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We present a nonlinear post-Friedmann framework for structure formation, generalizing to cosmology the
weak-field (post-Minkowskian) approximation, unifying the treatment of small and large scales. We
consider a universe filled with a pressureless fluid and a cosmological constant Λ, the theory of gravity is
Einstein’s general relativity and the background is the standard flatΛCDM cosmological model. We expand
the metric and the energy-momentum tensor in powers of 1=c, keeping the matter density and peculiar
velocity as exact fundamental variables.We assume the Poisson gauge, including scalar and tensor modes up
to 1=c4 order and vector modes up to 1=c5 terms. Through a redefinition of the scalar potentials as a
resummation of the metric contributions at different orders, we obtain a complete set of nonlinear equations,
providing a unified framework to study structure formation from small to superhorizon scales, from the
nonlinear Newtonian to the linear relativistic regime. We explicitly show the validity of our scheme in the
two limits: at leading order we recover the fully nonlinear equations of Newtonian cosmology; when
linearized, our equations become those for scalar and vector modes of first-order relativistic perturbation
theory in the Poisson gauge. Tensor modes are nondynamical at the 1=c4 order we consider (gravitational
waves only appear at higher order): they are purely nonlinear and describe a distortion of the spatial slices
determined at this order by a constraint, quadratic in the scalar and vector variables. The main results of our
analysis are as follows: (a) at leading order a purely Newtonian nonlinear energy current sources a frame-
dragging gravitomagnetic vector potential, and (b) in the leading-order Newtonian regime and in the linear
relativistic regime, the two scalar metric potentials are the same, while the nonlinearity of general relativity
makes them different. Possible applications of our formalism include the calculations of the vector potential
[1,2] and the difference between the two scalar potentials from Newtonian N-body simulations, and the
extension of Newtonian approximations used in structure formation studies, to include relativistic effects.
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I. INTRODUCTION

The ΛCDM model [3,4] has emerged in the last few
decades as the standard “concordance” model of cosmol-
ogy [5]. Beyond photons and baryons, the main compo-
nents of ΛCDM are cold dark matter (CDM), able to cluster
and form structures, and the cosmological constant Λ,
responsible for the observed acceleration of the Universe’s
expansion.

ΛCDM is based on Einstein general relativity (GR), and
on the cosmological principle, i.e. a cosmological version
of the Copernican principle [6,7]. This request for the
Universe to be, on average, homogeneous and isotropic
translates, in the language of spacetime, into assuming a
Robertson-Walker metric. With this, Einstein equations
reduce to the Friedmann equations; the solutions of these
equations are the Friedmann-Lemaitre-Robertson-Walker
(FLRW) models. Cosmic microwave background (CMB)
anisotropy measurements [8] have established that the
Universe is, to a great degree, spatially flat, as confirmed
by recent Planck [9] and baryon acoustic oscillations
(BAO) data [10]. In this standard scenario, small primordial
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inflationary perturbations on top of the FLRW background
grow and produce the CMB fluctuations and the large-scale
structure that we observe at low redshift.
The theoretical tools that we use to study the growth of the

large-scale structure are basically two: i) relativistic perturba-
tion theory [11,12] is used to describe fluctuations in the early
Universe, in the CMB, and in the matter density field on very
large scales; ii) Newtonian methods, notably N-body simu-
lations [13], are used to study the growth of structures in the
nonlinear regime, at late times and small scales. Lagrangian
perturbation theory (LPT) [14,15] (LPT, i.e. the Zel’dovich
approximation or its second-order extension, 2LPT) is typ-
ically used to set up initial conditions for N-body simulations;
LPT and other Newtonian approximations are also used to
model nonlinear scales, e.g. BAO and CDM halos [16–21].
Observational cosmology has now reached an unprec-

edented precision, allowing stringent tests on models of
the Universe. The tightest constraints come from the CMB
[22]. A number of probes exist at low redshift, such as
supernovae [23], the local measurements of the expansion
rate [24] and the three-dimensional mapping of the large-
scale structure [25,26]. In particular, rich clusters, lensing
and redshift space distortion allow the measurement of the
growth of clustering [27,28]. The standard ΛCDM model
is very well supported by all these observations. However,
a tension emerges in the framework of the base ΛCDM
when parameter values measured from low-redshift probes
are compared with the values obtained from the CMB, as
recently pointed out [29–32]. In particular, this tension
shows up in a different growth of clustering in LSS at
different epochs [9], as confirmedby the Planck release: “as in
the 2013 analysis, the amplitude of the fluctuation spectrum
is found to be higher than inferred from some analyses of
rich cluster counts and weak gravitational lensing” (see [22]
and Refs. therein). Measurements of redshift space distortion
also suggest less clustering than the CMB [29,31]. Notably,
addingavariable total neutrinosmass as extraparameter to the
base ΛCDM model relieves the tension [30,31].
Given that the presence of a CDM component is widely

accepted, while a cosmological constant has its own
problems [33], much work is gone into exploring alter-
natives to Λ. A number of possibilities have been proposed
which, in essence, can be divided in three groups. One is to
keep GR and modify the energy-momentum content, the
dark sector in particular, replacing Λ with some form of
dark energy [34]. A second alternative that has been widely
explored in the last decade is to replace GR with a modified
theory of gravity [35,36]. A third, more radical, option is
that of abandoning the cosmological principle [37], con-
sidering inhomogeneous models and the possibility that the
observed acceleration of the Universe is the result of
backreaction [38,39], either dynamical or optical [40].
Galaxy surveys are now aiming at the same 1% precision

as CMB measurements: for instance, the detection of BAO
by the Sloan Digital Sky Survey has recently allowed the

first 1% level cosmological constraint by a galaxy survey
[41]. In addition, future surveys such as Euclid [42–44] and
the Square Kilometer Array [45–47] will reach scales of the
order of the Hubble horizon. It is, therefore, crucial that the
theory used to make predictions and to interpret observa-
tions is developed with a matching accuracy. In particular,
while exploring alternatives to the standardΛCDM scenario
is an interesting challenge, it seems timely to refine the
theoretical modelling of ΛCDM, bridging the above men-
tioned gap between the Newtonian treatment of nonlinear
small scales and the relativistic description of large scales.
Ultimately, going beyond the Newtonian approximation in
simulations of large-scale structure should be important
in order to take into account causal, retardation and other
GR effects that may be non-negligible for simulations that
aim at ∼1% accuracy, in view of future surveys such as
Euclid [42], on scales of the order of the Hubble horizon.
A first step in this direction would be to include GR

corrections in the initial conditions for simulations, using a
dictionary based on first-order perturbation theory [48], cf.
[49]; also, first-order GR effects on horizon scales must be
taken into account in interpreting bias and non-Gaussianity
[50]. However, while the Poisson equation in Newtonian
gravity establishes a linear relation between the gravita-
tional potential and the matter density field, the intrinsic
nonlinearity of GR unavoidably generates new effects, even
when perturbations are small. For instance, an initially
Gaussian curvature inflationary perturbation translates into
an effective non-Gaussianity of the density field in the
matter era [51–54], a nonlinear effect that should be taken
into account in initial conditions for simulations. But the
Poisson equation embodies action-at-the-distance; i.e., it is
the mathematical representation of the acausal nature of
Newtonian gravity. Thus, the ultimate step forward would
be that of investigating the effects of relativistic non-
linearity in cosmological structure formation, including
GR corrections in the evolution of the matter density field
in N-body simulations, as well as in approximate treat-
ments of the nonlinear regime [1,2,48–60].
Aim of this paper is to present a new nonlinear relati-

vistic post-Friedmann (PF) formalism which, in essence,
is a generalization to cosmology of the post-Minkowski
(weak-field) approximation, married with the fundamental
assumption of the post-Newtonian (PN) approximation that
velocities are small. Our goal is a relativistic framework
valid on all scales, and including the full nonlinearity of
Newtonian gravity at small scales. In this framework—
assuming a flat ΛCDM background and a fluid description
of matter—the exact equations of Newtonian cosmology
[61,62] appear as a consistent approximation of the full set of
Einstein equations, determining leading-order terms (which
we call 0PF) in the metric. GR corrections (which we call
1PF) appear next, and are of two types: terms quadratic in the
Newtonian variables (we may call these proper PN terms),
and proper linear GR terms. Once linearized, the nonlinear
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approximate equations we obtain for a set of appropriately
resummed variables are those for the scalar and vector
sectors of first-order relativistic perturbation theory [63].
Tensor modes are purely nonlinear and nondynamical; i.e.,
they do not describe propagating gravitational waves, but
rather a distortion of the spatial slices.
Let us clarify how our PF formalism differs from the

