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The simplest standard ray tracing scheme employing the Born and Limber approximations and
neglecting lens-lens coupling is used for computing the convergence along individual rays in mock N-body
data based on Szekeres swiss cheese and onion models. The results are compared with the exact
convergence computed using the exact Szekeres metric combined with the Sachs formalism. A comparison
is also made with an extension of the simple ray tracing scheme which includes the Doppler convergence.
The exact convergence is reproduced very precisely as the sum of the gravitational and Doppler
convergences along rays in Lemaitre-Tolman-Bondi swiss cheese and single void models. This is not the
case when the swiss cheese models are based on nonsymmetric Szekeres models. For such models, there is
a significant deviation between the exact and ray traced paths and hence also the corresponding
convergences. There is also a clear deviation between the exact and ray tracing results obtained when
studying both nonsymmetric and spherically symmetric Szekeres onion models.
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I. INTRODUCTION

With the possible near-future exception of observations
based on gravitational waves, all astrophysical observations
are based on light. This makes understanding light
propagation a crucial element of both theoretical and
observational cosmology. The light that is observed in
astrophysical observations has propagated through vast
regions of the Universe to reach us. During its propagation,
the light feels the exact, local spacetime and not some
“average” spacetime described by a Friedmann-Lemaitre-
Robertson-Walker (FLRW) model. What effects the local
inhomogeneities of spacetime have on light propagation and
how important these effects are is still up for debate. For
redshift-distance relations it has however been shown that
averaging over many light rays will reduce observations
approximately to what one would see if the light had simply
traveled through the averaged universe model (see e.g.
[1–9]). For models with vanishing backreaction this implies
that averaging over many light rays will yield results
approximately corresponding to FLRW results. (For effects
of nonvanishing backreaction on light propagation, see e.g.
[9]. See e.g. [10–13] for introductions and reviewson cosmic
backreaction.) The number of geodesics needed to obtain
such results can be quite large though. In addition, some
observables, such as reduced shear and CMB temperature
fluctuations, are not suitable for the needed averaging. It is
thus important to study the effects of inhomogeneities on
light propagation so that the gained knowledge can be used
when interpreting especially high precision observations.
Much work has gone into using perturbation theory to

study the effects of inhomogeneities on lensing and redshift-
distance relations (see e.g. [14–20] for some recent exam-
ples). Another approach is to use exact, inhomogeneous
solutions to Einstein’s equations. Among the most realistic,

exact solutions to Einstein’s equations which contain
dynamical structures are the quasispherical Szekeresmodels
[21] including their spherically symmetric limit, the
Lemaitre-Tolman-Bondi (LTB) models [22–24]. Light
propagation through these models has been vastly studied,
especially with the purpose of studying the effects of
inhomogeneities on CMB and supernova observations
(see e.g. [7–9,25–59] for some examples).1 With the excep-
tion of onionmodels (see e.g. [38]), these models are double
or triple structure models (see e.g. [62]) and are thus not
individually useful for realistic studies of light propagation
over large distances. A possible method for overcoming this
issue is to combine few-structure models to build multiple-
structure swiss cheese models (first introduced in [63]).
These models have a high degree of complexity and are thus
very important and useful. However, they suffer from
simplicities such as a lack of interaction between individual
structures (“holes”) and often the holes in the cheese are
made up of only a few specific inhomogeneous models
representing structure formation on a limited scale interval.
Perhaps because swiss cheese models have these insuffi-
ciencies, universe models based on the output from
Newtonian N-body simulations are considered by many
the most realistic models of the real universe—despite their
lack of relativistic effects such as cosmic backreaction
[64,65]. The standard cosmological setting for studying
light propagation through an inhomogeneous universe is
thus the output from Newtonian N-body simulations. The

1Other models breaking either the assumption of homogeneity
or isotropy have also been used to study light propagation.
Examples are [60,61] concerning light propagation in Bianchi
and Stephani models, respectively. In this work, the focus will be
on the Szekeres models, as the Szekeres structures are more
comparable to structures in typical N-body simulations.
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caveat is that Newtonian theory does not include a metric.
This is problematic as the metric is crucial for studying
relativistic light propagation and weak lensing. To circum-
vent the problem, it is standard to introduce the perturbed
FLRWmetric in the Newtonian gauge and use this metric to
obtain approximation schemes for tracing rays through
N-body simulations and computing the corresponding
shear, convergence, etc. Work (e.g. [66–68]) has been done
with the goal to improve the standard ray tracing schemes
which are based on several approximations besides the use
of the perturbed FLRW metric. However, it is difficult to
obtain exact quantifications of the impact of these approx-
imations and thus to determine to what extent the suggested
improvements are actually worth their trouble.
Exact, inhomogeneous solutions to Einstein’s field

equations, such as the Szekeres models, are excellent tools
for studying the validity and precision of results obtained
by using mainstream approximation schemes. Such models
have for instance been used to study the possibility of a
giant void being the reason for the CMB cold spot [69–71],
to study the precision of single structure thin lensing [55],
and to illustrate the dominance of Doppler convergence at
low redshifts [72].
In this work, quasispherical Szekeres swiss cheese and

onion models will be used to study the precision of the
simplest, standard ray tracing scheme used for obtaining
the convergence along individual geodesics. The conver-
gence is the most basic cosmologically interesting quantity
obtainable from ray tracing and can be used to compute e.g.
distance measures. The gravitational convergence can also
be used to obtain the shear (see e.g. [73]), so once the
convergence has been obtained, many observables can be
studied (see e.g. [74,75] for some examples). Hence,
obtaining the convergence along light rays is the typical
goal of ray tracing.
The precision of the convergence obtained from standard

ray tracing schemes will be studied here by using the direct
comparison approach introduced in [76]. Using this
approach, Szekeres models are reproduced as (mock)
N-body data. Standard ray tracing approximation schemes
can then be combined with the N-body data to obtain the
convergence along light rays. The approximate results
hereby obtained are compared to the exact results obtained
by studying exact light propagation in the exact Szekeres
spacetime. The comparisons made in the following show
that in the special cases of LTB single void and swiss
cheese models, the ray tracing method reproduces exact ray
paths and corresponding convergences very well. However,
in the more general case where the single void models are
nonsymmetric, as well as in the case of onion models, the
ray tracing scheme does not reproduce the exact results.

II. QUASISPHERICAL SZEKERES MODELS

This section gives a brief introduction to the quasi-
spherical Szekeres models including a description of the

particular models used in this work. See e.g. [62,77] for
more details on the Szekeres models and the procedure for
constructing particular models.
The quasispherical Szekeres models are a family of

exact, inhomogeneous solutions to Einstein’s equations.
Using stereographic coordinates, the spacetime of the
model can be described by the line element:

ds2 ¼ −c2dt2 þ
ðΦ;rðt; rÞ − Φðt; rÞ E;rðr;p;qÞ

Eðr;p;qÞ Þ
2

1 − kðrÞ dr2

þ Φðt; rÞ2
Eðr; p; qÞ2 ðdp

2 þ dq2Þ: ð1Þ

Subscripted commas followed by one or more coordinates
or indices indicate partial derivatives with respect to the
implied coordinate(s).
Inserting the line element into Einstein’s equations for a

dust universe with a cosmological constant yields the
following two useful relations:

1

c2
Φ2

;t ¼
2M
Φ

− kþ 1

3c2
ΛΦ2; ð2Þ

ρ ¼ 2M;r − 6ME;r

E

c2βΦ2ðΦ;r − Φ E;r

E Þ
; β ¼ 8πGN=c4: ð3Þ

The function M ¼ MðrÞ appearing in these equations is a
temporal integration constant depending on the radial
coordinate and corresponds to the effective gravitational
mass at comoving radial coordinate r.
E is given by E ¼ 1

2S ðp2 þ q2Þ − pP
S − qQ

S þ P2þQ2þS2

2S ,
where S; P and Q are continuous but otherwise arbitrary
functions of r. The quasispherical Szekeres models reduce
to LTB models when P;Q and S are constant functions.
The LTB model has two free functions and an extra

degree of freedom from the covariance of the radial
coordinate. A quasispherical Szekeres model has the three
dipole functions as extra free functions and they are
specified by choosing dipole functions to remove the
spherical symmetry of an underlying LTB model.
The models studied here all have a vanishing cosmologi-

cal constant. The coordinate covariance of r is removed in
the models by setting Φðt0; rÞ ¼ r, where t0 is the present
time time-coordinate of the Einstein-de Sitter (EdS) model
with reduced Hubble parameter h ≔ H0=ð100 km=s=
MpcÞ¼ 0.7. One of the free functions of the LTB models
is chosen to be the time of the big bang which is set equal to
zero; i.e. all the studied models have Φðt ¼ 0; rÞ ¼ 0. The
last free function of the LTB models is chosen to be kðrÞ
which is specified below for the different models that
we study.

A. Single void and swiss cheese models

The swiss cheese models studied here are based on
either LTB or nonsymmetric Szekeres single void models.
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The final specification of the LTB single void models is
made by defining kðrÞ as

kðrÞ ¼
(
−r2kmax

��
r
rb

�
m
− 1

�
2

if r < rb

0 otherwise:
ð4Þ

The models studied here have kmax ¼ 8 × 10−10. The
parameters m and rb are varied in order to study the
importance of void size and shape. The specific values ofm
and rb used here are 2, 4, 6 and 30 Mpc, 60 Mpc, 100 Mpc,
respectively. Present time density profiles of the models
with m ¼ 60 Mpc are shown in the top row of Fig. 1. To
construct nonsymmetric Szekeres models, the LTB models
are modified by defining2 Q ¼ nðe−σr − 1Þ with n ¼ 2.3

and σ ¼ 0.002
0.1 Mpc. Present time density profiles of the non-

symmetric models are shown in the bottom row of Fig. 1.

