evolves with time. However, complicated couplings of
mode take place when the fluctuations becomes nonlinear.
Early stages of the mode coupling can be analytically
described by higher-order perturbation theory beyond the
linear approximation [1]. As recent observations of LSS are
large enough, precise descriptions of a weakly nonlinear
regime are important for cosmological analyses. In this

respect, the higher-order perturbation theory attracts much
attention these days.
A straightforward way of describing nonlinear pertur-

bations is the standard perturbation theory (SPT), in which
all the perturbation variables are expanded in Eulerian
space [2]. Along with recent interests in cosmological
perturbation theory, theoretically various ways of improv-
ing the SPT have been proposed, such as the renormalized
perturbation theory (RPT) [3,4], effective field theory of
large-scale structure (EFTofLSS) [5,6], and many others
[7]. The SPT and its extensions fall into a category of
Eulerian perturbation theory. An alternative to the Eulerian
perturbation theory is provided by the Lagrangian pertur-
bation theory (LPT), in which all the perturbation variables
are expanded in Lagrangian space [8–15]. The first-order
LPT corresponds to the classic Zel’dovich approximation
[16], which is a generalization of an exact solution in one-
dimensional space [17]. Although the Lagrangian variables
are not directly observable, there exists a systematic way of
predicting observable quantities from LPT [18–24].
As expected, there are merits and demerits in the SPTand

LPT (see, e.g., Refs. [25,26]), and they are complementary
to each other. While LPT cannot be extrapolated into a
strongly nonlinear regime beyond the shell-crossing phase,
there are several advantages over the SPT in a weakly
nonlinear regime. In cosmologicalN-body simulations, it is
convenient and customary to use the LPT to set up the
initial conditions. Including the effects of redshift-space
distortions into the higher-order perturbation theory is
straightforward and natural in LPT [18,27]. Most of the
physical models of bias, such as the halo model [28], peaks
model [29], excursion set peaks [30], etc. are Lagrangian
bias, in which the bias relations are defined in Lagrangian
space. It is natural to use LPT to describe the evolution of
biased objects in those models. In the formalism of
integrated perturbation theory (iPT) [19,20,24,31], the*taka@kmi.nagoya‑u.ac.jp
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redshift-space distortions and Lagrangian bias naturally fit
into LPT.
One of the striking advantages of SPT over LPT is that

there are well-known recursive solutions of SPT for order-
by-order expressions [32]. Those solutions are exact in the
Einstein–de Sitter (EdS) model of cosmology, and approxi-
mate in most of the realistic models. The recursive solutions
are practically crucial to give predictions of higher-order
perturbation theory by numerical integrations. Evaluating
two- or higher-loop corrections to the power spectrum fully
utilizes the recursive solutions of SPT [3,33–35].
Until recently, the recursive solutions of LPT had been

considered difficult to obtain, because the displacement
fields in LPT are not irrotational in general, even though
the Eulerian velocity fields are irrotational in the fastest-
growing mode [2]. However, progress has been made by a
pioneering work [36] that describes how recursive solutions
for the transverse part of displacement field are shown to be
derived from the irrotational condition for the Eulerian
velocity field. In the same reference, a hybrid procedure is
proposed to derive the recursive solutions for the longi-
tudinal part from the known recursive solutions of SPT,
by using the SPT/LPT correspondence of perturbation
kernels [20,21].
Most recently, in a somehow different context, recur-

rence relations of LPT are derived without resorting to SPT
[37,38]. Partly because the main target of the last formalism
is to obtain exact solutions to the nonlinear fluid equations,
the expansion parameter is a time parameter such as the
scale factor, instead of the field values as in the usual LPT.
This expansion scheme agrees with that of usual LPT for
the fastest-growing mode in the Einstein–de Sitter (EdS)
universe, but not for other modes and cosmological models.
While the new expansion scheme of LPT based on a time
parameter should be useful for solving particular problems,
it is fair to say that recurrence relations in the usual
expansion scheme of LPT are still lacking for general
models of cosmology.
The purpose of this paper is to generalize the above

previous work and seek the recurrence relations within the
usual framework of LPT. We show that they actually exist
for any initial condition in general cosmology, and recur-
sive solutions are explicitly derived. Besides, irrotational
flows in Eulerian space do not need to be assumed to begin
with, and it is explicitly shown that the fastest-growing
modes of LPT automatically result in irrotational flows in
Eulerian space.
This paper is organized as follows. In Sec. II, the

framework of LPT is reviewed, and fundamental equations
are derived and summarized in convenient forms for
our purpose. In Sec. III, the most general forms of
recurrence relations of LPT are derived both in configura-
tion space and in Fourier space. In Sec. IV, recurrence
relations with a simple and accurate approximation of time
dependence are presented. Conclusions are given in Sec. V.

In Appendix A, an alternative form of recurrence relations
for the longitudinal part is presented. In Appendix B,
recursive solutions up to seventh order in perturbations are
explicitly given.

II. THE LAGRANGIAN PERTURBATION
THEORY

For a pressureless Newtonian self-gravitating fluid, the
equation of motion of the Eulerian comoving coordinates
xðtÞ of a fluid element is given by [1]

ẍþ 2H _x ¼ −
1

a2
∇xϕðx; tÞ; ð1Þ

where a dot represents a Lagrangian derivative of time,
H ¼ _a=a is the time-dependent Hubble parameter, ∇x ¼∂=∂x is a spatial derivative in Eulerian space, and ϕðx; tÞ is
the gravitational potential. The gravitational potential is
related to the density contrast δðx; tÞ ¼ ρðx; tÞ=ρ̄ − 1
through a Poisson equation,

Δxϕðx; tÞ ¼ 4πGρ̄a2δðx; tÞ; ð2Þ

where Δx ¼ ∇2
x is the Laplacian operator.

Independent field variables in LPT are the displacement
field Ψ ðq; tÞ, which corresponds to the position difference
of a fluid element between Lagrangian coordinates q and
Eulerian coordinates x at a given time t, i.e.,

xðq; tÞ ¼ qþ Ψ ðq; tÞ: ð3Þ

As mass elements are distributed homogeneously in
Lagrangian coordinates, the Eulerian density field ρðx; tÞ
is given by a continuity relation ρðx; tÞd3x ¼ ρ̄d3q, or
ρðx; tÞ ¼ ρ̄=Jðq; tÞ, where

Jðq; tÞ ¼ detð∂x=∂qÞ ð4Þ

is a Jacobian. Taking the divergence and rotation with
respect to Eulerian coordinates, Eq. (1) is equivalent to a set
of equations,

∇x · ðẍþ 2H _xÞ ¼ 4πGρ̄

�
1 −

1

J

�
; ð5Þ

∇x × ðẍþ 2H _xÞ ¼ 0: ð6Þ

We define Jacobian matrix elements,

Jijðq; tÞ ¼
∂xi
∂qj ¼ δij þΨi;jðq; tÞ; ð7Þ

where the comma denotes spatial derivatives with respect
to Lagrangian coordinates, i.e., Ψi;j ¼ ∂Ψi=∂qj. Eulerian
spatial derivatives are given by
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∂
∂xj ¼ ðJ−1Þij