traditional PN approach [64] and its various applications in
cosmology. In a contemporary perspective [65], the correct
derivation of the post-Newtonian approximation on the flat
background spacetime follows consistently from the post-
Minkowski approximation once the v=c ≪ 1 assumption is
made, which also implies to neglect time derivatives with
respect to space derivatives.1 However, in cosmology the
background is a FLRW solution, in our case the flat ΛCDM
model, and what we can assume to be small are peculiar
velocities, not the change with time of the physical distance
between two arbitrary observers. To illustrate the point,
adopting a Newtonian perspective, in the absolute space of
Newtonian cosmology one uses the background comoving
coordinates x as the Eulerian grid, and the physical position
of a fluid element is r ¼ ax. Then _r ¼ Hrþ v, where
v ¼ a _x is the physical (or proper) peculiar velocity [11],
representing the deviation from the Hubble flow; _x is the
peculiar velocity with respect to the comoving grid [62].
Then, should we assume that j_rj ≪ c, we would end up
with an approximation only valid at small scales, well
below the Hubble horizon, jrj ≪ cH−1. In addition, tradi-
tionally the PN formalism has been developed to study
GR corrections to the orbits of isolated objects. Thus, the
focus is on the equations of motion, rather than on a
consistent approximation of the full set of Einstein equa-
tions. In developing his PN treatment of relativistic hydro-
dynamics, having in mind applications to relativistic stars,
Chandrasekhar [67] also focused on the equations of
motion for the fluid, as derived from the conservation
equations. In both cases, the metric and other variables are
expanded2 in powers of 1=c, then the expansion is applied
to the equations of motion. As it is well known, a correction
to the time-time component of the Minkowski metric is all
is needed to obtain the Newtonian equations of motion.
All other corrections are then considered post-Newtonian.
We will discuss this point in detail in Sec. VI B, where,

following [69], we call this approach focused on the
equations of motion “passive.” In cosmology, however,
we find desirable to consider an “active” approach, where
the space-space and time-time components of the metric are
equally weighted, leading directly to a consistent treatment,
order by order in the expansion parameter 1=c, of the full
set of Einstein equations.3 In view of applications, a useful
byproduct of this active approach is that the equal weighing
of the different metric components is what is needed to
obtain the correct photon trajectories, i.e. the null geodesics
that are at the base of the causal structure of the spacetime.
Various early and more recent works have applied the

traditional PN expansion in cosmology: in [70–73] the PN
equation of motion for particles in the expanding Universe
are derived; in [74] the authors clarify the role of the electric
and magnetic part of the Weyl tensor in the Newtonian
approximation; in [75] and [76] the PN analysis is given in
Lagrangian coordinates using, respectively, the 3þ 1 and
1þ 3 framework; in [77], the authors derive a complete set
of field and hydrodynamic equations in Newtonian-like
forms. Other remarkable works following a PN method are
those of Szekeres [78,79]. Finally, [80] follows a “hybrid
approximation scheme,” somehow closer in spirit to our PF
approach, a mix between standard cosmological perturba-
tion theory and PN approximation, also obtaining equations
for the generation of gravitational waves.
All these works apply the standard iterative approach

of the PN expansion. Here instead we focus on defining a
set of resummed 1PF variables, and on deriving the set
of nonlinear evolution and constraint equations they
satisfy. Specifically, assuming the Poisson (or conformal-
Newtonian [11,12,63,81]) gauge, we expand the metric in
powers of 1=c and in the equations we retain all scalar
terms up to order 1=c4 (and all vector terms up to 1=c5),
instead of peeling off the different orders, cf. [78,79]. This
leads to a final set of equations that differs from those of the
works mentioned above. Partly following the PN tradition,
the 0PF and 1PF orders, respectively, refer to terms 1=c2

and 1=c4, relevant for scalar potentials. The 0PF terms are
Newtonian, the 1PF terms contain the GR corrections.
Finally, we stress that, in order to obtain a system of
equations with a well-posed Cauchy problem, we should
consider terms of the next 2PF order, i.e. 1=c6 [78,79].
In summary, the main goal of this paper is to present a set

of nonlinear resummed equations up to 1PF order which
retain in full the nonlinearity of Newtonian theory on small
scales and all linear relativistic perturbation theory on large
scales. The 1PF scheme is, therefore, capable of describing,
in a unified framework and at the relevant leading orders, the
evolution of large-scale structure on all scales of cosmo-
logical interest. Our two main results simply follow from

1The contemporary derivation of the post-Newtonian approxi-
mation [65] should be contrasted with the traditional implemen-
tation (see e.g. [64]) which suffers from various ambiguities and
inconsistencies [65,66]. By and large, cosmological applications
of the post-Newtonian approximation follow the traditional
approach (see below).

2Formally, the expansion is with respect to a small dimension-
less parameter representing the ratio v=c; by dimensional analysis
the ratio of the gravitational field and c2 is also dimensionless
and can be expressed in terms of the same parameter. In this
way the parameter, which in practice is the inverse of the speed of
light 1=c, indicates the relativistic weight of each term in the
expansion [68].

3The approximate conservation equations then consistently
follow from the contracted Bianchi identities, as in the exact
theory.

MISSING LINK: A NONLINEAR POST-FRIEDMANN FRAMEWORK … PHYSICAL REVIEW D 92, 023519 (2015)

023519-3



the analysis of our nonlinear equations: at leading order a
purely Newtonian nonlinear energy current sources a frame-
dragging gravitomagnetic vector potential; in the leading-
order Newtonian regime and in the linear relativistic regime,
the two scalar metric potentials are the same, while the
nonlinear 1PF equations for the resummed scalar potentials
imply that the nonlinearity of GR makes them different.
The paper is organized as follows. After defining the

various metric terms in Sec. II, we obtain the stress energy
tensor in Sec. III, the field equations in Sec. IV and mass
and momentum conservation equations in Sec. V. We
then consider our equations in two opposite limits: the
Newtonian regime on small scales, neglecting Oð1=c4Þ
terms (see Sec. VI) and the linear regime on large scales
through the linearization of the equations (see Sec. VII). In
Sec. VIII, we first define suitable resummed variables, then
we obtain a consistent set of nonlinear equations describing
their evolution. In Sec. IX, we draw our main conclusions.
Finally, in the Appendix, we apply the PF expansion to the
Riemann and Ricci tensors.

II. NEWTONIAN AND POST-FRIEDMANN
METRIC VARIABLES

We consider a homogeneous and isotropic FLRW flat
backgroundwhere two kinds of perturbation terms are added
to the metric, representing two different levels of accuracy.
The first will give theNewtonian regime, i.e. an approximate
solution of Einstein equations such that the dynamics is
described by the exact nonlinear equations of Newtonian
cosmology for pressureless matter. The second will give
the relativistic corrections, adding terms to the Newtonian
equations. In our post-Friedmann framework the goal is to
calculate these relativistic terms; in this spirit, we shall refer
to the Newtonian approximation as the 0PF (or leading)
order, and to the first relativistic corrections as 1PF order.
The expanding parameter for the inhomogeneous per-

turbations is formally given by 1=c, so that the components
of the metric tensor in the line element

−c2dτ2 ¼ ds2 ¼ gμνdxμdxν ð2:1Þ
can be written as

g00 ¼ −
�
1 −

2UN

c2
þ 1

c4
ð2U2

N − 4UPÞ
�
þO

�
1

c6

�
; ð2:2aÞ

g0i ¼ −
a
c3

BN
i −

a
c5

BP
i þO

�
1

c7

�
; ð2:2bÞ

gij ¼ a2
��

1þ 2VN

c2
þ 1

c4
ð2V2

N þ 4VPÞ
�
δij

þ 1

c4
hij

�
þO

�
1

c6

�
; ð2:2cÞ

where τ is proper time and aðtÞ is the scale factor of the
FLRW background. Note that we assume that both the scale

factor and the metric are dimensionless, while the coor-
dinates have dimension of a length. Greek indices take the
values 0,1,2,3 and refer to spacetime coordinates, Latin
indices refer to the spatial coordinates. In particular in our
post-Friedmann scheme, for a proper “powers of c” order
counting, it is important to note that the time coordinate is
x0 ¼ ct. Here the Kronecker δij represents the metric on the
flat spatial slices of the background; the spatial Cartesian
coordinates are understood as an Eulerian system of
reference, cf. [82,83].
Our metric is a generalization to cosmology of

Chandrasekhar’s metric for post-Newtonian hydrodynam-
ics [67] (cf. [77] for a cosmological application). However,
it is important to remark the difference of our post-
Friedmann approach from the standard post-Newtonian
one [64,65,84,85]. In the latter, the focus is on the equation
of motion for matter, hence only the leading order g00
metric perturbation is Newtonian, while the gij is post-
Newtonian. In our approach the focus will instead be on
the complete set of Einstein equations. We aim at a self-
consistent approximate set of equations at each order,
similarly to the post-Minkowski (weak field) approxima-
tion [65,86]. Then, consistency of the Einstein equations
dictate that the gij and g00 metric perturbations must be of
the same order (see Sec. VI for the Newtonian approxi-
mation). Anticipating these results, the indices N and P
label Newtonian and post-Friedmann quantities. The N
quantities are the only relevant one at the 0PF order of
approximation of Einstein equations, i.e. in the Newtonian
regime. The P quantities appear at the 1PF order.
We assume the Poisson (or conformal Newtonian) gauge

