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We investigate two classes of models of quintessential inflation, based upon canonical as well as
noncanonical scalar fields. In particular, introducing potentials steeper than the standard exponential, we
construct models that can give rise to a successful inflationary phase, with signatures consistent with Planck
2015 results. Additionally, using nonminimal coupling of the scalar field with massive neutrino matter, we
obtain the standard thermal history of the Universe, with late-time cosmic acceleration as the last stage of
evolution. In both cases, inflation and late-time acceleration are connected by a tracker solution.

DOI: 10.1103/PhysRevD.92.023522 PACS numbers: 98.80.-k, 04.50.Kd, 98.80.Cq

I. INTRODUCTION

Theoretical and observational consistency demands that
the standard model of the Universe should be comple-
mented by an early phase of rapid expansion dubbed
inflation [1–14], as well as by late-time cosmic acceleration
[15–20]. The latter is now accepted as a phenomenon of
nature supported by independent sets of observations,
whereas inflation still awaits similar confirmation. The
relic gravitational waves generated quantum mechanically
during inflation would have been a clear and direct signal of
inflation [21–25]. In the case of a large value of r,
investigations of B-mode polarization [26] could become
a powerful tool to falsify the inflationary paradigm.
Unfortunately, the Planck 2015 results [27,28] seem to
further shrink the bound on the tensor-to-scalar ratio of
perturbations such that r ¼ 0 is not ruled out [27–29].
Needless to say, inflation is one of the most beautiful and

simple ideas that not only resolves the inconsistencies of
the hot big bang such as the flatness problem, the horizon
problem, and others, but also provides us with a mechanism
of generation of primordial perturbations. As for late-time
cosmology, the standard model of the Universe is faced
with yet another problem related to the age of the Universe,
which is a late-time phenomenon [30–32]. Interestingly,
the resolution of the inconsistency within the framework
of standard lore asks for late-time cosmic acceleration,
which was indeed confirmed directly by Ia supernovae

observations in 1998 [33,34] and was indirectly supported
by other probes independently [35,36]. Obviously, accel-
erated expansion plays an important role in the history of
the Universe, both at its early and late stages.
Often, these two regimes of accelerated expansion are

treated independently. However, it is both tempting and
economical to think that there is a unique cause responsible
for both phases of acceleration à la quintessential inflation
[37–64], which refers to unification of both concepts using
a single scalar field. Consistency of the scenario demands
that the new degree of freedom, namely the scalar field,
should not interfere with the thermal history of the
Universe, and thereby it should be “invisible” for the entire
evolution and reappear only around the present epoch
giving rise to late-time cosmic acceleration. It is, indeed,
challenging to build a model which could successfully
comply with the said requirements.
First of all, one needs to construct an inflationary phase

with a successful exit. Furthermore, in this scenario one
needs an alternative reheating method (since the scalar field
must survive till late times the conventional reheating is not
applicable) and instant preheating [65–67] is one of the
efficient mechanisms that allows conversion of a part of the
scalar field energy into radiation. In the postinflationary era
till the present epoch, the field potential should be steep,
allowing the radiation domination to commence, followed
by a thermal history as envisaged by hot big bang. The
latter is necessary for sending the field into hiding after the
end of inflation. In particular, the postinflationary dynamics
is characterized by a field that evolves into the kinetic
regime for quite some time, but it then overshoots the
background and gets frozen on its potential due to Hubble
damping. As the background energy density redshifts to the
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order of the field energy density, the field resumes its
evolution. In case the potential is of a steep exponential
form or steeper, the field tracks the background until late
times [64]. In case the potential is effectively shallow at late
times, the field would exit from the scaling regime to
slow roll.
These features look very viable and pleasing, since it is

implied that the late-time evolution is broadly independent
of initial conditions. The main reason for demanding
tracker behavior [68] after inflation is related to the hope
of alleviation of the fine tuning. However, if we consider the
interaction of the scalar field with matter, the mass of the
scalar is destabilized, bringing back the same level of fine
tuning with the cosmological constant paradigm [64].
In this paper we shall investigate models of quintessential

inflation using canonical (Sec. II) as well as noncanonical
fields (Sec. III) with tracking behavior. In particular, we are
interested in constructing models that can produce a suc-
cessful inflationary phase (Sec. II A for canonical field and
Sec. III A for noncanonical field), with signatures consistent
with the Planck 2015 results, and then lead to the standard
thermal history of the Universe, with late-time acceleration
as the last stage (Sec. II B for canonical field and Sec. III B
for noncanonical field). Finally, in Sec. IV we summarize
our results.

II. UNIFYING INFLATION AND QUINTESSENCE
USING A CANONICAL SCALAR FIELD

In this section we study quintessential inflation using a
canonical scalar field. We consider the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�

þ Sm þ Sr; ð1Þ

with MPl being the Planck mass, ϕ the scalar field, and
VðϕÞ its potential. In the above action we have additionally
considered the matter and radiation sectors Sm and Sr,
respectively. These sectors can be neglected at the infla-
tionary stage, however they will gradually play an impor-
tant role, giving rise to the standard thermal history of the
Universe and finally to the late-time accelerating phase. As
usual, we focus on the case of a flat Friedmann-Robertson-
Walker (FRW) geometry, with the metric