∂
∂qi ; ð8Þ

in terms of Lagrangian spatial derivatives, where ðJ−1Þij
represents matrix elements of the inverse Jacobian matrix.
In terms of the Levi-Cività symbol εijk, the determinant and
inverse matrix are generally given by

J ¼ 1

6
εijkεpqrJipJjqJkr; ð9Þ

ðJ−1Þij ¼
1

2J
εjkpεiqrJkqJpr: ð10Þ

The second equation is derived from the first equation and a
standard formula ðJ−1Þij ¼ Jcji=J, where J

c
ij ¼ ∂J=∂Jij are

cofactors of the Jacobian. The above formulas are quite
useful in LPT [21].
In the following, we frequently use a differential operator

T̂ ≡ ∂2

∂t2 þ 2H
∂
∂t ; ð11Þ

where the partial derivative is taken with fixed Lagrangian
coordinates, ∂=∂t ¼ ∂=∂tjq. One should notice that this is
not a first-order differential operator. For any functions of
time, AðtÞ, BðtÞ, CðtÞ, the product rules of the above
operator are given by

T̂ ðABÞ ¼ T̂ ðAÞBþ AT̂ ðBÞ þ 2 _A _B; ð12Þ

T̂ ðABCÞ ¼ T̂ ðAÞBCþ AT̂ ðBÞCþ ABT̂ ðCÞ
þ 2A _B _Cþ2 _AB _Cþ 2 _A _BC; ð13Þ

and so forth. Substituting Eqs. (3), (8) into Eqs. (5), (6), and
using the above formulas, we have

εijkεpqrJipJjq

�
T̂ −

4πGρ̄
3

�
Jkr þ 8πGρ̄ ¼ 0; ð14Þ

JijεjkpJqkT̂ Jqp ¼ 0; ð15Þ

where a contraction identity εijkεipq ¼ δjpδkq − δjqδkp is
used to derive the second equation. With Eq. (7), the above
set of equations fully describes the dynamical evolution of
the displacement field Ψ . Essentially equivalent equations
are given in Refs. [13,21], although they assume the irrota-
tional condition for the velocity field, ∇x × v ¼ 0, which is
not assumed here. It can be shown that the irrotational
condition is compatible to the dynamical equation, Eq. (15),
and it is a consequence of the fastest-growing mode of LPT,
as we will explicitly see in the following sections.
The evolution equations above are nonlinear and it is

hopeless to analytically find a general solution. When the

scales of interest λ are sufficiently larger than the typical
scales of the displacement, jΨ j ≪ λ, it is useful to solve the
nonlinear equations of motion by applying the perturbation
theory, assuming the absolute values of displacement field
are small enough. We expand the displacement field by a
perturbation series,

Ψ ¼
X∞
n¼1

Ψ ðnÞ ¼ Ψ ð1Þ þ Ψ ð2Þ þ Ψ ð3Þ þ � � � ; ð16Þ

where Ψ ðnÞ has the order of ðΨ ð1ÞÞn.

III. RECURRENCE RELATIONS

According to an identity ∇ × ð∇ × AÞ ¼ ∇ð∇ · AÞ − ΔA
in the standard vector calculus, the displacement field is
represented in a form,

Ψ ¼ Δ−1½∇ð∇ · Ψ Þ − ∇ × ð∇ × Ψ Þ�; ð17Þ
where ∇ ¼ ∂=∂q is the spatial derivative in Lagrangian
coordinates, and Δ−1 is the inverse operator of the
Laplacian Δ ¼ ∇ · ∇. Specifically, the inverse Laplacian
in configuration space, operating on a given function FðqÞ,
is represented by

Δ−1FðqÞ ¼ −
1

4π

Z
d3q0

Fðq0Þ
jq − q0j : ð18Þ

From two kinds of spatial derivatives ∇ · Ψ and ∇ × Ψ ,
one can reconstruct the displacement field by Eq. (17).
Solutions of the Laplace’s equation, ΔΨ ¼ 0, should
not be added to Eq. (17), as we impose the statistical zero
mean to the displacement field, hΨ i ¼ 0. We call the first
term in the right-hand side of Eq. (17) the longitudinal part,
and the second term the transverse part. In Lagrangian
dynamics, these two parts are generally coupled to each
other.

A. Longitudinal part

Substituting Eq. (7) into Eqs. (14), we have

ðT̂ − 4πGρ̄ÞΨi;i ¼ −εijkεipqΨj;pðT̂ − 2πGρ̄ÞΨk;q

−
1

2
εijkεpqrΨi;pΨj;q

�
T̂ −

4πG
3

ρ̄

�
Ψk;r:

ð19Þ

While the left-hand side linearly depends on the displace-
ment field, the right-hand side consists of higher-order
terms. The structure of this equation is the basis of the
recurrence relations. Regarding the right-hand side as a
source function, Eq. (19) has a form of inhomogeneous
linear differential equation,

ðT̂ − 4πGρ̄ÞgðtÞ ¼ FðtÞ: ð20Þ
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The general solution of Eq. (20) is found by a standard
method of ordinary differential equations as follows. The
homogeneous equation of Eq. (20) is exactly the same as the
linearized evolution equation of the Eulerian density con-
trast, δ̈þ 2H_δ − 4πGρ̄δ ¼ 0, and thus the two independent
solutions of the homogeneous equation are the growing
mode solutionDþðtÞ and decaying mode solutionD−ðtÞ [1].
For example, DþðtÞ ∝ t2=3, D−ðtÞ ∝ t−1 in the EdS model,
and some analytic solutions are known for several cosmo-
logical models. The growing mode solution DþðtÞ is also
known as the linear growth factor. The general solution of the
inhomogeneous differential equation, Eq. (20), is given by

gðtÞ ¼ C1DþðtÞ þ C2D−ðtÞ þ
Z

t

tin

Gðt; t0ÞFðt0Þdt0; ð21Þ

where C1 and C2 are integration constants, tin is the initial
time, and

Gðt; t0Þ≡ DþðtÞD−ðt0Þ −D−ðtÞDþðt0Þ
_Dþðt0ÞD−ðt0Þ − _D−ðt0ÞDþðt0Þ

: ð22Þ

The last term of Eq. (21) is a particular solution of the
inhomogeneous equation. We denote this particular solution
as an inverse of the differential operator,

ðT̂ − 4πGρ̄Þ−1FðtÞ≡
Z

t

tin

Gðt; t0ÞFðt0Þdt0; ð23Þ

which is a linear operator.
Using the notations above, a formal solution of Eq. (19)

is given by

∇ · Ψ ¼ DþðtÞAþ þD−ðtÞA− − ðT̂ − 4πGρ̄Þ−1

×

�
εijkεipqΨj;pðT̂ − 2πGρ̄ÞΨk;q

þ 1

2
εijkεpqrΨi;pΨj;q

�
T̂ −

4πG
3

ρ̄

�
Ψk;r

�
; ð24Þ

where A� depends only on Lagrangian coordinates. The
first two terms of the right-hand side give the linear solution
of the longitudinal part,