B. Onion models

Aside from swiss cheese models, onion models (see e.g.
[38]) will also be used. Onion models have an oscillating
density field in the radial direction. In the models studied
here, the oscillations are damped and will be referred to as
truncated onion models. The damping is achieved by
combining kðrÞ with an exponentially decaying function
as shown in Eq. (5). The radial coordinate where the density
fluctuations become negligible will be referred to as the
truncation radius.
The final specification of the LTB onion models studied

here is made by specifying kðrÞ as

kðrÞ ¼ −kmaxr2cos2
�
πr
rb

�
e−α

r
rb : ð5Þ

FIG. 1 (color online). Present time 1D density profiles of LTB and nonsymmetric Szekeres models with rb ¼ 60 Mpc and varied m.
For the nonsymmetric models, the profiles are shown along the direction of highest degree of anisotropy. The comoving coordinates are
normalized at present time in units of 0.1 Mpc.

2The constant term, −n, in Q has no physical significance but
is included in order to simplify a technical detail regarding ray
tracing through the origin of single void models.
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All models will have kmax¼6.2×10−10 and rb ¼ 200 Mpc.
The parameter α is varied. For α ¼ 0, the model is a true
onion model with an oscillating density field for all values
of the radial coordinate. In this particular true onion model,
the density becomes negative and hence that model will not
be used. Truncating the model with α≳ 0.25 removes the
occurrence of negative densities. The density fields of the
onion models used here are shown in Fig. 2 and specified in
Table I. The spherical symmetry is removed by using the
dipole function Q ¼ ne−σr, with the values of n and σ
specified in Table I.

C. Swiss cheese vs onion models

As semirealistic models of large scale structure for-
mation, the swiss cheese and onion models each have their

advantages and disadvantages. Swiss cheese models have
density fields that look very realistic since the inhomo-
geneities are arranged in voids and surrounding clusters
whereas the LTB onion models at best can be considered
as models with a density distribution that has been
averaged in angular directions—a feature which is only
barely removed by adding anisotropy through the dipole
functions. On the other hand, the individual single void
structures of a swiss cheese model are restricted from
interacting with each other, while the inhomogeneities of
onion models have coupled dynamics.
Single void and swiss cheese models have intrinsic

backgrounds, namely, the backgrounds they reduce to
outside their structures. Onion models do not have this
feature. This is inconvenient since an FLRW background
must be defined in order to use standard ray tracing
schemes. It is also an advantage of the onion models since
the real universe does not have a background either.
Newtonian N-body simulations have implicit back-
grounds that determine the overall dynamics of the
simulation box. It is not clear to what extent these
backgrounds affect the structure formation of N-body
simulations. However, structures in typical N-body sim-
ulations are not separated by extended patches where the
density corresponds to the background value. Thus, the
structures in N-body simulations interact freely with each
other, similar to in onion models and unlike in swiss
cheese models.

FIG. 2 (color online). Present time 1D density profiles of the onion models. The comoving coordinates are normalized at present time
in units of 0.1 Mpc. The nonsymmetric models’ density profiles are shown along the axis of largest anisotropy.

TABLE I. Specification of nonsymmetric Szekeres onion
models and their underlying LTB models. The model names
are subscripted with “sz” or “ltb” in order to distinguish between
the nonsymmetric and spherically symmetric versions of the
models. α alone specifies the LTB models, while n and σ refer to
the dipole function Q used to remove their spherical symmetry.

Model α n σ

O1sz=ltb 0.5 1 0.0002
O2sz=ltb 1 2 0.0002
O3sz=ltb 2 2.3 0.001
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III. CONSTRUCTING MOCK N-BODY DATA

In order to compare ray tracing through N-body data
with exact light propagation, the Szekeres and LTB models
are reproduced as mock N-body data. A detailed descrip-
tion of constructing mock N-body data from Szekeres
models was given in [76] (see also [78]), and only a brief
review will be given below.
In this section, subscripts will be used to distinguish

between coordinates in the exact Szekeres spacetime and
the underlying FLRW spacetime of the mock N-body data.
In all other sections, these subscripts are suppressed as it
should be clear from the context of which spacetime the
coordinates refer to. It is emphasized that the exact models
and their N-body counterparts do not share coordinates and
that mapping between the two types of spacetimes is vital
for e.g. obtaining mock N-body velocity fields.
Tildes are used to indicate fiducial spacetime points.
Newtonian N-body simulations are based on FLRW

backgrounds. In the case of the swiss cheese models studied
here, the background model is the EdS model so this will be
used as the underlying FLRW model for the mock N-body
data. Considerations regarding the choice of background for
the onion models are discussed in Sec. VI and Appendix C.
With the background model being the EdS model, the

mock N-body data are constructed by using the following
relations between the EdS and Szekeres coordinates:

~t ≔ ~tsz ¼ ~teds

~p ≔ ~psz ¼ ~peds

~q ≔ ~qsz ¼ ~qedsZ
~rsz

0

drsz
ffiffiffiffiffiffiffiffiffiffi
grr;sz

p ¼
Z

~reds

0

dreds
ffiffiffiffiffiffiffiffiffiffiffi
grr;eds

p
: ð6Þ

These four equations make up a map between the Szekeres
and EdS/N-body spacetimes. grr is the rr-component of the
metric tensor in stereographic coordinates. The subscripts
“eds” and “sz” are used to denote EdS and Szekeres
coordinates, respectively. The four equations making up
the map are coupled since grr;sz depends on all four
coordinates.
Note that p and q are related to spherical coordinates

differently in the Szekeres and FLRW spacetimes (see e.g.
[76]). Hence, even though ð ~psz; ~qszÞ ¼ ð ~peds; ~qedsÞ, it is
generally not true that ð~θsz; ~ϕszÞ ¼ ð~θeds; ~ϕedsÞ.
Equation (6) is used to map the Szekeres density field

onto the EdS N-body background. Aside from the density
field, the corresponding potential ψ will also be needed as it
enters into the perturbed FLRW metric in the Newtonian
gauge which is the basis for the ray tracing scheme.3 This

can be obtained from the mapped density field through the
Poisson equation ∇2ψ ¼ 4πGa2

c2 δρ with the overdensity
δρ defined as the difference between the inhomogeneous
“N-body” density and the background density, i.e.
δρ ≔ ρNbody − ρbg.
The velocity field is needed in order to compute the

observable redshift and the Doppler convergence (see
Sec. IV B 1 for a definition of the latter). The angular
velocities are negligible, and only the radial velocity vr
needs to be computed. The radial velocity can e.g. be
computed from the following equation, which is obtained
by taking the time derivative of the r-equation in the map
given above:

d
dt

dprð~t; ~rsz; ~p; ~qÞ ¼
d
dt

ðað~tÞ~redsÞ
¼ a;tð~tÞ~reds þ að~tÞvrð~redsÞ: ð7Þ

dpr denotes the proper radial distance from the origin, and
the left-hand side of this equation is to be evaluated in the
Szekeres spacetime. vr on the right-hand side is the radial
velocity field of the mock N-body data at the EdS
spacetime position ð~t; ~reds; ~p; ~qÞ corresponding to the
Szekeres spacetime position ð~t; ~rsz; ~p; ~qÞ.
Using swiss cheese models implies involving one more

coordinate system than the two discussed above. In
particular, the standard ray tracing scheme is partially
based on the global coordinate system of the swiss cheese
model. On the other hand, the individual structures in a
swiss cheese model are described using the local coordinate
systems of the individual Szekeres single void model
spacetimes making up the swiss cheese model. Note that
the mapping described above, in principle, pertains to
global swiss cheese coordinate systems. The difference
between using global and local coordinate systems for the
mapping is, however, negligible.
In the following, global coordinates will be indicated by

a subscripted “g.” Coordinates without such a subscript are
local coordinates. For onion models, local and global
coordinates are the same.

IV. LIGHT PROPAGATION AND WEAK LENSING

Light rays move along null geodesics which can be
determined by solving the geodesic equations obtained
from the metric. In order to study weak lensing, the
deformation of images along null geodesics, also bundles
of light rays, must be studied. This can be done by solving
the screen space projected geodesic deviation equation,
where screen space is the two-dimensional Euclidean space
orthogonal to the ray direction as seen by the observer. The
Sachs formalism (based on [79]) gives a convenient form of
the formal solution through the Weyl and Ricci tensors.
This formalism is widely used, and detailed descriptions

3In standard perturbation theory and thus standard ray tracing
schemes, the coordinates of the perturbed FLRW metric are
simply set equal to those of the FLRW background. Thus no map
is needed for going between these two spacetime and coordinate
sets.
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can be found in e.g. [8,80].4 Here, only a brief description
of the Sachs formalism and the resulting ray tracing
schemes are given.