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2Þ

where aðtÞ is the scale factor. Friedman equations are
given by

3H2M2
Pl ¼ ρm þ ρr þ

1

2
_ϕ2 þ VðϕÞ

ð2 _H þ 3H2ÞM2
Pl ¼ −

1

3
ρr −

1

2
_ϕ2 þ VðϕÞ; ð3Þ

and the equation of motion for the scalar field has the
standard form

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0: ð4Þ

A. Inflation

In what follows, we shall first analyze the inflationary
phase in this scenario, focusing on the signatures on the
observables that allow for a comparison with the Planck
data. As usual, in the inflationary phase one may neglect
Sm, Sr, and Sν, and thus the dynamics of inflation, as well
as its observational signatures, are determined solely by the
scalar field and its potential. In particular, given the
potential VðϕÞ, one introduces the slow-roll parameters

ϵ ¼ M2
Pl

2

�
1

V
dV
dϕ

�
2

; ð5Þ

η ¼ M2
Pl

V
d2V
dϕ2

; ð6Þ

ξ2 ¼ M4
Pl

V2

dV
dϕ

d3V
dϕ3

: ð7Þ

Additionally, the usual condition for ending inflation is
simply

ϵjϕ¼ϕend
¼ 1; ð8Þ

where the subscript end represents the value at the end of
inflation (we follow the same convention in the rest of the
paper). The number of e-foldings is calculated through

N ¼
Z

tend

t
Hdt0 ¼−

1

M2
Pl

Z
ϕend

ϕ

Vðϕ0Þ
∂Vðϕ0Þ=∂ϕ0dϕ

0: ð9Þ

Hence, observables like the tensor-to-scalar ratio (r), the
scalar spectral index (ns), and its running (αs ¼ dns=d ln k),
can be written as

r ≈ 16ϵ; ð10Þ

ns ≈ 1 − 6ϵþ 2η; ð11Þ

αs ≈ 16ϵη − 24ϵ2 − 2ξ2: ð12Þ

Keeping in mind the discussion in the Introduction, we
consider the potential

V ¼ V0e−λϕ
n=Mn

Pl ; ð13Þ

where V0 and λ are the usual parameters. Note that
compared to standard exponential potential, we have
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allowed for one more parameter, namely n, which would
influence the steepness of the potential. The case n ¼ 1 has
been extensively studied in the literature [25,40,61,69–71]
and thus in the following we consider the case n ≠ 1.
Moreover, we consider the cases n ≠ 2 and n ¼ 2 sepa-
rately, since the corresponding expressions are different in
these cases.

1. n ≠ 2

In this case the slow-roll parameters (5)–(7) have the
following form,

ϵ ¼ 1

2
n2λ2

�
ϕ

MPl

�
2n−2

; ð14Þ

η ¼ −M2−2n
Pl nλϕn−2½Mn

Plðn − 1Þ − nλϕn�; ð15Þ

ξ2 ¼ M4−4n
Pl n2λ2ϕ2n−4½M2n

Pl ðn2 − 3nþ 2Þ
− 3Mn

Plðn − 1Þnλϕn þ n2λ2ϕ2n�; ð16Þ

where ϕ is the value of the field at the horizon crossing.
Additionally, condition (8) gives

ϕend ¼ MPl

�
2

n2λ2

� 1
2n−2

; ð17Þ

and thus from (9) we obtain

N ¼ Mn−2
Pl

nλðn − 2Þ ðϕ
2−n − ϕ2−n

end Þ

¼ 1

nλðn − 2Þ
�
Mn−2

Pl ϕ2−n −
�

2

n2λ2

� 2−n
2n−2

�
: ð18Þ

One can revert this expression in order to get

ϕ ¼ MPlQðn; λ;N Þ ð19Þ
with

Qðn; λ;N Þ ¼
�
nλ

�
ðn − 2ÞN þ nλ2

2−n
2ðn−1Þ

�
1

n2λ2

� n
2ðn−1Þ

�� 1
2−n
;

ð20Þ

which allows us to eliminate ϕ in favor of N in the slow-
roll parameters. In particular we acquire

ϵ ¼ 1

2
n2λ2Qðn; λ;N Þ2n−2; ð21Þ

η ¼ nλQðn; λ;N Þn−2f1 − nþ nλQðn; λ;N Þng; ð22Þ

ξ2¼n2λ2Qðn;λ;N Þ2n−4 ·f2þn½n−3−3ðn−1ÞλQðn;λ;N Þn
þnλ2Qðn;λ;N Þ2n�g: ð23Þ

Thus, the tensor-to-scalar ratio (r), the scalar spectral index
(ns), and its running αs can be calculated straightforwardly
as functions of n; λ;N using (10)–(12).
Let us now use the above expressions to determine for

which combinations of n, λ and e-folding N we obtain
values of ns and r in agreement with the Planck 2015
results. In particular, we desire to obtain ns ¼ 0.9644�
0.0049 (68% confidence level, Planck TT, TE, EEþ lowP)
consistent with the Planck 2015 results [28] and 0 ≤ r ≤
0.149 (recent joint analysis of BICEP2/Keck Array and
Planck data gives r0.05 < 0.12 at 95% confidence level [29]
and when a running of the scalar spectral index is allowed
Planck 2015 results give r < 0.149 [28] at 95% confidence
level). As a starting point, and for completeness, we are
interested in obtaining 0 ≤ r ≤ 0.149, and thus describing
the limiting cases of both collaborations. However, later on
we will focus on the low values of this range, in order to
obtain agreement with Planck Collaboration [27,28].
In Fig. 1 we depict the allowed regions in the n − λ

