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We explore the implications of hidden symmetries present in a particular quantum cosmological setting,
extending the results reported in Jalalzadeh and Moniz [Phys. Rev. D 89, 083504 (2014)] and Jalalzadeh
et al. [Eur. Phys. J. C 75, 38 (2015)]. In more detail, our case study is constituted by a spatially closed
Friedmann-Lemaître-Robertson-Walker universe, in the presence of a conformally coupled scalar field.
The suð1; 1Þ hidden symmetries of this model, together with the Hamiltonian constraint, lead to the gauge
invariance of its corresponding Bargmann indices. We subsequently show that some factor-ordering
choices can be related to the allowed spectrum of Bargmann indices and, hence, to the hidden symmetries.
Moreover, the presence of those hidden symmetries also implies a set of appropriate boundary conditions to
choose from. In summary, our results suggest that factor ordering and boundary conditions can be
intertwined when a quantum cosmological model has hidden symmetries.
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I. INTRODUCTION

An important issue in theoretical cosmology is the choice
of an initial condition for our Universe to evolve from.
Although some features of the observed Universe are
explained by the hot big bang model, it faces the problem
of describing properties such as its spatial flatness and
isotropy, plus the origin of density fluctuations. The infla-
tionary scenario [1] proposes to solve these problems
with adequate density fluctuations being obtained if the
matter fields start in a particular quantum state [2].
Notwithstanding the success so far achieved by the infla-
tionary paradigm [3], in order to have a complete under-
standing of the present observable state of the Universe, the
initial condition problem must be addressed.
The Wheeler–De Witt (WDW) equation plays an

important role in quantum cosmology [4], determining the
wave function of the Universe. A framework that has been
usually employed is the Hamiltonian formulation of general
relativity introducedbyArnowitt,Deser, andMisner (ADM),
by means of a decomposition of the spacetime manifold [5].
Nevertheless, there are pertinent technical challenges [6].

The WDWequation has many solutions: to single out an
appropriate quantum state, a sensible procedure assisting in
the selection of boundary or initial conditions is needed [7].
Different approaches have been suggested to address the
problem of boundary conditions, but these were not
conveyed as part of a dynamical law [8]. Let us elaborate
more on this. The motivation behind the no-boundary
approach [9] was to surmount the initial singularity by
determining the wave function of the Universe through a
path integral over compact Euclidean geometries. The
tunneling proposal [10] determines the wave function to
be bounded everywhere and includes only outgoing modes
at the singularity. Two other proposals, the vanishing of the
wave function or its derivative with respect to the scale
factor at the classical singularity [11,12], have also been
used to specify the wave function of the Universe.
In addition, specific settings in quantum cosmology

often require factor-ordering choices within the WDW
equation to be investigated. It has also been stated, however,
that the factor-ordering question is not very important to the
theory as a whole [11,13], namely, from a semiclassical
perspective [14,15]. Nevertheless, it has been claimed
that different operator orderings [15–17] can be related to
a chosen boundary condition [17]. Unfortunately, there is
no general argument on how to resolve this issue and,
therefore, proposals given in this regard are somewhat
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phenomenological [11]. In this context, it may be relevant to
point to the following. The classical theory of general
relativity is invariant under the group DiffðMÞ of diffeo-
morphism of the spacetime manifoldM, which leads to the
problem of observables [14]. On the other hand, the identi-
fication of a dynamical observable is related to the issue of
time [18,19]. Let us be more concrete. The observables
of a theory, according to Dirac [20], are those quantities
which have vanishing Poisson brackets at the classical level.
Hence, at the quantum level, they satisfy the appropriate
quantum commutators in the presence of constraints. In
the ADM formalism, several constraints emerge: in particu-
lar, the primary constraints associated to the canonical
conjugate momentum of the lapse function and shift
vector. Subsequently, secondary constraints canbe retrieved,
namely, the Hamiltonian or momentum constraints. Finally,
all Dirac observables are time independent.
Because the algebra of the theory is specified by the

constraints, it may be thought that there is a relation
between the choice of the boundary condition (and then
of the factor ordering [15–17]) and, thus, the Dirac
observables of the theory. More precisely, in Ref. [21]
the Hamiltonian of a closed Friedmann-Lamaître-
Robertson-Walker (FLRW) universe filled with either
dust or radiation was found to be equivalent to the one-
dimensional harmonic oscillator. The hidden symmetry of
that model suð1; 1Þ, together with the gauge invariance of
the Bargmann index with values f1