∇ · Ψ ð1Þ ¼ DþðtÞAþðqÞ þD−ðtÞA−ðqÞ: ð25Þ

The functions A�ðqÞ are determined by initial conditions.
Substituting the perturbation series of Eq. (16) into Eq. (24)
and extracting a component of particular order n ≥ 2,
we have

∇ · Ψ ðnÞ ¼ −
X

m1þm2¼n

ðT̂ − 4πGρ̄Þ−1½εijkεipqΨðm1Þ
j;p ðT̂ − 2πGρ̄ÞΨðm2Þ

k;q �

−
1

2

X
m1þm2þm3¼n

ðT̂ − 4πGρ̄Þ−1
�
εijkεpqrΨ

ðm1Þ
i;p Ψðm2Þ

j;q

�
T̂ −

4πG
3

ρ̄

�
Ψðm3Þ

k;r

�
: ð26Þ

The right-hand side consists of only lower-order perturba-
tions up to order n − 1. When the lower-order solutions
Ψ ð1Þ;…;Ψ ðn−1Þ are known, the longitudinal part of nth order
displacement field Ψ ðnÞ is obtained from this equation. The
above Eq. (26) alone is not sufficient to determine the
displacement field, because it lacks the transverse part. On
the right-hand side, both longitudinal and transverse parts of
lower-order perturbations enter, and thus both parts of
displacement field are coupled to each other. We need a
similar equation for the transverse part, whichwill be derived
in the next subsection. There is an alternative but equivalent
representation ofEq. (26),which is described inAppendixA.
Because products of Levi-Cività symbols can be repre-

sented by products of the Kronecker delta, Eq. (26) can be
equivalently expressed without Levi-Cività symbols.
Specifically, the identities

εijkεipq¼
����δjp δjq

δkp δkq

����; εijkεpqr¼
������
δip δiq δir

δjp δjq δjr

δkp δkq δkr

������ ð27Þ

imply

εijkεipqAjpBkq ¼ TrATrB − TrðABÞ; ð28Þ

εijkεpqrAipBjqCkr ¼ TrATrBTrC − TrATrðBCÞ
− TrBTrðCAÞ − TrCTrðABÞ
þ TrðABCÞ þ TrðACBÞ: ð29Þ

Substituting these identities into Eq. (26), Levi-Cività
symbols can be eliminated in the expression.

B. Transverse part

Noting Eq. (15) has the form of JijXj ¼ 0, and multi-
plying the inverse Jacobian matrix from the left, we have
Xi ¼ 0. Therefore Eq. (15) is equivalent to

εijkJpjT̂ Jpk ¼ 0: ð30Þ

Substituting Eq. (7) into the above equation, we have
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T̂ ∇ × Ψ ¼ ∇Ψi × T̂ ∇Ψi: ð31Þ

An apparent solution of the homogeneous equation
T̂ gðtÞ ¼ 0 is a constant, and another solution is

E−ðtÞ≡
Z

∞

t

dt
a2

¼
Z

∞

aðtÞ

da
a3H

; ð32Þ

which is a decaying function of time. In the EdS
universe, E−ðtÞ ∝ t−1=3. From the above solutions of the
homogeneous equation, an inverse operator of T̂ is
constructed as

T̂ −1FðtÞ ¼
Z

t

tin

a2ðt0Þ½E−ðtÞ − E−ðt0Þ�Fðt0Þdt0

¼
Z

t

tin

a2ðt0Þ
�Z

t0

t

dt00

a2ðt00Þ
�
Fðt0Þdt0: ð33Þ

The formal solution of Eq. (31) is then given by

∇ × Ψ ¼ B0 þ E−ðtÞB− þ T̂ −1ð∇Ψi × T̂ ∇ΨiÞ; ð34Þ

where B0;−ðqÞ are integration constants which depend
only on Lagrangian coordinates and are divergence-free,
∇ · B0;− ¼ 0. The first two terms of the right-hand side give
the linear solution of the transverse part,

∇ × Ψ ð1Þ ¼ B0ðqÞ þ E−ðtÞB−ðqÞ: ð35Þ

The divergence-free vectors B0;−ðqÞ are determined by
initial conditions. Substituting the perturbation series of
Eq. (16) and extracting a component of particular order
n ≥ 2, we have

∇ × Ψ ðnÞ ¼
X

m1þm2¼n

T̂ −1ð∇Ψðm1Þ
i × T̂ ∇Ψðm2Þ

i Þ: ð36Þ

The right-hand side consists of only lower-order perturba-
tions up to order n − 1, and thus nth-order perturbations of
the transverse part are given only by lower-order perturba-
tions. As in the case of Eq. (26), both the longitudinal and
transverse parts of lower-order perturbations enter in the
right-hand side.
Eqs. (26) and (36), together with Eq. (17) of each order,

Ψ ðnÞ ¼ Δ−1½∇ð∇ · Ψ ðnÞÞ − ∇ × ð∇ × Ψ ðnÞÞ�; ð37Þ

are the closed set of general recurrence relations from
which recursive solutions of LPT can be derived.

C. Seed values: First-order solution and
initial condition

The seed values for the recursive solutions are given
by the first-order solutions, Eqs. (25), (35). From those

equations and Eq. (37) with n ¼ 1, the general solution of
first order is given by

Ψ ð1Þðq; tÞ ¼ Δ−1f∇½DþðtÞAþðqÞ þD−ðtÞA−ðqÞ�
þ ∇ × ½B0ðqÞ þ E−ðtÞB−ðqÞ�g: ð38Þ

As the functions B0;−ðqÞ are divergence free, the set of
functions A�ðqÞ, B0;−ðqÞ has 6 degrees of freedom at each
Lagrangian point. They are completely determined by the
initial condition of displacement field, Ψ in ¼ Ψ ð1Þðq; tinÞ
and _Ψ in ¼ _Ψ ð1Þðq; tinÞ. However, physical degrees of free-
dom in an initial condition for a fluid element are just 4,
instead of 6. They are the initial values of density contrast
δinðqÞ≡ δðq; tinÞ and peculiar velocity vinðqÞ≡ vðq; tinÞ at
an initial time tin. Thus the initial conditions for the
displacement field have physically redundant degrees of
freedom.
To resolve the redundancy, we note that the initial