parameter space that can give ns ¼ 0.9644� 0.0049 [28]
and 0 ≤ r ≤ 0.149 for N ¼ 60. We clearly see that the
parameter n must be larger than 5. It is interesting to notice
that if we exclude the zero value, for instance if we consider
r ≥ 0.01, then the corresponding region is significantly
reduced. In Fig. 2 we depict the regions in the n − λ
parameter space that can give ns ¼ 0.9644� 0.0049 and
0.01 ≤ r ≤ 0.149 for N ¼ 60 and N ¼ 70, where the
aforementioned feature is clear for N ¼ 60. However, this
does not seem to be the case according to both 2013 [72]
and 2015 [27,28] Planck data sets. Figure 2 also shows that
the parameter space increases if we increase the value ofN
from 60 to 70.
In order to investigate further the effect of the parameters

n and λ, for different e-folding number N , on r and ns, we
include various figures. First, in Fig. 3 we depict r versus λ,
for different values of n and e-foldingN , while in Fig. 4 we
show r versus n, for fixed λ and different N . Similarly, in
Fig. 5 we depict ns versus λ for different values of n andN ,

0.0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

n

FIG. 1 (color online). The shaded region marks the allowed
region in the n − λ parameter space that can lead to ns ¼
0.9644� 0.0049 and 0 ≤ r ≤ 0.149 for N ¼ 60.
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while in Fig. 6, we show r versus n, for a fixed λ and a
different N .
It is clear from the above discussion that the scenario at

hand, with the potential (13), can give rise to ns and r in
agreement with both the Planck 2013 results [72] and the
Planck 2015 results [27,28]. In order to present these

features in a more transparent way, in Fig. 7 we depict the
predictions of our scenario for varying λ, and n being 4 or 6,
with the e-folding valueN being 50 or 70, on top of the 1σ
and 2σ contours of the Planck 2013 results [72] as well as
of the Planck 2015 results [27]. As we observe, as n or N
increase, the predictions move towards the core of the data.
Furthermore, in Fig. 8 we present the corresponding
situation, but for varying n, and λ being 10−4 or 10−5,
with the e-folding value N being 50 or 70. As we observe,
asN increases the predictions move towards the core of the
data. Hence, we deduce that the larger parametric freedom
that was introduced by the use of the additional “steepness”
parameter n, compared to models with only the parameter
λ, can lead to the desired r − ns behavior.
For completeness, let us make a comment on the

prediction of the scenario at hand on the running spectral
index αs ¼ dns=d ln k ≈ 16ϵη − 24ϵ2 − 2ξ2. Using (12) and
(21)–(23), we can calculate it for various values of λ, n, and
N , and we present the results on the αs − ns plane in Fig. 9.
On the same graph we depict the 1σ and 2σ contours of the
Planck 2013 results [72] as well as of the Planck 2015
results [27,28]. As we observe, as n or N increase the
predictions move towards the core of the data, and
especially for the parameter values of Figs. 7 and 8 we

0 3. 10 8 6. 10 8 9. 10 8 1.2 10 7
5.8
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6.2

6.4
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6.8

7.0

n

FIG. 2 (color online). The blue shaded region (upper shaded
region) and the green shaded region (lower shaded region) mark
the allowed region in the n − λ parameter space that can lead to
ns ¼ 0.9644� 0.0049 and 0.01 ≤ r ≤ 0.149 for N ¼ 60 and
N ¼ 70, respectively:
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FIG. 3 (color online). The tensor-to-scalar ratio r versus
the parameter λ, for different values of the parameter n and
e-folding N .
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FIG. 4 (color online). The tensor-to-scalar ratio r versus
the parameter n, for fixed parameter λ and different e-folding
value N .
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FIG. 5 (color online). The scalar spectral index ns versus
the parameter λ, for different values of the parameter n and
e-folding N .

20 40 60 80 100
0.958

0.960

0.962

0.964

0.966

0.968

0.970

n

n
s

70

60

10 8

FIG. 6 (color online). The scalar spectral index ns versus the
parameter n, for fixed parameter λ and different e-folding
value N .
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obtain a remarkable agreement with the Planck 2015
results [27].
Let us now calculate the energy scale of inflation using

the COBE normalized value of density perturbations, which
can be represented by the following fitting function [73]:

δHðns; rÞ ¼ 1.91 × 10−5e1.01ð1−nsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.75r

p
: ð24Þ

On the other hand, the scalar perturbation spectrum is
given by

A2
s ðkÞ ¼

V
ð150π2M4

PlϵÞ
; ð25Þ

and at the horizon crossing (k ¼ k� ¼ a�H�) it becomes

A2
s ðk�Þ ¼ 7ns�−1δ2H: ð26Þ

Using Eqs. (24), (25), and (26), we can have the
estimation of some model parameters. For instance, for r ¼
0.05 (best fit value of r according to [29]), N ¼ 70, and
n ¼ 6, Eqs. (10) and (21) give λ ¼ 1.46 × 10−9, which
leads to V0 ¼ 3.39 × 10−9M4

Pl. Additionally, for the same
values of r, n, λ, and V0, the value of the potential at the
commencement of inflation is V in ¼ 1.4 × 10−9M4

Pl, which
provides the scale of inflation as V1=4

in ¼ 1.49 × 1016 GeV.
Finally, let us discuss the constraints on the reheating

temperature from relic gravitational waves. As shown in
Refs. [24,25,61], the ratio of the energy densities of relic
gravitational waves produced during the kinetic regime (ρg)
and radiation (ρr) is�

ρϕ
ρr

�
end

¼ 3π

64h2GW

�
ρg
ρr

�
eq
; ð27Þ

where eq represents the equality of the radiation and scalar
field energy densities. Moreover, the square of relic
gravitational wave amplitude writes as

FIG. 8 (color online). 1σ (yellow) and 2σ (light yellow)
contours for the Planck 2015 results (TTþ lowPþ lensingþ
BAOþ JLAþH0) [27], and 1σ (grey) and 2σ (light grey)
contours for the Planck 2013 results (Planck þWPþ BAO)
[72] (note that the 1σ region of the Planck 2013 results is behind
the Planck 2015 results, hence we mark its boundary by a dotted
curve), on ns − r plane. Additionally, we depict the predictions of
our scenario, for varying n (between 4 and 20), and λ being 10−4

or 10−5, with the e-folding value N being 50 or 70.