4
; 3
4
g, split the underlying

Hilbert space into two disjoint invariant subspaces, each
corresponding to a different choice of boundary condition.
In a similar procedure, in Ref. [22] the uð1; 1Þ hidden
symmetries of the nonminimally coupled scalar field in a
spatially flat universe, led to the Hamiltonian of that model
being described by a two-mode realization of the suð1; 1Þ
algebra, which induces a degenerate Bargmann index.
Therein, the scale factor duality of that model together
with time reversal allows us to specify the appropriate
boundary conditions. Therefore, from the results conveyed
in [21,22], hidden symmetries present in the Hamiltonian,
in addition to the minisuperspace symmetries of the model
under investigation, suggest a process from which to select
boundary conditions.
Herein, we extend the scope of [21,22] towards a closed

FLRW model nonminimally coupled to a scalar field. The
novel contribution brought in this paper is to provide a
concrete procedure to relate, in an intertwined manner,
factor ordering and boundary conditions making use of the
presence of a specific hidden symmetry and by means of a
Dirac observable algebra. In Sec. II, we present the model
that assists in our investigation. The quantization of the
model and a boundary condition discussion (in view of the
retrieved Dirac observables as well as concrete factor-
ordering choices) are analyzed in detail in Sec. III.
A summary and discussion of our results is presented
in Sec. IV.

II. CLASSICAL SETTING

The action of general relativity nonminimally coupled to
a scalar field is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
1

2κ
−
ζ

2
ϕ2

�
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�
;

ð1Þ

where κ ¼ 8πG with G being Newton’s gravitational
constant, and ζ is a dimensionless coupling constant.
One of the main reasons to include the nonminimal
coupling in the action is that at the quantum level, quantum
corrections to the scalar field theory lead to the nonminimal
coupling: the scalar field theory in curved spacetime
becomes renormalizable in the case of a nonminimal
coupling [23]. Furthermore, the recent Planck data [2]
suggest for the early Universe a stage where a nonminimal
coupling may have had a suitable contribution. Different
values of the nonminimal coupling have been adopted
[23,24]. In metric theories of gravity, ζ ¼ 0 (minimal
coupling) or ζ ¼ 1

6
(conformal coupling) have been fre-

quently employed [25]. In grand unified theories (GUTs), ζ
depends on a renormalization group parameter τ, and ζðτÞ
converges to 1=6, ∞, or ζ0 as τ → ∞ [26]. In the standard
model, the Higgs fields have been associated to either
ζ ≥ 1=6 or ζ ≤ 0 [27]. Herein, we adopt the special value
ζ ¼ 1

6
with V ¼ 0 which makes the physics of ϕ con-

formally invariant [28,29].
In addition, we use a closed FLRW geometry, with the

line element

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2
�

dr2

1 − r2
þ dΩ2

3

�
: ð2Þ

Introducing the new variable ~ϕ ¼ alpϕffiffi
2

p , where lp is the

Planck length ð8πG ¼ 3lp2Þ, the Hamiltonian for our
model, corresponding to a two-dimensional minisuper-
space, fa; ~ϕg, is

H ¼ N
�
−
Πa

2

4a
þ Π ~ϕ

2

4a
− aþ

~ϕ2

a

�
; ð3Þ

whereΠa ¼ −2_aa
N ,Π ~ϕ ¼ −2 _~ϕa

N , andΠN ¼ 0 are the canonical

momenta conjugate to a, ~ϕ, and N, respectively. In the
presence of the primary constraint ΠN ¼ 0, the
Hamiltonian can be generalized by adding to it this primary
constraint multiplied by arbitrary functions of time ξ. Then
the total Hamiltonian will be

HT ¼ N

�
−
Πa

2

4a
þ Π ~ϕ

2

4a
− aþ

~ϕ2

a

�
þ ξΠN: ð4Þ
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The primary constraint must be satisfied at all times and,
therefore,

_ΠN ¼ fΠN;HTg ≈ 0; ð5Þ

which leads to the secondary (Hamiltonian) constraint,

H ¼ N

�
−
Πa

2

4a
þ Π ~ϕ

2

4a
− aþ

~ϕ2

a

�
≈ 0: ð6Þ

The existence of constraint (6) means that there are some
degrees of freedom which are not physically relevant.
Hence, we can fix the gauge as N ¼ a. Then, the
Hamiltonian can be readily written as