density contrast and peculiar velocity are given by

δin ¼ −∇ · Ψ in; vin ¼ ain _Ψ in; ð39Þ

where ain ¼ aðtinÞ is the value of the scale factor at the
initial time, and we assume that the initial time is
sufficiently early and the density contrast is well within
the linear regime. It is obvious that only the functions
A�ðqÞ and B−ðqÞ can be determined by δin and vin, and the
function B0ðqÞ remains undetermined. Therefore, the initial
conditions for the constant-transverse mode B0 cannot be
associated with any physical quantity. This is natural,
because a time-invariant rotation of displacement field is
just a relabeling of the Lagrangian coordinates of fluid
elements, without changing the density and velocity; only
the time-varying rotation of displacement field is physically
relevant to the vorticity. Thus the function B0 can be
considered as the “gauge” degrees of freedom in the initial
condition, and we can freely choose this function without
affecting any physical quantity (essentially the same argu-
ment is found in Ref. [39] in nonexpanding background
space). This function B0 has 2 degrees of freedom because
of the divergence-free condition, and accounts for the
redundancy of the initial conditions described above.
The simplest and most natural choice is obviously
B0 ¼ 0. The arbitrariness of this gauge mode does not
affect the fastest-growing mode of displacement field.
The expansion of the Universe at the initial time is well

described by the EdS universe, so we haveDþðtinÞ ∝ tin2=3,
D−ðtinÞ ∝ tin−1, E−ðtinÞ ∝ tin−1=3, and _DþðtinÞ=DþðtinÞ ¼
2=3tin, _D−ðtinÞ=D−ðtinÞ ¼ −1=tin, _EþðtinÞ=EþðtinÞ¼
−1=3tin. Using these relations, Eq. (39) completely deter-
mines the functions A�ðqÞ, B−ðqÞ. As a result, Eq. (38) can
be represented by
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Ψ ð1Þ ¼ −Δ−1
�
3

5

DþðtÞ
DþðtinÞ

∇
�
δin −

2

3

∇ · vin
ainHin

�

þ 2

5

D−ðtÞ
D−ðtinÞ

∇
�
δin þ

∇ · vin
ainHin

�

− 2
E−ðtÞ
E−ðtinÞ

∇ × ð∇ × vinÞ
ainHin

�
; ð40Þ

where Hin ¼ 2=3tin is the Hubble parameter at the initial
time, and we choose B0 ¼ 0 as described above. The
Eulerian counterpart of Eq. (40) can be found in Sec. 15
ofRef. [1]. The first termwith a linear growth factorDþ is the
fastest-growing mode. In the most general case, Eq. (40) can
be used as seed values for the recurrence relations, Eqs. (26),
(36), and (37). Keeping only the fastest-growing mode is
sufficiently accurate inmost practical applications. Denoting

δLðq; tÞ≡ 3

5

DþðtÞ
DþðtinÞ

�
δinðqÞ −

2

3

∇ · vinðqÞ
ainHin

�
; ð41Þ

and keeping only the fastest-growing mode, the Zel’dovich
approximation [16], Ψ ð1Þ ¼ −∇Δ−1δL, is recovered.
Adopting the Zel’dovich approximation as the seed values
for the recurrence relations, Eqs. (26), (36), (37) of n ≥ 2, the
resultant recursive solutions are also the fastest-growing
mode of higher-order perturbations.

D. Representations in Fourier space

Applying the Fourier transform to the displacement
field,

Ψ ðq; tÞ ¼
Z

d3k
ð2πÞ3 e

ik·q ~Ψ ðk; tÞ; ð42Þ

Eq. (26), (36), and (37) are transformed to

k · ~Ψ ðnÞðkÞ ¼ −i
X

m1þm2¼n

Z
k12¼k

ðk1 × k2Þ · ðT̂ − 4πGρ̄Þ−1½ ~Ψ ðm1Þðk1Þ × ðT̂ − 2πGρ̄Þ ~Ψ ðm2Þðk2Þ�

þ 1

2

X
m1þm2þm3¼n

Z
k123¼k

½k1 · ðk2 × k3Þ�ðT̂ − 4πGρ̄Þ−1
�
~Ψ ðm1Þðk1Þ ·

�
~Ψ ðm2Þðk2Þ ×

�
T̂ −

4πG
3

ρ̄

�
~Ψ ðm3Þðk3Þ

���

ð43Þ

k × ~Ψ ðnÞðkÞ ¼ i
X

m1þm2¼n

Z
k12¼k

ðk1 × k2ÞT̂ −1½ ~Ψ ðm1Þðk1Þ · T̂ ~Ψ ðm2Þðk2Þ�; ð44Þ

~Ψ ðnÞðkÞ ¼ 1

k2
fk½k · ~Ψ ðnÞðkÞ� − k × ½k × ~Ψ ðnÞðkÞ�g; ð45Þ

where we adopt notations,

k1���n ≡ k1 þ � � � þ kn;
Z
k1���n¼k

� � �≡
Z

d3k1
ð2πÞ3 � � �

d3kn
ð2πÞ3 δ

3
Dðk1���n − kÞ � � � : ð46Þ

The seed values for the above recurrence relations are given by the Fourier transform of Eq. (37), i.e.,

~Ψ ð1ÞðkÞ ¼ i
k2

�
3

5

DþðtÞ
DþðtinÞ

k

�
~δin −

2

3

ik · ~vin
ainHin

�
þ 2

5

D−ðtÞ
D−ðtinÞ

k

�
~δin þ

ik · ~vin
ainHin

�
− 2

E−ðtÞ
E−ðtinÞ

ik × ðk × ~vinÞ
ainHin

�
: ð47Þ

Although the time dependence is dropped from the argu-
ment of ~Ψ ðnÞ for notational simplicity, it actually does
depend on the time variable.
Theaboveequationsare themostgeneral formof recurrence

relations in Fourier space. When only the fastest-growing
mode is considered, the first-order solution is given by

~Ψ ð1ÞðkÞ ¼ ik
k2

DðtÞδ0ðkÞ; ð48Þ

where DðtÞ ¼ DþðtÞ=Dþðt0Þ is the linear growth factor
normalized at the present time as Dðt0Þ ¼ 1, and δ0ðkÞ ¼
~δLðk; t0Þ is the linear density contrast at the present time.
Considering only the fastest-growing mode, it is possible to
represent the displacement field of each order as

~Ψ ðnÞðk; tÞ ¼ i
N!

Z
k1���n¼k

~Lnðk1;…; kn; tÞδ0ðk1Þ � � � δ0ðknÞ;

ð49Þ

TAKAHIKO MATSUBARA PHYSICAL REVIEW D 92, 023534 (2015)

023534-6



where ~Ln are time-dependent Fourier kernels. For n ¼ 1, we
have ~Lðk; tÞ ¼ DðtÞk=k2.
In the following, we define and use the functions,

~Snðk1;…; kn; tÞ≡ k1���n · ~Lnðk1;…; kn; tÞ; ð50Þ

~Tnðk1;…; kn; tÞ≡ −k1���n × ~Lnðk1;…; kn; tÞ: ð51Þ

Substituting Eq. (49) into Eqs. (43)–(45), the recurrence
relations for the fastest-growing mode of Fourier kernels
are obtained as

~Snðk1;…; kn; tÞ

¼
X

m1þm2¼n

n!
m1!m2!