FIG. 9 (color online). 1σ (yellow) and 2σ (light yellow)
contours for the Planck 2015 results (TT;TE;EEþ lowP)
[27], and 1σ (grey) and 2σ (light grey) contours for Planck
2013 results (ΛCDMþ runningþ tensors) [72], on the αs − ns
plane. Additionally, we depict the predictions of our scenario, for
varying λ (between 10−6 and 10−3), n ¼ 6,N ¼ 70, for varying n
(between 4 and 20), λ ¼ 10−4, N ¼ 70, and for varying n
(between 4 and 20), λ ¼ 10−4, N ¼ 50.

FIG. 7 (color online). 1σ (yellow) and 2σ (light yellow)
contours for the Planck 2015 results (TTþ lowPþ lensingþ
BAOþ JLAþH0) [27], and 1σ (grey) and 2σ (light grey)
contours for the Planck 2013 results (Planck þWPþ BAO)
[72] (note that the 1σ region of the Planck 2013 results is behind
the Planck 2015 results, hence we mark its boundary by a dotted
curve), on the ns − r plane. Additionally, we depict the pre-
dictions of our scenario, for varying λ (between 10−6 and 10−3),
and n being 4 or 6, with the e-folding value N being 50 or 70.
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h2GW ¼ H2
in

8πM2
Pl

; ð28Þ

whereHin is the Hubble parameter at the commencement of
inflation, which is ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V in=ð3MPlÞ

p
.

Nucleosynthesis imposes a constraint on the ratio of the
relic gravitational waves and radiation energy densities,
namely ðρg=ρrÞeq ≲ 0.01 [36]. Hence, this provides the
constraint on the amount of the radiation energy density at
the end of inflation, that is

ρr;end ≳ 9V2
0

M4
Pl

e−λ½Qnðn;λ;N Þþð
ffiffi
2

p
nλ Þ

n=ðn−1Þ�: ð29Þ

Furthermore, the temperature at the end of inflation is
Tend ¼ ρ1=4r;end. Therefore, using Eq. (29) we can also get
a constraint on the temperature at the end of inflation,
that is the reheating temperature. If we consider r ¼ 0.05,
N ¼ 70, and n ¼ 6, then we have already seen that λ ¼
1.46 × 10−9 and V0 ¼ 3.39 × 10−9M4

Pl. Hence, for these
values of the model parameters we get

Tend ≳ 2.264 × 1014 GeV: ð30Þ

2. n ¼ 2

In this paragraph we present the results in the n ¼ 2
case for completeness. In this case, the slow-roll parameters
(5)–(7) become

ϵ ¼ 2λ2
ϕ2

M2
Pl

η ¼ 2ϵ − 2λ

ξ2 ¼ 4ϵðϵ − 3λÞ: ð31Þ

Furthermore, the number of e-foldings is

N ¼ 1

2λ
ln
�
ϕend

ϕ

�
; ð32Þ

with ϕend ¼ MPlffiffi
2

p
λ
. Thus, ϕ can be expressed through λ and N

as ϕ ¼ MPlffiffi
2

p
λ
e−2λN , and therefore we can write ϵ ¼ e−4λN .

Hence, the tensor-to-scalar ratio r, the scalar spectral index
ns, and its running αs are written as

r ≈ 16ϵ ¼ 16e−4λN ; ð33Þ

ns ≈ 1 − 6ϵþ 2η ¼ 1 − 2e−4λN − 4λ; ð34Þ

λs ≈ 16ϵη − 24ϵ2 − 2ξ2 ¼ −8λe−4λN : ð35Þ

Unfortunately, as one can see expressions (33), (34), (35)
cannot lead to values in agreement with the Planck results

for 50 ≤ N ≤ 70, independent of the λ value. Thus, we do
not investigate this case in more detail.

B. Late-time dynamics

In this subsection we investigate the late-time behavior
of the above scenario. For the usual steep exponential
potential (n ¼ 1) we know that during the postinflationary
dynamics the scalar field rolls down the potential, and its
energy density scales as ρϕ ∼ a−6. Due to the increased
Hubble damping, the scalar field stops evolving, so its
energy density eventually becomes comparable to the back-
ground, and it again starts evolving and scales with the
background up to late times, thus leaving no place for late-
time acceleration. This class of solutions is known as a
scaling solution [74]. In Fig. 10 we present such a scaling
behavior of the scalar field energy density for an exponential
potential.
Now let us see what happens when the potential is

