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previous works, the first-order trace solutions that are generated by the spatially projected gravitoelectric
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schemes at any order of the perturbations. By construction, these schemes generalize the complete
hierarchy of solutions of the Newtonian Lagrangian perturbation theory.
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I. INTRODUCTION

In previous work of this series of papers, we laid down
the foundations of the Lagrangian perturbation theory by
writing Einstein’s equations in 3þ 1 form for a single
dynamical variable. We investigated its first-order solutions
for the trace and antisymmetric parts, we extrapolated this
solution in the spirit of Zel’dovich’s approximation in
Newtonian cosmology, and we provided a definition of a
nonperturbative scheme of structure formation [1]. We then
studied the average properties of the latter in relation to the
dark energy and dark matter problems in Ref. [2]. Here, we
proceed by providing the gravitoelectric subclass of rela-
tivistic nth-order perturbation and solution schemes. As in
previous work, we restrict our attention to irrotational dust
continua for simplicity. The generalization to more general
matter models is scheduled.
The problem of perturbation solutions in general rela-

tivity (GR) has been addressed by a plethora of works. In
cosmology the “standard approach” is based on the gauge-
invariant “Bardeen formalism” (for a selection of key
references on standard perturbation theory, see Refs. [3],
[4], [5], and [6]). A covariant and gauge-invariant approach
has been proposed [7,8], together with various other
approaches not listed here (some being discussed within
a variational framework in a recent paper [9]). The reason
for the existence of various approaches is due to an
ambiguity of the choice of perturbation variable, the choice
of a “background,” but also due to different philosophies;

e.g. the standard gauge-invariant approach compares the
physical manifold with a reference “background manifold,”
while others solely operate on the physical manifold. The
conceptual difference of our framework lies in the fact that
we no longer consider a reference background manifold.
All the quantities are now defined on the physical space
section. All orders of the perturbations are defined on the
physical manifold, not with respect to a zero-order mani-
fold (that was interpreted as the background manifold in
standard perturbation theory). Moreover, we are perturbing
a single dynamical variable which, intuitively, is the square
root of the spatial metric using the “Cartan formalism.”As a
consequence, the issue of gauge invariance does not arise;
covariance or diffeomorphism invariance is guaranteed for
a given foliation of spacetime by using Cartan differential
forms. We shall address the representation of the perturba-
tions in other foliations of spacetime in a followup article.
A similar point of view has also been taken in previous

work; i.e. the pioneering work by Kasai presents a relativistic
generalization of the “Zel’dovich approximation” [10], and
followup works with his collaborators present a class of
second-order perturbation solutions [11,12]; see also the
earlier papers by Tomita [13–15], the paper by Salopek et al.
[16] as well as the series of papers byMatarrese, Pantano, and
Saez [17–19], considerations of so–called “silent universe
models” [20–24], and the recent paper [25]. These works are
all in a wider sense concerned with the relativistic Lagrangian
perturbation theory and concentrate on an intrinsic, covariant
description of perturbations. Still, the present work takes
another angle and goes beyond some concepts of these latter
works through the following elements:

(i) We consider, as in Refs. [1,2], a formalism that
allows us to write the Einstein equations within a
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flow-orthogonal foliation with a single dynamical
variable comprising the spatial Cartan coframe
fields. These furnish the conceptual generalization
of the Lagrangian deformation gradient being the
single dynamical variable in the Newtonian theory.
One advantage of this approach is that only pertur-
bations of this variable are considered, which entitles
us to express all other physical quantities as func-
tionals of this variable. Thus, it is possible to leave
the strictly perturbative framework and to construct
nonperturbative models by injecting the deformation
solutions at a given order of expansion of the
Einstein equations into the functional definitions
of these fields, without a posteriori expanding the
functional expressions. This in turn provides highly
nonlinear approximations for structure formation
(e.g., the density field is known through an exact
integral of the perturbation variable; the metric as a
bilinear form maintains its role as a measure of
distance, i.e. as a quadratic expression; the curva-
tures are the general defining functionals for the
given perturbed space; etc.).

(ii) We provide construction rules to derive relativistic
perturbative solutions from the known Newtonian
solutions at any order of the perturbations: we have to
additionally study the traceless symmetric part of the
equations having no obvious Newtonian analog and
which is fundamentally linked to the traceless Ricci
tensor and the physics of gravitational waves. In the
present work, however, we restrict our attention to
that subclass of the traceless symmetric perturbations
that are generated by the spatially projected gravito-
electric part of the Weyl tensor. We show that this
part, in turn, can be constructed from the tidal tensor
of the Newtonian theory. For this purpose we employ
a division of the governing equations into gravito-
electric and gravitomagnetic parts.

(iii) We give the perturbation and solution schemes to
any order of the perturbations for the gravitoelectric
part of the Lagrange–Einstein system. These
schemes cover the full Newtonian hierarchy of the
Lagrangian perturbation theory using a restriction
rule that we will define. This allows us to construct
the leading-order modes of relativistic solutions at
any order. Thus, the results of this work allow us to
construct the relativistic counterpart of all New-
tonian results, where higher-order information is
needed, e.g., to construct the bispectrum of the
perturbations (cf. Refs. [26,27]).

(iv) We perform a strictly intrinsic derivation, i.e., with-
out reference to an external background space. The
perturbations are described locally (in coordinates of
the tangent spaces at the physical manifold at each
order of the perturbations). There is no need for a
diffeomorphism to a global background manifold

that also, in general, does not exist; existence of a
global diffeomorphism depends on the global top-
ology of the physical manifold which, in general,
needs several coordinate charts to cover it. Note that
in the literature on Lagrangian relativistic perturba-
tions mentioned above, although starting with the
Cartan formalism, the nonintegrability of the Cartan
deformations is given up for the building of
solutions, hence implicitly introducing a reference
background space for the perturbations.

Before we start, let us recall our strategy (for details the
reader is directed to Ref. [1]). In the Newtonian theory, the
Lagrangian picture of fluid motion allows us to represent
Newton’s equations in terms of a single dynamical variable,
the Lagrangian deformation gradient built from the trajec-
tory field. For this system the general perturbation and
solution schemes at any order are provided in Ref. [28], a
paper to which we henceforth often refer.
Einstein’s equations within a flow-orthogonal foliation

of spacetime can be formulated in terms of equations for the
gravitoelectric and gravitomagnetic parts of the spatially
projected Weyl tensor. Subjecting the gravitoelectric sub-
system of equations to a “Minkowski restriction”; i.e., by
sending the Cartan coframes to exact forms, we obtain the
Newtonian system in Lagrangian form [1], [29]: Sect. 7.1.
In this paper we investigate the reverse process, i.e., the
transposition from integrable to nonintegrable deformations,
which enables us to construct a gravitoelectric subclass of
the relativistic perturbation and solution schemes that
corresponds to the Newtonian perturbation and solution
schemes.
While the Newtonian system furnishes a vector theory,

where the gravitational field strength is determined by its
divergence and its curl (the trace and antisymmetric parts of
the Eulerian field strength gradient), the so generalized
schemes deliver nontrivial solutions for the trace-free
symmetric part that is connected to the gravitoelectric part
of the spatially projected Weyl tensor, the Newtonian
counterpart of which is the tidal field tensor.
The paper is structured as follows. Section II recalls the

equations of Newtonian and relativistic cosmology for
an irrotational dust matter model. We highlight a formal
correspondence between the Newtonian equations and
the relativistic gravitoelectric part of the equations by
employing a geometrical restriction procedure, named
Minkowski Restriction. In Sec. III we investigate pertur-
bation and solution schemes at any order n of the
perturbations by explicitly paraphrasing the Newtonian
schemes. Section IV explains the reconstruction rules and
provides explicit examples. Finally, Sec. V sums up and
discusses perspectives.

II. EQUATIONS OF MOTION AND CONSTRAINTS

In this section, after setting notations, we recall the
Einstein equations, written in 3þ 1 form and expressed
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through a single dynamical variable, represented by Cartan
coframe fields as functions of local coordinates in the
3-hypersurfaces. This recalls the parts of Ref. [1] relevant to
this paper.

A. Notations and technicalities

We employ the differential forms formalism for its
compactness and antisymmetric properties and its spatial
diffeomorphism invariance. We also project to the common
coefficient formalism in which we work out the solutions.
We consider a set of a differential k-forms ka. The
coefficients of these fields can be expressed in the exact
basis fdXig of the cotangent space at a given point,
ka ¼ kai1…ikdX

i1 ∧…∧dXik , where ∧ is the wedge prod-
uct, the antisymmetrization of the tensorial product
A ∧ B ¼ A ⊗ B − B ⊗ A. Their exterior derivative yields
dka ¼ kai1…ikjipdX

i1 ∧…∧dXik ∧dXip . For general forms
we choose the letters a; b; c � � � as counter indices (they
refer to the nonexact basis), while the letters i; j; k � � � are
reserved for coordinate indices (they refer to the exact
basis). The Hodge dual is denoted by a star and defined in
N-dimensional space by

�ka ¼
ffiffiffi
g

p
kai1…ik

ðN − kÞ! ϵi1…ik
jkþ1…jNdX

jkþ1 ∧ … ∧ dXjN ;

with ϵi1…ik
jkþ1…jN the Levi-Civitá pseudotensor.