A. The Sachs formalism

The screen space deviation vector ξa describes the
deviation between geodesics in a bundle of light rays.
The Latin indices a; b; c ∈ f1; 2g denote screen space
components, while Greek indices α; β; μ; ν;… ∈
f0; 1; 2; 3g will be used to denote spacetime components.
The deviation vector is related to its initial derivative
through a Jacobi relation i.e. ξðλÞ ¼ DðλÞ_ξ0, where dots
denote differentiation with respect to the affine parameter, a
subscript “0” is used to denote present time, and the screen
space matrix D represents the Jacobi map. D is the central
quantity for describing deformation of the ray bundle
image;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðDÞjp
gives the relation between the areas

described by _ξa0 and ξaðλÞ. Setting the initial conditions
such that λ is initially the local proper distance from the
observer, _ξa0 becomes the solid angle element andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðDÞjp

becomes the angular diameter distance DA

along the fiducial ray of the ray bundle (see also e.g.
[80]). Furthermore, if the cosmological model of interest
can be considered as having an FLRW background, D can
be related to the distortion/magnification matrix A by the
relation D ¼ DA;bgA [52,82], where DA;bg is the back-
ground FLRW angular diameter distance. Neglecting rota-
tion (see e.g. [8]), the entries of the distortion matrix can be
decomposed into a convergence κ and two shear compo-
nents, γ1 and γ2:

A ¼
�
1 − κ − γ1 γ2

γ2 1 − κ þ γ1

�
: ð8Þ

The convergence can thus be computed from the diagonal
component of D as follows:

κ ¼ 1 −
D11 þD22

2DA;bg
: ð9Þ

The FLRW background models used in this work contain
nonrelativistic matter and a possible nonvanishing curva-
ture. In such cases, the background angular diameter
distance can be computed using the Mattig relation [83]:

DA;bg ¼
2c

H0Ω2
m;0ð1þ zÞ2

× ½Ωm;0z − ð2 − Ωm;0Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ωm;0z

p
− 1Þ�: ð10Þ

The components of D along a fiducial ray in a ray bundle
can be obtained by using the transport equation:

D̈a
b ¼ Ta

cDc
b: ð11Þ

The indices are arranged in accordance with the Einstein
summation convention which will also be used in the
following.
The optical tidal matrix T can be written using R ≔

− 1
2
Rμνkμkν and F ≔ − 1

2
Cαβμνðϵ�Þαkβðϵ�Þμkν, whereRμν is

the Ricci tensor, Cαβμν the Weyl tensor and ϵμ≔ Eμ
1 þ iEμ

2

with Eμ
1; E

μ
2 spanning screen space:

Tab ¼
�
R − ReðFÞ ImðFÞ
ImðFÞ Rþ ReðFÞ

�
: ð12Þ

It is convenient to note that kμ and ϵμ are null geo-
desics orthogonal to each other; this implies that the
Ricci part of the Weyl tensor drops out in F so that F ¼
− 1

2
Rαβμνðϵ�Þαkβðϵ�Þμkν (this simplification is also noted in

a footnote in [80]).
In order to obtain κ along null geodesics in Szekeres

models, the transport equation must be solved simulta-
neously with solving the geodesic equations and the
parallel propagation equations for Eμ

a. These equations
are shown in Appendix A together with the explicit
expressions for R and F for the Szekeres metric. The
resulting set of ODEs is the same as that in [52], though
some of the components are given here in a slightly simpler
form e.g. because the Riemann tensor is used instead of the
Weyl tensor when computing F.
The convergence and the reduced shear gγ ≔ γ

1−κ are
highly important cosmological observables as they affect
redshift-distance relations and can be used to trace matter
(see e.g. [74,75,84–93] for examples of using κ and γ in
relation to observations). Especially with regard to the
onion models, it is worth mentioning that the quantities κ
and γ are traditionally defined using linear perturbation
theory, and their relation to observables is conditional to
this regime. Equally important is that the relation between
A and D requires a background so that DA;bg is defined.
In settings where the linear perturbation scheme is ill

suited, the algebraic relations between the components ofD
can still be used to define quantities generalizing κ, γ1 and
γ2. These quantities’ relation to observables is not a priori
as in the linear limit (see also [52]). In this work, the terms
“convergence” and “shear” refer to the generalized defi-
nitions of κ and γ without restricting to linear perturbation
theory.

B. Standard ray tracing

In this section, the standard ray tracing expression for κ is
introduced. For more details, see e.g. [74,84].
Ray tracing combines the perturbed FLRW metric in the

Newtonian gauge with the nonlinear density contrasts and
velocity fields obtained from N-body simulations. The
standard recipe for going between Newtonian N-body
results and a relativistic description of these is thus in line4In connection with [80], see also [81].
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with the simple dictionary given in [94] which gives a
recipe for going between Newtonian N-body data and a
relativistic spacetime with the line element:

ds2 ¼ −c2ð1þ 2ψÞdt2
þ a2ð1− 2ψÞðdr2 þ r2dθ2 þ r2sin2ðθÞdϕ2Þ: ð13Þ

The scale factor is normalized to 1 at present time, i.e.
aðt0Þ ¼ 1. Following the recipe, the dimensionless
gravitational potential is obtained through the Poisson
equation, ∇2ψ ¼ 4πGa2

c2 δρ, using the nonlinear overdensity
of the given N-body data. The velocity field is needed
e.g. for computing the observable redshift. It is given by
uμ ∝ ð1; viÞ, with vi the spatial velocity field of the
N-body data. In the case of the Szekeres models studied
here, the angular velocities are negligible and
uμ ≈ c

V ð−c2ð1þ 2ψÞ; a2ð1 − 2ψÞvr; 0; 0Þ, with V ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ 2ψÞ − a2v2rð1 − 2ψÞ

p
.

The metric corresponding to the line element in Eq. (13)
combined with the nonlinear velocity and density fields
will, in the following, be referred to as the Newtonian
gauge metric.
R and F can be computed and used to obtain ODEs for

the components of D. It is, however, standard instead to
write the equations in terms of the deformation matrix A ¼
1

DA;bg
D and use Green’s method to obtain implicit integral

equations for its components. The resulting equations can
be combined with Eq. (9) to obtain the following expres-
sion for the gravitational convergence:

κδ ¼
4πG
c2

Z
rg

0

dr0ga2δρ
ðrg − r0gÞr0g

rg
: ð14Þ

This integral expression is obtained by neglecting lens-lens
coupling (see e.g. [95]) and by using the Limber approxi-
mation (see e.g. [68,96]). The integrals are along the path of
a given light ray and are usually solved by introducing the
Born approximation, where rays are traced as radial null
geodesics in the background model.
The convergence gives the most important contribution

to alterations of redshift-distance relations in N-body
simulation models where it is standard to use the approxi-
mation DA ≈DA;bgð1 − κδÞ. ð1 − κδÞ is the lowest order
approximation to the determinant of D since the shear is
usually several orders of magnitude smaller than κδ.

1. Doppler convergence

The total first order convergence consists of several other
contributions than just the gravitational convergence. These
other contributions e.g. include the well-known Sachs-
Wolfe and integrated Sachs-Wolfe effects which are gen-
erally subdominant to the gravitational convergence. There
is also a Doppler contribution, κv, which arises because

peculiar velocities affect the redshift along light rays. This
Doppler contribution to the convergence and redshift-
distance relations has been known for several decades
(see e.g. [97] for an early derivation) and has been included
in several more recent studies (e.g. [72,98–104]). The
Doppler convergence is typically not included when ray
tracing through N-body simulations. This is presumably
because the effect is important mostly at small redshifts,
and because the effect should become negligible when
averaged over an infinite number of observations in a
universe satisfying the Copernican principle. The Doppler
contribution will be included here since it is automatically
included in the geodesic deviation equation and thus will be
portrayed in the exact convergence.
The Doppler convergence can be computed as (see [98])

κvc ¼
�
1 −

1

a;tðη0 − ηÞ
�
n · ðv − v0Þ þ n · v0: ð15Þ

The vector n is the photon direction vector in the source
frame; i.e. it is the spatial part of the unit 4-vector nμ ∝
kμ þ kνuν

c2 uμ evaluated along the null geodesics. η denotes
conformal time.
The velocity field v is the spatial part of the normalized

4-velocity uμ. The sign of v is determined from the global
coordinate system and can, in swiss cheese models, differ
from the local single void sign of uμ.
Note that in Eq. (15), the scale factor etc. are evaluated at

the spacetime position corresponding to the observed
redshift, while Eq. (14) for the gravitational convergence
is evaluated in accordance with the background redshift.

2. Summary of the ray tracing method

In the following two sections, a simple and popular
approximate ray tracing method is compared with exact
light propagation and with an extended ray tracing method
which includes the Doppler convergence. For convenience,
the approximations included in the ray tracing methods are
summarized here.
The convergence is computed by adding the lowest

order gravitational convergence, κδ, to the Doppler con-
vergence, κv. The gravitational convergence is computed
using the Born and Limber approximations and by
neglecting lens-lens coupling. In standard ray tracing
schemes, the Doppler convergence is neglected. Thus,
in standard ray tracing schemes, the angular diameter
distance is computed as DA ¼ DA;bgð1 − κδÞ, while in
the extended ray tracing scheme included here, it is
computed as DA ¼ DA;bgð1 − κδ − κvÞ.
The convergence will be portrayed as a function of the

observable redshift given by zobs þ 1 ¼ ðkαuαÞe
ðkαuαÞ0. The sub-

script “e” denotes time of emission.
The potential ψ turns out to be insignificant for the

results. This is only the case since κδ is computed using the
Limber approximation and thus is computed independently
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of ψ . The only place ψ plays a role is thus when lowering
indices in the computations of κv and zobs. The most
significant “first order” quantity modifying these from their
background values is the velocity field, not ψ . By using a
few of the studied LTB models, it has been tested that
simply neglecting ψ altogether is of no significance for the
results obtained here. The results presented below have thus
all been obtained under the approximation of setting ψ ¼ 0.