H ¼
�
−
Πa

2

4
þ Π ~ϕ

2

4
− a2 þ ~ϕ2

�
≈ 0: ð7Þ

A. Reduced phase space and observables

According to Dirac, an observable is a function on the
phase space which has weakly vanishing Poisson brackets
with the first-class constraints. A phase space function is a
first-class constraint if its Poisson bracket with all con-
straints weakly vanishes. In particular, general relativity is
invariant under the group of diffeomorphisms, the
Hamiltonian can be expressed as a sum of constraints,
and any observable must commute with these constraints.
Therefore, in order to find the corresponding gauge

invariant observables of our model in (1)–(2), we define
the complex valued functions S ¼ fK0; K�; J0; J�g on the
unconstrained phase space Γ in R6. More concretely,
fK0; K�g are the complex valued functions for the gravi-
tational sector of the Hamiltonian and are defined as

�
K0 ¼ 1

4
ða2 þ Π2

aÞ;
K� ¼ 1

4
ða2 − Π2

a∓iðaΠa þ ΠaaÞÞ;
ð8Þ

with the following closed Poisson algebra:

fK0; K�g ¼ ∓iK�; fKþ; K−g ¼ 2iK0: ð9Þ

Moreover, we have the complex valued functions fJ0; J�g
for the scalar field part as

8<
:

J0 ¼ 1
4
ðΠ2

~ϕ
þ ~ϕ2Þ;

J� ¼ 1
4
ð ~ϕ2 − Π2

~ϕ
∓ið ~ϕΠ ~ϕ þ Π ~ϕ

~ϕÞÞ:
ð10Þ

They satisfy the following closed algebra:

fJ0; J�g ¼ ∓iJ�; fJþ; J−g ¼ 2iJ0: ð11Þ

Using (8) and (10), the Hamiltonian constraint (7) becomes

H ¼ 4ðK0 − J0Þ ≈ 0; ð12Þ

which shows that J0 and K0 are not independent. Since
the Poisson brackets of all above observables of the
phase space and the Hamiltonian vanish, i.e., fH;K0g ¼
fH;K�g ¼ fH; J0g ¼ fH; J�g ¼ 0, their values on the
constraint surface are constants of motion. Furthermore, for
the gravitational part, if we define the central element of the
algebra as

K2 ≔
1

2
K2

0 −
1

4
ðKþK− þ K−KþÞ; ð13Þ

then, by inserting the definitions displayed in expressions
(8) into Eq. (13), we can easily show that on the constraint
surface H ≈ 0, the K’s are not algebraically independent
but satisfy the identity

K2 ¼ −
3

16
: ð14Þ

Similarly, for the scalar field part, we introduce

J2 ≔ 1
2
J20 − 1

4
ðJþJ− þ J−JþÞ: ð15Þ

Using definitions (10) in Eq. (16), the J’s satisfy the
identity

J2 ¼ −
3

16
: ð16Þ

Obviously, K2 and J2 have strongly vanishing Poisson
brackets with the Hamiltonian and their values are constant
of motion. Note that by means of the three constraints (12),
(16), and (14), three of the S ¼ fK0; K�; J0; J�g are
independent on the phase space.
In this paper, we follow the argument that the (Dirac)

observables are characterized by having weakly vanishing
Poisson brackets with first-class constraints [20]. Another
approach that we have not considered in our paper has been
promoted in [30], by means of which observables, in
general, should have vanishing Poisson brackets with the
gauge generators. However, by assuming Dirac’s sugges-
tion that gauge generators are the first-class constraints,
in our case study the appropriate gauge generator to be
contemplated for the action (1) reduces to (4), and the
observables determined here in our paper are consistent
within the approach we took.