ðk1���m1
× kðm1þ1Þ���nÞ · ðT̂ − 4πGρ̄Þ−1½ ~Lm1

ðk1;…; km1
; tÞ × ðT̂ − 2πGρ̄Þ ~Lm2

ðkm1þ1;…; kn; tÞ�

−
1

2

X
m1þm2þm3¼n

n!
m1!m2!m3!

½k1���m1
· ðkm1���ðm1þm2Þ × kðm1þm2þ1Þ���nÞ�

× ðT̂ − 4πGρ̄Þ−1
�
~Lm1

ðk1;…; km1
; tÞ ·

�
~Lm2

ðkm1þ1;…; km1þm2
; tÞ ×

�
T̂ −

4πG
3

ρ̄

�
~Lm3

ðkm1þm2þ1;…; kn; tÞ
��

;

ð52Þ

~Tnðk1;…; kn; tÞ ¼
X

m1þm2¼n

n!
m1!m2!

ðk1���m1
× kðm1þ1Þ���nÞT̂ −1½ ~Lm1

ðk1;…; km1
; tÞ · T̂ ~Lm2

ðkm1þ1;…; kn; tÞ�; ð53Þ

~Lnðk1;…; kn; tÞ ¼
1

k1���n2
½k1���n ~Snðk1;…; kn; tÞ þ k1���n × ~Tnðk1;…; kn; tÞ�: ð54Þ

The right-hand sides of the above equations are not
symmetric with respect to their wave vectors k1;…; kn,
and so are the perturbation kernels obtained by the
recurrence relations. Those wave vectors are interchange-
able in Eq. (49), and thus only symmetrized kernels are
physically relevant. The symmetrized kernels are obtained
from unsymmetric kernels by a symmetrization procedure

~Lsym:
n ðk1;…; kn; tÞ≡ 1

n!

X
p∈Sn

~Lnðkpð1Þ;…; kpðnÞ; tÞ; ð55Þ

where the summation is taken for all the possible permu-
tations Sn of the arguments. Corresponding to the relations
of Eqs. (27)–(29), there are vector identities

ðk × k0Þ · ðL × L0Þ ¼
���� k · L k · L0

k0 · L k0 · L0

����; ð56Þ

½k · ðk0 × k00Þ�½L · ðL0 × L00Þ� ¼

��������

k · L k · L0 k · L00

k0 · L k0 · L0 k0 · L00

k00 · L k00 · L0 k00 · L00

��������
;

ð57Þ

which provide an alternative expression for Eq. (52).

IV. RECURRENCE RELATIONS WITH
APPROXIMATE TIME DEPENDENCE

The recurrence relations derived above, Eqs. (26), (36),
(37), (43)–(45), are completely general, and are applicable
to any background cosmology. One can consider any initial
conditions, and the resulting expressions contain every
growing, nongrowing and decaying mode in general. In
practical applications, however, one is interested in the
fastest-growing mode. It is also known that the time
dependence of the fastest-growing mode in higher-order
perturbations is approximately given by Ψ ðnÞ ∝ Dn. This
relation is exact for the EdS universe, in which Ωm ¼ 1,
ΩΛ ¼ 0, D ¼ a. There are residual time dependencies in
general cosmology, although they are quite small for
reasonable models [12,40–44]. The reason that the residual
time dependencies are small is explained by the structure of
the evolution equation in SPT [45,46]. A similar argument
also applies in the case of LPT as shown below.
Instead of the proper time t, we can use the logarithm of

linear growth factor

τ≡ lnDðtÞ; ð58Þ

as a time variable. In terms of the new variable, the operator
of the type T̂ − απGρ̄, which appears in the recurrence
relations, Eqs. (26) and (36) with α ¼ 0; 4=3; 2; 4, is
given by
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T̂ − απGρ̄ ¼ H2f2
� ∂2

∂τ2 þ
�
3

2

Ωm

f2
− 1

� ∂
∂τ −

3α

8

Ωm

f2

�
;

ð59Þ

where f ¼ d lnD=d ln a is the linear growth rate andΩm ¼
8πGρ̄=3H2 is the time-dependent density parameter. The
linear growth rate is approximately given by f ≃Ω0.55

m for
flat models [47] and f ≃ Ω0.6

m for Friedman models [1]. If
the growth rate is approximated by f ¼ Ω1=2

m in Eq. (59), all
the coefficients in the recurrence relations become inde-
pendent of time; nth-order components of Eqs. (19) and
(31) approximately reduce to

� ∂2

∂τ2 þ
1

2

∂
∂τ −

3

2

�
∇ · Ψ ðnÞ

¼ −
X

m1þm2¼n

εijkεipqΨ
ðm1Þ
j;p

� ∂2

∂τ2 þ
1

2

∂
∂τ −

3

4

�
Ψðm2Þ

k;q

−
1

2

X
m1þm2þm3¼n

εijkεpqrΨ
ðm1Þ
i;p Ψðm2Þ

j;q

×

� ∂2

∂τ2 þ
1

2

∂
∂τ −

1

2

�
Ψðm3Þ

k;r ; ð60Þ

� ∂2

∂τ2 þ
1

2

∂
∂τ
�
∇ × Ψ ðnÞ

¼
X

m1þm2¼n

∇Ψðm1Þ
i ×

� ∂2

∂τ2 þ
1

2

∂
∂τ
�
∇Ψðm2Þ

i : ð61Þ

The linear equations with n ¼ 1 are homogeneous, and the
general solutions are given by a superposition of indepen-
dent solutions eτ ¼ D, e−3τ=2 ¼ D−3=2 for the longitudinal
part, and e0 ¼ 1, e−τ=2 ¼ D−1=2 for the transverse part. As a
consequence, decaying mode functions in the present
approximation are replaced by D−ðtÞ → e−3τ=2 ¼ D−3=2,
E−ðtÞ → e−τ=2 ¼ D−1=2. The general solution for the first-
order displacement field is given by Eq. (40) with these
replacements. In general, the differential equations of
Eqs. (60) and (61) can be recursively solved by standard
methods, e.g., using the Laplace transform, including all
the modes of time dependence.
When we are interested in the fastest-growing mode, a

simple logic of induction shows that the fastest-growing
solutions of the above equations are given by
Ψ ðnÞ ∝ enτ ¼ Dn. This conclusion is exact in the EdS
model, because Ωm ¼ f ¼ 1. In general cosmology, even
if approximation f ≃ Ω1=2

m is not so accurate at the present
time, it is much more accurate in most of the time evolution.
Thus the ratio Ψ ðnÞ=Dn in exact solutions is extremely
insensitive to background cosmology, even more than what
the approximation f ≃ Ω1=2

m would suggest [2].