V. SWISS CHEESE MODEL RESULTS

In order to compare results obtained using the exact
formalism and the approximate ray tracing schemes, these
methods will be used to study the convergence along
individual rays in swiss cheese and onion models. A direct
comparison between the exact and approximate results
requires that the exact and ray traced rays are initialized
equivalently. Since the exact ODEs are solved backwards in
time, this implies that the observer position and line of sight
in the two spacetimes must be equivalent according to the
map in Eq. (6).
When the purpose is studying light propagation, swiss

cheese models are most simply constructed on the fly. In
such construction schemes, a ray will be moved from one
single void model to another once it has reached a specific
coordinate distance from the given local structure (see also
[8]). In general, the exact and ray traced rays do not follow
the same paths. Since the swiss cheese models are made on
the fly, this implies that the swiss cheese models that the
exact and ray traced rays propagate through are unrelated.
Clearly, this leads to a rather contrived comparison between
the exact and ray tracing results. To avoid this, when a ray
traced ray is moved to a new structure, its position and
direction will always be chosen to be the initial position and
direction that the corresponding exact ray had when it
reached that specific structure.5 This way, the exact and ray
traced rays will move through the “same” swiss cheese
model, but the rays will generally traverse each structure
along different paths—depending on how good an approxi-
mation the Born approximation is. The swiss cheese results
are thus to be considered indicative of accumulative effects
of local inhomogeneities.
The standard ray tracing scheme described in Sec. IV B

is adapted to radial rays. In practice, ray tracing through
swiss cheese models thus becomes much simpler if rays are
always initialized as radial at the beginning of a new single
void structure. The ray tracing results shown below have
therefore been obtained by following the procedure of
moving a ray to a new structure by turning it around and
sending it radially back towards the structure it just left.

Especially the part of initializing rays as radial at each
“new” structure clearly makes the paths very special. The
consequent bias of the results induced by studying only
special rays implies that it is inappropriate to compare with
background results. This does not affect the integrity of the
study as the point is not to compare with background results
anyway. The point here is to study the precision of the
standard ray tracing scheme with the added Doppler
convergence as well as to study implications of neglecting
the Doppler convergence. Thus, for the results obtained
from the swiss cheese models based on nonsymmetric
Szekeres models, the special paths do not compromise the
study much; if the ray traced rays cannot reproduce exact
rays that are initialized as radial, then surely they cannot
reproduce more general rays that are initialized with
arbitrary impact parameters at each structure.
The consequence of only studying radial rays is much

more significant in the case of the spherically symmetric
LTB models; in these models, rays initialized as radial will
stay radial. This implies that the exact and ray traced rays
will automatically move along the same spatial path. In
order to see how (dis)similar the exact and ray traced paths
along nonradial rays in LTB models are, the Sachs
formalism has been used to obtain an approximation
scheme for computing the convergence along such non-
radial rays. The scheme employs the Born approximation
and should yield results that are no more precise than the
regular ray tracing scheme described in Sec. IV B. The
details of the scheme are explained in Appendix B.
Unless otherwise stated, the observer is placed at the

center of a void. The results are always plotted against the
observable redshift, and light rays are propagated through
swiss cheese models until they reach a redshift
of zobs ¼ 0.6.

A. LTB results

In this section, the results from studying light propaga-
tion in a swiss cheese model based on LTB single void
models are shown. As discussed above, the results shown
here pertain to rays that propagate radially through con-
secutive LTB single void structures. This makes the rays
very special since it guarantees that the exact and ray traced
rays move along the same spatial paths. Nonradial rays in
LTB models will be discussed in Sec. VA 1.
As seen in Fig. 3(a), the local density distributions along

the approximate and exact geodesics are the same. This
indicates that the combined (mock) N-body data and
Newtonian gauge metric yield a good approximation of
the exact observable redshift. Note that it is important to use
the approximate observable redshift; simply using the
background redshift leads to clear deviations between
the exact and ray tracing results.
The convergence along the ray is shown in Fig. 3(b).

There is an overall good agreement between the exact
convergence and the sum of the Doppler and gravitational

5Within a given redshift interval, the ray traced ray may
traverse more structures than the exact ray. When traversing such
final structures, the ray traced ray is moved to a “new” structure
simply by turning it on the spot and tracing it radially back
towards the structure it came from.
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convergences. The figure also shows that the Doppler
convergence clearly dominates the convergence at low
redshifts while the gravitational convergence dominates at
higher redshifts. The former is in agreement with the results
obtained in [72] where the Doppler and gravitational con-
tributions to the convergencewere studied in Szekeres single
void models. In [72], mock N-body data were not employed
when computing the two contributions to the convergence.
Instead, regular linear perturbation theory was used. It was
found that, at late times when the Szekeres structures had
gone nonlinear, linear perturbation theory led to an under-
estimation of the Doppler convergence by approximately
20%. Here, it is found that this underestimation vanishes

when linear perturbation theory is combined with nonlinear
Newtonian N-body velocity fields. This is emphasized in
Fig. 4 which includes close-ups along the convergence
curves. Not until approximately z > 0.5 do the exact and
ray tracing convergences begin to differ notably from each
other—and even then, only by a few percent. The difference
between the exact and approximate convergences grows
slightly with rb and m (defined in Sec. II A). It is virtually
nonexistent in the rb ¼ 30 Mpc cases, and for the m ¼ 2
cases also when rb is larger. The figures shown here are for
LTB models with m ¼ 4 and rb ¼ 60 Mpc.
The difference between the exact and ray traced con-

vergences are at least partially numerical artifacts.

FIG. 4 (color online). Convergence along a radial ray in the swiss cheese model based on the LTB single void model specified by
m ¼ 4 and rb ¼ 60 Mpc. The line labeled “κv þ κδ” shows the sum of the Doppler convergence and the gravitational convergence
obtained using the simple ray tracing scheme. The line labeled “κexact” is the exact convergence as obtained from the exact set of ODEs.
The figure includes close-ups at different redshift intervals.

FIG. 3 (color online). Density and convergence along a light ray in a swiss cheese model based on compensated LTB single void
models with m ¼ 4 and rb ¼ 60 Mpc. The ray path has been computed using both the Born approximation and the geodesic equations
of the exact LTB metric. The two resulting density distributions are indistinguishable in the figure. Four convergences are shown. The
line labeled “κv þ κδ” shows the sum of the Doppler convergence and the gravitational convergence obtained using the simple ray
tracing scheme. The two components are also shown individually. The line labeled “κexact” is the exact convergence as obtained from the
exact set of ODEs. The figure includes a close-up of the region where the gravitational convergence begins to be non-negligible.
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The distinct oscillations of the Doppler convergence
appear as a manifestation of the Doppler convergence being
a measure of the local velocity field. The gravitational
convergence is an accumulated effect of the matter dis-
tribution along the given geodesic. The gravitational con-
vergence is thus much less affected by individual local
variations than the Doppler convergence is, though close-
ups (not shown) of the gravitational convergence do reveal
small ripples accounting for the local fluctuations in the
density field.
It is clear from Fig. 3(b) that the Doppler convergence, in

principle, will affect observations. As a simple study of the
significance of these effects, the different convergences
have been used to compute the luminosity distance as a
function of redshift, which has then been used to obtain
estimates of the reduced Hubble parameter h and the
deceleration parameter q0. The luminosity distance is
computed as DL ¼ DAð1þ zÞ2 ¼ DA;bgð1 − κÞð1þ zÞ2.
In the low-redshift interval of 0.01 < z < 0.06,6 200 points

along the redshift-distance relations are fitted to the low-
redshift FLRW approximation DLðzÞ ≈ c

H0
z with h as the

fitting parameter. In the remaining redshift interval of
0.06 < z < 0.6, 1000 points are fitted to the FLRW
approximation DLðzÞ ≈ c

H0
zð1þ 1−q0

2
zÞ with q0 as the

fitting parameter, and using the value of H0 obtained from
the low-redshift fit.
To illustrate the significance of void size, the fitting

results are shown for two void sizes, namely, rb ¼ 30 Mpc,
100 Mpc. The fitting was done with pyxplot,7 and the best-
fit values together with 1 standard deviation intervals are
shown together with the plots in Fig. 5.
There is a distinct difference in the estimates of h based

on the κδ fits compared to the fits based on κexact. This again
affects the estimates of q0. The difference in the two
estimates of h is only approximately 0.1%, which is quite
small compared to uncertainties of observational results.
For instance, in [106] the Hubble constant is estimated to be
H0 ¼ 73.8� 2.4 km=s=Mpc (i.e. the uncertainty is 3.3%),

FIG. 5 (color online). Luminosity distance plotted as a function of the observed redshift and fitted to low-redshift FLRW
approximations of DLðzÞ. The results from four luminosity distances are shown corresponding to the exact convergence, the sum of the
gravitational and Doppler convergences, the gravitational convergence and the background solution. The results are shown for LTB
swiss cheese models specified by m ¼ 4 and both rb ¼ 30 Mpc and rb ¼ 100 Mpc.

6This interval is chosen based on Fig. 1 of [105]. 7http://pyxplot.org.uk/
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and the authors express no hope of their procedure in the
future to yield results with a precision below approxi-
mately 1%.
The fits obtained using the sum κδ þ κv agree well with

the exact results. In particular, the two best-fit values of h
agree within approximately 0.02% for the rb ¼ 30 Mpc
model and 0.03% for the rb ¼ 100 Mpc model. The void
size clearly affects the determination of both hexact; hκδþκv
and q0;exact; q0;κδþκv , both regarding best-fit values and their
uncertainties.
A notable feature of the fits is that the uncertainties are

markedly higher for the fits obtained using κexact and the
sum κv þ κδ than for those obtained using just κδ and
background values of DL. This finding agrees with what
should be expected from Fig. 3(b); the oscillating Doppler
convergence leads to larger uncertainties in the low-redshift
estimates and to deviations of the best-fit values from those
obtained from the background DL and κδ. At higher
redshifts, the Doppler convergence becomes less important
and the uncertainties in the best-fit values become more
similar.
As is seen in especially Fig. 5(b), the imprints of the

Doppler convergence oscillations on observables can be
very prominent. In fact, the Doppler convergence is so
prominent at low redshifts that Ref. [99] studied to what
extent measures of the Doppler convergence can be
obtained observationally with the prospect of using it to
e.g. study peculiar velocity fields.