[11,12,63,81,87], so that the three-vectors BN
i and BP

i are
divergenceless, BN;i

i ¼ 0 and BP;i
i ¼ 0, and hij is transverse

and tracefree (TT); i.e., it represents pure tensor modes
hii ¼ hij;i ¼ 0. Commas in front of indices have the
standard meaning of partial derivatives.
Having completely fixed the gauge leaves us with six

degrees of freedom at each order: the two scalars UN
and VN at leading order, and UP and VP at 1PF order; the
two independent components of BN

i (BP
i at 1PF); the two

independent components of hij. However, the latter only
appears in the equations at 1PF order. At leading order,
Einstein equations impose UN ¼ VN , i.e. a single scalar
gravitational potential in the Newtonian regime, as
expected. At leading order, BN

i is determined by the (vector
part of the) Newtonian energy current, and cannot be set to
zero. It is not dynamical; i.e., it doesn’t contribute to matter
motion. However, it appears in the metric and does affect
null geodesics and observables. It can, therefore, be
extracted from Newtonian N-body simulations [1,2] and
it contributes to lensing [88].
Note that the 1PF corrections consist of quadratic

combinations of Newtonian quantities and intrinsic 1PF
variables. We have also included tensorial TT modes but, at

MILILLO et al. PHYSICAL REVIEW D 92, 023519 (2015)

023519-4



1PF order, they cannot be interpreted as gravitational
waves; they satisfy a constraint equation rather than an
evolution equation (see Sec. IV C 3, c.f. [83]).

III. MATTER VARIABLES

Having defined the metric variables and their weight
with respect to the expansion parameter c−1, we now look
at the matter quantities. The dimensionless 4-velocity is
defined as

uμ≔
dxμ

cdτ
ð3:1Þ

and it satisfies the usual relation

gμνuμuν ¼ −1; ð3:2Þ

i.e. is a unitary timelike vector field. In Newtonian
cosmology one uses the background comoving coordinates
x as the Eulerian grid, the physical position of a fluid
element is r ¼ ax, and v ¼ a _x and _x, respectively, are the
physical (or proper) peculiar velocity [11] (the deviation
from the Hubble flow) and the peculiar velocity with
respect to the comoving grid [62]. With this in mind, it
is then natural to define the physical peculiar velocity as
vi≔adxi=dt. Therefore, we also define vi≔δijvj.
Then,

ui ¼ dxi

cdτ
¼ dxi

cdt
dt
dτ

¼ vi

ca
u0; ð3:3Þ

and, using (3.2) and keeping terms up to order c−4, the
4-velocity components are

ui ¼ 1

c
vi

a
u0; ð3:4aÞ

u0 ¼ 1þ 1

c2

�
UN þ 1

2
v2
�

þ 1

c4

�
1

2
U2

N þ 2UP þ v2VN þ 3

2
v2UN þ 3

8
v4 −BN

i v
i

�
;

ð3:4bÞ

ui ¼
avi
c

þ a
c3

�
−BN

i þ viUN þ 2viVN þ 1

2
viv2

�
; ð3:4cÞ

u0 ¼ −1þ 1

c2

�
UN −

1

2
v2
�

þ 1

c4

�
2UP −

1

2
U2

N −
1

2
v2UN − v2VN −

3

8
v4
�
:

ð3:4dÞ

We consider a universe filled by cold dark matter (CDM),
described by a single pressureless (dust) component with
energy-momentum tensor

Tμ
ν ¼ c2ρuμuν; ð3:5Þ

where ρ is the mass density.
In the Poisson gauge the components and trace of Tμ

ν

then are

T0
0 ¼ −c2ρ − ρv2 −

1

c2
ρ½2ðUN þ VNÞv2 − BN

i v
i þ v4�;

ð3:6aÞ

T0
i ¼ cρavi þ

1

c
ρafvi½v2 þ 2ðUN þ VNÞ� − BN

i g; ð3:6bÞ

Ti
0 ¼ −c

1

a
ρvi −

1

c
1

a
ρv2vi; ð3:6cÞ

Ti
j ¼ ρvivj þ

1

c2
ρfvivj½v2 þ 2ðUN þ VNÞ� − viBN

j g;
ð3:6dÞ

Tμ
μ ¼ T ¼ −ρc2: ð3:6eÞ

All these quantities are written in order to explicitly show
the different contributions in powers of c, where in each
expression the first term beyond the background term (if
present) represents the leading Newtonian order, the second
the first 1PF correction, etc. Note that there is no approxi-
mation in the trace: indeed, the mass density ρ plays the
role of a fundamental exact quantity that is not expanded
into contributions at different orders. In the following it will
be useful to use the density contrast δ, defined as usual:
δ≔ðρ − ρ̄Þ=ρ̄, where ρ̄ denotes the background matter
density.

IV. EINSTEIN EQUATIONS

A. Expansion of Einstein equations at 1PF order

We now consider Einstein field equations for the metric
(2.2), including the cosmological constant Λ:

Gμ
ν ¼ Rμ

ν −
1

2
Rδμν ¼

8πG
c4

Tμ
ν − Λδμν: ð4:1Þ

Expanding in powers of 1=c, in all equations we retain the
first two terms of the expansion. We then obtain the
following equations, where the dot denotes partial differ-
entiation with respect to coordinate time t.

MISSING LINK: A NONLINEAR POST-FRIEDMANN FRAMEWORK … PHYSICAL REVIEW D 92, 023519 (2015)

023519-5



Time-time component:

G0
0 þ Λ ¼ 8πG

c4
T0

0 →
1

c2

�
3

�
_a
a

�
2

− 2
∇2VN

a2

�
þ 1

c4

�
6
_a
a
_VN þ 6

�
_a
a

�
2

UN −
4

a2
∇2VP þ 2

a2
∇2V2

N −
5

a2
VN

;iVN;i

�

¼ 1

c2
8πGρþ 1

c4
8πGρv2 þ Λ: ð4:2Þ

Spatial component:

Gj
i þ Λδji ¼

8πG
c4

Ti
j →

1

c2

�
1

a2
ðVN − UNÞ;j;i þ δji

��
_a
a

�
2

þ 2
ä
a
−

1

a2
∇2ðVN − UNÞ

��
þ 1

c4

�
−

_a
a2

ðBN;j
i þ BNj

;iÞ

−
1

2a
ð _BNj

;i þ _BN;j
i Þ − 2

a2
UP;i

;j þ 2

a2
VP;i

;j þ 1

a2
UN;iUN

;j −
1

a2
VN;iVN

;j þ 1

a2
ðUN;iVN

;jþUN
;jVN;iÞ

−
2

a2
VNðVN − UNÞ;j;i þ δji

�
2
_a
a
_UN þ 4

ä
a
UN þ 2

�
_a
a

�
2

UN þ 6
_a
a
_VN þ 2V̈N

þ 2

a2
∇2UP −

2

a2
∇2VP −

1

a2
UN;kUN

;k þ 2

a2
VN∇2ðVN − UNÞ

�
þ 1

2a2
∇2hji

�
¼ Λδji −

8πG
c4

ρvivj: ð4:3Þ

Time-space component:

G0
i ¼

8πG
c4

T0
i →

1

c3

�
−

1

2a
∇2BN

i þ 2
_a
a
UN;i þ 2 _VN;i

�
þ 1

c5

�
−

1

2a
∇2BP

i þ 4
_a
a
UP;i þ 4 _VP;i þ 2 _VNUN;i þ 4

_a
a
UNUN;i

þ 4 _VN;iVN þ 1

2a
BN
i ;kðVN −UNÞ;k −

1

2a
BN
k ;iðUN þ VNÞ;k þ

1

a
∇2BN

i ðVN −UNÞ þ
1

2a
BN
i ∇2VN

þ 1

a
BNkVN;ki

�
¼ 8πG

c3
ρavi þ

8πG
c5

ρafvi½v2 þ 2ðUN þ VNÞ� − BN
i g: ð4:4Þ

Finally, neglecting in Eqs. (4.2) and (4.3) all terms representing inhomogeneities, we obtain the background
equations:

1

c2

�
_a
a

�
2

¼ 1

c2
8πG
3

ρ̄þ Λ
3
; ð4:5aÞ

1

c2

��
_a
a

�
2

þ 2
ä
a

�
¼ Λ: ð4:5bÞ

These are recast into the standard Friedmann and Raychaudhuri equations for the flat FLRW background,

1

c2
H2 ¼ 1

c2
8πG
3

ρ̄þ Λ
3
; ð4:6aÞ

1

c2
½ _H þH2� ¼ −

1

c2
4πG
3

ρ̄þ Λ
3
; ð4:6bÞ

after substituting the Hubble expansion scalar H ¼ _a=a.