III. QUANTUM COSMOLOGY

A quantum state1 for the FLRW universe (1)–(2) can be
obtained from the WDWequation. WithHΨða; ~ϕÞ ¼ 0 and
Π2

a ≡ −a−q ∂
∂a ðaq ∂

∂aÞ, Π ~ϕ ¼ −i ∂
∂ ~ϕ
, we write the WDW

equation as

1In our paper, we take ℏ ¼ 1.
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�
a−q

∂
∂a

�
aq

∂
∂a

�
− a2 −

� ∂2

∂ ~ϕ2
− ~ϕ2

��
Ψða; ~ϕÞ ¼ 0: ð17Þ

An important point to note is a factor-ordering ambiguity,
by means of the power q in the first term, which can arise
through the canonical quantization procedure [14,15]. One
factor-ordering choice (among several possibilities) is the
natural ordering, which induces a Laplace-Beltrami oper-
ator in the minisuperspace [11]. The existence of arbitrary
possible choices for the factor ordering is a relevant issue in
quantum cosmology. In what follows, we will adopt the
general factor ordering introduced above in (17), and we
will show that within this specific factor-ordering structure,
some choices can be selected for the algebra of observables
of the model. Then they can be subsequently associated
with a boundary condition selection, extracted from an
analysis of the hidden symmetries present in the model.
Rewriting the wave function as a

−q
2 Ψða; ~ϕÞ, the WDW

equation (17) simplifies to

� ∂2

∂a2 −
� ∂2

∂ ~ϕ2
− ~ϕ2

�
− a2 −

β

a2

�
Ψða; ~ϕÞ ¼ 0; ð18Þ

where β ¼ qðq−2Þ
4

is a parameter representing the operator
ordering ambiguity in the first term of Eq. (17) [31]. The
WDW equation for a conformally coupled FLRW cosmol-
ogy is a very special case for which we can separate
completely the scalar field part from the gravitational
sector, i.e., H ¼ Ha⊕H ~ϕ. For the conformal scalar field
part, with a separation constant En, we have

�
−

∂2

∂ ~ϕ2
þ ~ϕ2

�
Φnð ~ϕÞ ¼ EnΦnð ~ϕÞ: ð19Þ

The solution to the above equation is

�
Φnð ~ϕÞ ¼ N nHnð

ffiffiffi
2

p
~ϕÞe− ~ϕ2

2 ;

En ¼ 2nþ 1; n ¼ 0; 1; 2;…;
ð20Þ

whereHn is an Hermite polynomial of order n, andN n is a
integration constant. For the gravitational sector we have

�
−

d2

da2
þ a2 þ qðq − 2Þ

4a2

�
ψn0 ðaÞ ¼ Ēn0ψn0 ðaÞ; ð21Þ

The solution to the above equation is [32,33]

�
ψγ
n0 ðaÞ ¼ N γ

n0a
γþ1e−

1
2
a2L

γþ1
2

n0 ða2Þ;
Ēγ
n0 ¼ 4ðn0 þ 1

4
− γ

2
Þ; n0 ¼ 0; 1; 2;…;

ð22Þ

where L
γþ1

2

n0 as generalized Laguerre polynomials of degree
n0 [34],

N γ
n0 ¼ ð−1Þn0

�
n0!

Γðn0 þ γ þ 3
2
Þ
�1

2

; ð23Þ

is a normalization coefficient and γ ¼ 1
2
ð−1� j1 − qjÞ. It is

obvious that for the specific choice of γ ¼ 0 (equivalent to
q ¼ 0 or q ¼ 2), the WDW equation consists of two
harmonic oscillators with opposite signs [32] which are
regular everywhere. The Hamiltonian constraint for the
conformally coupled scalar field (6) leads to

2n − 4n0 ¼ q: ð24Þ

A. Hidden symmetries and boundary conditions

In order to determine the wave function of the Universe,
given the mathematical nature of the WDW equation,
boundary conditions must be imposed. A singularity is
present at t ¼ 0 and physically relevant configurations
require that the scale factor, a, is positive. Hence, the
configuration space for the gravitational sector is the half-
line ð0;∞Þ. Thus, the corresponding Hilbert space related
to Ha is L2ð0;∞Þ, with the following inner product,

hψ1;ψ2i ¼
Z

∞

0

ψ†
1ðaÞψ2ðaÞda: ð25Þ

However, the operator Ha ¼ − d2

da2 þ a2 þ qðq−2Þ
4a2 defined on

C∞
0 ð0;∞Þ is not necessarily self-adjoint. To have a self-

adjoint Hamiltonian, it is necessary to have simultaneously
ψð0þÞ ¼ 0 and dψ

da ð0þÞ ¼ 0, or the domain ofHa should be
restricted to the domains [35]

Dα ¼
�
ψ ∈ H2

að0;∞Þ
				 dψda ð0þÞ ¼ αψð0þÞ

�
; ð26Þ

where α ∈ R and H2
að0;∞Þ denote the Sobolev space with

the wave functions ψ ∈ L2ð0;∞Þ with ψ ∈ C1ð0;∞Þ,
continuous dψ

da,
d2ψ
da2 ∈ L2ð0;∞Þ, and Ha½ψ � ∈ L2ð0;∞Þ.