In most perturbation approaches, the bilinear metric form
is considered as the dynamical variable. In this article, we
consider the matter model “irrotational dust” and employ a
3þ 1 flow-orthogonal foliation of spacetime, for which the
4- and 3-metric bilinear forms read

ð4Þg ¼ −dt ⊗ dtþ ð3Þg with ð3Þg ¼ gij dXi ⊗ dXj;

ð1Þ

where Xi are Gaussian normal coordinates, here equivalent
to the Newtonian Lagrangian coordinates. The resulting
split of the system of equations [Arnowitt–Deser–Misner
(ADM) system] is composed of six equations of motion and
four constraint equations. In this foliation the four Cartan
1-forms can be restricted to a t-parametrization of three
spatial 1-form fields.
In general relativity a spatial description of the fluid

continuum in terms of vector-valued trajectories is impos-
sible, unless we move to a higher-dimensional embedding
vector space. To describe the fluid intrinsically (i.e., with-
out reference to an embedding vector space), it is necessary
to introduce nonexact forms, known as the Cartan spatial
coframe fields ηa ¼ ηaidXi, with a ¼ 1 � � � 3. The Cartan
formalism permits switching between a nonexact basis and
the coordinate basis. A key element is the freedom of
choice of the normalization of the nonexact basis. To obtain
equations that are formally closer to the Newtonian ones,

we do not choose orthonormal (Cartan) coframes ~ηa as is
common in the literature but more general ones ηa that we
will call adapted coframes. The reader is directed to
Refs. [1,2] for additional information and implications
related to this choice. Formally, this means that the spatial
metric form is decomposed as

ð3Þg ¼ Gab ηa ⊗ ηb; ð2Þ
where Gab is constant in time: Gab ¼ GabðXÞ. Note that, if
coframes become exact forms ηa ¼ dfa, the counter
indices become coordinate indices, since the functions
fa can be used to define global coordinates xi ¼ fa→i.
In this case the metric can be brought (by a spatial
diffeomorphism) into the form

ð3Þg ¼ δij dxi ⊗ dxj; ð3Þ

which defines a flat spacetime (see the proof in
Appendix A).
The exact functional for the density is given as in the

Newtonian approach: ϱJ ¼ ϱi, where the index i marks the
initial conditions and J is defined as coefficient function of
the 3-volume form, normalized by the determinant of the
initial metric,

J ¼
ffiffiffi
g

pffiffiffiffi
G

p ; ð4Þ

with
ffiffiffi
g

p
d3X the 3-volume form on the exact basis, g ≔

detðgijðX; tÞÞ and G ≔ detðGijÞ ¼ detðgijðX; tiÞÞ.
We have the relation

ϵabc
6

ηa ∧ ηb ∧ ηc ¼ ϵijk
6

JdXi ∧ dXj ∧ dXk; ð5Þ

where J ¼ detðηaiÞ.
Below, we first recall the basic systems of equations

governing an irrotational dust continuum in the Lagrangian
formulation of the Newtonian theory. Then, after presenting
Einstein’s theory formulated in the Lagrangian frame, we
list the counterpart of the gravitoelectric subsystem of
equations in the latter theory.

B. Newtonian theory

In the Lagrangian picture of self-gravitating fluids, a
family of trajectories, xi ¼ fiðXk; tÞ, labelled by their
Lagrangian coordinates fXig, i ¼ 1; 2; 3, is introduced
[30,31]. It furnishes a one-parameter family of diffeo-
morphisms, parametrized by the Newtonian time t, between
the Eulerian, fxig, and the Lagrangian coordinates. Regular
solutions of the Lagrange–Newton system of equations
have to obey four evolution equations. The three compo-
nents of the trajectory field (also position field) fiðXk; tÞ are
the only dynamical variables. Other fields are conceived to
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be represented as functionals of the trajectory field like the
velocity and acceleration fields, the density and vorticity
fields, etc.,

vi ≔ _fi; ai ≔ f̈i; ϱ ¼ ϱiðJ=JiÞ−1;
ωi ¼ ðωi

kfijkÞðJ=JiÞ−1; ð6Þ

where the overdot denotes time derivative along the
trajectories. J ¼ detðfijkÞ is the Jacobian of the coordinate
transformation, and Ji is the initial Jacobian, with spatial
derivatives with respect to Lagrangian coordinates being
abbreviated by a vertical slash j. The acceleration field ai is
identified with the gravitational field strength gi, respecting
the equivalence of inertial and gravitational mass. Once a
given field is represented as a functional of the deformation
field, it can be written in the Eulerian frame by inserting the
inverse of the transformation fi. Note that Ji can be set to 1
if we require xi ¼ Xi at initial time. The closed Lagrange–
Newton system is defined by the nonlinear gravitational
evolution equations (7) and (8) for the deformation gra-
dient, see Ref. [28],

δij df̈
i ∧ dfj ¼ 0; ð7Þ

1

2
ϵijk df̈

i ∧ dfj ∧ dfk ¼ ðΛ − 4πGϱÞd3f; ð8Þ
with Λ the cosmological constant, G the gravitational
constant, Eq. (7) corresponding to the three field equations
for the Eulerian curl, and Eq. (8) corresponding to the field
equation for the Eulerian divergence of the gravitational
field strength. In the above equations, the exact integral
for the density [third equation of Eq. (6)] has to be inserted
to reduce the number of variables. For Λ ¼ 0 the system
does not explicitly contain the Jacobian, provided J ≠ 0.
Regular solutions are characterized by J > 0. Since, in the
Newtonian theory, the Cartan coframe fields are exact
forms, Eq. (4) reads

J ≔
ϵijk
6

dfi ∧ dfj ∧ dfk ¼ ϵijk
6

JdXi ∧ dXj ∧ dXk

⇔ J ≔ Jd3X ¼ d3f; J ¼ detðfkjiÞ; ð9Þ

where d3X is the Lagrangian volume 3-form. The coef-
ficients of these equations are equivalent to the following
coefficient equations for the deformation gradient dfi in
Lagrangian coordinates:

δijf̈
ij½pfjjq� ¼ 0; ð10Þ

1

2
ϵijkϵ

pqrf̈ijpfjjqfkjr ¼ ΛJ − 4πGϱJ: ð11Þ

An alternative to express Eq. (10) reads

δkrϵpq½jϵilmf̈r�jifpjlfqjm ¼ 0: ð12Þ

Expressed in terms of the Newtonian tidal tensor,

Ei
j ¼

1

2J
ϵabcϵ

iklf̈ajjfbjkfcjl −
1

3
ðΛ − 4πGϱÞδij; ð13Þ

E½ij� ¼ 0; Ek
k ¼ 0; ð14Þ

Eqs. (14) correspond to the Lagrange–Newton system of
equations {(10), (11)}.

C. Einstein’s equations in Lagrangian form

We formulate here the Einstein equations in terms of
Cartan coframe fields as they are transported along the flow
lines (here spacetime geodesics). The system of equations
we obtain will be called the Lagrange–Einstein system.
In terms of coframe fields, the irrotational dust

continuum is governed by the following evolution and
constraint equations,

Gab η̈a ∧ ηb ¼ 0; ð15Þ

1

2
ϵdbcð_ηa ∧ ηb ∧ ηcÞ· ¼ ð−Ra

d þ ð4πGϱþ ΛÞδadÞJd3X;

ð16Þ

ϵabc _ηa ∧ _ηb ∧ ηc ¼ ð16πGϱþ 2Λ −RÞJd3X; ð17Þ

ϵabcðd_ηa ∧ ηb þωa
d ∧ _ηd ∧ ηbÞ ¼ 0; ð18Þ

where the equations are, respectively, the irrotationality
condition on the gravitational field (15), the equation of
motion (16), the energy constraint (17), and the momentum
constraints (18). For irrotational matter flows, as is assumed
throughout this paper, the first equation can be replaced by
the kinematical irrotationality condition:

Gab _ηa ∧ ηb ¼ 0: ð19Þ
Nevertheless, we consider the double time-derivative
expression for two reasons: (i) in the Newtonian limit,
we want to reproduce the field equations, which involve
a second time derivative, and (ii) for a general system,
this equation is always true because of the conservation
of the vorticity 2-form, ω ¼ Gab _ηa ∧ ηb ¼ ωi; for the
Newtonian case, ω ¼ dðvidXiÞ ¼ ωi (see Appendix B
in Ref. [28]). Nevertheless, it is important to note that
the 3þ 1 foliation formalism cannot describe a nonzero
vorticity. The description of a nonzero vorticity will require
a 1þ 3 threading of spacetime (see, e.g., Ref. [32]).
The combination of the trace of the equation of motion

and the energy constraint straightforwardly leads to the
Raychaudhuri equation:

1

2
ϵabc η̈a ∧ ηb ∧ ηc ¼ ðΛ − 4πGϱÞJd3X: ð20Þ
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To derive the above equations, we have implicitly used the
Cartan connection 1-form and the curvature 2-form that we
do not need explicitly in what follows,

ωa
b ≔ γacb ηc; ð21Þ

Ωa
b ≔

1

2
Ra

bcd ηc ∧ ηd; ð22Þ

with the connection and curvature coefficients γacb and
Ra

bcd in the nonexact basis, respectively. The 3-Ricci
tensor can be expressed through the curvature 2-form:

Ra
d ηd ∧ ηb ∧ ηc ¼ δdbΩa

d ∧ ηc − δdcΩa
d ∧ ηb: ð23Þ

We employ the Hodge star operation to obtain the coef-
ficient equations in the exact basis dXi,

Gabη̈
a
½iη

b
j� ¼ 0; ð24Þ

1

2J
ϵabcϵ

iklð_ηajηbkηclÞ· ¼ −Ri
j þ ð4πGϱþ ΛÞδij; ð25Þ

1

2J
ϵabcϵ

mjk _ηam _η
b
jη

c
k ¼ −

R
2
þ ð8πGϱþ ΛÞ; ð26Þ

ðϵabcϵikl _ηajηbkηclÞ∥i ¼ ðϵabcϵikl _ηaiηbkηclÞjj; ð27Þ

where a double vertical slash denotes the covariant spatial
derivative with respect to the 3-metric and the spatial
connection is assumed symmetric. As before, the first
equation can be replaced by the irrotationality condition:

Gab _η
a
½iη

b
j� ¼ 0: ð28Þ

Again, the trace of the equation of motion and the energy
constraint leads to the Raychaudhuri equation:

1

2J
ϵabcϵ

iklη̈aiη
b
kη

c
l ¼ Λ − 4πGϱ: ð29Þ

The system {(24–27)} consists of 13 equations, where
the first corresponds to the irrotationality condition (three
equations), the second to the symmetric evolution equa-
tions (six equations), subjected to four constraint equations
that are the ADM constraints (one equation for the energy
constraint and three equations for the momentum con-
straints). Thus, the first nine equations furnish evolution
equations for the nine coefficient functions of the three
Cartan coframe fields.
The above system is equivalent to the results developed

in Ref. [1] in a different basis: in the first paper, the choice
of the standard orthonormal coframes has been made,
whereas since Ref. [2] the choice of the adapted coframes
is preferred for reasons of allowing us to construct a
formally closer Newtonian analogy.

D. Equivalence of the two gravitoelectric sets of
equations in the Minkowski restriction

We will now discuss the link between parts of the
relativistic system and the full Newtonian system.
Formally, this link is provided by the Minkowski restriction.

1. Definition of the Minkowski restriction

Let ηα be Cartan 1-form fields in a four-dimensional
manifold (Greek letters are used in four dimensions). A set
of forms ηα is said to be exact, if there exist functions fα

such that ηα ¼ dfα, where d denotes the exterior derivative
operator, acting on forms and functions. The Minkowski
restriction (MR) consists of the replacement of the non-
integrable coefficients by integrable ones, ηαν → fα→μjν,
keeping the speed of light c finite. With this restriction, the
Cartan coframe coefficients yield the Newtonian deforma-
tion gradient, and the local tangent spaces all become
identical and form the global Minkowski spacetime. The
Newtonian limit could be defined as the MR of Einstein’s
theory and additionally sending c to infinity. In the flow-
orthogonal foliation, employed in this paper, the four-
dimensional coframes reduce to ηα ¼ ðdt; ηaÞ, and their
MR reads dfα ¼ ðdt;dfa→iÞ. Note that c and the signature
are carried by the four-dimensional metric coefficients; c is
set to 1 throughout this paper. We will need the inverse MR
and use it as a rule to construct relativistic Lagrangian
solutions from known Newtonian solutions. (For the MR of
the metric, compare Appendix A and the remark on the
Newton–GR “dictionary” in Appendix B).

2. Gravitoelectric equations

Reference [1] noted that a part of Einstein’s equations,
namely {(15), (20)}, are related to the gravitoelectric part of
the spatially projected Weyl tensor. This tensor is trace free
and represented by the three 1-form fields Ea [see Ref. [1],
Eq. (A23)],

Ea ¼ −η̈a þ 1

3
ðΛ − 4πGϱÞηa; ð30Þ

then, the irrotationality condition (15) and the trace
equation of motion (20) are generated by

GabEa ∧ ηb ¼ 0; ϵabcEa ∧ ηb ∧ ηc ¼ 0: ð31Þ

These two equations are therefore referred to as the gravito-
electric part of Einstein’s equations. A projection of the
gravitoelectric 1-form fields and Eqs. (31), using the Hodge
star operator, yields to their coefficient representation:

Ei
j ¼ −

1

2J
ϵabcϵ

iklη̈ajη
b
kη

c
l þ

1

3
ðΛ − 4πGϱÞδij; ð32Þ

E½ij� ¼ 0; Ek
k ¼ 0: ð33Þ
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(Note that Eij ≔ δbiGbaEa
j ¼ GaiEa

j). This just provides a
rewriting of {(24), (29)}. (A remark on the gravitomagnetic
part of the spatially projected Weyl tensor can be found in
Appendix B).

3. Executing the MR

Sending the spatial Cartan coframes to exact forms, i.e.,
executing the MR, their coefficients ηai are restricted to the
Newtonian deformation gradient faji. The gravitoelectric
system of equations in the form of Eqs. (33) then reduces
to the Newtonian system in the form of Eqs. (14); note
the conventional sign change between the gravitoelectric
part of the spatially projected Weyl tensor Ei

j and the
Newtonian tidal tensor Ei

j. This operation closes the
system, reducing the number of free functions from nine
ðηaiðXk; tÞÞ to three ðfiðXk; tÞÞ. A consideration of the MR
for the remaining equations, yielding nontrivial Newtonian
analogs, will not be needed in this paper but will be the
subject of forthcoming work.
Considering only the gravitoelectric equations is not

enough to determine the nine functions of the coframe
coefficients. The relativistic aspects contained in the
remaining gravitomagnetic equations will lead to a richer
structure of the solutions and also to constraints on
solutions of the gravitoelectric system. A followup work
will explicitly consider both parts in the framework of
first-order solutions.
To conclude, the Lagrange–Einstein gravitoelectric

equations are (up to nonintegrability) equivalent to their
Newtonian analogs, whereas the gravitomagnetic equations
have no obvious Newtonian counterpart (this issue is more
subtle than the mere absence of a gravitomagnetic analogy,
as we explain in the followup paper).

III. CONSTRUCTION SCHEMES FOR
RELATIVISTIC PERTURBATIONS AND

SOLUTIONS AT ANY ORDER

We now turn to the main part of this paper and construct
the gravitoelectric subclass of nth-order relativistic pertur-
bation and solution schemes through generalization of
the known Newtonian schemes. This allows furnishing
relativistic inhomogeneous models for large-scale structure
formation in the Universe. The successful Lagrangian
perturbation theory in Newtonian cosmology is well
developed. We will generalize here the perturbation and
solution schemes of Newtonian cosmology given in the
review [28], the essential steps of which will be recalled in
this section, followed by their relativistic counterparts.
All schemes are applied to the matter model irrotational

dust. It is possible to extend the present schemes by
employing the framework for more general fluids in a
Lagrangian description that will be developed in forth-
coming work. Most of the known representations are
focused on writing equations in terms of tensor or form

coefficients. Our investigation will be guided by the compact
differential forms formalism as before. However, we will
also project to the coefficient form in parallel to ease reading.