Substituting the inferred time dependence Ψ ðnÞ ∝ Dn of
the fastest-growing mode into Eqs. (60), (61), the
recurrence relations for n ≥ 2 with approximate time
dependence reduce to

∇ · Ψ ðnÞ ¼ −
1

2

X
m1þm2¼n
m1≤m2

Mð2Þ
m1m2

×

�
1 −

4m1m2

ð2nþ 3Þðn − 1Þ
�
εijkεipqΨ

ðm1Þ
j;p Ψðm2Þ

k;q

−
1

6

X
m1þm2þm3¼n
m1≤m2≤m3

Mð3Þ
m1m2m3

×

�
1 −

4ðm1m2 þm2m3 þm3m1Þ
ð2nþ 3Þðn − 1Þ

�

× εijkεpqrΨ
ðm1Þ
i;p Ψðm2Þ

j;q Ψðm3Þ
k;r ; ð62Þ

∇ × Ψ ðnÞ ¼
X

m1þm2¼n
m1<m2

m2 −m1

n
∇Ψðm1Þ

i × ∇Ψðm2Þ
i ; ð63Þ

where Mð2Þ
m1m2

and Mð3Þ
m1m2m3

are multiplicity factors
defined by

Mð2Þ
m1m2

≡
�
1 ðm1 ¼ m2Þ
2 ðm1 < m2Þ

;

Mð3Þ
m1m2m3

≡

8>>><
>>>:

1 ðm1 ¼ m2 ¼ m3Þ
3 ðm1 ¼ m2 < m3Þ
3 ðm1 < m2 ¼ m3Þ
6 ðm1 < m2 < m3Þ

: ð64Þ

The seed values for the above recurrence relation are given
by the fastest-growing mode of Eq. (40), i.e., the Zel’dovich
approximation,

Ψ ð1Þ ¼ −∇Δ−1δL: ð65Þ

Eq. (62) can also be derived from Eq. (A4), an alternative
expression of longitudinal recurrence relations.
The form of Eq. (63) is equivalent to the recurrence

relations of Ref. [36] in the EdS limit which are derived
from the irrotational condition of velocity field in Eulerian
space, ∇x × v ¼ 0, while our derivation does not assume
the irrotational condition from the beginning. It is a
consequence of selecting the fastest-growing mode in
LPT that the Eulerian velocity field is irrotational. In fact,
the Eulerian irrotational condition is equivalent to
∇ × _Ψ ¼ ∇Ψi × ∇ _Ψi, which is satisfied by Eq. (63) with
the fastest-growing mode, Ψ ðnÞ ∝ Dn. Therefore, unlike
most treatments of LPT in the literature, there is no need for
imposing the irrotational condition ∇x × v ¼ 0 to begin
with. Solutions with irrotational Eulerian flow form a
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subclass of general solutions of LPT, and the fastest-
growing mode is in this subclass. Nevertheless, rotational
flows are present in more general solutions [10].
The form of Eq. (62) is also equivalent to the recurrence

relations of Ref. [37] in the EdS limit, which are derived
from the Taylor series in the scale factor. Even though the
last expansion scheme is not the same as the one here, they
agree with each other in the special case of the fastest-
growing mode in the EdS model. This agreement does not
apply to other cosmological models, because the linear
growth factor is not proportional to the scale factor in
general. In fact, the recurrence relations in the ΛCDM
model in the last expansion scheme are different from
ours [38].

In Fourier space, the nth-order kernel ~Ln defined by
Eq. (49) is proportional toDn in the present approximation.
It is natural to separate this simple time dependence from
the kernels as ~Ln ¼ DnLn, and the newly defined kernel Ln
is extremely insensitive to background cosmology. Eq. (49)
in this case is represented by

~Ψ ðnÞðk; tÞ ¼ iDn

n!

Z
k1���n¼k

Lnðk1;…; knÞδ0ðk1Þ � � � δ0ðknÞ:

ð66Þ

Defining Sn ¼ k1���n · Ln and Tn ¼ −k1���n × Ln, the recur-
rence relations of Eqs. (52)–(54) reduce to

Snðk1;…; knÞ ¼
n!
2

X
m1þm2¼n
m1≤m2

Mm1m2

m1!m2!

�
1 −

4m1m2

ð2nþ 3Þðn − 1Þ
�
ðk1���m1

× kðm1þ1Þ���nÞ · ½Lm1
ðk1;…; km1

Þ × Lm2
ðkm1þ1;…; knÞ�

−
n!
6

X
m1þm2þm3¼n
m1≤m2≤m3

Mm1m2m3

m1!m2!m3!

�
1 −

4ðm1m2 þm2m3 þm3m1Þ
ð2nþ 3Þðn − 1Þ

�
½k1���m1

· ðkðm1þ1Þ���ðm1þm2Þ × kðm1þm2þ1Þ���nÞ�

× fLm1
ðk1;…; km1

Þ · ½Lm2
ðkm1þ1;…; km1þm2

Þ × Lm3
ðkm1þm2þ1;…; knÞ�g; ð67Þ

Tnðk1;…; knÞ ¼ ðn − 1Þ!
X

m1þm2¼n
m1<m2

m2 −m1

m1!m2!
ðk1���m1

× kðm1þ1Þ���nÞ½Lm1
ðk1;…; km!

Þ · Lm2
ðkm1þ1;…; knÞ�; ð68Þ

Lnðk1;…; knÞ ¼
1

k1���n2
½k1���nSnðk1;…; knÞÞ þ k1���n × Tnðk1;…; knÞÞ�: ð69Þ

The seed values are given by L1ðkÞ ¼ ik=k2, i.e., S1 ¼ 1,
T1 ¼ 0. Practically, the above equations should be quite
useful. The recurrence relations above give unsymmetric
kernels, and symmetric kernels

Lsym
n ðk1;…; knÞ≡ 1

n!

X
p∈Sn

Lnðkpð1Þ;…; kpðnÞÞ ð70Þ

are physically relevant quantities. The vector identities of
Eq. (56) and (57) provide an alternative expression for
Eq. (67). For readers’ convenience, recursive solutions up
to seventh order are explicitly given in Appendix B.

V. CONCLUSIONS

In this paper, the recurrence relations in the usual
framework of LPT are derived, generalizing the previously
known recurrence relations in LPT. The newly derived
relations are self-contained within the usual framework of
LPT, and applicable to any initial condition in a general
cosmological model. The most general recurrence relations
are given by Eqs. (26), (36), (37) in configuration space,

and Eqs. (43)–(45) in Fourier space. The resultant recursive
solutions contain not only the fastest-growing mode but
also all the other modes, with arbitrary initial conditions.
In Fourier space, the perturbation kernels of the fastest-
growing mode satisfy the recurrence relations of
Eqs. (52)–(54).
The above recurrence relations are the most ich is very

accurate for realistic models of cosmology, we find
simplified recurrence relations for the fastest-growing
mode of LPT. They are given by Eqs. (62), (63), (37) in
configuration space, and Eqs. (67)–(69) in Fourier space.
The time dependence is explicitly solved in the last cases,
and the corresponding recurrence relations are purely
algebraic. Practically, these relations would be the most
handy ones for future applications. Explicit recursive
solutions up to seventh order are given in Appendix B.
Unlike most of the previous work, the irrotational