1. Nonradial rays

It was shown above that the simple ray tracing scheme
with the convergence computed as κv þ κδ yields an almost
exact reproduction of the exact results. This exact repro-
duction does not depend on the rays being radial. To show

this, the Born approximated Sachs formalism described in
Appendix B has been used to compute an approximate
convergence along nonradial rays in different LTB models.
Results are shown in Fig. 6 for the LTB single void model
specified by m ¼ 4 and rb ¼ 60 Mpc. As seen, the exact
paths are exactly traced out by the Born paths. Aside from a
minor oscillation at zobs ≈ 0, the convergences are also
reproduced very precisely. These oscillations are due to
changes in the direction of the velocity field which have, for
simplicity, been neglected in the ray tracing method
described in Appendix B. The oscillations are, however,
described very well by the standard ray tracing method in
Sec. IV B.
Before moving on to study nonsymmetric Szekeres

models, it should be pointed out that the results of this
section show that the LTB models can generally be
described extremely well using the standard “perturbation”
schemes used for studying N-body data. The quotation
marks around “perturbation” emphasize that the ray tracing
scheme is not strictly based on linear perturbation theory as
the velocity and density fields are nonlinear. This result is in
agreement with the results of [76] where it was shown that
the Newtonian gauge metric could reproduce light propa-
gation in a specific uncompensated LTB single void model,
while it was insufficient for describing light propagation in
nonsymmetric models.

B. Nonsymmetric Szekeres results

In this section, results from studying exact and ray traced
rays in swiss cheese models based on the nonsymmetric
Szekeresmodelswithrb ¼ 60 Mpcandm ¼ 2; 6are shown.
Because of the anisotropy of the voids, the exact rays are

not radial. As seen in Fig. 7 this results in clearly different
densities along the exact and ray traced rays, with the

FIG. 6 (color online). Density and convergence along nonradial light rays in an LTB single void model specified by m ¼ 4 and
rb ¼ 60 Mpc. The observer has been placed at ðt; r; θ;ϕÞ ¼ ðt0; 70 Mpc; 8=5π; 3=5πÞ, looking in various directions determined by
ðkt; kr; kp; kqÞ ¼ ð− 1

c ; k
r
0; k

p
0 ; 0Þ, where kp0 is varied as kp0 ¼ − 2

c ;−
3
c ;−

4
c and k

r
0 is determined from the null condition. Note that kp0 does

not have the same units as 1
c so it is only the numerical value of c that is implied in the values of kp0 . Since the LTB model reduces exactly

to the EdS model outside the structure, these initial conditions are for both the exact Szekeres coordinate system and the ray tracing
coordinate system. The exact and ray traced rays are labeled by “exact” and “Born,” respectively.
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difference being most significant for the m ¼ 2 case. In
particular, the exact rays seem to completely avoid the
central most devoid parts of the voids—even though they
are initialized as radial at each single void structure. On the
other hand, the ray traced rays are forced through the
centers of each void.
In accordance with this clear difference of local paths,

the convergences along the exact and ray traced rays are
also different. The convergences along the rays are shown
in Fig. 8. Aside from being different locally, the exact
and ray traced convergences do not even converge towards
each other at high redshifts. This is because the gravita-
tional convergence dominates at high redshifts. Especially
in the m ¼ 2 case, the very different densities along the
exact and ray traced paths apparently lead to gravitational
convergences that are different. In them ¼ 6 case, the exact

and ray traced convergences have almost converged to each
other at zobs ≈ 0.6.
It is also notable that, unlike in the LTB case, the Doppler

convergence does not oscillate about the gravitational
convergence. This is e.g. seen by noting that the gravita-
tional convergence is approximately zero at very low
redshifts. If the exact convergence oscillated about the
gravitational convergence, it would thus oscillate about
zero at these lowest redshifts. This is clearly not the case.
As an illustration of the importance of the differences in

the exact and ray traced paths, the luminosity distances
corresponding to the exact and ray tracing convergences are
used to estimate h and q0. The estimates are obtained using
the fitting scheme introduced in Sec. VA. The results are
shown in Fig. 9.

FIG. 7 (color online). Density along geodesics in a swiss cheese model based on compensated nonsymmetric Szekeres single void
models. The geodesics have been computed using both the Born approximation and the exact geodesic equations according to the exact
Szekeres metric.

FIG. 8 (color online). Convergences along rays in swiss cheese models based on nonsymmetric Szekeres single void models. Four
convergences are shown in each figure. The line labeled “κv þ κδ” shows the sum of the Doppler convergence and the gravitational
convergence. The two components are also shown individually. The line labeled “κexact” is the exact convergence as obtained from the
exact set of ODEs.
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The parameter values determined from the exact and ray
traced rays are clearly in less agreement than in the LTB
case. Specifically, the determinations of h based on κexact
and κv þ κδ differ by approximately 2.9% and 3.9% in the
m ¼ 2 and m ¼ 4 cases, respectively. The deviation
between the exact and ray tracing estimates of h depends
significantly on the line of sight of the observer. The results
shown here are for a direction where the difference between
the approximations is particularly large. In many other
directions the deviation is subpercent. It should, in this
connection, be emphasized that the point with the estimates
made here is not to determine whether or not local
inhomogeneities may affect determinations of h (or q0)
in the real universe; this would require averaging over many
rays with variable impact parameters at each void. This has,
for instance, been done in [8], and as mentioned in the
introduction, the conclusion of that and other studies is that
when averaging over many rays, the distance-redshift
relation reduces to that of the average model. Thus, even
though there may be differences in the exact and ray tracing
estimates of h along individual rays, the average results
should be similar. The point with this section is thus that the

exact paths of rays are significantly affected by inhomo-
geneities and to such an extent that it clearly affects
observables along the individual rays. It is shown here
that this is not described correctly by simple ray tracing
schemes. This may be important in relation to interpretation
of observations such as shear maps and CMB temperature
fluctuation maps, where averaging over large portions of
the sky is not viable.
The differences in the estimates of q0 are also quite large

in the example shown here, but this is mainly due to the
differences in the estimates of h.
The large deviation between exact and Born approxi-

mated paths is highly dependent on the level of anisotropy.
If the anisotropy is lowered to approximately 25% of that
used here, i.e. if Q defined in Sec. II is multiplied by 0.25,
then the exact and Born approximated rays are almost
indistinguishable.

VI. ONION MODEL RESULTS

The swiss cheese studies indicate that, in as far as the
Born approximation is a good approximation, the simple

FIG. 9 (color online). Luminosity distance plotted as a function of the observed redshift and fitted to low-redshift FLRW
approximations ofDLðzÞ. The results from four luminosity distances are shown corresponding to the luminosity distance obtained from
the exact equations, the sum of the gravitational and Doppler convergences, the exact convergence and the background solution.
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ray tracing scheme studied here is very precise. The swiss
cheese studies also indicate that the Born approximation
generally cannot be assumed to be a good approximation.
In the swiss cheese studies, the global paths of the exact and
ray traced rays were the same since a ray traced ray was
initialized at the same position and in the same direction as
the corresponding exact ray at each new structure. The
onion models are multiple structured models ab initio and
not only after an on-the-fly construction scheme. Whereas
the swiss cheese models were used to study the local
precision of the Born approximation, onion models can
thus also be used to study the global precision of the Born
approximation. In addition, the convergence along radial
rays in LTB onion models will be studied in order to
examine the validity of using the ray tracing scheme in
models without intrinsic backgrounds.

A. LTB results

The convergence along light rays in LTB swiss cheese
models was very precisely reproduced by the simple ray
tracing scheme that included the Doppler convergence.
Here it is tested whether or not this conclusion also holds
true for radial rays in LTB onion models. The results are
shown in Fig. 10.
The density fields along the rays indicate that the redshift

is approximated well by the ray tracing scheme. An
exception is in modelO1ltb which has the largest truncation

radius of the studied onion models. In Fig. 10(a) it is seen
that the densities along the exact and ray traced rays in
model O1ltb diverge slightly from each other at the highest
part of the studied redshift interval. Since the exact and ray
traced rays automatically move along the same spatial path,
this indicates a deviation between the exact and approxi-
mate redshifts. The figures also reveal that the convergence
is not reproduced quite as precisely in the LTB onion
models as in the swiss cheese case. The deviation between
the exact and ray tracing convergences grows with the
truncation radius; i.e. the deviation is most prominent in
model O1ltb while it almost vanishes in model O3ltb.
It seems plausible that the disagreements between the

exact and approximate results are due to the structures of
the onion models interacting without locally compensating
each other; if the fluctuations in the density field are not
locally constrained by a global background, why should it
be expected that they can be described as fluctuations on a
single specific background? This consideration would
explain why the deviations between the exact and approxi-
mate results diminish as the truncation radius is decreased;
the smaller the truncation radius is, the more the back-
ground can constrain the structure formation.
According to the considerations expressed above, the

onion model studies presented here may be considered
illustrations of the issue of local vs global backgrounds
which is mentioned in e.g. Sec. 5.4 of [107].

FIG. 10 (color online). Density and convergence along exact and ray traced radial rays in the onion modelsO1ltb,O2ltb andO3ltb. The
exact convergence is shown together with the sum of the Doppler and gravitational convergences. The gravitational convergence is also
shown alone but its deviation from zero is too small to be visible in the figure. For model O3ltb, a close-up of the convergence has been
included to highlight that the exact and approximate convergences are not exactly identical.
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Ray tracing is always done using just a single, global
FLRW background, and introducing local backgrounds
into the ray tracing schemes will not be considered here.
However, it may be that a better reproduction of the exact
results can be obtained if the ray tracing is done on a
different global background than the EdS model. The
theory presented in Secs. III and IV B is based on the
assumption of a flat background. Modifications needed in
order to adapt the equations to curved backgrounds is
described in Appendix C together with discussions and
examples regarding the use of curved FLRW backgrounds.
Using these modified equations, the results shown in this
section have been reproduced using 10 different curved
FLRW backgrounds with the present time density param-
eters Ωm;0 ∈ ½0.7; 1.3�. None of the results indicate that the
reproduction of the convergence can be made better by
choosing a different background than the EdS model.8

It should be noted that the convergence in the onion
models is strikingly different than the convergence in the
swiss cheese models. In the LTB swiss cheese models, the
convergence oscillates about the gravitational convergence.
As seen in Fig. 10, this is clearly not the case in the onion
models. By changing the background to one with a smaller

density parameter, it is possible to obtain a convergence
that becomes negative. It has not been possible to choose
the background in such a way that the convergence actually
oscillates about the gravitational convergence, and only
when the background is (nearly) flat will the sum of the
gravitational and Doppler convergences tend towards the
gravitational convergence at high redshifts.