A. General nth-order perturbation scheme

As in standard perturbation theories, we decompose the
perturbed quantity into a Friedmann–Lemaître–Robertson–
Walker (FLRW) solution and deviations thereof, which are
expanded up to a chosen order n of the perturbations.
Contrary to the standard perturbation theory, we do not
perturb the metric globally at the background space, but we
perturb the Cartan coframes locally,

ηa ¼ ηai dXi ¼ aðtÞ
�
δai þ

X
n

PaðnÞ
i

�
dXi; ð34Þ

in the local exact basis dXi. Notice that with this ansatz we
choose to perturb a zero-curvature FLRW model, but it is
possible to encode an initial first-order constant curvature
in the coefficient functions Gab in the following local
metric coefficients, which can be calculated from the above
coframe ansatz:

gij ¼ Gabη
a
iη

b
j: ð35Þ

Furthermore, we can link these results to the ones obtained
for the orthonormal coframes ~ηc (compare also the corre-
sponding remarks in Ref. [33], p. 35, and Ref. [34], p. 75).
Indeed, the metric bilinear form can be written as

g ¼ δcd ~ηc ⊗ ~ηd ¼ Gab ηa ⊗ ηb: ð36Þ
From this identity, we conclude

Gab ¼ δcd ~η
c
a ~η

d
b; ð37Þ

where the ~ηca are the coefficients of the projection of ~ηc

onto the basis ηa. In the next subsection, we will specify the
coframes we consider in such a way that the initial coframe
perturbations vanish. From now on, we will call these
coframes adapted coframes to distinguish them from the
orthonormal ones (see also Appendix A).

B. Initial data for the perturbation scheme

We choose initial data in formal correspondence with the
Lagrangian theory in Newtonian cosmology and generalize
these initial fields to the relativistic stage. This has obvious
advantages with regard to the aim to give construction rules
that translate the known Newtonian solutions to general
relativity. For the initial data setting in the Newtonian case,
see Ref. [28].

1. Fundamental initial data

Let the three 1-form fields Ua ¼ Ua
i dXi be the initial

1-form generalization of the Newtonian peculiar velocity
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gradient, obtained by the inverse MR. Accordingly, let
Wa ¼ Wa

i dXi be the initial 1-form generalization of the
Newtonian peculiar-acceleration gradient. Our solutions
will be written in terms of these initial data. They determine
the initial values of the coframes as follows:

ηaiðtiÞ ¼ δai; ð38Þ

_ηaiðtiÞ ¼ Hiδ
a
i þ Ua

i; Hi ≔ _ai; ai ≔ 1; ð39Þ

η̈aiðtiÞ ¼ äiδai þWa
i: ð40Þ

Equation (38) implies that the coframes we will work with
from now on are initially equal to the exact Lagrangian
coordinate basis: ηaðtiÞ ¼ δaidXi. This in turn provides the
initial metric coefficients in the form

Gij ¼ gijðtiÞ ¼ Gabδ
a
iδ

b
j: ð41Þ

In view of the flow-orthogonal foliation, we have the
irrotationality constraint:

ω ¼ Gab _ηa ∧ ηb ¼ 0 ⇒ GabUa ∧ δbjdXj ¼ 0: ð42Þ

This implies for the coefficient functions U½ij� ¼ 0. (We
used the implicit definition Uij ≔ δbiGbaUa

j).
Remark: From (37) and (38), it is interesting to notice

the following relations that hold to zeroth and first order
(the full initial data are considered to be first order, as was
also the choice in the Newtonian schemes [28]):

8>><
>>:

Gð0Þ
ij ¼ δij;

Gð1Þ
ij ¼ 2 ~Pij;

2 ~PðijÞ ¼ Gð1Þ
ij þ 2PðijÞ;

ð43Þ

where ~Pij ¼ ~PijðtiÞ. We are thus able to rederive some
results from the ones obtained in previous works that used
orthonormal coframes. For example, the Ricci curvature
tensor at first order can be obtained by injecting the
identities (43) into (93) of Ref. [1]. We can so obtain
the adapted coframes from the orthonormal ones and vice
versa (compare also Appendix A).

2. Relativistic counterpart of the Poisson equation
and consequences for Wa

In the Newtonian approach, the initial peculiar-
acceleration and the density inhomogeneities are linked
through the Poisson equation. To generalize this equation to
the relativistic case, we note the relativistic generalization
of the Newtonian field strength gradient that follows from
inspection of the Lagrange–Einstein system (for details the
reader can always consult Ref. [1]),

F i
j ≔ _Θi

j þ Θi
kΘk

j

¼ −Ri
j − ΘΘi

j þ ð4πGϱ − ΛÞδij þ Θi
kΘk

j; ð44Þ

with the 3-Ricci tensor coefficientsRij of which the trace is
the Ricci scalar R and Θij the expansion tensor coeffi-
cients. According to the energy constraint, Rþ Θ2−
Θk

lΘl
k ¼ 6πGϱþ 2Λ, the symmetry of the expansion

tensor and Ricci curvature, it is straightforward to show
that the relativistic gravitational field coefficients F ij

respect the following field equations:

F k
k ¼ Λ − 4πGϱ; F ½ij� ¼ 0: ð45Þ

In terms of the coframe fields, the relativistic gravitational
field can be written as follows:

F i
j ¼

1

2J
ϵabcϵ

iklη̈ajη
b
kη

c
l: ð46Þ

(For an alternative derivation using a Newton–GR dic-
tionary, see Appendix B).
Hence, inserting the coframe perturbations and evaluat-

ing this expression at initial time, we get the relations
(note that the zero-order fields trivially satisfy the second
constraint)

F k
kðtiÞ ¼ Λ − 4πGϱi ¼ Λ − 4πGϱHið1þ δiÞ

¼ 3äi þ δkaWa
k;

F ½ij�ðtiÞ ¼ δb½iGbaWa
j� ¼ W½ij� ¼ 0; ð47Þ

with the initial density contrast δi. Thus, the deviation 1-
form fields Wa obey the following equations that general-
ize the Poisson equation for the inhomogeneous deviations
off the zero-order solution,

� 1
2
ϵabcWa ∧ δbjdXj ∧ δckdXk ¼ −4πGδϱi;

GabWa ∧ δbjdXj ¼ 0; ð48Þ

with δϱi ¼ ϱi − ϱHi, implying for the coefficient functions

−
1

4πG
δkaWa

k ¼ δϱi ¼ ϱHiδi; W½ij� ¼ 0: ð49Þ

3. Summary of initial data

We summarize the set of initial data, determined by our
choice of the basis and subjected to the constraints. We
assume in perturbative expansions, without loss of general-
ity [28], that the initial data {(50)–(52)} are first order.
We drop the index ð1Þ for notational ease and denote the
initial data for the comoving perturbation form coefficients
by Pa

iðtiÞ ≕ Pa
i. We set:

LAGRANGIAN THEORY …. III. GRAVITOELECTRIC … PHYSICAL REVIEW D 92, 023512 (2015)

023512-7



(i) for the initial deformation and the initial general-
izations of the Newtonian velocity and acceleration
gradients 8>><

>>:
PaðnÞ ¼ 0 ∀ n;

Uað1Þ ¼ Ua; U½ij� ¼ 0;

Wað1Þ ¼ Wa; W½ij� ¼ 0;

ð50Þ

(ii) where the coefficients are related via the initial
values of the time derivatives of the deformation,�

_Pa
i ¼ Ua

i;

P̈a
i ¼ Wa

i − 2HiUa
i;

ð51Þ

(iii) together with additional initial constraints that are to
be respected (a relation to the initial metric, to the
initial density contrast, and the four ADM constraint
equations evaluated at initial time),

8>>>>><
>>>>>:

Gij ¼ Gabη
a
iðtiÞηbjðtiÞ ¼ Gabδ

a
iδ

a
j;

4πGδϱið1Þ ¼ −W;

HiU ¼ −RðtiÞ
4

−W;

ðUa
jδa

iÞ∥i ¼ ðUa
iδa

iÞjj;

ð52Þ

(here and in the following, we use the abbreviations
δkaUa

k ≕ U, δkaWa
k ≕ W for the trace expressions).

(iv) the initial Ricci curvature as found from the equation
of motion (25),

Ri
jðtiÞ ¼ −ðWi

j þHiUi
jÞ − δijðW þHiUÞ

− ϵabcϵ
ilkUa

jUa
lδ

c
k; ð53Þ

(v) equating this expression with the initial Ricci tensor
as calculated from the initial metric,

Ri
jðtiÞ ¼ Gið1Þ

½jjb�G
bjað1Þ
a þ Gbjað1Þ

j Gið1Þ
½bja� þGað1Þ

bjj G½bji�ð1Þ
a

þ 1

2
Gað1Þ

½ajb�G
bjið1Þ
j −

1

2
Gajbð1Þ

a Gið1Þ
½jjb�

þ 1

2
Gð1Þa

bj½j G
ð1Þbji
a� þ 2Gð1Þ½aji�

½jja� þ 2Gð2Þ½aji�
½jja�

− 2Gð1Þa
b G½bji�ð1Þ

½jja� − 2Gð1Þi
a G½bja�ð1Þ

½jjb� ; ð54Þ

where, e.g., Gia ¼ Gijδ
j
a and Gi

j ¼ Gkjδ
ki, we

determine the first-order part of the initial metric
(which is a derived quantity),

2Gð1Þ½ijk�
½kjj� ¼ −HiUi

j −Wi
j − ðHiU þWÞδij; ð55Þ

as well as the second-order part of the initial metric
(which later appears in the perturbation and solution
schemes),

2Gð2Þ½ijk�
½kjj� ¼ fðUi

j;Wi
jÞ; ð56Þ

where the function f can again be derived by equating (54)
and (53). All further right-hand sides of (53) vanish.
The initial data given in (50) are exhaustive: in our ADM

split, the system of equations {(24)–(27)} contains nine
second-order equations of motion for the coframes sub-
jected to four constraints. A general solution therefore
contains 18 coefficient functions encoded in Uij and Wij
that reduce to 12 functions for solutions of the irrotation-
ality conditions (24), the latter of which are represented by
the six constraints U½ij� ¼ 0 and W½ij� ¼ 0. The general
solution is further subjected to the four ADM constraints,
resulting in corresponding constraints on Uij and Wij.