condition of Eulerian velocity field, ∇x × v ¼ 0, is not
assumed throughout this work. However, the recurrence
relations for the transverse part of the fastest-growing
mode, Eqs. (63) and (68), coincide with those derived
from the irrotational condition. This means that the
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irrotationality of Eulerian flow is a consequence of select-
ing the fastest-growing mode in LPT, and there is no need
to impose the condition from the beginning of LPT. Our
results for the fastest-growing mode in the limit of the EdS
model are fully consistent with the previously known
recurrence relations.
A straightforward application of this work is to use them

for numerical evaluations of higher-order corrections to
statistical measures of the large-scale structure, such as the
power spectrum, bispectrum, trispectrum, etc. With the
machinery of iPT [20] and/or convolution Lagrangian
perturbation theory (CLPT) [22], there is a systematic
way of calculating such kinds of statistics from the higher-
order LPT, including the effects of redshift-space distor-
tions, nonlocal bias, and primordial non-Gaussianity
[20,24,31,48–50]. While two- or higher-loop nonlinear
corrections have been investigated with Eulerian perturba-
tion theory such as SPT, the applications of LPT have been
limited to one-loop corrections (except Ref. [33] in which
the SPT/LPT correspondence [20] is used), apparently
because of the lack of recursive solutions in LPT.
The recurrence relations derived in this paper, especially
the simplest versions of Eqs. (67)–(69), should change the
situation in this respect.
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APPENDIX A: AN ALTERNATIVE FORM OF
RECURRENCE RELATIONS FOR THE

LONGITUDINAL PART

There is an alternative, but equivalent form of recurrence
relations for the longitudinal part. Using Eq. (9) and the
product rule of Eq. (13), one sees Eq. (14) is equivalent to

ðT̂ − 4πGρ̄ÞðJ − 1Þ ¼ εijkεlmnJil _Jjm _Jkn: ðA1Þ

The general solution is formally given by

J − 1 ¼ AþDþ þ A−D−

þ εijkεlmnðT̂ − 4πGρ̄Þ−1Jil _Jjm _Jkn; ðA2Þ

where A�ðqÞ are integration constants of time. Substituting
Eqs. (7), (9) into this equation, we have

∇ · Ψ ¼ AþDþ þ A−D− −
1

2
εijkεilmΨj;lΨk;m

−
1

6
εijkεlmnΨi;lΨj;mΨk;n

þ ðT̂ − 4πGρ̄Þ−1½εijkεilm _Ψjl
_Ψkm

þ εijkεlmnΨil
_Ψjm

_Ψkn�: ðA3Þ

The linear solution is given by

∇ · Ψ ð1Þ ¼ AþDþ þ A−D−; ðA4Þ
and extracting the particular order n ≥ 2, we have

∇ · Ψ ðnÞ ¼ −
1

2

X
m1þm2¼n

εijkεilmΨ
ðm1Þ
j;l Ψðm2Þ

k;m

−
1

6

X
m1þm2þm3¼n

εijkεlmnΨ
ðm1Þ
i;l Ψðm2Þ

j;m Ψðm3Þ
k;n

þ ðT̂ − 4πGρ̄Þ−1
� X
m1þm2¼n

εijkεilm _Ψðm1Þ
j;l

_Ψðm2Þ
k;m

þ
X

m1þm2þm3¼n

εijkεlmnΨ
ðm1Þ
i;l

_Ψðm2Þ
j;m

_Ψðm3Þ
k;n

�
: ðA5Þ

The above equation is equivalent to Eq. (26), as straight-
forwardly confirmed by using the product rules of Eqs. (12)
and (13).

APPENDIX B: EXPLICIT SOLUTIONS
UP TO SEVENTH ORDER

Explicitly writing down the perturbation kernel of each
order is straightforward by applying the recurrence rela-
tions derived in the main text. For readers’ convenience, we
manifestly show the explicit kernel functions of the fastest-
growing mode with approximate time dependence, up to
seventh order in this Appendix. The seventh-order pertur-
bation theory is required in calculating, e.g., three-loop
corrections to the power spectrum, etc. As in the main text,
we apply notations

Snðk1;…; knÞ≡ k1���n · Lnðk1;…; knÞ; ðB1Þ

Tnðk1;…; knÞ≡ −k1���n × Lnðk1;…; knÞ; ðB2Þ

and results of these functions are presented below. The total
kernel is given by

Lnðk1;…; knÞ ¼
1

k1���n2
½k1���nSnðk1;…; knÞ þ k1���n

× Tnðk1;…; knÞ�: ðB3Þ

from the above functions. For simplicity, the following
results are unsymmetric with respect to their arguments.
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The symmetrization procedure, Eq. (70), should be applied
to obtain symmetric kernels.
To present the results, it is convenient to define the

following functions,

Uðk1; k2Þ ¼
jk1 × k2j2
k12k22

¼ 1 −
�
k1 · k2
k1k2

�
2

; ðB4Þ

Vðk1; k2; k3Þ ¼
jk1 · ðk2 × k3Þj2

k12k22k23

¼ 1 −
�
k1 · k2
k1k2

�
2

−
�
k2 · k3
k2k3

�
2

−
�
k3 · k1
k3k1

�
2

þ 2
ðk1 · k2Þðk2 · k3Þðk3 · k1Þ

k12k22k32
; ðB5Þ

Wðk1; k2Þ ¼
ðk1 × k2Þðk1 · k2Þ

k12k22
: ðB6Þ

The recurrence relations enable us to deduce perturba-
tion kernels of arbitrary order, once the first-order solution
is given. As we are interested in the fastest-growing
solution, the first-order solution is given by the
Zel’dovich approximation, L1ðkÞ ¼ k=k2, i.e.,

S1ðkÞ ¼ 1; T1ðkÞ ¼ 0: ðB7Þ

The higher-order solutions are recursively derived from
Eqs. (67) and (68). The second-order solution is given by

S2ðk1; k2Þ ¼
3

7
Uðk1; k2Þ; T2ðk1; k2Þ ¼ 0: ðB8Þ

The third-order solution is given by

S3ðk1; k2; k3Þ ¼
5

3
Uðk1; k23ÞS2ðk2; k3Þ −

1

3
Vðk1; k2; k3Þ;

ðB9Þ

T3ðk1; k2; k3Þ ¼ Wðk1; k23ÞS2ðk2; k3Þ: ðB10Þ

Transverse parts Tn appear only from the third order
(n ≥ 3) in the fastest-growing-mode solutions. This prop-
erty is a consequence of the fastest-growing mode with
approximate time dependence and does not apply in
general solutions [11], as seen from Eqs. (35) and (36).
The fourth-order solution is given by