Note that for simultaneously vanishing ψð0þÞ and
dψ
da ð0þÞ, the equation dψ

da ð0þÞ ¼ αψð0þÞ will be trivial. In
[12], the simple cases of α ¼ 0 and α ¼ ∞ have been used.
Moreover, it is argued in [36] that this arbitrary constant
would be a new fundamental physical constant, and in
order to avoid such a constant, α is required to be zero.
However, α can be determined in the context of a hidden
dynamical symmetry being present. The lowering and
raising operators for the WDW equation (21) can be built
using a factorization method [37]. Let us start with the
WDW equation (21) and rewrite it as a one-dimensional
Schrödinger equation,

�Hγψγ
n0 ¼ Ēγ

n0ψ
γ
n0 ;

Hγ ≔ − d2

da2 þ a2 þ γðγþ1Þ
a2 ;

ð27Þ
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where γ ¼ 1
2
ð−1� j1 − qjÞ. Introducing the first-order

differential operators

�Cγ ≔ d
da þ aþ γ

a ;

C†
γ ≔ − d

da þ aþ γ
a ;

ð28Þ

we obtain the following supersymmetric partner
Hamiltonians [3,38]:

�
hþ ≔ CγC

†
γ ¼ Hγ þ 2γ − 1;

h− ≔ C†
γCγ ¼ Hγ−1 þ 2γ þ 1:

ð29Þ

Then, the Hamiltonians hþ and h− have the same energy
spectrum except the ground state of hþ

�hþψ
γ
n0 ¼ ðĒγ

n0 þ 2γ − 1Þψγ
n0 ;

h−ψ
γ−1
n0−1 ¼ ðĒγ−1

n0−1 þ 2γþ 1Þψγ−1
n0−1 ¼ ðĒγ

n0 þ 2γ − 1Þψγ−1
n0−1:

ð30Þ

This symmetry is called shape-invariant symmetry [38].
The shape-invariant condition (30) is equivalent to

CγC
†
γ − C†

γ−1Cγ−1 ¼ 4: ð31Þ

We see that changing the order of operatorsC†
γ andCγ leads

to a shift in the value of γ. The above discussion shows that
the different factor orderings of the WDW equation are
related through shape-invariance features. It is well known
that the shape-invariant potentials are easy to deal with if
lowering and raising operators, just as for the harmonic
oscillator, are employed. However, as the commutator of Cγ

and C†
γ does not yield a constant value, namely,

½Cγ; C
†
γ � ¼ 2

�
1 −

γ

a2

�
; ð32Þ

these operators are not suitable. To establish a suitable
algebraic structure, according to [37], we assume that
replacing γ with γ − 1 in a given operator can be achieved
with a similarity transformation,

TOγðaÞT† ¼ Oγ−1ðaÞ: ð33Þ

Hence, we introduce the following operators,

A ≔
1

2
CγT†; A† ≔

1

2
TC†

γ ; N ≔
1

4
C†
γCγ ¼

1

4
hþ;

ð34Þ

which lead us to the simple harmonic oscillator algebra,

½A; A†� ¼ 1; ½N;A� ¼ −A; ½N;A†� ¼ A†: ð35Þ

Therefore, the action of these operators on normalized
eigenfunctions will be

Aψγ
n0 ¼

ffiffiffiffi
n0

p
ψγ
n0−1; A†ψγ

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ 1

p
ψγ
n0þ1

;