C. Gravitoelectric perturbation scheme

We now recall the general Lagrangian perturbation
scheme of Newtonian cosmology and generalize it to a
gravitoelectric scheme in relativistic cosmology. By con-
struction, the latter will already contain the known
Lagrangian perturbation scheme at any order in the
geometrical limit of exact deformation 1-forms.

1. Recap: Newtonian theory

The general perturbation scheme has been fully devel-
oped in Ref. [28]. Our approach only slightly differs in
terms of the initial conditions: we formulate them such
that they are formally closer to the relativistic approach.
Following the general ansatz (34), we introduce three
comoving perturbation forms dPi of the three components
of the comoving vector perturbation fields PiðXi; tÞ,

dfið~X; tÞ ≕ aðtÞdFið~X; tÞ ¼ aðtÞðdXi þ dPið~X; tÞÞ;
ð57Þ

and decompose the perturbation gradient field on the
FLRW background order by order:

dPi ¼
X∞
m¼1

ϵmdPiðmÞ: ð58Þ

It is, of course, possible to consider perturbations of the
position fields fi, because the Newtonian equation can be
expressed in a vectorial form. The relativistic equations are,
however, tensorial, and we therefore consider the repre-
sentation in terms of the gradient of the fluid’s deformation.
To provide unique solutions of the Newtonian system,

suitable boundary conditions have to be imposed. For the
cosmological framework, the requirement of periodic
boundary conditions for field deviations from a Hubble
flow is a possible choice [35]. This translates into an
integral constraint on the perturbations; integration over a
compact spatial domain M implies the following:
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Z
M

dPi ¼
Z
∂M

Pi ¼ 0; Pi ¼
X∞
m¼1

ϵmPiðmÞ: ð59Þ

Recall now that Ui ¼ dUi ¼ UijjdXj and Wi ¼ dWi ¼
WijjdXj are the initial 1-form peculiar-velocity gradient
and the initial 1-form peculiar-acceleration gradient. The
fieldsWi are determined nonlocally by the following set of
equations, equivalent to Poisson’s equation:

Wiji ¼ � 1
2
ϵijkdWi ∧ dXj ∧ dXk ¼ −4πGδϱi;

δij dWi ∧ dXj ¼ �dðWidXiÞ ¼ 0: ð60Þ

In view of the restriction to irrotational flows, we addi-
tionally impose the constraint:

δij d _f
i ∧ dfj ¼ 0 ⇒ δij dUi ∧ dXj ¼ �dðUidXiÞ ¼ 0:

ð61Þ

Without loss of generality, we can choose the following
general set of initial data that can be obtained in the
Newtonian theory or else from the MR of (50)–(52):

(i) for the initial deformation, peculiar-velocity, and
peculiar-acceleration,8>><

>>:
dPiðnÞ ¼ 0 ∀ n;

dUið1Þ ¼ dUi; U½ijj� ¼ 0;

dWið1Þ ¼ dWi; W½ijj� ¼ 0;

ð62Þ

(ii) together with the definition of the Lagrangian metric
coefficients and the initial data relation to the density
perturbation,

� gij ¼ δklfkjifljj;

δϱi
ð1Þ ¼ δϱi ¼ ϱHiδi ¼ − 1

4πGW
kjk:

ð63Þ

The metric is Euclidean, since the coefficients can be
transformed to the coefficients δij with the help of the to f⃗
inverse coordinate transformation.
Plugging the ansatz (57) into the Newtonian equa-

tions {(7), (8)}, we find for the background Friedmann
equation

ϵijk3
ä
a
dXi ∧ dXj ∧ dXk

¼ ϵijkðΛ − 4πGϱHÞdXi ∧ dXj ∧ dXk

⇒ 3
ä
a
¼ Λ − 4πGϱH ð64Þ

and a full hierarchy of the perturbation equations,

δij d _P
i ∧ ðdXj þ dPjÞ ¼ δija−2dUi ∧ dXj; ð65Þ

ϵijk½ðD1dPiÞ ∧ dXj ∧ dXk þ ð2D2dPiÞ ∧ dPj ∧ dXk

þ ðD3dPiÞ ∧ dPj ∧ dPk�

¼ −ϵijk
4πG
3

δϱia−3dXi ∧ dXj ∧ dXk; ð66Þ

where we defined the operator

Dl ≔
d2

dt2
þ 2H

d
dt

−
4

l
πGϱH: ð67Þ

(The reader may note a difference in the numerical
coefficients from the Ref. [28], which we had to correct;
see Appendix B.) Projecting with the Hodge star operator
to the coefficient form [and integrating Eq. (65)], we obtain

P½ijj� ¼
Z

t

ti

_Pmj½iPm
jj�dt

0; ð68Þ

D1Piji ¼ −4πGδϱia−3 −
1

2
ϵijkϵ

lmn

× ½PijlPjjmD3Pkjn þ 2δijlPjjmD2Pkjn�: ð69Þ

After splitting Eqs. (65) and (66) order by order, we obtain
n sets of equations. At first order we get

δij d _P
ið1Þ ∧ dXj ¼ 0; ð70Þ

ϵijkD1dPið1Þ ∧ dXj ∧ dXk ¼ a−3ϵijkdWi ∧ dXj ∧ dXk;

ð71Þ

in coefficient form,

Pð1Þ
½ijj� ¼ 0; D1P

ið1Þ
ji ¼ a−3Wiji; ð72Þ

i.e., a set of linear equations. The generic nth-order
system of equations will be written below with an implicit
summation over the order of perturbations in the source
terms:

AðpÞBðqÞ ¼
X

pþq¼n

AðpÞBðqÞ; ð73Þ

AðrÞBðsÞCðtÞ ¼
X

rþsþt¼n

AðrÞBðsÞCðtÞ: ð74Þ

Thus, at any order n > 1, the perturbation equations read

δij d _P
iðnÞ ∧ dXj ¼ −δij d _PiðpÞ ∧ dPjðqÞ; ð75Þ

ϵijkD1dPiðnÞ ∧ dXj ∧ dXk

¼ −ϵijk½ð2D2dPiðpÞÞ ∧ dPjðqÞ ∧ dXk

þ ðD3dPiðrÞÞ ∧ dPjðsÞ ∧ dPkðtÞ�; ð76Þ
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in coefficient form:

PðnÞ
½ijj� ¼

Z
t

ti

_PðpÞ
mj½iP

mðqÞ
jj�dt

0; ð77Þ

D1P
iðnÞ
ji ¼ −

1

2
ϵijkϵ

lmnPjðsÞ
jmP

kðtÞ
jnD3P

iðrÞ
jl

− ðD2P
iðpÞ

jiÞPjðqÞ
jj þ ðD2P

iðpÞ
jjÞPjðqÞ

ji: ð78Þ

The reader may consult the review [28] and references
therein for further details.