B. 1PF equations for the inhomogeneities

We now subtract the background parts (4.5) from Eqs. (4.2) and (4.3), in order to obtain equations for the inhomogeneous
quantities. The time-time component of the field equations then gives a generalized Poisson equation:

−
1

c2
1

3a2
∇2VN þ 1

c4

�
_a
a
_VN þ

�
_a
a

�
2

UN þ 1

3a2
∇2V2

N −
5

6a2
VN;iVN

;i −
2

3a2
∇2VP

�

¼ 1

c2
4πG
3

ρ̄δþ 1

c4
4πG
3

ρ̄ð1þ δÞv2: ð4:7Þ
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Note that the cosmological constant disappears from the equations above; it only directly contributes to the background
dynamics, i.e. Eqs. (4.6). Thus, perturbations are only affected by Λ through their coupling with the Hubble (background)
expansion.
The trace of the space-space component (4.3) gives

−
1

c2

�
2

a2
∇2ðVN −UNÞ

�
þ 1

c4

�
−

4

a2
∇2ðVP −UPÞ −

2

a2
UN;kUN

;k −
1

a2
VN;kVN

;k þ 2

a2
UN;kVN

;k

þ 4

a2
VN∇2ðVN − UNÞ þ 6

�
_a
a
ð _UN þ 3 _VNÞ þ 2

ä
a
UN þ

�
_a
a

�
2

UN þ V̈N

��
¼ −

8πG
c4

ρ̄ð1þ δÞv2; ð4:8Þ

while the trace-free part is

1

c2

�
1

a2
ðVN −UNÞ;j;i −

1

3a2
∇2ðVN −UNÞδji

�
þ 1

c4

�
−
1

a
_a
a
ðBN;j

i þ BNj
;iÞ −

1

2a
ð _BN;j

i þ _BNj
;iÞ

þ 1

a2

�
2ðVP −UPÞ;j;i þUN;iUN

;j − VN;iVN
;j þUN;iVN

;j þUN
;jVN;i − 2VNðVN −UNÞ;j;i þ

1

2
∇2hji

�

þ 1

a2
δji

�
−
2

3
∇2ðVP −UPÞ −

1

3
ðUN;kUN

;k − VN;kVN
;kÞ − 2

3
UN;kVN

;k þ 2

3
VN∇2ðVN −UNÞ

��

¼ −
8πG
c4

ρ̄ð1þ δÞ
�
vivj −

1

3
δjiv2

�
: ð4:9Þ

C. Scalar, vector and tensors parts

1. Scalar equations

It is useful to recast the previous equations in order to isolate, in the linear part of the equations, the scalar, vector and
tensor contributions. For the scalar sector let us apply the divergence operator on Eq. (4.4):

1

c3
∇2

�
_a
a
UN þ _VN

�
þ 1

c5

�
2∇2

�
_a
a
UP þ _VP

�
þ ð _VNU;iÞ;i þ 2

_a
a
ðUNU;iÞ;i þ 2ð _VN;iVNÞ;i

þ 1

2a
BN
i ;kðVN − UNÞ;ki þ

1

4a
∇2BN

i ðVN − 3UNÞ;i þ
3

4a
BN
i ∇2VN

;i

�

¼ 4πG
c3

aρ̄½við1þ δÞ�;i þ 4πG
c5

aρ̄f½ðδþ 1Þviðv2 þ 2UN þ 2VNÞ�;i − δ;iBN
i g: ð4:10Þ

Multiplying Eq. (4.10) by H=c, and applying ∇2 on Eq. (4.7), we obtain the following constraint equation:

1

c2
∇2∇2VN −

1

c4

�
∇2∇2ðV2

NÞ −
5

2
∇2ðVN;iVN

;iÞ − 2∇2∇2VP

�

¼ −4πGða3ρ̄Þ
�
1

c2
1

a
∇2δþ 1

c4

�
1

a
∇2ðð1þ δÞv2Þ − 3

_a
a
ðvið1þ δÞÞ;i

��
: ð4:11Þ

Now, we can obtain a second scalar constraint by applying the operator ∂j∂i on both sides of Eq. (4.9). This then gives:
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1

c2
2

3
∇2∇2ðVN − UNÞ þ

1

c4

�
4

3
∇2∇2ðVP −UPÞ þ ðUN;iUN

;jÞ;j;i − ðVN;iVN
;jÞ;j;i þ 2ðUN;iVN

;jÞ;j;i

−
1

3
∇2ðUN;kUN

;kÞ þ 1

3
∇2ðVN;kVN

;kÞ − 2

3
∇2ðUN;kVN

;kÞ − 2½VNðVN − UNÞ;i;j�;j;i þ
2

3
∇2½VN∇2ðVN −UNÞ�

�

¼ −
8πG
c4

a2ρ̄

�
ð1þ δÞ

�
vivj −

1

3
δjiv

2

��
;j

;i
: ð4:12Þ

These equations will be useful in Sec. VIII.

2. Vector equations

The vectorial part of equation (4.4) can be found using the curl operator:

−
1

c3
∇ ×∇2BN

i þ 1

c5
∇ × ½−∇2BP

i þ BN
i ;kðVN −UNÞ;k − BN

k ;iðUN þ VNÞ;k þ 2∇2BN
i ðVN −UNÞ þ BN

i ∇2VN

þ 2BN
k VN;i

;k� ¼ 16πGa2

c3
∇ × ðρviÞ þ

16πGa2

c5
∇ × ðρfvi½v2 þ 2ðUN þ VNÞ� − BN

i gÞ: ð4:13Þ

Alternatively, we can also obtain a constraint equation for the vector part by applying the operators∇2 to Eq. (4.4) and ∂j to
Eq. (4.10), finding

1

c3
∇2∇2BN

i þ 1

c5

�
∇2∇2BP

i −∇2½BN
i ;kðVN −UNÞ;k� þ∇2½BN

k ;iðVN þUNÞ;k� − 2∇2½∇2BN
i ðVN − UNÞ�

−∇2ðBN
i ∇2VNÞ − 2∇2ðBN

k VN;i
;kÞ þ 2½BN

j ;k
ðVN −UNÞ;jk�;i þ ½∇2BN

j ;k
ðVN − 3UNÞ;j�;i

þ 3ðBN
j ∇2VN

;jÞ
;i
þ 16πGa2ρ̄ðδ;jBN

j Þ;i − 16πGa2ρ̄∇2½ð1þ δÞBN
j �
�

¼ 1

c3
16πGa2ρ̄f½vjð1þ δÞ�;j;i −∇2½við1þ δÞ�g

þ 1

c5

�
4a

�
∇2ð _VNUN;iÞ − ð _VNUN;kÞ;k;i þ 2

_a
a
∇2ðUNUN;iÞ − 2

_a
a
ðUNUN;kÞ;k;i þ 2∇2ð _VN;iVNÞ − 2ð _VN;kVNÞ;k;i

�

þ 16πGa2ρ̄½vjð1þ δÞðv2 þ 2UN þ 2VNÞ;j�;i − 16πGa2ρ̄∇2½við1þ δÞðv2 þ 2UN þ 2VNÞ�
�
: ð4:14Þ

These vectorial equations also depend on scalar quantities, because of nonlinearity; however, the divergence of these
equations would give zero, as it should.
An evolution equation for Bi can be obtained by applying the operator ∂j∇2 on Eq. (4.9) and subtracting the equation

obtained applying ∂i on Eq. (4.12). This procedure leads to

1

c4
∇2∇2

�
1

2
_BN
i þ _a

a
BN
i

�
¼ 1

c4
1

a
f∇2ðUN;iUN

;jÞ;j − ðUN;kUN
;jÞ;ji;k −∇2ðVN;iVN

;jÞ;j þ ðVN;kVN
;jÞ;ji;k

þ∇2ðUN;iVN
;jÞ;j þ∇2ðUN

;jVN;iÞ;j − 2ðUN;kVN
;jÞ;ji;k − 2∇2½ðVN −UNÞ;j;iVN �;j þ 2½ðVN −UNÞ;j;kVN �;ji;kg

þ 8πG
c4

aρ̄

�
∇2

�
ð1þ δÞ

�
vivk −

1

3
δki v

2

��
;k
−
�
ð1þ δÞ

�
vkvj −

1

3
δjkv

2

��
;ji

;k
�
: ð4:15Þ

This shows that an evolution term for BN
i only appears at order 1=c4.