steeper than the exponential one, i.e., the case where n > 1.
Similarly to the exponential potential, in this case too the
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FIG. 10 (color online). Evolution of the energy densities
of matter (dotted green), radiation (dashed blue), and scalar
field (solid red), as a function of the redshift (z ¼ a0=a − 1 with
a0 ¼ 1 the present scale factor), in the case of the minimally
coupled scenario (1). The upper graph is for n ¼ 1 and λ ¼ 4,
while the lower graph is for n ¼ 2.5 and λ ¼ 4.
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energy density of the scalar field decreases rapidly, and due
to the large Hubble damping the scalar field stops evolving
and thus eventually its energy density becomes comparable
with the background one. But unlike the exponential case,
now, due to the very steep nature of the potential, the scalar
field cannot follow the background during the high redshift
and thus again ρϕ ∼ a−6. This results in a rapid decrease in
the scalar field energy density and hence again the scalar
field experiences large Hubble damping due to the back-
ground, and therefore it repeats the same behavior as
explained earlier [see Fig. 10(b)]. However, we mention
that this can happen only during large redshifts, where the
field value is not so large.
On the other hand, at late times, when the field evolves to

a large value, the picture is different. In order to understand
the behavior during late times, let us consider the function
Γ ¼ V 00V=V 02. For an exponential potential Γ ¼ 1, how-
ever for the steeper potential (13) we have,

Γ ¼ 1 −
ðn − 1Þ
nλ

Mn
Pl

ϕn : ð36Þ

From this expression it is clear that for large ϕ and n > 1
the function Γ approaches 1, i.e., for asymptotically large
field values, the nature of the potential eventually becomes
similar to the exponential one. Thus, if at late times the field
value is sufficiently large, we obtain a scaling solution, and
indeed Fig. 10(b) confirms this.
Unfortunately, as can be also seen in Fig. 10(b), we

cannot obtain late-time acceleration for the potential (13).
In order to achieve late-time acceleration we need a
mechanism to exit from the scaling behavior, that is to
obtain the tracker behavior [68] at late times. For this
purpose we can consider a nonminimal coupling between
the scalar field and massive neutrinos, as in Refs. [61,62,75]
(also see Refs. [76–90]), and we start with the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
∂μϕ∂μϕ − VðϕÞ

�

þ Sm þ Sr þ SνðC2gαβ;ΨνÞ; ð37Þ

where

C2 ¼ A2e2γϕ=MPl : ð38Þ

In flat FRW cosmology the two Friedmann equations (3)
modify to

3H2M2
Pl ¼

1

2
_ϕ2 þ VðϕÞ þ ρm þ ρr þ ρν ð39Þ

ð2 _H þ 3H2ÞM2
Pl ¼ −

1

2
_ϕ2 þ VðϕÞ − 1

3
ρr − pν; ð40Þ

while scalar field equation (4) now becomes

ϕ̈þ 3H _ϕ ¼ −
dV
dϕ

−
γ

Mpl
ðρν − 3pνÞ: ð41Þ

Before proceeding further we should mention here that
massive neutrinos are relativistic (pν ¼ ρν=3) for the most
of the expansion history of the Universe and become non-
relativistic (pν ¼ 0) only after the redshift zNR∈ð2−10Þ for
neutrino mass range mν ∈ ð0.015 − 2.3Þ eV [76,77]. So
concerning the neutrino equation-of-state parameter we
shall consider the following ansatz [61]:

wνðzÞ ¼
pν

ρν
¼ 1

6

�
1þ tanh

�
lnð1þ zÞ − zeq

zdur

��
; ð42Þ

where zeq and zdur are two parameters which determine the
redshift around which the transition of wν from 1=3 to 0
starts and how fast the transition happens, respectively,
and the values of these two parameters depend on the
redshift zNR.
Additionally, the continuity equation for massive neu-

trinos is given by

_ρν þ 3Hðρν þ pνÞ ¼ γðρν − 3pνÞ
_ϕ

MPl
: ð43Þ

The last term of Eqs. (41) and (43) is effectively zero
when neutrinos behave like radiation, however it becomes
nonzero when neutrinos become nonrelativistic (pν ¼ 0).
So the nonminimal coupling between the massive neutrinos
and the scalar field affects the expansion of the Universe
only during the late times and as can be deduced from (41),
an effective potential forms, which reads as

Veff ¼ VðϕÞ þ ρν0eγðϕ−ϕ0Þ=MPl ; ð44Þ

where ϕ0 and ρν0 are the present values of the field and
of the massive neutrino energy density, and ρν ¼
ρν0eγðϕ−ϕ0Þ=MPl . This effective potential clearly has a mini-
mum for γ > 0, which forms at late times. Hence, the scalar
field oscillates around this minimum, and eventually it
settles down to the minimum as the oscillations decrease
due to the Hubble friction. For clarity, in Fig. 11(a) we
depict the numerically evolved effective potential, normal-
ized by the present critical density (ρc0), around its
minimum. It should be noted that the minimum value of
the effective potential Veff;min normalized by the present
critical density ρc0 is ≈1, which implies that ρDE ≈ Veff;min
since ρc0 ≈ ρDE. Moreover, from Fig. 11(b) we can see that
Veff;min ∼ ρν;min, where ρν;min is the energy density of the
massive neutrinos at the minimum of the effective potential.
Furthermore, from Fig. 11(c) we observe that ρν;min ≈ ρν0.
Hence, in summary we can deduce that in the model under
consideration the dark energy scale is related to the present
energy density of the massive neutrinos.
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As we described above, the nonminimal coupling
between the scalar field and the neutrinos and the induced
effective potential is adequate to lead to late-time accel-
eration. Indeed, in Fig. 12 we depict the evolution of the
various energy densities, and we can clearly see the tracker
behavior of the scalar field and the onset of the dark energy
dominating phase.