2. Einstein’s theory

Assuming the perturbation ansatz (34) for the coframes,
and using the operator Dl as defined in (67), the analogous
expansion is performed: the zeroth order again leads to the
Friedmann equation, and the general perturbation scheme
reads

Gab
_Pa ∧ δbjdXj þ Gab

_Pa ∧ Pb ¼ 0; ð79Þ

ϵabc½D1Pa ∧ δbjdXj ∧ δckdXk

þ ð2D2PaÞ ∧ Pb ∧ δckdXk þ ðD3PaÞ ∧ Pb ∧ Pc�

¼ ϵabcW
1

3
a−3δaidXi ∧ δbjdXj ∧ δckdXk: ð80Þ

In coefficient form and integrating (79), they become

P½ij� ¼ Gab

Z
t

ti

_Pa
½iP

b
j�dt0; ð81Þ

D1Pi
i ¼ −ððD2Pi

iÞPj
j − ðD2Pi

jÞPj
iÞ

−
1

2
ϵijkϵ

lmnðD3PijlÞPjjmPkjn þWa−3: ð82Þ

Expansion order by order leads to the first-order gravito-
electric equations

Gð0Þ
ab

_Pað1Þ ∧ dXb ¼ 0; ð83Þ

ϵabcD1Pað1Þ ∧ δbjdXj ∧ δckdXk

¼ a−3ϵabcWa ∧ δbjdXj ∧ δckdXk; ð84Þ

and the general nth-order, n > 1, set of nonlinear equa-
tions:

Gab
_PaðnÞ ∧ δbjdXj ¼ −Gab

_PaðpÞ ∧ PbðqÞ; ð85Þ

ϵabcD1PaðnÞ ∧ δbjdXj ∧ δckdXk

¼ −ϵabc½2ðD2PaðpÞÞ ∧ PbðqÞ ∧ δckdXk

þðD3PaðrÞÞ ∧ PbðsÞ ∧ PcðtÞ�: ð86Þ

In coefficient form, this reads

Pð1Þ
½ij� ¼ 0; D1P

ið1Þ
i ¼ Wa−3; ð87Þ

and

PðnÞ
½ij� ¼ GðrÞ

ab

Z
t

ti

_PaðsÞ
½i PbðtÞ

j�dt
0; ð88Þ

D1P
iðnÞ

i ¼ −
1

2
ϵijkϵ

lmnPjðsÞ
mP

kðtÞ
nðD3P

iðrÞ
lÞ

− ðD2P
iðpÞ

iÞPjðqÞ
j þ ðD2P

iðpÞ
jÞPjðqÞ

i: ð89Þ

This provides equations for the perturbation fields at any
order n from solutions of order n − 1.
Comparing {(85), (86)} to the Newtonian equa-

tions {(75), (76)}, we see (not surprisingly) that we arrive
at two equivalent sets of equations if we link the perturba-
tions Pa and dPi at any order via the MR—recall that
the construction was done by inversion of the MR,
dPi ¼ PijjdXj ↦ Pa

jdXj ¼ Pa, and for the initial data
dUi ¼ UijjdXj ↦ Ua

jdXj ¼ Ua and dWi ¼ WijjdXj ↦
Wa

jdXj ¼ Wa. Therefore, we can simply translate the
formal solution scheme for the trace parts and the anti-
symmetric parts of the perturbations. However, note
already here that the inversion of the MR produces a
symmetric traceless component that is represented in
Newtonian theory by the tidal tensor.

D. Gravitoelectric solution scheme

1. Recap: Newtonian theory

We first recall the general solution scheme given in
Ref. [28], written for the perturbation gradients only.
The hierarchy begins with the first-order equations {(70),

(71)} which are uniquely determined by the constraint
initial data (62). The general nth-order, n > 1, solution
scheme from Eqs. (65) and (66) reads

δij dPiðnÞ ∧ dXj ¼ NSðnÞ; ð90Þ

ϵijkD1dPiðnÞ ∧ dXj ∧ dXk ¼ NT ðnÞ; ð91Þ

uniquely determined by the source terms:

NSðnÞ ≔ −δij
Z

t

t0

d _PiðpÞ ∧ dPjðqÞdt0; ð92Þ

NT ðnÞ ≔ −ϵijk½2ðD2dPiðpÞÞ ∧ dPjðqÞ ∧ dXk

þ ðD3dPiðrÞÞ ∧ dPjðsÞ ∧ dPkðtÞ�: ð93Þ
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We earlier demonstrated the formal equivalence between
the Newtonian equations and the relativistic gravitoelectric
equations. The generalization of the Newtonian solution
scheme to obtain the corresponding relativistic scheme is
now straightforward.

2. Einstein’s theory

The perturbative gravitoelectric Lagrange–Einstein sys-
tem starts at n ¼ 1 with the Eqs. (83) and (84), uniquely
determined by the corresponding constraint initial data
(50). The nth-order, n > 1, gravitoelectric solution scheme
reads

GabPaðnÞ ∧ δbjdXj ¼ SðnÞ; ð94Þ

ϵabcD1PaðnÞ ∧ δbjdXj ∧ δckdXk ¼ T ðnÞ; ð95Þ

which is uniquely determined by the source terms:

SðnÞ ≔ GðrÞ
ab

Z
t

t0

ð− _PaðsÞ ∧ PbðtÞÞdt0; ð96Þ

T ðnÞ ≔ −ϵabcð2ðD2PaðpÞÞ ∧ PbðqÞ ∧ δckdXk

þ ðD3PaðrÞÞ ∧ PbðsÞ ∧ PcðtÞÞ: ð97Þ

The coefficient form of these equations is given by
Eqs. (87)–(89).

IV. APPLICATION OF THE
SOLUTION SCHEME

To illustrate the use of the scheme {(94), (95)} in
practice, we will in what follows explicitly explain the
construction of relativistic solutions from Newtonian
ones for the general procedure and through examples, in
Secs. IV C and IV D, respectively. Before we do so, we
explain the general systematics of the solution scheme.

A. Systematics of the solutions

The nth-order scheme is a hierarchy of ordinary second-
order differential equations, sourced by an inhomogeneity
resulting from combinations of lower-order terms. Thanks
to the linearity of the ordinary differential equations
(ODEs), the solution is, at any order n, a linear super-
position of modes that we will label by l:

PiðnÞ
j ¼

X
l

Piðn;lÞ
j : ð98Þ

In the Newtonian case, and for the gravitoelectric relativ-
istic part, the modes can be further separated into spatial

and temporal parts: Piðn;lÞ
j ¼ ξðn;lÞðtÞPiðn;lÞ

j ðXkÞ. This is due
to the fact that (95) is an ODE and that its coefficients only
depend on time.
From the theory of second-order ODEs it is known (see,

e.g., Sec. 2.1.1 of Ref. [36]) that an equation of the form

f2ðaÞy00 þ f1ðaÞy0 þ f0ðaÞy ¼ gðaÞ ð99Þ

will have as the general solution

yðaÞ¼C1y1ðaÞþC2y2ðaÞþ
Z

a

ai

Gða;sÞgðsÞds; ð100Þ

where Green’s function Gða; sÞ is defined by

Gða; sÞ ¼ 1

f2ðsÞ
y2ðaÞy1ðsÞ − y1ðaÞy2ðsÞ
y1ðsÞy02ðsÞ − y01ðsÞy2ðsÞ

: ð101Þ

Therefore, at any order, the solution will have two modes l
that are given by the homogeneous solution, known for a
given background model [in the examples wewill explicitly
give the solutions for the Einstein–de Sitter (EdS) case and
the cold dark matter background with a cosmological
constant (ΛCDM)]. The different modes of the particular
solution can be calculated from the integral in Eq. (100) by
setting g ¼ T ðnÞ. As integration is linear, the particular
solution can be computed for each subpart of the source

separately, and those parts appear as a Piðn;lÞ
j in the

sum (106).
To study these subparts, we split the perturbations into

their trace, their symmetric tracefree part, and their anti-
symmetric part:

Pa ¼ 1

3
PδajdXj þ Πa þPa: ð102Þ

Then, Eqs. (88) and (89) read

PðnÞ
ij ¼

Z
t

ti

1

3
ðGðrÞ

a½iΠ
aðtÞ

j� _P
ðsÞ − GðrÞ

a½i _Π
aðsÞ

j�P
ðtÞÞ

þ 1

3
ðGðrÞ

a½iP
aðtÞ

j� _P
ðsÞ −GðrÞ

a½i _P
aðsÞ

j�P
ðtÞÞ

þ ðGðrÞ
ab

_PaðsÞ
½iΠ

bðtÞ
j� −GðrÞ

abP
bðtÞ

½i _Π
aðsÞ

j�Þ
þ ðGðrÞ

ab
_ΠaðsÞ

½iΠ
bðtÞ

j� þ GðrÞ
ab

_PaðsÞ
½iP

bðtÞ
j�Þdt0; ð103Þ
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D1PðnÞ ¼ −
2

3
PðqÞD2PðpÞ þ ΠbðqÞ

aD2Π
aðpÞ

b þPbðqÞ
aD2P

aðpÞ
b −

1

2

�
1

3

�
2

3
PðtÞPðrÞ − ΠaðtÞ

bΠ
bðrÞ

a −PaðtÞ
bP

bðrÞ
a

�
D3PðsÞ

þ 1

3
ð−PðtÞPaðrÞ

b −PaðtÞ
bP

ðrÞÞD3P
bðsÞ

a þ 1

3
ð−PðtÞΠaðrÞ

b − ΠaðtÞ
bP

ðrÞÞD3Π
bðsÞ

a þ ðΠaðtÞ
cΠcðrÞ

b þ ΠcðtÞ
bΠ

aðrÞ
c

þ ΠaðtÞ
cP

cðrÞ
b þ ΠcðtÞ

bP
aðrÞ

c þPaðtÞ
cΠcðrÞ

bþPcðtÞ
bΠ

aðrÞ
c þPaðtÞ

cP
cðrÞ

b þPcðtÞ
bP

aðrÞ
cÞðD3Π

bðsÞ
a þD3P

bðsÞ
aÞ
	
:

ð104Þ

Hence, the trace and the antisymmetric parts are completely
determined by the lower-order expressions of all parts (four
equations for four components of Pi

j). What is missing
is an equation for the five components of the trace-free

symmetric term ΠiðnÞ
j . Recall that the gravitoelectric system

is only closed after imposing the MR, which then couples
the trace-free symmetric time evolution to the one of the
trace and encodes the spatial dependence in a Poisson
equation.