3. Tensor equations

In order to isolate the TT part of the metric hij we define the following nonlinear quantities:

Ai
j ¼ UN;iUN

;j − VN;iVN
;j þUN;iVN

;j þUN
;jVN;i − 2VNðVN −UNÞ;i;j

þ δji

�
−
1

3
UN;kUN

;k þ 1

3
VN;kVN

;k −
2

3
UN;kVN

;k þ 2

3
VN∇2ðVN −UNÞ

�
; ð4:16Þ

MILILLO et al. PHYSICAL REVIEW D 92, 023519 (2015)

023519-8



Si
j ¼ ð1þ δÞ

�
vivj −

1

3
δjiv

2

�
: ð4:17Þ

With these definitions, Eq. (4.15) becomes

1

c4
∇2∇2

�
1

2a
_BN
i þ 1

a
_a
a
BN
i

�
¼ 1

c4

�
1

a2
ð∇2Aj

i;j −Ai;k
k;jiÞ þ 8πGρ̄ð∇2Sj

i;j − Si;k
k;jiÞ

�
: ð4:18Þ

Finally, using Eqs. (4.9), (4.12) and (4.18), we obtain the following constraint equation for hij:

1

c4
∇2∇2∇2hji ¼

1

c4
½−Al;kj

k;li −∇2Al;k
k;lδ

j
i þ 2∇2Ak;j

i;k þ 2∇2Ak
l;kiδ

lj − 2∇2∇2Aj
i

þ 8πGa2ρ̄ð−Sl;kj
k;li −∇2Sl;k

k;lδ
j
i þ 2∇2Sk

l;kiδ
lj þ 2∇2Sk;j

i;k − 2∇2∇2Sj
iÞ�: ð4:19Þ

V. CONSERVATION EQUATIONS

The field equations in GR are constructed in order to imply the conservation equations through the contracted Bianchi
identities [89]:

Tν
μ;ν ¼ 0: ð5:1Þ

From this, considering the time component and keeping all terms up to 1=c2 order, we obtain the energy conservation
equation

ða3ρÞ·
a3

þ ðviρÞ;i
a

þ 1

c2

�ða4ρv2Þ·
a4

þ 3 _VNρþ
ðρv2viÞ;i

a
þ ρvi

ð3VN −UNÞ;i
a

�
¼ 0: ð5:2Þ

Setting vi ¼ UN ¼ VN ¼ 0, and ρ ¼ ρ̄, this equation reduces to the background continuity equation for cold dark matter,
i.e. _̄ρ ¼ −3Hρ̄. Subtracting this equation from (5.2) and defining the total, or convective, derivative for any quantity Q as

dQ
dt

¼ _Qþ viQ;i

a
; ð5:3Þ

Eq. (5.2) becomes

dδ
dt

þ vi;i
a

ðδþ 1Þ þ 1

c2

�
ðδþ 1Þ

�
_a
a
v2 þ dðv2Þ

dt
þ 3

dVN

dt
−
vi

a
UN;i

��
¼ 0: ð5:4Þ

Note that we have used the Newtonian part of this equation to simplify the 1PF order part. The space part of (5.1) gives the
momentum conservation equation:

ða4ρviÞ·
a4

−
ρUN;i

a
þ ðvjρviÞ;j

a
þ 1

c2

�
ρvivj

ð3VN −UNÞ;j
a

− 2
ρUP;i

a
þ ρvið3VN − UNÞ· þ

ðρvivjv2Þ;j
a

þ ða4ρv2viÞ·
a4

þ ½2a4ρviðVN þUNÞ�·
a4

þ 2
½ρvjviðVN þ UNÞ�;j

a
− ρv2

ðVN þ UNÞ;i
a

−
ða4BN

i ρÞ·
a4

−
ðBN

i ρv
jÞ;j

a
þ BN

j;i

a
ρvj

�
¼ 0:

ð5:5Þ

Note that Eqs. (5.2) and (5.5) are equivalent to Eqs. (57) and (58) in [77]: as far as the conservation equations are concerned,
there is no difference between the standard post-Newtonian approach used in [77] and our post-Friedmann approach. The
difference becomes relevant for the consistency of the full set of Einstein equations; we discuss this point in Sec. VI B.
Simplifying this equation by using the Newtonian part of Eq. (5.4) and the background continuity equation for ρ̄, we derive
the 1PF Euler equation:
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dvi
dt

þ _a
a
vi −

UN;i

a
þ 1

c2

�
vi

d
dt

ðUN þ 2VNÞ þ
2

a
UN;iðUN þ VNÞ −

1

a
v2VN;i −

2

a
UP;i þ

1

a
vivjUN;j −

_a
a
v2vi

−
1

a
d
dt

ðaBN
i Þ þ

BN
j;iv

j

a

�
¼ 0: ð5:6Þ

Finally, using the Newtonian part of Eq. (5.6), the continuity equation can be recast in the following way:

dδ
dt

þ vi;i
a

ðδþ 1Þ þ 1

c2

�
ðδþ 1Þ

�
1

a
vjUN;j −

_a
a
v2 þ 3

dVN

dt

��
¼ 0: ð5:7Þ

The last two equations are the hydrodynamic equations of
motion of the dust component in the post-Friedmann approxi-
mation, at 1PF order. Let us stress that, in Eqs. (5.7) and (5.6),
the post-Friedmann corrections contain nonlinear coupling
terms betweenmetric variables andmatter variables, ρ andvi.
This is the reason why the vector potential Bi cannot be
decoupled from the scalar modes in the equations of motion.
In the next two sections, we will check the consistency of

our approachwith our goal of obtaining a set of equationvalid
at all scales. To this end we will first consider the leading
order, the Newtonian regime, which is a good approximation
on scales much smaller than the Hubble radius, then we
will linearize our equation to check consistency with linear
relativistic perturbation theory in the Poisson gauge [11,63],
which is a good approximation on large scales.

VI. LEADING ORDER: THE NEWTONIAN
REGIME

A. Newtonian dynamics from consistency of Einstein
equations, with a bonus

Retaining the leading-order terms in the c−1 expansion,
i.e. the 0PF order, we recover the equations of Newtonian

cosmology and we obtain the corresponding spacetime
metric. We call this the Newtonian regime: as we are going
to see, the dynamics is purely Newtonian, yet we have
a spacetime metric that is a well-defined approximate
solution of Einstein equations.
We obtain the Newtonian continuity and Euler equation

from the hydrodynamic equations (5.4) and (5.6):

_δþ viδ;i
a

þ vi;i
a

ðδþ 1Þ ¼ 0; ð6:1Þ

_vi þ
vjvi;j
a

þ _a
a
vi ¼

1

a
UN;i: ð6:2Þ

At leading order, from Einstein equations (4.7), (4.4), (4.8),
(4.9), we obtain

G0
0 þ Λ ¼ 8πG

c4
T0

0 →
1

c2
1

a2
∇2VN ¼ −

4πG
c2

ρ̄δ; ð6:3aÞ

G0
i ¼

8πG
c4

T0
i →

1

c3

�
−

1

2a2
∇2BN

i þ 2
_a
a2

UN;i þ
2

a
_VN;i

�
¼ 8πG

c3
ρ̄ð1þ δÞvi; ð6:3bÞ

trace of Gi
j þ Λδij ¼

8πG
c4

Ti
j →

1

c2
2

a2
∇2ðVN −UNÞ ¼ 0; ð6:3cÞ

traceless part of Gi
j þ Λδij ¼

8πG
c4

Ti
j →

1

c2
1

a2

�
ðVN − UNÞ;i;j −

1

3
∇2ðVN −UNÞδji

�
¼ 0: ð6:3dÞ

Equation (6.3a) is the Poisson equation, from which the
Newtonian character of the spatial metric potential VN is
apparent as long as we identify it with the Newtonian
gravitational potential generated by the matter field,

VN ¼ −ϕN . As noted by Bertschinger [86], it is an
interesting fact that at leading order only gij contributes
to G0

0. On the other hand, as is well known, it is the time-
time metric potential UN that tells matter how to move in
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the Euler equation (6.2) (or to particles in the geodesic
equation; see e.g. [69]). Equations (6.3c) and (6.3d) show
that Eqs. (4.8) and (4.9) reduce, at leading order, to
constraint equations: they give the consistency relations
between the scalar metric potentials UN and VN in a GR
context at this order. Modulo residual gauge modes [86]
that leave (6.3c) and (6.3d) invariant, we must have
UN ¼ VN ¼ −ϕN . In summary, Einstein equations reduce,
at leading order, to the standard equations of Newtonian
cosmology. The metric tensor generated from a self-
consistent expansion of the full set of Einstein equations
at leading order is the cosmological version of the weak
field metric, with the FLRWmetric replacingMinkowski as
background.
Our metric (2.2), however, also contains the frame

dragging vector potential Bi and the TT part hij. This
TT part only appears at 1PF order in Gi

j and so it is
irrelevant at leading order, consistently with the fact that, in
this Newtonian regime, we only retain the VN term in gij.
On the other hand, the leading order of the G0

i equation is
Eq. (6.3b); thus, it cannot be neglected. This is a new
equation that arises in the relativistic context and deter-
mines the leading-order frame dragging potential BN

i from
the purely Newtonian term on the right hand side, the
energy current that is determined by the other equations.
Therefore, even in the Newtonian regime, the frame
dragging term BN

i cannot be set to zero. Some authors
consider this term of higher order; however, Eq. (6.3b) tell
us that this is inconsistent with the other Newtonian
equations. Indeed, taking the divergence of (6.3b) (i.e.
its scalar part) and using the Poisson equation implies the
continuity equation, while taking the curl (i.e. the vector
part) shows that the curl of BN

i , a gravitomagnetic field
[86], is sourced by the curl of the energy current ρvi, and
there is no reason why the transverse part of this current
should vanish. Alternatively [86], one can split vectors into
longitudinal and transverse parts. Then one can see from
(6.3b) that a purely Newtonian transverse energy current
sources BN

i . Thus, setting BN
i ¼ 0 does imply, even in the

Newtonian regime of dynamics, a purely longitudinal
energy current, i.e. imposing the condition BN

i ¼ 0 does
imply an artificial constraint on the general Newtonian
dynamics. While in the linear regime vectors modes can be
separated from scalar modes, in the nonlinear regime of
Newtonian dynamics there is no reason why the energy
current should be longitudinal, and indeed it is well known
that transverse vector modes are generated by nonlinearity,
and in particular vorticity is generated after shell crossing
[90]. The nonlinearly generated gravitomagnetic potential
BN
i can actually be extracted from standard Newtonian

N-body simulations [1,2], and its contribution to lensing
has been computed in [88]. The bottom line is that in the
Newtonian regime of GR the gravitational field is not
purely scalar, it does contain a gravitomagnetic vector
part [74,91].