In order to present the thermal history of the Universe in
a more transparent way, we introduce the dimensionless
density parameters for matter, radiation, neutrinos, and
scalar field, respectively, given by

Ωm ¼ ρm
3H2M2

Pl

; ð45Þ

Ωr ¼
ρr

3H2M2
Pl

; ð46Þ

Ων ¼
ρν

3H2M2
Pl

; ð47Þ

Ωϕ ¼ ρϕ
3H2M2

Pl

; ð48Þ

where ρϕ ¼ ð1=2Þ _ϕ2 þ V, and in Fig. 13 we depict their
evolution as a function of the redshift. As we observe,
we can reproduce the thermal history of the Universe,
starting from a scalar field kinetic regime, then entering
the radiation and matter regimes, and finally resulting in
the late-time dark energy dominated era. Finally, for
completeness, in Fig. 14 we depict the corresponding
behavior of the scalar field equation-of-state parameter
wϕ ≡ pϕ=ρϕ, as well as of the effective (total) equation-
of-state parameter weff ≡ptot=ρtot¼−1−2 _H=3H2. From
this figure we verify that around the present era the
potential term dominates over the kinetic one in the
scalar field energy density, which leads wϕ to be
around −1.
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FIG. 11 (color online). (Top panel) The minimum of the
effective potential (44) for ρν0=ρc0 ¼ 0.0054 (Planck 2015 results
give Ων0h2 < 0.0025 and H0 ¼ 67.74� 0.46 km s−1 Mpc−1

[27]), γ ¼ 800 and λ ¼ 10−8, with ρc0 being the present critical
density. (Middle panel) The ratio of the minimum of the effective
potential over the massive neutrino energy density versus the field
value around the minimum of the effective potential. (Bottom
panel) The neutrino energy density, normalized with its present
value, versus the field value around the minimum value of the
effective potential. For all the plots γ ¼ 800, λ ¼ 10−8, n ¼ 6,
zeq ¼ 2.55, and zdur ¼ 3.
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FIG. 12 (color online). Evolution of the energy densities of
matter (dotted green), radiation (blue short dashed), scalar field
(red solid), and massive neutrinos (purple long dashed), as a
function of the redshift, in the case of the nonminimally coupled
scenario (37), for γ ¼ 800, λ ¼ 10−8, n ¼ 6, zeq ¼ 2.55,
and zdur ¼ 3.
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III. UNIFYING INFLATION AND QUINTESSENCE
USING A NONCANONICAL SCALAR FIELD

In this section we shall be interested in constructing
quintessential inflation using a class of models with a
noncanonical scalar field [61,64,75,91–94] (see also
Refs. [95–98] for unification using noncanonical phantom
field). In this case, naturally, we have tracking behavior in
the postinflationary era [61]. Comparing this with thawing,
the tracking behavior imposes tough restrictions on the
postinflationary evolution of the scalar field dynamics,
namely the field should mimic the background for most of
the Universe’s history, and only at late times should it exit
to the slow-roll regime. The latter is realized only for
specific potential forms, otherwise the field exhibits thaw-
ing behavior. In summary, in general it is difficult to acquire

the tracking features after inflation, using simple potentials.
However, the picture changes if we use a scalar field with
noncanonical kinetic energy, since in this case it is easy to
control the postinflationary dynamics in the desired way.
Let us consider the following action [61,75]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

k2ðϕÞ
2

∂μϕ∂μϕ − VðϕÞ
�

þ Sm þ Sr þ SνðC2ðϕÞgαβ;ΨνÞ; ð49Þ

with

k2ðϕÞ ¼
�
α2 − ~α2

~α2

�
1

1þ β2eαϕ=MPl
þ 1 ð50Þ

VðϕÞ ¼ M4
Ple

−αϕ=MPl ð51Þ

CðϕÞ2 ¼ ζe2~γαϕ=MPl ; ð52Þ

where α, ~α, ~γ, and β are the model parameters. The kinetic
function k2ðϕÞ has been suitably chosen according to the
tracking postinflationary requirements.
In order to obtain the realistic intervals of the parameter

space, we start by noting that kðϕÞ → 1 in the large-field
limit. Thus, in this case we obtain a canonical field with
exponential potential, whose slope is given by α, which
should be large in order to adhere to the nucleosynthesis
constraint, namely α≳ 20 [62]. Similarly, in the small-field
limit we can introduce a canonical field σ ¼ ðα= ~αÞϕ, such
that the field potential is approximated by VðσÞ ∼ e− ~ασ=MPl,
and thereby ~α should be small to comply with inflation
[62]. Concerning the parameter β, it can be fixed by COBE
normalization [62]. Hence, once the postinflationary
behavior is guaranteed by the specific form of the kinetic
function, inflationary requirements can be obtained through
appropriate choices of ~α.
It is clear from the aforesaid that (49) can give rise to a

viable model of quintessential inflation by adding a non-
minimal coupling between the scalar field and the neutrinos
described in Sec. II B. In the following subsection we shall
describe inflation using the noncanonical model (49), and
we will derive constraints on the model parameters in light
of the Planck 2015 results [27,28]. Finally, in a separate
subsection we will examine the late-time, postinflationary
evolution.