B. Nonsymmetric Szekeres results

The convergence is not correctly reproduced along the
radial rays in the LTB onion models. This makes it unclear
to what extent a comparison of exact and ray tracing results
along nonradial rays in nonsymmetric onion models is
reasonable. The convergence along the radial rays of
models O2ltb and O3ltb was nearly correctly reproduced.
The exact and approximate convergences along individual
rays in models O2sz and O3sz will therefore be compared
here, while model O1sz will not be studied.
The density distributions and convergences along indi-

vidual rays initialized at an observer at the origin in model
O3sz are shown in Fig. 11. The results are shown along the
three lines of sight defined by ðθsz;0;ϕsz;0Þ ¼ 3=5πð1; 1Þ,
ðθsz;0;ϕsz;0Þ ¼ ð3=5π; 11=10πÞ and ðθsz;0;ϕsz;0Þ ¼
ð3=5π; 43=30πÞ. The first direction is close to the direction
of highest anisotropy, while the second is approximately
orthogonal to it. The last line of sight is in a direction in
between the first two. Note in Fig. 11 that the exact and ray
traced rays deviate less from each other the closer the line
of sight is to the line of highest anisotropy. This is not

FIG. 11 (color online). Density and convergence along exact and ray traced rays in onion model O3sz. Four convergences are shown:
Doppler, gravitational, the sum of these two, and the exact. The gravitational convergence is negligible in the low-redshift interval
studied here, so the lines showing the Doppler convergence and the sum of the Doppler convergence and the gravitational convergence
are indistinguishable.

8It is possible to reproduce the exact convergence in the O3ltb
model by changing the background slightly in the ray tracing
scheme, while keeping the background in Eq. (9) fixed. This is,
however, an inconsistent comparison, as the backgrounds used in
the ray tracing scheme and in Eq. (9) must be the same. See
Appendix C for an elaboration of this point.

STUDYING THE PRECISION OF RAY TRACING … PHYSICAL REVIEW D 92, 023532 (2015)

023532-15



surprising since the density is close to being symmetrically
distributed about this line.
The three sets of results have been used to estimate the

reduced Hubble parameter h as in earlier sections. The
resulting estimates of h and the corresponding uncertainties
are shown in Fig. 12. The estimate of h is approximately
1% higher when based on κexact than when using κv þ κδ.
A single ray has been studied in model O2sz. The ray is

initialized along the line of sight ðθsz;0;ϕsz;0Þ ¼
ð3=5π; 43=30πÞ, i.e. in between the lines of highest and
lowest anisotropy. The convergence and density field
along the exact and ray traced rays are compared in
Fig. 13. As with the O3sz results, the exact and ray traced
rays clearly do not move along equivalent spacetime
paths.
In model O2sz, the inhomogeneities in the density

distribution are truncated at a large enough distance from
the origin for it to be reasonable to make an estimate of the
present time deceleration parameter q0. h is estimated from
200 data points in the redshift interval 0.01 < z < 0.06,
while q0 is estimated from 200 points along the redshift
interval 0.06 < z < 0.12. Here, the interval and number of
data points used to estimate q0 is much less than in the

swiss cheese cases which explains the larger uncertainties
in the results shown in Fig. 14. The estimates of h based on
κexact and the sum κv þ κδ are quite similar, with a differ-
ence of approximately 0.3%. The difference between the
two corresponding estimates of q0 are significantly differ-
ent; the estimate based on κexact is more than twice the
estimate based on the sum κv þ κδ. This result is very
different from that obtained by studying the swiss cheese
models where the different estimates of q0 were primarily
due to significant differences in the estimates of h. The
difference in the estimates obtained here is in line with the
convergences along the two rays shown in Fig. 13 where
κv þ κδ is seen to be more negative than κexact. The
difference in the q0 estimates may merely be a manifes-
tation of the differences in the density distributions along
the exact and ray traced rays. Considering the results found
in Sec. VI A, it seems likely that the differences are
partially due to the apparent insufficiency of the ray tracing
scheme to describe light propagation in onion models.
Lastly, it is noted that light propagation through onion

models has its limits regarding how realistic it is; as was
seen in Fig. 7, real light rays will avoid the most underdense
regions of a void. In onion models, the light rays are less

FIG. 12 (color online). Luminosity distance plotted as a function of the observed redshift and fitted to the low-redshift FLRW
approximation for DLðzÞ. The results from four luminosity distances are shown corresponding to the exact convergence, the sum of the
gravitational and Doppler convergences, the gravitational convergence and the background solution. The results are shown along three
different lines of sight for a central observer in onion model O3sz.

FIG. 13 (color online). Density and convergence along exact and ray traced rays in onion modelO2sz. Note that κδ ≈ 0 so that the lines
representing κv and the sum κv þ κδ are indistinguishable in the figure.
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free to bend around the most underdense regions since
these are spread out over large angular regions.

VII. CONCLUSIONS

By studying both radial and nonradial rays in LTB swiss
cheese and single void models, it was shown that the sum of
the gravitational and Doppler convergences reproduces the
exact convergence very precisely. The Doppler conver-
gence is not included in standard ray tracing schemes, but
in accordance with other studies, it is found here that the
Doppler convergence is a very significant contribution at
low redshifts. Its significance for parameter determinations
was illustrated here through estimates of the reduced
Hubble and deceleration parameters. It was found that
the Doppler convergence has a distinct yet rather small
effect especially on the uncertainty of these estimates.
In the nonsymmetric Szekeres models, exact rays and ray

traced rays do not propagate through equivalent portions of
spacetime. The difference between exact and ray traced
paths is very dependent on the void profile. The more
squarelike the void profiles are, the closer the Born
approximation comes to being exact. In the case where
the void profiles are very conelike, the densities along the
ray traced rays and the exact rays are very different because
the exact rays avoid the central part of the void. Even in this
case, the consequence for e.g. determinations of the
reduced Hubble and deceleration parameters generally
seems to be limited. However, along some particular lines
of sight, the differences in the estimates of h based on the
exact DA and that obtained using κv þ κδ can become
∼3%–4%. The effect might be more significant for other
quantities. It would, for instance, be interesting to see if
there are any significant differences between CMB temper-
ature fluctuation maps obtained using exact rays and Born
approximated rays.
Many weak lensing studies employ more sophisticated

ray tracing schemes than the one used here. In particular,

the Born approximation is often replaced by multiple-
lensing techniques where the ray traced rays are bent at a
discrete number of lensing planes. It would be interesting to
see to what extent multiple-lensing techniques increase the
agreement between the exact and ray tracing light paths.
The study in [76] indicates that even if the full Newtonian
gauge metric is used to propagate rays, the resulting ray
paths will generally be different from the corresponding
exact ray paths. It is thus not clear that using multiple-
lensing techniques would result in significantly more
correct ray paths than the Born approximation.
The structure formation in swiss cheese models is very

special since each single void structure is inhibited from
interacting with the other structures in the swiss cheese. To
test if this has any significance for the precision of the ray
tracing scheme, onion models have also been studied. It
turns out that the convergence along even radial rays in
LTB onion models is not reproduced very precisely by the
ray tracing scheme. It seems plausible that this is related to
the feature that the structure formation in onion models,
unlike that in swiss cheese models, is not constrained by a
background. This is especially interesting since the same is
true for the structures in Newtonian N-body simulations
and in the real Universe. Further studies thus seem in line in
order to determine if the deviation between exact and
approximate results found here is a generic result due to
interaction of structures unconstrained by an FLRW back-
ground, or if it is the manifestation of some other feature of
the onion models which does not appear in N-body
simulations and the real Universe.
The convergence is nearly reproduced in cases where the

studied onion model’s density field reduces to a homo-
geneous FLRW density after only a few oscillations. Such
models have thus been used to study the effect of using the
Born approximation in nonsymmetric models. The density
is clearly different along the exact and the ray traced rays.
The same is true for the convergences, which results in
significantly different estimates of q0. The estimates of h

FIG. 14 (color online). Luminosity distance plotted as a function of the observed redshift and fitted to low-redshift FLRW
approximations forDLðzÞ. The results from four luminosity distances are shown corresponding to the exact convergence, the sum of the
gravitational and Doppler convergences, the gravitational convergence and the background solution.
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based on the exact and approximate convergences are very
similar.
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APPENDIX A: THE SACHS FORMALISM
SPECIFIED TO SZEKERES MODELS