Nψγ
n0 ¼ n0ψγ

n0 : ð36Þ

The last equation in (36) gives Ēγ
n0 ¼ 4ðn0 − γ

2
þ 1

4
Þ which is

in agreement with the energy spectrum obtained by direct
solving of WDW in Eq. (22). Let us now obtain α for the
case of γ ¼ 0 (equivalently q ¼ 0 or q ¼ 2), for which the
above generalized ladder operators reduce to the simple
harmonic ladder operators. In this case, the equation
Aψγ

n0 ¼
ffiffiffiffi
n0

p
ψγ
n0−1 at the vicinity of singularity will be

�
d
da

ψn0 ðaÞ þ aψn0 ðaÞ
�				

a→0þ
¼ 2

ffiffiffiffi
n0

p
ψðaÞja→0þ : ð37Þ

Now, inserting condition (26) into this equation gives

ðαþ aÞψn0 ðaÞja→0þ ¼ 2
ffiffiffiffi
n0

p
ψn0−1ðaÞja→0þ : ð38Þ

The wave function in this case is an Hermite polynomial of
order n0 and for even values of the quantum number n0,
ψn0 ð0þÞ ≠ 0 and ψn0−1ð0þÞ ¼ 0. Consequently, for the
even values of n0, Eq. (38) gives α ¼ 0. On the other hand,
for the odd values of quantum number n0, ψn0 ð0þÞ ¼ 0 and
ψn0−1ð0þÞ ≠ 0, which gives 1=α ¼ 0 or α ¼ ∞. From the
above possibilities, the behavior of a given wave packet can
be investigated, namely, near the singularity. Thus, it can be
proposed that the wave function vanishes at the singularity,
i.e., (De Witt or Dirichlet boundary proposal)

Ψða; ~ϕÞja¼0 ¼ 0; ð39Þ

or, as proposed in [36,39], one can employ instead the
Neumann boundary condition

∂Ψ
∂a

				
a¼0

¼ 0: ð40Þ

Let us now return to the general case at the presence of
factor ordering, γ ≠ 0. Because of the simultaneous van-
ishing of wave function (22) and its first derivative at
the singularity, ψγ

n0 ð0þÞ ¼ 0 ¼ dψγ
n0=dað0þÞ, the equation

dψ
da ð0þÞ ¼ αψð0þÞ is trivial and it does not gives us any
specific value for α.

B. Hidden symmetries, factor ordering,
and Hilbert space

The Universe is considered as a whole in quantum
cosmology; i.e., there is nothing external to the
Universe. In this respect, an independent physical law
may define appropriate boundary conditions [40]. Or, as we
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discuss herein, symmetries of the cosmological model
under investigation may suggest arguments for that selec-
tion [21,22]. Indeed, from the hidden symmetries present in
our model, we can extract different types of boundary
conditions. To this aim, we employ the Dirac observables
of the cosmological model. Let us be more clear. Notice
that the Poisson bracket algebra associated with the sets (8)
and (10) can be promoted into a suð1; 1Þ algebra [41],
making use of the factor-ordering possibility that character-
izes the gravitational sector of the Hamiltonian, whereas
regarding the scalar field part, it remains unchanged. For
the gravitational sector we can, therefore, write

8>><
>>:

K0 ¼ 1
4

h
− d2

da2 þ
qðq−2Þ
4a2 þ a2

i
;

K� ¼ 1
4

�
d2

da2 −
qðq−2Þ
4a2 þ a2∓2

�
a d

da þ 1
2

��
;

ð41Þ

with the following commutation relations:

½Kþ; K−� ¼ −2K0; ½K0; K�� ¼ �K�: ð42Þ

The action of the above generators on a set of basis
eigenvectors jk; li is given by

8>><
>>:

K0jk; li ¼ ðkþ lÞjk; li;
Kþjk; li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2kþ lÞðlþ 1Þp jk; lþ 1i;
K−jk; li ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2kþ l − 1Þp jk; l − 1i:

ð43Þ

For the scalar field part, we have [21]

½Jþ; J−� ¼ −2J0; ½J0; J�� ¼ �J�: ð44Þ

Defining eigenvectors jj; mi as the eigenvectors of J0, the
actions of the above generators are

8>><
>>:

J0jj; mi ¼ ðjþmÞjj; mi;
Jþjj; mi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþmÞðmþ 1Þp jj; mþ 1i;
J−jj; mi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mð2jþm − 1Þp jj; m − 1i:
ð45Þ

The above commutation relations represent the Lie algebra
of suð1; 1Þ. The spectrum of eigenvalues of this Lie algebra
constitutes a discrete series of positive quantities and is
labeled by the Bargmann indices k and j, which are positive
real numbers, i.e., k > 0 and j > 0, where m and l are non-
negative integers. Moreover, the Casimir operator for the
gravitational part is defined as [32]