As we are going to show in the next section, the above
considerations on the frame dragging Bi are entirely
consistent with linear perturbation theory. In the perturba-
tive regime one naturally splits vectors into longitudinal
and transverse parts and finds that Bi decays [78–80,92,93].
Nonetheless, in the nonlinear Newtonian regime the trans-
verse part of the energy current sources BN

i [1,2]. At this
order, however, BN

i is a nondynamical variable, rather it is
determined nonlocally through the acausal equation (6.3b).
Furthermore, a calculation of the magnetic Weyl tensor
shows that, at leading order in powers of c−1,

Hij ¼
1

2c3
½BN

μ;νðiεjÞ
μν þ 2vμðUN þ VNÞ;νðiεjÞμν�; ð6:4Þ

so that its linear part, i.e. the first term in the square bracket,
is precisely the curl of BN

i . As discussed in detail by
Kofman and Pogosyan [74], although the magnetic Weyl
tensor is zero in Newtonian theory (i.e. starting from a
scalar theory of gravity), it cannot be neglected in deriving
the “covariant equations” [6,94] in the Newtonian regime
from relativistic theory. Nonetheless Hij is not an inde-
pendent dynamical variable in the Newtonian regime,
rather Eq. (6.4) shows that it is locally determined by
other variables.

B. Passive and active approach

Starting with Einstein [89], the usual way to consider the
Newtonian limit in GR consists in demanding that the
timelike geodesic equation agrees with the Newtonian
equation of motion for a particle [64,69]. This naturally
sets g00 ¼ −ð1 − 2UN=c2Þ, identifying −UN with the
gravitational potential ϕN . For a fluid, as we can see from
(6.1) and (6.2), the continuity and the Euler equations do
not contain VN , so that the latter could be interpreted as a
post-Newtonian variable. This way of thinking considers
the “passive” aspect of gravitation, namely the response of
matter to gravity [69]: one wants to determine the equation
of motion of a particle in a given gravitational potential.
In addition, the Newtonian limit is again considered

using the field equations with matter, in order to determine
the gravitational coupling constant by recovering the
Poisson equation [89]. Starting from the following form
of Einstein equations

Rμν ¼ κ

�
Tμν −

1

2
Tδμν

�
þ Λδμν ð6:5Þ

one finds that the time-time component only contains g00,
so that, at Oðc−2Þ, we obtain the Poisson equation for UN

1

c2
1

3a2
∇2UN ¼ −

4πG
3c2

ρ̄δ ð6:6Þ

by identifying κ ¼ 8πG=c4. Again, one would be tempted
to conclude that only UN is needed at leading
Newtonian order.
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However, in our approach, we are interested in the
“active” aspect of gravitation, i.e. the generation of gravity
by the matter distribution. To this end, we need to
determine the metric using the field equation in a fully
consistent manner, even in the Newtonian regime. In
particular, in cosmology we deal with a self-gravitating
fluid, so that the complete set of field equations is as
important as the equations of motion.
In the passive Newtonian approach of the standard post-

Newtonian formalism the geodetic equation determines the
order of the metric variables, UN as Newtonian and VN as
the post-Newtonian correction. In our post-Friedmann
scheme it is the leading order of the field equations, derived
from the complete set of Einstein equation, that establishes
the order of the metric perturbations, giving that both UN
and VN have a Newtonian character. This emerges from
(6.3a), (6.3c) and (6.3d) and naturally also from the spatial
components of (6.5), whose trace is

1

c2
1

a2
∇2ðUN − 4VNÞ ¼

12πG
c2

ρ̄δ: ð6:7Þ

This clearly shows that neglecting VN with respect to UN
would not yield the Poisson equation.
In summary, if we want to obtain the equations of

Newtonian cosmology from GR, in the active approach and
consistently considering all components of Einstein equa-
tions, we do need both scalar potentials UN and VN as 0PF
terms in the metric, with the result

UN ¼ VN ¼ −ϕN: ð6:8Þ

VII. LINEARIZATION: RECOVERING
FIRST-ORDER PERTURBATION THEORY

Standard relativistic perturbation theory
[11,12,87,92,93,95], where density, velocity and metric
variables are all assumed to be small, is a fundamental tool
in theoretical cosmology. It provides the framework to
develop predictions from inflation for the matter and metric
fluctuations in the early Universe and to work out their
imprint on the CMB and the matter fluctuations at the
beginning of the matter dominated era [53].
Our post-Friedmann scheme has been developed to

generalize the equations of nonlinear Newtonian cosmol-
ogy to include relativistic corrections. It would, however,
be a great bonus if, in linearizing our equations, we could
recover standard first-order relativistic perturbation theory.
Given that the observed Universe is remarkably well
described by perturbation theory at large scales, up to
the Hubble horizon and larger, recovering at least the first
order would imply that our scheme is not only valid at small
nonlinear Newtonian scales, as shown in the previous
sections, but also at the largest scales of interests in
cosmology. Note that it is not a priori obvious that this
recovery is possible; the aim of this section is to explicitly

show that, by linearizing our equations and by defining
resummed metric variables that contain a Newtonian part
and a relativistic 1PF correction, we obtain first-order
perturbation theory. This resummation will also be at the
base of the following sections.
In first-order perturbation theory, it is standard

to decouple the scalar, vector and tensor modes
[11,12,63,92,93,95]. It is, therefore, convenient to sepa-
rately look at the scalar and vector type equations of
Sec. IV C (as already noted, at 1PF order the tensorial
modes are not dynamical, i.e. we can’t recover first-order
gravitational waves). In particular, the first-order velocity
perturbation vi can also be split into a scalar and vector
(solenoidal) part, vi ¼ v∥;i þ vi⊥, where vi⊥;i ¼ 0.
Starting from the scalar sector and considering only the

linear terms, we obtain from equations (4.7), (4.8), (4.10),
and (4.12),

1

c2
1

3
∇2VN −

1

c4
a2
�
_a
a
_VN þ

�
_a
a

�
2

UN − 2
∇2VP

3a2

�

¼ −
1

c2
4πG
3

a2ρ̄δ; ð7:1aÞ

1

c2
½∇2ðUN − VNÞ� þ

1

c4

�
2∇2ðUP − VPÞ

þ 3a2
�
_a
a
ð _UN þ 3 _VNÞ þ 2

ä
a
UN þ

�
_a
a

�
2

UN þ V̈N

��

¼ 0; ð7:1bÞ

1

c3
∇2

�
_a
a
UN þ _VN

�
þ 1

c5

�
2
_a
a
∇2UP þ 2∇2 _VP

�

¼ 1

c3
4πGaρ̄θ; ð7:1cÞ

1

c2
∇2∇2ðVN −UNÞ þ

1

c4
2∇2∇2ðVP − UPÞ ¼ 0; ð7:1dÞ

where, in Eq. (7.1c), we have defined the spatial velocity
divergence as θ ¼ vi;i ¼ ∇2v∥. The continuity equation
and the divergence of the Euler equation from (5.7) and
(5.6), after linearization, are

_δþ θ

a
þ 3

c2
_VN ¼ 0; ð7:2Þ

_θ þ _a
a
θ −

∇2UN

a
−

2

c2
∇2UP

a
¼ 0; ð7:3Þ

where the convective term in the total time derivatives is
neglected and partial and total derivatives coincide. Finally,
defining the following resummed scalar metric variables

ϕP≔−
�
UN þ 2

c2
UP

�
; ð7:4Þ
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ψP≔−
�
VN þ 2

c2
VP

�
; ð7:5Þ

the previous equations become

∇2ψP −
3

c2
a2
�
_a
a
_ψP þ

�
_a
a

�
2

ϕP

�
¼ 4πGρ̄a2δ; ð7:6aÞ

−∇2ðψP − ϕPÞ þ
3

c2
a2
�
_a
a
ð _ϕP þ 3 _ψPÞ þ 2

ä
a
ϕP

þ
�
_a
a

�
2

ϕP þ ψ̈P

�
¼ 0; ð7:6bÞ

∇2

�
_a
a
ϕP þ _ψP

�
¼ −4πGaρ̄θ; ð7:6cÞ

1

c2
∇2∇2ðϕP − ψPÞ ¼ 0; ð7:6dÞ

_δþ θ

a
−

3

c2
_ψP ¼ 0; ð7:6eÞ

_θ þ _a
a
θ þ 1

a
∇2ϕP ¼ 0: ð7:6fÞ

Note that, from Eq. (7.6d), ψP ¼ ϕP; this follows from the
perfect fluid matter model we are considering (i.e. null
anisotropic stress, see e.g. [92,93]). The equations above
coincide with those for scalar fluctuations of standard
perturbation theory in the Newtonian gauge; see e.g.
[11,63,81]. The conclusion of this analysis is important:
the 1PF approximation, in the linear regime, completely
includes first-order scalar relativistic perturbation theory, so
that all the linear GR terms are just 1PF. On the other hand,
the 1PF order does not involve just linear terms, indeed
there are contributions of second and higher order in the
standard perturbative expansion.
This result is due to our active approach, where UN

and VN are both Newtonian variables, to the derivation of
1PF equations that retain the first two orders in the 1=c
expansion (rather than proceeding iteratively, order by
order), and to the definition of the resummed variables
(7.4) and (7.5) that turn out to coincide with the standard
first-order potentials in Poisson gauge.
We now briefly consider the linear vector sector. Again

defining a resummed variable, let us consider the vectorial
potential ωi:

ωi ¼ BN
i þ 1

c2
BP
i : ð7:7Þ

Linearizing Eqs. (4.13) and (4.9), we immediately obtain

1

c3
∇2ωi ¼ −

1

c3
16πGa2ρ̄

�
vi⊥ −

1

c2
ωi

�
; ð7:8Þ

2
_a
a
ðωi

;j þ ωj
;iÞ þ ð _ωi

;j þ _ωj
;iÞ ¼ 0: ð7:9Þ

Therefore, the linearization of the 1PF approximation
also reproduces the equations of linear relativistic
perturbations theory in the vector sector. Note that
Eq. (7.8) is the first-order analogue of the nonlinear
Newtonian Eq. (6.3b). Eq. (7.9) instead gives the
evolution of the first-order metric vector potential,
which decay. In the nonlinear case, it is indeed shell-
crossing that generates vorticity [90]. In general, non-
linearity generates the vector modes in the energy
current that sources the gravitomagnetic frame-dragging
potential [1,2].
Finally, a remark on the tensor sector. Had we

extended our post-Friedmann scheme to the 2PF order,
in the linear regime we would have recovered the wave
equation for free gravitational waves. In the nonlinear
regime gravitational radiation would be generated by
nonlinear sources terms, of higher order in scalar and
vector modes, much in the same way that is generated
at second order in standard perturbation theory
[12,81,96,97].

VIII. NONLINEAR SET OF 1PF EQUATIONS

A. Resummed metric potentials
and new conservation equations

We now recast the nonlinear equations obtained in the
previous sections, using a suitable change of variables. In
the previous section we have introduced the potentials ϕP
and ψP: we have shown that they coincide in both the linear
and the Newtonian regime. It is then convenient to consider
the following combinations:

ϕG ≔
1

2
ðϕP þ ψPÞ; ð8:1Þ

1

c2
DP ≔

1

2
ðϕP − ψPÞ; ð8:2Þ

the first generalizes the definition of the gravitational
potential given in Sec. VI, equation (6.8), the second
defines a new nonlinear post-Friedmannian quantity, DP,
negligible in the Newtonian and in the linear regimes.4 With
these new variables, up to Oð1=c4Þ, the metric can be
written as

4A difference in the two scalar potentials is expected from
nonlinearity in GR, consistently with second-order perturbation
theory results [12,81,87].
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ds2 ¼ −c2
�
1þ 2

�
ϕG

c2
þ ϕ2

G

c4
þDP

c4

��
dt2 − 2a

ωi

c2
dtdxi þ a2

��
1þ 2

�
−
ϕG

c2
þ ϕ2

G

c4
þDP

c4

��
δij þ

1

c4
hij

�
dxidxj:

ð8:3Þ

Moreover, it is convenient to define a new velocity variable [67],

v�i ¼ vi −
1

c2
ωi; ð8:4Þ

representing the velocity of matter with respect to observers moving along the normal to the slicing. With these new
variables, Eqs. (4.7), (4.8), (4.9) and (4.4) become

G0
0 þ Λ ¼ 8πG

c4
T0

0 →
1

c2
∇2ϕG −

1

c4

�
∇2DP þ 3a2

�
_a
a
_ϕG þ

�
_a
a

�
2

ϕG

�
−∇2ϕ2

G þ 5

2
ϕG;iϕG

;i

�

¼ 1

c2
4πGa2ρ̄δþ 1

c4
4πGa2ρ̄ð1þ δÞv�2; ð8:5aÞ

�
Gj

i þ Λδji ¼
8πG
c4

Tj
i

�
trace

→
1

c4

�
4∇2DP þ ϕG;kϕG

;k þ 6a2
�
4
_a
a
_ϕG þ 2

ä
a
ϕG þ

�
_a
a

�
2

ϕG þ ϕ̈G

��

¼ 1

c4
8πGa2ρ̄ð1þ δÞv�2; ð8:5bÞ

�
Gj

i þ Λδji ¼
8πG
c4

Tj
i

�
tracefree

→
1

c4

�
2

�
DP;i

;j −
1

3
∇2DPδ

j
i

�
þ 2ϕG;iϕG

;j −
2

3
ϕG;kϕG

;kδji

− a

�
_a
a
ðωi

;j þ ωj
;iÞ þ

1

2
ð _ωi

;j þ _ωj
;iÞ
�
þ 1

2
∇2hji

�

¼ −
1

c4
8πGa2ρ̄ð1þ δÞ

�
v�i v

�j −
1

3
v�2δji

�
; ð8:5cÞ

G0
i ¼

8πG
c4

T0
i →

1

c3

�
1

2a
∇2ωi þ 2

_a
a
ϕG;i þ 2 _ϕG;i

�
−

1

c5

�
−2

_a
a
DP;i þ 2 _DP;i

þ 1

2a
½4að _ϕGϕG;i þ 2ϕG

_ϕG;iÞ þ 8_aϕGϕG;i þ 2ωk;iϕG;k − ωi∇2ϕG − 2ωkϕG;ki�
�

¼ −
1

c3
8πGaρ̄ð1þ δÞv�i −

1

c5
8πGaρ̄ð1þ δÞ½v�i ðv�2 − 4ϕGÞ�: ð8:5dÞ

The continuity equation (5.7) and the Euler equation (5.6) become

dδ
dt

þ v�i;i
a

ðδþ 1Þ − 1

c2

�
ðδþ 1Þ

�
3
dϕG

dt
þ v�kϕG;k

a
þ _a
a
v�2

�
−
1

a
ωjδ;j

�
¼ 0: ð8:6Þ

dv�i
dt

þ _a
a
v�i þ

1

a
ϕG;i þ

1

c2

�
1

a
ϕG;ið4ϕG þ v�2Þ − 3v�i

dϕG

dt
þ 1

a
DP;i −

1

a
v�i v

�
jϕG

;j −
_a
a
v�2v�i þ

1

a
ωj;iv�j þ

1

a
ωjv�i;j

�
¼ 0;

ð8:7Þ
where here and in the following the convective derivative of a quantity Q is defined in terms of v�:

dQ
dt

¼ _Qþ vi�Q;i

a
: ð8:8Þ

B. Constraint type and evolution type equations

Starting from the new definitions given above, we want to obtain a final set of equations, providing a unified description
of gravitational instability in both the linear and the nonlinear regimes, valid for fluctuations on all scales.
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From Eqs. (8.5a) and (8.5b) we obtain an equation involving only the potential ϕG, sourced by the matter and velocity
perturbations:

1

c2
2

3
∇2ϕG þ 1

c4

�
a2
�
ϕ̈G þ 2

_a
a
_ϕG þ 2

ä
a
ϕG −

�
_a
a

�
2

ϕG

�
þ 2

3
∇2ϕ2

G −
3

2
ϕG;iϕG

;i

�

¼ 1

c2
8πG
3

a2ρ̄δþ 1

c4
4πGa2ρ̄ð1þ δÞv�2: ð8:9Þ

Note that the linearized version of this equation is a combination of Eqs. (7.6a) and (7.6b).
A constraint equation for DP is obtained from Eq. (4.12) [or, equivalently, by applying the operator ∂j∂i on both sides

of Eq. (8.5c)]:

1

c4
2

3
∇2∇2DP ¼ −

1

c4

�
ðϕG;iϕG

;jÞ;j;i −
1

3
∇2ðϕG;iϕG

;iÞ
�
−

1

c4
4πGa2ρ̄

�
ð1þ δÞ

�
v�i v

�j −
1

3
v�2δji

��
;i

;j
: ð8:10Þ

Rewriting the definitions of Aj
i and Sj

i , Eqs. (4.16) and
(4.17), in terms of ϕG and v�i, also neglecting a higher-
order contribution for DP, we obtain

Aj
i ¼ 2ϕG;iϕG

;j −
2

3
δjiϕG;kϕG

;k; ð8:11Þ

Sj
i ¼ ð1þ δÞ

�
v�i v

�j −
1

3
v�2δji

�
: ð8:12Þ

With these definitions, Eq. (8.10) becomes

1

c4
4

3
∇2∇2DP ¼ −

1

c4
Aj;k

k;j −
1

c4
8πGa2ρ̄Sj;k

k;j: ð8:13Þ

Finally, let us rewrite Eq. (4.18) as an evolution equation
for the frame-dragging potential ωi,