In this appendix, the Sachs formalism described in
Sec. IVA is specialized to the Szekeres model. The goal
is to obtain κ along light bundles. This can be achieved by
simultaneously solving the geodesic equations, the parallel
propagation equations for the components of Eμ

a and the
equations for the components of the Jacobi matrixD. ODEs
for this were obtained in [52] and later used in [8]. The
ODEs given below are the same as these, with the notation
used here being slightly different.
To simplify the notation, the metric components will be

written using functions defined according to the line
element written as

ds2 ¼ −c2dt2 þ
ðΦ;rðt; rÞ − Φðt; rÞ E;rðr;p;qÞ

Eðr;p;qÞ Þ
2

1 − kðrÞ dr2

þ Φðt; rÞ2
Eðr; p; qÞ2 ðdp

2 þ dq2Þ

¼ −c2dt2 þ Rðt; r; p; qÞdr2
þ Fðt; r; p; qÞðdp2 þ dq2Þ: ðA1Þ

The geodesic equations corresponding to this line element
are

_kt ¼ −
1

2c2
ðR;tðkrÞ2 þ F;t½ðkpÞ2 þ ðkqÞ2�Þ; ðA2Þ

_kr ¼ 1

2R
ð−2 _Rkr þ R;rðkrÞ2 þ F;r½ðkpÞ2 þ ðkqÞ2�Þ; ðA3Þ

_kp ¼ 1

2F
ð−2 _Fkp þ R;pðkrÞ2 þ F;p½ðkpÞ2 þ ðkqÞ2�Þ;

ðA4Þ

_kq ¼ 1

2F
ð−2 _Fkq þ R;qðkrÞ2 þ F;q½ðkpÞ2 þ ðkqÞ2�Þ:

ðA5Þ

The parallel propagated screen space basis vectors Eμ
a are

needed since they enter into the ODEs for D. ODEs
describing this parallel propagation are simply obtained
by substituting 1

2
ðkμEν

a þ kνEμ
aÞ for kμkν in the geodesic

equations with the resulting equations being

_Et
a ¼ −

1

2c2
ðR;tEr

akr þ F;t½Ep
akp þ Eq

akq�Þ; ðA6Þ

2R _Er
a ¼ −R;t½Et

akr þ Er
akt� − R;rkrEr

a

− R;p½Er
akp þ Ep

akr� − R;q½Er
akq þ Eq

akr�
þ F;r½Ep

akp þ Eq
akq�; ðA7Þ

2F _Ep
a ¼ −F;t½Et

akp þ Ep
akt� þ R;pkrEr

a

− F;r½krEp
a þ kpEr

a� − F;pE
p
akp

þ F;pE
q
akq − F;q½Ep

akq þ Eq
akp�; ðA8Þ

2F _Eq
a ¼ −F;t½Et

akq þ Eq
akt� þ R;qkrEr

a

− F;r½krEq
a þ kqEr

a� − F;p½kpEq
a þ kqEp

a �
− F;qkqE

q
a þ F;qkpE

p
a: ðA9Þ

The last ODEs needed are those for the components of D
which by Eq. (11) are seen to be

D̈11 ¼ ðR − ReðFÞÞD11 þ ImðFÞD12; ðA10Þ

D̈12 ¼ ðR − ReðFÞÞD12 þ ImðFÞD22; ðA11Þ

D̈21 ¼ ImðFÞD11 þ ðRþ ReðFÞÞD21; ðA12Þ

D̈22 ¼ ImðFÞD12 þ ðRþ ReðFÞÞD22: ðA13Þ

Explicit expressions for R and F need to be obtained. The
expression forR is easy to obtain; the Einstein equation can
be written as Rμν ¼ 1

2
Rgμν þ 8πGN

c4 Tμν. Combining this
with the null condition kμkμ ¼ 0 and noting that the
Szekeres spacetime is given in a comoving spacetime
foliation such that uμ ¼ ð1; 0; 0; 0Þ, this leads to

R ¼ −4πGNρðktÞ2: ðA14Þ

To obtain an explicit expression for F, the Riemann
components are needed. Only a few of the components of
the Riemann tensor are nonvanishing. These are shown in
Appendix A 1. With the knowledge of the exact expres-
sions of the Riemann components, it is seen that F can be
written as9http://www.gnu.org/software/gsl/.
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2F ¼ Rtrtrð2ðϵ�Þtðϵ�Þrktkr − ½ðϵ�Þr�2ðktÞ2 − ½ðϵ�Þt�2ðkrÞ2Þ þRtptpð2ðϵ�Þtktfðϵ�Þpkp þ ðϵ�Þqkqg
−ðktÞ2f½ðϵ�Þp�2 þ ½ðϵ�Þq�2g − ½ðϵ�Þt�2fðkpÞ2 þ ðkqÞ2gÞ þRrprpð2ðϵ�Þrðϵ�Þpkrkp − ½ðϵ�Þr�2ðkpÞ2
−½ðϵ�Þp�2ðkrÞ2Þ þRrqrqð2ðϵ�Þrðϵ�Þqkqkr − ½ðϵ�Þr�2ðkqÞ2 − ½ðϵ�Þq�2ðkrÞ2Þ þRpqpqð2ðϵ�Þpðϵ�Þqkpkq
−½ðϵ�Þp�2ðkqÞ2 − ½ðϵ�Þq�2ðkpÞ2Þ: ðA15Þ

In order to solve the set of ODEs given above, initial conditions need to be determined. Most of the geodesics are
initialized as radial. Since uμ ¼ ð1; 0; 0; 0Þ, this implies that the initial conditions for the screen space vectors are Eμ

1 ¼
1ffiffiffi
F

p ð0; 0; 1; 0Þ and Eμ
2 ¼ 1ffiffiffi

F
p ð0; 0; 0; 1Þ. In the more general case of rays that are not initially radial, the screen space basis

unit vectors are initialized according to

Eμ
1 ∝

�
0;

ffiffiffiffi
F

pffiffiffiffi
R

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkp0 Þ2 þ ðkq0Þ2

q
;−

ffiffiffiffi
R

pffiffiffiffi
F

p kr0k
p
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkp0 Þ2 þ ðkq0Þ2

p ;−
ffiffiffiffi
R

pffiffiffiffi
F

p kr0k
q
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkp0 Þ2 þ ðkq0Þ2

p �
; ðA16Þ

Eμ
2 ∝

�
0; 0;

1ffiffiffiffi
F

p kq0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkp0 Þ2 þ ðkq0Þ2
p ;−

1ffiffiffiffi
F

p kp0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkp0 Þ2 þ ðkq0Þ2
p �

: ðA17Þ

These expressions are obtained by requiring that the two basis vectors are orthogonal to the velocity field and kμ.
In order for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðDÞjp
to be the angular diameter distance, kt must be initialized as kt0 ¼ − 1

c. The initial values of
kr; kp; kq are arbitrary though kμ must fulfill the null condition.
By differentiating the equation ξ ¼ D _ξ0, it can be seen that D must be initialized as the zero matrix and _D as the identity

matrix.

1. Riemann components of Szekeres models

The Riemann components are computed using the definition Rαβμν ¼ 1
2
ðgβμ;να − gαμ;νβ þ gαν;μβ − gβν;μαÞ−

gσγðΓσαμΓγβν − ΓσανΓγβμÞ. This equation contains the covariant Christoffel symbols symmetric in their two last indices, i.e.

Γγ
αβ ¼

1

2
gγσðgασ;β þ gβσ;α − gαβ;σÞ

¼> Γγαβ ¼
1

2
ðgαγ;β þ gβγ;α − gαβ;γÞ: ðA18Þ

The nonvanishing covariant Christoffel symbols of the quasispherical Szekeres models with the metric corresponding to the
line element of Eq. (A1) are

Γrrt ¼ Γrtr ¼ −Γtrr ¼
R;t

2

Γrrr ¼
R;r

2

Γrrp ¼ Γrpr ¼ −Γprr ¼
R;p

2

Γrrq ¼ Γrqr ¼ −Γqrr ¼
R;q

2

Γppt ¼ Γptp ¼ −Γtpp ¼ Γqqt ¼ Γqtq ¼ −Γtqq ¼
F;t

2

Γppr ¼ Γprp ¼ −Γrpp ¼ Γqqr ¼ Γqrq ¼ −Γrqq ¼
F;r

2

Γqqq ¼ Γppq ¼ Γpqp ¼ −Γqpp ¼ F;q

2

Γppp ¼ Γqqp ¼ Γqpq ¼ −Γpqq ¼
F;p

2
: ðA19Þ
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The corresponding nonvanishing Riemann components are

Rtrtr ¼ Rrtrt ¼ −Rtrrt ¼ −Rrttr ¼ −
1

2
R;tt þ

R2
;t

4R

Rtptp ¼ Rptpt ¼ −Rtppt ¼ −Rpttp ¼ −
1

2
F;tt þ

F2
;t

4F

Rtqtq ¼ Rqtqt ¼ −Rtqqt ¼ −Rqttq ¼ −
1

2
F;tt þ

F2
;t

4F

Rrprp ¼ Rprpr ¼ −Rprrp ¼ −Rrppr ¼ −
1

2
ðR;pp þ F;rrÞ þ

1

4c2
R;tF;t þ

1

4R
ðR;rF;r þ R2

;pÞ þ
1

4F
ðR;pF;p þ F2

;r − R;qF;qÞ

Rrqrq ¼ Rqrqr ¼ −Rqrrq ¼ −Rrqqr ¼ −
1

2
ðR;qq þ F;rrÞ þ

1

4c2
R;tF;t þ

1

4R
ðR;rF;r þ R2

;qÞ þ
1

4F
ð−R;pF;p þ R;qF;q þ F2

;rÞ

Rpqpq ¼ Rqpqp ¼ −Rpqqp ¼ −Rqppq ¼ −
1

2
ðF;qq þ F;ppÞ þ

1

4c2
F2
;t −

1

4R
F2
;r þ

1

2F
ðF2

;p þ F2
;qÞ: ðA20Þ

APPENDIX B: THE SACHS FORMALISM
COMBINED WITH THE BORN

APPROXIMATION

The ray tracing scheme described in Sec. IV B repro-
duces the exact results very precisely in the special case
where the exact rays are radial rays in an LTB model.
Unfortunately, that ray tracing scheme is, in practice,
difficult to use for studying rays initialized as nonradial
in the local single void models of the swiss cheese. Thus, in
order to test if the good reproduction is purely a conse-
quence of the exact rays themselves being radial, the Sachs
formalism has been used to devise a simple scheme for “ray
tracing” nonradial rays in LTB models. In this ray tracing
scheme, rays are propagated according to the background
null-geodesic equations, i.e. in accordance with the Born
approximation.
The convergence can be obtained using the Sachs