A. Inflation

According to the above discussion, the noncanonical
field action (49) can lead to inflation which commences in
the small-field region. In particular, the slow-roll param-
eters can be expressed as [62]

ϵ ¼ M2
Pl

2k2ðϕÞ
�
1

V
dV
dϕ

�
2

¼ α2

2k2ðϕÞ≃
~α2

2
ð1þ XÞ; ð53Þ
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FIG. 14 (color online). Evolution of the scalar field (blue doted)
and effective (total) (red solid) equation-of-state parameters, in
the case of the nonminimally coupled scenario (37), for γ ¼ 800,
λ ¼ 10−8, n ¼ 6, zeq ¼ 2.55, and zdur ¼ 3.
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FIG. 13 (color online). Evolution of the density parameters of
radiation (blue dashed), matter (green dashed-dotted), scalar field
(red dotted), and neutrinos (black solid), respectively, in the case
of the nonminimally coupled scenario (37), for γ ¼ 800,
λ ¼ 10−8, n ¼ 6, zeq ¼ 2.55, and zdur ¼ 3.
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η ¼ 2ϵ −
MPl

α

dϵðϕÞ
dϕ

≃ ϵþ ~α2

2
; ð54Þ

ξ2 ¼ 2ϵη −
αMPl

k2
dη
dϕ

≃ 2~α2ϵ; ð55Þ

with X ≡ β2eαϕ=MPl , and where we have used the approx-
imations α ≫ 1 and ~α ≪ 1, which should hold in the
scenario under consideration. It is clear from (54) that
inflation ends in the region with X ≫ 1, which quantifies
the large-field approximation. In this approximation the
number of e-foldings becomes [62]

N ≈
1

~α2
ln ð1þ X−1Þ; ð56Þ

and thus it can be related to ϵ through [62]

ϵðN Þ ¼ ~α2

2

1

1 − e− ~α2N
: ð57Þ

Let us note that the transition between small- and large-
field regimes takes place when ~α2 ≈ 1=N . Since inflation
always ends in the region of the large field, its commence-
ment depends upon the range of inflation, which is in turn
uniquely specified by the tensor-to-scalar ratio. In particu-
lar, a large value of r, or a weak slow roll, would imply
large-field excursion. In that case inflation should com-
mence around the boundary of transition, otherwise the
commencement would be shifted to the large-field region.
The general expressions for r, ns, and the running of

spectral index αs valid from small- to large-field regimes
are given by

rðN ; ~αÞ ¼ 16ϵðN Þ ≈ 8~α2

1 − e− ~α2N
; ð58Þ

nsðN ; ~αÞ ¼ 1 − 6ϵþ 2η ≈ 1 − ~α2 coth

�
~α2N
2

�
; ð59Þ

αs ≡ dns
d ln k

¼ 16ϵη − 24ϵ2 − 2ξ2 ≈ −
~α4

2sinh2ð ~α2N
2
Þ : ð60Þ

Hence, let us use these expressions in order to compare the
predictions of the scenario at hand with the 2013 and
Planck 2015 results. In Fig. 15 we depict the predictions of
our model for ~α → 0 and e-folding N varying between 55
and 70, on top of the 1σ and 2σ contours of the Planck 2013
results [36] as well as of the Planck 2015 results [27,28]. As
we observe, the point for N ¼ 55 lies outside the 2σ
contour of both Planck data sets, but higher values ofN lie
within the 2σ contour of both sets of Planck data.
Unfortunately, all predictions still lie outside the 1σ contour
of both data sets, and this becomes worse for larger values
of ~α.

As our potential (13) is of unusual form, a comment
about the viability of model under quantum correction is in
order. Indeed, since V ∼ eϕ

n
, n > 5, the model would

involve operator of dimensions higher than 4 if we imagine
the series expansion of the potential. It then obviously
raises the question whether the model would make sense if
quantum corrections are invoked. In general the effective
Lagrangian, after we fix the ignorance, contains both
renormalizable as well as nonrenormalizable parts. As
for renormalizable part, it includes one loop corrections
to the classical Lagrangian. In our case, the latter is absent.
The nonrenormalizable part includes correction that are
suppressed by inverse powers of the cutoff. As long as we
work quite below the cutoff, we can safely use the classical
framework. The effective Lagrangian in our case has the
form

L ¼ Lcl þ
X∞
i¼1

�
ciϕni

Λ−4þni þ
dið∂ϕÞ2ϕni−4

Λ−4þni

�
ð61Þ

where we imagined that the series expansion of the
potential and ci, di are constants. In this case, marginal
and relevant operators are absent. Thus, in case we work
well below the cutoff, we can safely ignore the correction
and keep using the classical framework.

B. Late-time dynamics

In the noncanonical scalar field scenario at hand, after
the end of inflation the Universe enters into a kinetic-
energy-dominated regime, known as the “kinetic regime,”

FIG. 15 (color online). 1σ (yellow) and 2σ (light yellow)
contours for the Planck 2015 results (TTþ lowPþ lensingþ
BAOþ JLAþH0) [27,28], and 1σ (grey) and 2σ (light grey)
contours for the Planck 2013 results (PlanckþWPþ BAO) [36]
(note that the 1σ region of the Planck 2013 results is behind the
Planck 2015 results, hence we mark its boundary by a dotted
curve), on the ns − r plane. Additionally, we depict the pre-
dictions of our scenario given by (58) and (59), for ~α → 0 and
e-folding N varying between 55 and 70.
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and then it subsequently enters into the radiation, matter,
and dark energy eras [61]. The nonminimal coupling
between the scalar field and the massive neutrinos plays
the main roll for the onset of late-time cosmic acceleration,
as we analyzed in Sec. II B. In particular, when the massive
neutrinos become nonrelativistic at late times, they con-
tribute to the formation of the effective potential with a
minimum. As a result, the scalar field settles down to the
minimum of the effective potential after the damping of
oscillations which ultimately gives rise to the late-time
acceleration. For a detailed dynamical analysis one can see
Ref. [61]. The late-time attractor solution corresponds to an
effective (total) equation-of-state parameter given by [61]

weff ¼ −
~γ

1þ ~γ
; ð62Þ

and to a scalar field equation of state

wσ ¼ −
α2 ~γð1þ ~γÞ

3þ α2 ~γð1þ ~γÞ ; ð63Þ

where σ is the canonical scalar field which can be
represented in terms of the noncanonical scalar field ϕ
using the transformation [61]