B. Reconstruction of GR solutions

To illustrate the scheme for the GR case, we will discuss
here how to reconstruct the full nth-order solution from the
recursive equations {(94), (95)}.

1. Trace part

The trace part is the main part that is given by the
hierarchy. In the absence of the trace-free symmetric term

ΠiðnÞ
j , there is no antisymmetric term emerging, and we are

left with a recursion relation for the trace:

D1PðnÞ ¼ −
2

3
PðqÞD2PðpÞ −

1

9
PðtÞPðrÞD3PðsÞ: ð105Þ

2. Antisymmetric part

It may appear counterintuitive that a nonvanishing
antisymmetric part arises (starting from second order),
given our assumption of irrotationality due to the given
foliation of spacetime. However, this fact is known from
the Newtonian Lagrangian perturbation theory, where
antisymmetric parts arise, starting at second order, in
Lagrangian space, while no vorticity is created in
Eulerian space [37]. Our comoving setting corresponds
to the Lagrangian picture of fluid motion, and the
antisymmetric terms at order n satisfy and follow from
the irrotationality condition (94), given all subleading
terms p ¼ 1…n − 1. However, we need to reconstruct a
part of the trace-free symmetric term to recover all the
Newtonian modes that have antisymmetric components, a
problem to which we turn now.

3. Trace-free symmetric part

As our scheme does not separately provide a relation that
determines the five coefficients of the trace-free symmetric
part (these equations are part of the gravitomagnetic
scheme), we have to reconstruct the relevant part that
complies with the Newtonian solutions. To achieve this it
suffices to realize that the 1-form fields PaðXk; tÞ become
integrable in the MR, dPiðXk; tÞ, and so also the trace-free
symmetric part. Hence, in the MR, the trace-free symmetric
part of dPiðXk; tÞ inherits the time evolution from the trace.
With this in mind, and due to the superposition property of
our solution scheme, we are entitled to split the general
trace-free symmetric coefficients Πij into a part that
reproduces the trace-free symmetric part of PaðXk; tÞ in
the MR, denoted by EΠij, and another part HΠij. This is
possible at any order:

ΠðnÞ
ij ¼

X
lm

ξðn;lÞðtÞ EΠij
ðn;lÞðXkÞ þ HΠij

ðn;mÞðXk; tÞ:

ð106Þ

The temporal coefficients ξðn;lÞ are the same for the trace
and the trace-free symmetric gravitoelectric parts. For the
full GR solution, there is in addition a contribution,
denoted by HΠij, which is related to gravitational waves.
We will investigate this part in the followup article. For
the time being, we note that the superposition property
discussed above assures that the resulting individual
terms in the decomposition (106) are correct, if we use
only this gravitoelectric part of the trace-free symmetric
tensor in the hierarchy. Thus, even though the scheme

does not determine all the components of PiðnÞ
j without

solving the gravitomagnetic equations, it is consistent for
the terms it delivers. Moreover, by inspection of corre-
sponding perturbation and solution schemes that we
derived for the gravitomagnetic part [38], we can con-
clude that the so-reconstructed solutions provide the
leading-order modes of the relativistic solutions at any
order. Of course, inserting the reconstructed solution into
the full set of Einstein equations will result in constraints
on initial data in addition to the standard constraints. As
an example we will discuss the constraints in the first-
order scheme given below.
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C. Example 1: Recovering parts of the general
first-order solution

To illustrate the hierarchy, we begin with the first-order
equations of the scheme {(94), (95)}, i.e., in coefficient
form (87). With the split in space and time coefficients, the
latter are the well-known solutions of the equation (equiv-
alent to the equation in the Newtonian scheme [39–41]):

̈ξþ 2H_ξ −
3

2
Hi

2Ωima−3ξ ¼ Wa−3: ð107Þ

For an EdS universe, the modes are proportional to a, a−3=2,
and a0. Together with the initial conditions (51), the
solution for the trace found from (87) reads

Pð1Þ ¼ 3

5

��
Uti þ

3

2
Wti2

�
a−ðUti −Wti2Þa−3

2 −
5

2
Wti2

	
:

ð108Þ

The antisymmetric part vanishes in view of (87),Pað1Þ
i ¼ 0.

We then need to reconstruct the trace-free symmetric part
along the lines described in Sec. IV B 3 to complete the
solution:

Πð1Þ
ij ¼ 3a

5

�
EUtl

ijti þ
3

2
EWtl

ijti
2

�

−
3

5a3=2
ðEUtl

ijti − EWtl
ijti

2Þ − 3

2
EWtl

ijti
2: ð109Þ

The notation tl stands for the traceless part. The initial
fields have been split accordingly,

Uij ≕ EUij þ HUij; Wij ≕ EWij þ HUij; ð110Þ

i.e., a part initializing the gravitoelectric and the gravito-
magnetic parts, respectively.
We remark that in Newtonian theory the tidal tensor is

written in terms of the gravitational potential Φ,

−Eij ¼ Φ;ij −
1

3
δij∇2Φ; ð111Þ

where a comma denotes a derivative with respect to
Eulerian inertial coordinates. If we consider the first-order
solution (here restricted to the growing mode solution for
notational ease),

EPi
j
ð1Þ ¼ 3

2
Wi

jti2ða − 1Þ; ð112Þ

the first-order gravitoelectric part of the spatially projected
Weyl tensor assumes the form [note the conventional
sign difference of this geometrical definition with the
Newtonian (active) definition of Eij]:

Ei
j
ð1Þ ¼ − Π̈i

j
ð1Þ − 2HΠ̈i

j
ð1Þ

¼ −
3

2
ti2ðäþ 2H _aÞ

�
Wi

j −
1

3
Wδij

�

¼ −
3

2
ti2a

�
3

2
Hi

2
1

a3

��
Wi

j −
1

3
Wδij

�

¼ −
1

a2

�
Wi

j −
1

3
Wδij

�
: ð113Þ

We find

Eij
ð1Þ ¼ −

�
Wij −

1

3
Wδij

�
: ð114Þ

The trace W does not derive from a potential due to
nonintegrability of the field. After executing the MR, we
obtain (up to the conventional sign difference) the
Newtonian tidal tensor (111).
Summarizing, given the formal analogy of the solution

schemes discussed in Sec. III D, the above solution solves
the gravitoelectric part of the corresponding relativistic
equations (87). The trace-free symmetric part (109),
however, is only a part of the solution in the relativistic
case. Equation (102) in Ref. [1] states that the first-order
equation for the relativistic trace-free symmetric part reads

Π̈ð1Þ
ij þ 3H _Πð1Þ

ij − a−2Πjkð1Þ
ij jk

¼ −a−2
�
T ij þ Pð1Þ

jij −
1

3
Pjkð1Þ

jkδij

�
; ð115Þ

where T ij is the trace-free part of the initial Ricci tensor.
Plugging Eqs. (108) and (109) into Eq. (115), we can check
whether our relativistic generalization satisfies the full
equation. Three modes appear in the equation: a−2, a−1,
and a−7=2. The equation has to be satisfied at any time, and
thus each mode must lead to cancellation of the coeffi-
cients. This leads to the following constraints (Hi ≔ 2=3ti):

ET ij¼ −Hi
EUtl

ðijÞ −
EWtl

ðijÞ;
EUjk

ðijÞ jk ¼ EUk
kjij; Wjk

ðijÞ jk ¼ EWk
kjij: ð116Þ

The first equation corresponds to the definition of the
trace-free part of the initial Ricci tensor, Eq. (53) in the
EdS case studied here. In view of the constraints U½ij� ¼ 0

and W½ij� ¼ 0 [cf. (50)], the other two conditions are
equivalent to

EUjk
ij jk ¼ EUk

kjij;
EWjk

ij jk ¼ EWk
kjij: ð117Þ

What we call gravitoelectric part in the decomposition
of initial conditions (110) is therefore determined to be
the one that solves (116). The part contributing to the
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propagating gravitomagnetic part is then its complement.
This labelling is not completely unambiguous, because in
this scheme the gravitomagnetic part computed from the
gravitoelectric part is not null; see below for the first-order
scheme. (Nevertheless, as we will show in the followup
paper, it generates a null dynamical Ricci curvature tensor).
To check how constraining these relations are, beyond

the constraints that we already have, we consider the first
and second time-derivatives of the momentum constraints
and evaluate them at initial time in order to obtain
constraints on the initial fields. Taking the second spatial
derivative of these equations and contracting them with
respect to one index, we get for Uij