formalism described in Sec. IVA. Using Rμν ¼ 1
2
Rgμν þ

8πGN
c4 Tμν, it is easily seen that R ¼ − 1

2
Rμνkμkν ¼

− 4πGN

c2V2 ρð−c2kt þ a2vrkrÞ2. Since the ray tracing will only
be done through single void models, the gravitational
convergence is, however, negligible. This implies that
the result will not depend on whether it is the background
density or mapped Szekeres density that is used when
computing R. In fact, the term a2vrkr can also be
neglected, and F is set equal to zero, corresponding to
its lowest order value. The only place where the compu-
tations deviate from background computations is thus when
computing the observable redshift which corresponds to
computing the Doppler convergence.
In order for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðDÞjp
to be the angular diameter

distance, kt must be initialized as kt0 ¼ − 1
c, while the initial

values of kr; kp; kq are arbitrary though the null condition

for kμ must be fulfilled. D must be initialized as the zero
matrix and _D as the identity matrix.
The formalism described here has only been used with kq

initially set to zero. In this case, the initial conditions of the

screen space unit vectors are Eμ
1 ∝ ðvrc2 ; 1

a2 ;−E
∼2 vr

cþkr

a2r2kp ; 0Þ
and Eμ

2 ¼ ð0; 0; 0; E
∼2

a2r2Þ, where E
∼

is a metric function
defined in Appendix C. These initial conditions are
obtained by using the fact that the screen space basis
vectors are orthogonal to each other and to uμ ≈
c
V ð−c2ð1þ 2ψÞ; a2ð1 − 2ψÞvr; 0; 0Þ and kμ. Once again,
it is actually sufficient only to keep the background terms.
At low redshifts, the scheme just described has the

same precision as the ray tracing scheme described in
Sec. IV B; it uses the Born approximation and computes the
Doppler convergence. Thus, if the ray tracing scheme
described here can accurately reproduce the path and
corresponding convergence of a nonradial light ray in an
LTB model, then the ray tracing scheme of Sec. IV B will
also be able to do so. As shown in Sec. VA 1, this is in fact
the case.

APPENDIX C: CURVED FLRW BACKGROUNDS

The truncated onion models shown in Fig. 2 all converge
to an EdS background at large r. The structures at smaller
values of the radial coordinate are, however, not separated
from each other by artificial background patches but are
free to interact. This implies that the structures will
generally not be locally compensating. Thus, ray tracing
through the inhomogeneous region of the onion models
may require the use of a different FLRW model than the
EdS model as the background. Some of the equations of
Secs. III and IV B require the background FLRW model to
be flat and thus need to be adapted before they can be used
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together with a curved background. The necessary mod-
ifications are summarized below, together with examples.

1. Mock N-body data

Disregarding notation, the map in Eq. (6) does not
require the background to be flat. With a general back-
ground, the right-hand side should refer to the given FLRW
model of choice and not specifically the EdS model, i.e.

~t ≔ ~tsz ¼ ~tflrw

~p ≔ ~psz ¼ ~pflrw

~q ≔ ~qsz ¼ ~qflrwZ
~rsz

0

drsz
ffiffiffiffiffiffiffiffiffiffi
grr;sz

p ¼
Z

~rflrw

0

drflrw
ffiffiffiffiffiffiffiffiffiffiffiffi
grr;flrw

p
: ðC1Þ

The coordinate system used for the FLRWmodel should be
the one corresponding to the FLRW limit of the Szekeres
spacetime. The coordinate choice should thus correspond
to the FLRW line element written as

ds2 ¼ −c2dt2 þ a2
�

dr2

1 − Kr2=R2
0

þ r2

~E2
ðdp2 þ dq2Þ

�
:

ðC2Þ
K ∈ f−1; 0; 1g gives the sign of the spatial curvature while
R0 ¼ c

H0

ffiffiffiffiffiffiffiffiffiffiffiffi
jΩm;0−1

p
j is the curvature radius. The function

~E is

given by ~E ¼ 1
2
ðp2 þ q2 þ 1Þ.

The velocity field cannot be obtained using Eq. (7); the
right-hand side of that equation is only correct for a flat
FLRW model. The velocity field can be obtained through
the same considerations as those that lead to Eq. (7).
The point identification map of Eq. (C1) is time

dependent. Hence, keeping the spatial Szekeres position
constant while letting the time coordinate vary will lead to a

mapping into spatially different FLRW points. This change
in the spatial FLRW coordinates as a function of the time
coordinate leads to a velocity field that can be computed
e.g. by using a finite difference formula.

2. Ray tracing

The background does not affect the expression for the
Doppler convergence given in Eq. (15). The expression for
the gravitational convergence for a general FLRW back-
ground is well known (see e.g. [74,84]):

κδ ¼
4πG
c2

Z
xg

0

dx0ga2δρ
fKðxg − x0gÞfKðx0gÞ

fKðxgÞ
: ðC3Þ

The relation between x and the radial coordinate is given by
r ¼ fKðxÞ, where fKðxÞ is the curvature function given by

fKðxÞ ¼

8>><
>>:

R0 sinðx=R0Þ if K ¼ þ1

x if K ¼ 0

R0 sinhðx=R0Þ if K ¼ −1.
ðC4Þ

Equation (C3) requires the scale factor to be normalized at
the time of observation in the FLRW background coor-
dinates. According to the map in Eq. (C1), this time
coordinate is the same as the time coordinate of the
observer in the exact Szekeres spacetime. The Hubble
constant of a given background must thus be chosen such
that the age of the background model is the same as that of
the exact Szekeres model being studied.
The ray tracing method on a curved background has

been tested using different swiss cheese models. An
example is shown in Fig. 15. The figure shows the
density and convergence along a ray moving radially
through consecutive LTB voids. The particular single
void model used to construct the swiss cheese model has

FIG. 15 (color online). Density and convergence along a radial geodesic in an LTB swiss cheese model. The density profiles along the
exact and ray traced rays are indistinguishable. The same is true for the exact convergence and the sum of the gravitational and Doppler
convergence.
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FIG. 16 (color online). Convergence along a radial ray in the LTB swiss cheese model based on the LTB single void model specified
by m ¼ 4 and rb ¼ 60 Mpc. The exact and ray traced convergences are computed using various FLRW backgrounds specified by their
values of Ωm;0. The proper background is the EdS model.
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been specified similarly to the models in Sec. II but with
kðrÞ given by

kðrÞ ¼ r2
�
H0

c

�
2

ðΩm;0 − 1Þ

×

�
1þ 4cos2

�
πr

200 Mpc

�
e−8

r
200 Mpc

�
: ðC5Þ

The results depicted in Fig. 15 correspond to setting
Ωm;0 ¼ 0.8. This gives a model that converges asymp-
totically to an open FLRW model with a present day
density parameter of Ωm;0 ¼ 0.8. The ray tracing results
have been obtained by using this as the background
model. As indicated in the figure, the ray tracing results
reproduce the exact results very precisely.
The model defined by Eq. (C5) has an unrealistic, pointy

void shape indicating that the model is not well behaved at
the origin. Since the results are reproduced well by the ray
tracing scheme, this is not an issue for the current purpose
of the model. The large patches of nearly homogeneous
background density along the ray are necessary to avoid
velocity artifacts. When changing the background in the ray
tracing scheme, the background angular diameter distance
computed following Eq. (10) and used in Eq. (9) must also
be changed accordingly.

3. Ray tracing through swiss cheese models
with improper backgrounds

As shown in Sec. VA, the ray tracing scheme very
precisely reproduces the exact convergence along rays
moving radially through consecutive LTB voids. It is
interesting to see to what extent this result requires using
the proper background. By “proper background” is here
meant the FLRW patches between the compensated single
void structures of the given swiss cheese model. For the
study in Sec. VA, the proper background was the EdS
model. Figure 16 shows the convergence obtained by using

different curved backgrounds for the ray tracing approxi-
mation and in Eq. (9). The swiss cheese model is the same
as the one studied in Sec. VA.
As seen in Fig. 16, the background is important in order

to obtain precise results with the ray tracing scheme. It is as
expected that the ray tracing should yield an incorrect result
when using an improper background; the Doppler con-
vergence becomes incorrect when computed from an
improper background since the peculiar velocity field is
supposed to describe the difference between the local exact
expansion of the LTB model and the global expansion of
the average model. This is only the case if it is the proper
background that is used. Note in this connection that when
improper backgrounds are used, the mock N-body velocity
field does not reduce to zero outside the single void
structures of the cheese.
Using an improper background for computing the exact

convergence from Eq. (9) should lead to a shift so that the
exact convergence no longer oscillates about zero. This is
clearly seen in Fig. 16. This does not happen in the ray
tracing scheme where the Doppler convergence keeps
oscillating about zero. While the gravitational convergence
is negligible, the ray tracing convergence will thus oscillate
about zero regardless of the background. The LTB onion
models have also been studied using curved backgrounds.
This was done as an attempt to obtain a better reproduction
of the exact convergence. This turned out not to be possible.
In fact, the difference between exact and ray traced
convergence does not appear to depend much on the used
background; the exact and approximate convergences are
simply raised or lowered by approximately the same
amount when the background is changed. This is very
different from the swiss cheese case illustrated in Fig. 16
where the difference between the exact and ray tracing
convergence clearly depends on the background. The cause
for this could be related to the very different Doppler
convergence of the onion models compared to that of the
LTB swiss cheese models.
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