σ ¼ kðϕÞ; ð64Þ

k2ðϕÞ ¼
�∂k
∂ϕ

�
2

: ð65Þ

From (63) we can see that if ~γ ¼ 0, i.e., without a coupling
between the scalar field and the massive neutrinos, wσ ¼ 0,
which implies that the scalar field will exhibit scaling
behavior even during late times, and will continue to follow
the background even in the future. Hence, we do verify what
we discussed earlier, namely that in the absence of the
nonminimal coupling we cannot acquire late-time accel-
eration. On the other hand, from (62)we deduce that in order
to obtain a de Sitter or nearly de Sitter solution (weff ≈ −1)
we require ~γ ≫ 1. Thus, a large nonminimal coupling is
needed in order to acquire late-time acceleration.
Finally, note that the value of the effective potential at the

minimum is directly proportional to the present neutrino
energy density [61,64]. Therefore, the dark energy scale is
related to the neutrino energy scale, similar to the analysis
of Sec. II. Hence, the nonminimal coupling between the
scalar field and the massive neutrinos not only provides the
late-time acceleration, but it additionally fixes the energy
scale of the dark energy.

IV. CONCLUSIONS

In this work we investigated two distinct classes of
quintessential inflation, namely models based on a canoni-
cal scalar field and models based on a noncanonical scalar

field, where both scenarios exhibit tracking behavior. In
both cases we considered a nonminimal coupling between
the scalar field and the neutrinos, which is required in order
to trigger the late-time cosmic acceleration.
In the canonical case we considered a potential of the

form V ∼ eλϕ
n=M2

Pl , with n > 1, which has the property of
slow roll near the origin but it becomes steep away from it.
Hence, at early times, i.e., while the field is around the
origin, this scenario can give rise to inflation. Indeed, as we
demonstrated in Figs. 1 and 2, for a range of the model
parameters we can obtain a required phase of inflation with
the spectral index ns and the tensor-to-scalar ratio r in very
good agreement with the Planck 2015 results [27,28] and
the joint analysis of BICEP2/Keck Array and Planck
data [29]. Indeed, in Figs. 7 and 8 we showed that the
predictions of the scenario fall well inside the 1σ likelihood
contours of both the Planck 2013 results [72] and the
Planck 2015 results [27,28]. Additionally, for the repre-
sentative case of the parameter choice n ¼ 6, λ ¼ 1.5×
10−9, and e-foldings N ¼ 70, the obtained r ¼ 0.05
provides the estimate V0 ¼ 3.39 × 10−9M4

Pl or equivalently
the scale of inflation, V1=4

in ¼ 1.49 × 1016 GeV. Finally,
using nucleosynthesis constraints we obtained the lower
bound on the temperature at the end of inflation,
namely Tend ≃ 2.264 × 1014 GeV.
After the end of inflation, the steep potential derives the

scalar field into the kinetic regime. Consequently, the field
overshoots the background and freezes due to Hubble
damping. The evolution of the field resumes soon after
the background energy density becomes comparable to the
field energy density. In the usual case of exponential
potential (n ¼ 1) the field follows scaling behavior. In
the case of n > 1, the potential is steeper than the standard
exponential and thus the field is driven away from the
scaling track, which increases the Hubble damping leading
to the freezing of the field once again. As the field comes
out of the freezing regime, its energy density redshifts faster
than the background, and this feature brings back the
Hubble damping and so on. The said behavior keeps
repeating till the field acquires large values. In that case
Γ → 1 and the field enters the regime which is an attractor,
see Fig. 10(b). The latter allows us to obtain the subsequent
radiation and matter regimes. Thus, we conclude that the
scaling solution is also an attractor in case the potential is
steeper than a standard steep exponential. To the best of
our knowledge, this feature was not noted earlier in the
literature. In the case of generic values of n and λ, the field
rolls in the domain of large ϕ in the postinflationary era in
which case the system enters into the tracking regime after
the Hubble freezing ends, see Fig. 12.
Finally, the nonminimal coupling between the scalar

field and the neutrinos induces an effective potential, which
leads the scalar field to drive the late-time acceleration. The
larger the nonminimal coupling is, the deeper the minimum
of the effective potential is, in which the field is settled after
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damped oscillations, exhibiting an equation-of-state param-
eter around −1 in the present epoch.
As for the noncanonical scalar field, although both

inflation and the subsequent thermal history of the
Universe, including late-time acceleration, can be obtained,
the specific values of the spectral index and of the tensor-to-
scalar ratio are not in complete agreement with the Planck
2015 results [27,28].
In this work we showed that using potentials steeper than

the exponential we can solve the problem of models of
quintessential inflation which give rise to numerical values
of r larger than the Planck bounds [27,28], and we can
obtain a remarkable agreement with the Planck 2015 results
[27,28]. We have shown that it is possible to reproduce the
correct postinflationary evolution during the radiation and
matter eras. The nonminimal coupling between the scalar

field and the neutrinos is shown to drive the late-time cosmic
acceleration. To summarize, we presented a successful
model of quintessential inflation that can describe the entire
history of Universe evolution in a unified framework.
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