1

c4
∇2∇2

�
1

2a
_ωi þ

1

a
_a
a
ωi

�

¼ 1

c4

�
1

a2
ð∇2Aj

i;j −Ai;k
k;jiÞ þ 8πGρ̄ð∇2Sj

i;j − Si;k
k;jiÞ

�
;

ð8:14Þ

while the constraint Eq. (4.19) for hij remains formally
unchanged,

1

c4
∇2∇2∇2hji ¼

1

c4
½−Al;kj

k;li −∇2Al;k
k;lδ

j
i þ 2∇2Ak;j

i;k þ 2∇2Ak
l;kiδ

lj − 2∇2∇2Aj
i

þ 8πGa2ρ̄ð−Sl;kj
k;li −∇2Sl;k

k;lδ
j
i þ 2∇2Sk

l;kiδ
lj þ 2∇2Sk;j

i;k − 2∇2∇2Sj
iÞ�: ð8:15Þ

At 1PF order the variables hij and DP are not dynamical,
i.e. they do not satisfy an evolution equation, rather they are
given in terms of other variables by constraint equations.
We can, therefore, conclude that the 1PF correction to
Newtonian gravity introduces three nondynamical geomet-
rical degrees of freedom (two d.o.f. in hij and 1 d.o.f. in
DP) and provides the evolution equation for the gravita-
tional potential ϕG and the frame dragging vector potential
ωi. For comparison, at 0PF Newtonian order we only have
three nondynamical d.o.f.: one in the scalar gravitational
potential and two in the gravitomagnetic vector potential. In
full relativistic theory we would have six dynamical d.o.f.,
as is already apparent in first-order perturbation theory.
Therefore, in order to recover a fully dynamical theory we
should extend our post-Friedmann scheme to the 2PF order,
cf. [78]. However, the equations above, given that they
extend the fully nonlinear 0PF Newtonian equations and (as
shown in Sec VII) include the scalar and vector first-order

perturbation equations, are sufficient to study structure
formation at all scales.

C. New matter variables and simplified
conservation equations

There exists a further change of variable in the matter
density, such that the 1PF continuity equation formally
takes the usual Newtonian form [67].
Defining

ρ̂≔a−3ρð−gÞ1=2u0 ¼ ρ

�
1þ 1

c2

�
1

2
v�2 − 3ϕG

��
; ð8:16Þ

and δ̂≔ðρ̂ − ρ̄Þ=ρ̄, equation (8.6) becomes

dδ̂
dt

þ v�i;i
a

ðδ̂þ 1Þ ¼ 0; ð8:17Þ
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therefore “the mass defined in terms of the density ρ̂ is
conserved” [67] in the usual Newtonian sense.5 Similarly,
we can introduce a new velocity field v̂i, such that the 1PF
Euler equation simplifies. Defining

v̂i ¼ v�i

�
1þ 1

c2

�
1

2
v�2 − 3ϕG

��
; ð8:18Þ

equation (8.7) takes the form
dv̂i
dt

þ _a
a
v̂i þ

1

a
ϕG;i

þ 1

c2

�
ϕG;i

a

�
ϕG þ 3

2
v̂2
�
þDP;i

a
þ ωj;iv̂j

a

�
¼ 0:

ð8:19Þ
Let us note, however, that using this definition of velocity
in the continuity equation (8.17) we would get some
extra terms.

IX. CONCLUSIONS

Nonlinear structure formation in cosmology is tradition-
ally studied with Newtonian N-body simulations and
various approximation methods, e.g. Lagrangian perturba-
tion theory. Relativistic perturbation theory and other
approximations such as a gradient expansion are used to
study small fluctuations in the early Universe, in the CMB
and on very large scales in the matter era. Thus, there is a
gap between methods used to study large and small scales.
Various authors [1,2,48–60] have recently pointed out that,
given the high precision of current and future galaxy
surveys, it is timely to investigate possible GR effects on
structure formation at all scales.
Assuming a standard flat ΛCDM cosmology, and a fluid

approximation, in this Paper (Sec. VIII) we have developed
a unified resummed nonlinear post-Friedmann formalism
to study structure formation in the Universe. This relativ-
istic scheme reduces to fully nonlinear Newtonian cosmol-
ogy at leading order (Sec. VI) and, if linearized (Sec. VII),
to standard first-order relativistic perturbation theory.
Thus, our post-Friedmann formalism is valid on all scales,
bridging the existing gap in current studies of nonlinear
structure formation.
We have focused on obtaining a set of approximate

nonlinear equation, consistently using the complete set of
Einstein equations and the conservation equations. Rather
than using the standard iterative procedure of the pertur-
bative analysis where the equations are derived and solved
order by order, we have constructed a resummed approxi-
mation scheme, which includes the first relativistic correc-
tions to the equations of Newtonian cosmology, where a set
of appropriately defined resummed variables satisfies a set
of nonlinear equations.

Our equations could be used to implement GR correc-
tions in N-body simulations. This would be important in
order to take into account causal, retardation and other GR
effects that may be non-negligible for simulations aiming at
a 1% accuracy [42] on scales of the order of the Hubble
horizon. Indeed, we should consider that the relevant
fluctuations for the formation of large-scale structure
have not always been much smaller than the Hubble scale
in the past. For instance, the present physical length
of the horizon scale at decoupling is of the order of
ctdecð1þ zdecÞ ≈ 80h−1 Mpc. Since galaxy surveys are
going to cover a large proportion of the Hubble volume
and aim at high precision measurements [42], we should
consider GR corrections for the large and intermediate
scales where the Newtonian approximation is not good
enough. A first step in this direction has been done in [1,2],
computing the frame-dragging gravitomagnetic vector
potentials from N-body Newtonian simulations, and in
[88], where weak-lensing has been considered in the post-
Friedmann framework. Our equations could also be used to
include GR corrections in approximate Newtonian studies
of various nonlinear effects such as BAO and CDM halos
[16–21]. A numerical implementation of our resummed
equations is now a timely as well as doable goal: codes
going beyond the quasistatic approximation have now been
successfully developed for modified gravity [99], and codes
specifically including GR corrections are in the making
[56]. In this paper we have provided the theoretical
framework aimed at this goal.
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APPENDIX: SOME USEFUL QUANTITIES

In this appendix, for completeness, we collect some
useful expressions for the energy-momentum tensor and
some geometrical quantities.

T00 ¼ ρc2 þ ρðv2 − 2UNÞ
þ ρ

c2
½v4 − 4UP þ 2v2VN þ 2UN

2� ðA1aÞ

T0i ¼ −ρacvi þ
ρa
c
½BN

i − viðv2 þ 2VNÞ� ðA1bÞ5Of course, mass is covariantly conserved in GR [6,94]. For a
discussion in second-order perturbation theory, see [98].
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Tij ¼ ρa2vivj þ
a2ρ
c2

½ð4VN þ 2UN þ v2Þvivj − 2BN ðivjÞ�: ðA1cÞ

Riemann tensor:

Ri00j ¼
1

c2
½aäδij þUN;ij� þ

1

c4

�
a2δij

�
_a
a
_UN þ V̈N þ 2

_a
a
_VN þ 2

ä
a
VN þUN;kVN

;k

�

þ a _BN
ði;jÞ þ _aBN ði;jÞ þ 2UP;ij −UN;iUN;j − 2UN;ðiVN;jÞ − 2UNUN;ij

�
ðA2aÞ

R0ijk ¼
1

c3

�
2a2

�
_VN;½k þ

_a
a
UN;½k

�
δj�i þ aBN ½j;k�i

�
ðA2bÞ

Rijkl ¼
1

c2
½2a2 _a2δi½kδl�j þ 2a2ðVN;j½kδl�i − VN;i½kδl�jÞ� þ

1

c4
½δi½lδk�ja22ð−4_a2VN − 2a _a _VN − 2_a2UN þ VN;nVN;nÞ

þ 2a2
�
1

2
_aBN

i;½k þ
1

2
_aBN ½k;jij þ VN;iVN;½k − 2VN;i½kVN − 2VP;i½k

�
δl�j − 2a2

�
1

2
_aBN

j;½k þ
1

2
_aBN ½k;jjj þ VN;jVN;½k

− 2VN;j½kV − 2VB;j½k

�
δl�i

�
: ðA2cÞ

Ricci tensor:

R00 ¼ −
1

c2a2
ð∇2UN þ 3aäÞ − 1

c4a2
½VN;kUN;k − 2∇2UNðUN þ VNÞ − UN;kUN

;k

þ 2∇2UP þ 3a2V̈N þ 6a _a _VN þ 3a _a _UN � ðA3aÞ

R0i ¼ −
1

2c3a
ð4_aUN;i þ 4a _VN;i −∇2BN

iÞ ðA3bÞ

Rij ¼
1

c2
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Ricci scalar:
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