�
K2 ≔ K2

0 − 1
2
ðKþK− þ K−KþÞ;

K2jk; li ¼ kðk − 1Þjk; li; ð46Þ

with the following commutation relations:

½K2; K0� ¼ 0; ½K2; K�� ¼ 0: ð47Þ

And for the scalar field part, the corresponding Casimir
operator is

�
J2 ≔ J20 − 1

2
ðJþJ− þ J−JþÞ;

J2jj; mi ¼ jðj − 1Þjj; mi; ð48Þ

with the commutation relations as

½J2; J0� ¼ 0; ½J2; J�� ¼ 0: ð49Þ

Thus, the irreducible representation of these two
suð1; 1Þ Lie algebras is determined by the numbers j
and k and the eigenstates of fJ2; K2; J0; K0g.
Furthermore, the Hamiltonian can be written as

H ¼ 4ðK0 − J0Þ; ð50Þ

which means that the Casimir operator commutes with the
Hamiltonian,

½K2; H� ¼ 0; ½J2; H� ¼ 0: ð51Þ

Since, K2, K0, J2, and J0 commute with the Hamiltonian,
they leave the physical Hilbert space VH invariant.
Consequently, we choose fK0; K2; 1g for the gravitational
section and fJ0; J2; 1g for the scalar field part, as physical
operators of the model.
For the scalar field part, according to the definition (10),

the Casimir operator of suð1; 1Þ reduces to J2 ¼
jðj − 1Þ ¼ − 3

16
. Hence, the Bargmann index j ¼ f1

4
; 3
4
g

is a gauge-invariant observable of the quantum cosmologi-
cal model. Furthermore, from (19), (45), and (50) we obtain

En ¼ 4ðjþmÞ: ð52Þ

Therefore, the scalar field sector of the Hilbert space, by
means of the Hamiltonian constraint, can be classified in
terms of the Bargmann index, allowing us to establish two
invariant odd and even subspaces:

(
Ej¼3

4
;m¼ 2ð2mþ1þ 1

2
Þ; VH ~ϕ;j¼3

4
¼fj3

4
;mig;

Ej¼1
4
;m¼ 2ð2mþ 1

2
Þ; VH ~ϕ;j¼1

4
¼fj1

4
;mig: ð53Þ

Similarly for the gravitational sector: using definitions (46),
the Casimir operator of the gravitational part reduces
identically to K2 ¼ kðk − 1Þ ¼ 1

16
ðqþ 1Þðq − 3Þ. Thus,

the Bargmann index k ¼ f1
2
− 1

4
j1 − qj; 1

2
þ 1

4
j1 − qjg is a

gauge-invariant observable of the quantum cosmological
model. The Bargmann index must be positive and real
valued, which restricts q to lie in the interval
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−1 ≤ q ≤ 3: ð54Þ

Thus, the factor-ordering parameter q is determined
through the Bargmann indices, which are observables of
our model. In particular, q ¼ 1 is the covariant ordering
used by Isham [18]. Although there exists an infinity of
possibilities of factor ordering regarding (17), the sym-
metries of the model constrain the values for factor ordering
as explored above.
In addition, from (22), (45), and (50) we obtain

Ēγ
n0 ¼ 4ðkþ lÞ: ð55Þ

Moreover, the gravitational sector of the Hilbert space
can be classified in terms of the Bargmann index as

Ēn0;q ¼ 4

�
lþ 1

2
−
1

4
j1 − qj

�
;

VHa;k¼1
2
−1
4
j1−qj ¼

				
�
1

2
−
1

4
j1 − qj

�
; li;

En0;q ¼ 4

�
lþ 1

2
þ 1

4
j1 − qj

�
;

VHa;k¼1
2
þ1

4
j1−qj ¼

				
�
1

2
þ 1

4
j1 − qj

�
; li. ð56Þ

The states of the Hilbert space can be classified as

VH¼0 ¼ VHa
⊗ VH ~ϕ

: ð57Þ

Therefore, the gauge invariance of the Bargmann indices
implies a partition of the Hilbert space into four disjointed
invariant subspaces.