S4ðk1;…; k4Þ ¼
28

11
½Uðk1; k234ÞS3ðk2; k3; k4Þ −Wðk1; k234Þ · T3ðk2; k3; k4Þ�

þ 17

11
Uðk12; k34ÞS2ðk1; k2ÞS2ðk3; k4Þ −

26

11
Vðk1; k2; k34ÞS2ðk3; k4Þ; ðB11Þ

T4ðk1;…; k4Þ ¼ 2

�
Wðk1; k234ÞS3ðk2; k3; k4Þ þ

k1 × k234
k12k2342

ðk1 × k234Þ · T3ðk2; k3; k4Þ
�
: ðB12Þ

Substituting Eqs. (B7)–(B10) into the above equation, explicit solutions in the EdS universe derived in Ref. [21] are exactly
reproduced.
Solutions of LPT for fifth or even higher orders are not found in the literature. The fifth-order solution from the

recurrence relations is given by

S5ðk1;…; k5Þ ¼
45

13
½Uðk1; k2345ÞS4ðk2;…; k5Þ −Wðk1; k2345Þ · T4ðk2;…; k5Þ�

þ 70

13
S2ðk1; k2Þ½Uðk12; k345ÞS3ðk3; k4; k5Þ −Wðk12; k345Þ · T3ðk3; k4; k5Þ�

−
60

13

�
Vðk1; k2; k345ÞS3ðk3; k4; k5Þ þ

ðk1 × k2Þ · k345
k12k22k3452

½ðk1 × k2Þ × k345� · T3ðk3; k4; k5Þ
�

−
75

13
Vðk1; k23; k45ÞS2ðk2; k3ÞS2ðk4; k5Þ; ðB13Þ

T5ðk1;…; k5Þ ¼ 3

�
Wðk1; k2345ÞS4ðk2;…; k5Þ þ

k1 × k2345
k12k23452

ðk1 × k2345Þ · T4ðk2;…; k5Þ
�

þ 2S2ðk1; k2Þ
�
Wðk12; k345ÞS3ðk3; k4; k5Þ þ

k12 × k345
k122k3452

ðk12 × k345Þ · T3ðk3; k4; k5Þ
�
: ðB14Þ

The sixth-order solution is given by
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S6ðk1;…; k6Þ ¼
22

5
½Uðk1; k23456ÞS5ðk2;…; k6Þ −Wðk1; k23456Þ · T5ðk2;…; k6Þ�

þ 43

5
S2ðk1; k2Þ½Uðk12; k3456ÞS4ðk3;…; k6Þ −Wðk12; k3456Þ · T4ðk3;…; k6Þ�

þ 26

5

�
S3ðk1; k2; k3Þ½Uðk123; k456ÞS3ðk4; k5; k6Þ − 2Wðk123; k456Þ · T3ðk4; k5; k6Þ�

þ k123 × k456
k1232k4562

· f½k123 × T3ðk1; k2; k3Þ� × ½k456 × T3ðk4; k5; k6Þ�g
�

−
39

5
fVðk1; k2; k3456ÞS4ðk3;…; k6Þ þ

ðk1 × k2Þ · k3456
k12k22k34562

½ðk1 × k2Þ × k3456� · T4ðk3;…; k6Þg

−
124

5
S2ðk2; k3ÞfVðk1; k23; k456ÞS3ðk4; k5; k6Þ þ

ðk1 × k23Þ · k456
k12k232k4562

½ðk1 × k23Þ × k456� · T3ðk4; k5; k6Þ�g

−
27

5
Vðk12; k34; k56ÞS2ðk1; k2ÞS2ðk3; k4ÞS2ðk5; k6Þ; ðB15Þ

T6ðk1;…; k6Þ ¼ 4

�
Wðk1; k23456ÞS5ðk2;…; k6Þ þ

k1 × k23456
k12k234562

ðk1 × k23456Þ · T5ðk2;…; k6Þ
�

þ 5S2ðk1; k2Þ
�
Wðk12; k3456ÞS4ðk3;…; k6Þ þ

k12 × k3456
k122k34562

ðk12 × k3456Þ · T4ðk3;…; k6Þ
�
: ðB16Þ

The seventh-order solution is given by

S7ðk1;…; k7Þ ¼
91

17
½Uðk1; k234567ÞS6ðk2;…; k7Þ −Wðk1; k234567Þ · T6ðk2;…; k7Þ�

þ 217

17
S2ðk1; k2Þ½Uðk12; k34567ÞS5ðk3;…; k7Þ −Wðk12; k34567Þ · T5ðk3;…; k7Þ�

þ 315

17

�
Uðk123; k4567ÞS3ðk1; k2; k3ÞS4ðk4;…; k7Þ

−Wðk123; k4567Þ · ½S3ðk1; k2; k3ÞT4ðk4;…; k7Þ − T3ðk1; k2; k3ÞS4ðk5;…; k7Þ�

þ k123 × k4567
k1232k45672

· f½k123 × T3ðk1; k2; k3Þ� × ½k4567 × T4ðk4;…; k7Þ�g
�

−
203

17

�
Vðk1; k2; k34567ÞS4ðk3;…; k7Þ þ

ðk1 × k2Þ · k34567
k12k22k345672

½ðk1 × k2Þ × k34567� · T5ðk3;…; k7Þ
�

−
805

17
S2ðk2; k3Þ

�
Vðk1; k23; k4567ÞS4ðk4;…; k7Þ þ

ðk1 × k23Þ · k4567
k12k232k45672

½ðk1 × k23Þ × k4567� · T4ðk4;…; k7Þ�
�

−
490

17

�
Vðk1; k234; k567ÞS3ðk2; k3; k4ÞS3ðk5; k6; k7Þ

þ 2S3ðk2; k3; k4Þ
ðk1 × k234Þ · k567
k12k2342k5672

½ðk1 × k234Þ × k567� · T3ðk5; k6; k7Þ
�

þ ðk1 × k234Þ · k567
k12k2342k5672

k1 · f½k234 × T3ðk2; k3; k4Þ� × ½k567 × T3ðk5; k6; k7Þ�g
�

−
665

17
S2ðk1; k2ÞS2ðk3; k4Þ

�
Vðk12; k34; k567ÞS3ðk5; k6; k7Þ

þ ðk12 × k34Þ · k567
k122k342k5672

½ðk12 × k34Þ × k567� · T3ðk5; k6; k7Þ�
�
; ðB17Þ
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T7ðk1;…; k7Þ ¼ 5

�
Wðk1; k234567ÞS6ðk2;…; k7Þ þ

k1 × k234567
k12k2345672

ðk1 × k234567Þ · T6ðk2;…; k7Þ
�

þ 9S2ðk1; k2Þ
�
Wðk12; k34567ÞS5ðk3;…; k7Þ þ

k12 × k34567
k122k345672

ðk12 × k34567Þ · T5ðk3;…; k7Þ
�
:

þ 5

�
Wðk123; k4567ÞS3ðk1; k2; k3ÞS4ðk4;…; k7Þ

þ k123 × k4567
k1232k45672

�
ðk123 × k4567Þ · ½S3ðk1; k2; k3ÞT4ðk4;…; k7Þ − T3ðk1; k2; k3ÞS4ðk4;…; k7Þ�

þ ½k123 × T3ðk1; k2; k3Þ� · ½k4567 × T4ðk4;…; k7Þ�
��

: ðB18Þ

Continuing this kind of calculation and writing down similar expressions for n ≥ 8 is straightforward and not difficult
thanks to the recurrence relations.
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