IV. SUMMARY AND DISCUSSION

In general, the wave function retrieved from the WDW
equation with appropriate boundary conditions should
describe the Universe. An interesting approach has been
provided in [21,22], where boundary proposals can be
selected by means of a careful analysis of the algebra
associated with the Dirac observables. In Ref. [21], a closed
FLRW universe filled with either dust or radiation was
considered, in which, the Hamiltonian of that model is
equivalent to a one-dimensional simple harmonic oscillator.
The suð1; 1Þ hidden symmetry of that model with the set of
gauge-invariant Bargmann values f1

4
; 3
4
g split the under-

lying Hilbert space into two disjoint invariant subspaces.
These subspaces were shown to be corresponding to
different choice of boundary conditions. In Ref. [22], with
a similar procedure, the hidden symmetries present in a
pre–big bang model were identified, namely, uð1; 1Þ
together with time reversal and parity. These lead to the
Hamiltonian of the model being equivalent to an oscillator-
ghost-oscillator system. The two-mode realization of the

suð1; 1Þ algebra, together with the Hamiltonian constraint,
implied a degenerate Bargmann index. However, the scale
factor duality of that model, plus time reversal, still allowed
boundary conditions to be selected.
In this paper, we considered a conformally coupled

scalar field in a closed Friedmann universe. The WDW
equation is separated into a scalar field part plus the
gravitational sector. We made use of the corresponding
phase space quantization of the Casimir operator, as an
operator which commutes with the Hamiltonian. We further
showed that the Bargmann indices are gauge- invariant
observables of the quantum cosmological model. From the
vanishing of the commutator of the suð1; 1Þ generator with
the Hamiltonian of the system, in addition to the gauge
invariance of the Bargmann indices, we found it possible to
select the wave function of the Universe. In other words,
our proposed framework [21,22] applied to the model in
Sec. II implied a specific set of boundary conditions, to
which a selection of the factor ordering as an observable
was also admissible.
More concretely, the Hamiltonian of our model consists

of a one-dimensional simple harmonic oscillator for the
scalar field part and a one-dimensional simple harmonic
oscillator plus an inverse square potential arose from the
factor ordering, for the gravity sector. The Hamiltonian has
the suð1; 1Þ hidden symmetry with the set of gauge-
invariant Bargmann values f1

4
;3
4
g and f1

2
ð1þ 1

2
j1 − qjÞ;

1
2
ð1 − 1

2
j1 − qjÞg for the scalar field part and the gravita-

tional sector, respectively. These split the underlying
Hilbert space into four disjoint invariant subspaces. The
factor-ordering parameter q is subsequently specified
through the admissible gauge-invariant Bargmann indices.
Finally, we must emphasize the following:
(1) Our results are retrieved on a very restrictive scenario:

a homogeneous and isotropic cosmological model,
with a very particular coupling between gravity and
matter, which enables those sectors to be separated in
the WDW equation (cf., Sec. III). It would be
interesting to establish if a similar (or at least some-
what related) intertwining pattern emerges in other
models (e.g., within a minisuperspace, in particular,
with perturbation modes obtained from ~ϕ).

(2) The issues of initial condition choice and Dirac
observables have been discovered in [42,43]. The
problem of time is analyzed through relational
observables in the model based on constructing
the decoherence functional for WDW quantization
[42]. We hope to extend the analysis presented here
and explore the implication of our analysis within
the results of [42,43] in future works. Specifically, it
may be worthy to investigate the similarities be-
tween Dirac observables presented in Eqs. (41)–(48)
with respect to the (relational) Dirac observables
presented in [43].
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(3) If the hidden symmetries of the full WDW equation
for quantum gravity could be established, this would
allow us to extend the framework in this paper
towards a wider context. Although the underlying
approach in our paper is tied to concrete models
bearing characteristic symmetries, it may never-
theless suggest valuable insights toward discussing
the WDW equation in broader settings.

(4) Finally, it iscurious thatwithinouranalysis the issueof
shape invariance, which is a feature present in some
approaches of supersymmetric quantum mechanics
[38], has emerged to be employed. Although bearing
inmindthegapbetweensupersymmetricfield theories

[44] and supersymmetric quantummechanics [38] (a
somewhat reduced toy model for the former), if any
evidence is advanced in the future to support super-
symmetry, then it will be interesting to consider how
boundary conditions, factor ordering, and hidden
symmetries become intertwined in a manner that a
supersymmetrysomehowcanbemade toappear in the
discussion.
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