Uk
jjk ¼ Uk

kjj ⇒ Uk
jjik ¼ Uk

kjij ⇒ Ukji
jjik ¼ Ukji

kjij:

ð118Þ

The latter identity is solved by the gravitoelectric and the
gravitomagnetic parts independently. For the gravitoelec-
tric part, we have

EUkji
jjik ¼

EUkji
kjij; ð119Þ

which is equal to the once contracted spatial derivative of
the above constraint (117). We conclude that (117) and the
momentum constraints are compatible with but not equiv-
alent to our constraints. They have to be solved independ-
ently in order for the solution to be compatible with both
the evolution equation and the momentum constraints.
What they do constrain are derivatives of the gravito-

magnetic part. To derive these constraints, let us first note
that the first-order expression for the magnetic part can be
found from Eq. (107) in Ref. [1]:

EHij ¼ aðtÞϵslðiE _ΠjÞljs: ð120Þ

The solution for EΠij, cf. (109), shows that spatial deriv-
atives of the first-order magnetic part can be traced back to
spatial derivatives of Uij and Wij. Together with the first-
order momentum constraints, _Pi

ijj ¼ _Pi
jji, and imposing

the constraints (116), we get

ϵuriϵslðiEUjÞsjlr ¼ 0; ϵuriϵslðiEWjÞsjlr ¼ 0: ð121Þ

Thus, via (109), this leads to

ϵuriEHijjr ¼ 0; ð122Þ

i.e., the curl of EHij vanishes.
For its divergence the constraints (116) are not necessary.

Taking the divergence of (120), and using the momentum
constraints in the form E _Πi

ljis ¼ 2=3 _Pjls, we can show

EHij
ji ¼ 0: ð123Þ

By combining (122) and (123), we conclude that

Δ0
EHij ¼ 0: ð124Þ

Thus, the gravitomagnetic part that is generated by the
gravitoelectric part is a harmonic tensor field at first order.
This harmonic field can be constrained in the initial
conditions (removed) by topological conditions on the
perturbations. In an upcoming article, we will discuss such
conditions.

D. Example 2: Constructing second-order solutions
for slaved initial data

Let us now write out the system {(94), (95)} explicitly
for n ¼ 2. We simplify the first-order source by imposing
the so–called “slaving condition” Ui

j ¼ Wi
jti (as

explained in Refs. [40,41], for second order in Ref. [42],
and used to present the third- [43] and fourth-order [26]
Newtonian solutions). This is not necessary but increases
readability. The sum of (108) and (109) becomes

Pð1Þ
ij ¼ 3

2
Wijti2ða − 1Þ: ð125Þ

At second order (89) is simply

D1P
ið2Þ
i ¼ −ðD2P

ið1Þ
i ÞPjð1Þ

j þ ðD2P
ið1Þ
j ÞPjð1Þ

i ; ð126Þ

and we have the system

�
ξ̈ð2Þ þ 2 _a

a
_ξð2Þ þ 3 ä

a ξ
ð2Þ ¼ 3

4
ti2ða−1 − a−3Þ;

Cð2Þ ¼ Wi
jWj

i −WW;
ð127Þ

with the source gð2ÞðtÞ ¼ 3
4
ti2ða−1 − a−3Þ.

To systematically determine the temporal coefficients of
the hierarchy, it is useful to write the operator D1 in terms
of a. We find

gðaÞ ¼ ΩimHi
2 ×

��
1

a
þ a2c

�
P00ðaÞ

þ 3

2

�
1

a2
þ 2ac

�
P0ðaÞ − 3

2a3
PðaÞ

�
; ð128Þ

where c ¼ ΩiΛ=Ωim. For an EdS background, c ¼ 0, the
homogeneous solution is

DðaÞ ¼ aC1 þ a−3=2C2; ð129Þ

the Green function of Eq. (101) is

Gða; sÞ ¼ 2

5

sða5=2 − s5=2Þ
ΩimHi

2a3=2
: ð130Þ
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Now, it is a matter of a simple integration, and Eq. (100)
gives the second-order trace solution:

Pð2Þ ¼ 1Cð2Þaþ 2Cð2Þa−3=2 þ 9

8
ti4

�
1þ 3

7
a2
�
Cð2Þ:

ð131Þ

To find the spatial coefficients of the solution, we use the
initial values for the coframe and its time derivative. They
have been chosen to vanish for all orders higher than 1 in
the hierarchy of solutions of Eqs. (89). Therefore, we find
the system

Pð2ÞðtiÞ ¼ 1Cþ 2Cþ 45

28
Cð2Þti4 ¼ 0;

_Pð2ÞðtiÞ ¼
2

3ti
1C −

1

ti
1Cþ 9

14
Cð2Þti4 ¼ 0; ð132Þ

which fixes all constants to be ∝ Cð2Þ. Thus, the second-
order trace solution reads

Pð2Þ ¼ ξð2Þþ ðWW −Wi
jWj

iÞ;

ξð2Þþ ¼ 9

4
ti4

�
−

3

14
a2 þ 3

5
a −

1

2
þ 4

35
a−3=2

�
: ð133Þ

After executing the MR, this coincides with the second-
order Newtonian solution of Ref. [37].
The antisymmetric equation (94) still deliversPað2Þ

i ¼ 0.
This is due to the restriction to "slaved initial conditions";
otherwise we would have a nonvanishing part here. Thus,
we only need the trace-free symmetric part to complete the
solution. The gravitoelectric part can be written as

EΠð2Þ
ij ¼ ξð2Þþ Sð2Þ

ij ; ð134Þ

where the trace of Sð2Þ
ij is given by ðW2 −Wi

jWj
iÞti2.

The rest of its components can be determined from

the generalization Sð2Þ
jij → Sð2Þ

ij , where Sð2Þ is the solution

to the Newtonian Poisson equation Δ0Sð2Þ ¼
ððWkjkÞ2 −WijjWjjiÞti2 and where Δ0 denotes the
Laplacian in local (Lagrangian) coordinates (see
Ref. [37]). To avoid passing by the generalization of the

Newtonian result, one can of course also insert EΠð2Þ
ij into

(134) and solve the remaining relativistic equations of the
gravitomagnetic part to find the off–trace components of

Sð2Þ
ij . The gravitomagnetic contribution encoded in Sð2Þ

ij has
recently been studied to second order in Ref. [44].
The explicit derivation of the inhomogeneous second-

order term in this subsection illustrates that, using (100) and
(130), the calculation of the temporal evolution of the
general relativistic trace part is straightforward and only
involves the calculation of integrals. This can also be easily

extended to perturbations of a ΛCDM universe model by
noting that (129) becomes

DðaÞ ¼ að2ÞF1

�
1

3
; 1;

11

6
;−ca3

�
C1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a3
þ c

r
C2;

ð135Þ

with the Gauss hypergeometric function ð2ÞF1. The Green
function reads in this case

Gðs;aÞ ¼ 2

5

s
ΩimHi

2

�
Dþða;cÞ−Dþðs; cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ca3Þs3
ð1þ cs3Þa3

s �
;

ð136Þ

where Dþða; cÞ is the first term in (135).

V. SUMMARY AND CONCLUDING REMARKS

We have investigated gravitoelectric perturbation and
solution schemes at any order in relativistic Lagrangian
perturbation theory. These schemes cover the full hierarchy
of the Newtonian Lagrangian perturbation theory if
restricted to integrable Cartan coframe fields.
Despite the fact that the solution scheme presented in this

work gives on its own not all parts of the relativistic
perturbation solutions, it delivers an important part relevant
to the formation of large-scale structure. As is well known
(see, e.g., discussions in Refs. [45] and [38]), the fastest
growing scalar modes of the GR solutions correspond to
the Newtonian modes, shown up to second order, and, by
inspection of the schemes we investigated, we showed this to
hold for the gravitoelectric part also beyond second order. As
we recover all the Newtonian terms with their correct
temporal evolution and their constrained spatial coefficients,
we also know that our solution contains all terms that
become important in the late Universe. The presented
scheme is explicit enough to derive solutions at any desired
order by algebraic codes along the lines of the reconstruction
rules that we exemplified up to the second order.
We demonstrated the close formal correspondence of

the gravitoelectric Lagrange–Einstein system to the
Newtonian theory furnishing construction rules that also
allow to find other, nonperturbative relativistic solutions
from Newtonian ones.
The role of gravitational waves, corresponding to the

missing part in our scheme, has to be further explored. The
missing part, which we denoted by HΠij in the coefficients
of the trace-free symmetric parts of the perturbations,
corresponds at first order to “free gravitational waves,”
i.e., that part of gravitational radiation that does not scatter
at the sources. This changes at higher orders, since this
part will couple to the sources starting at second order. We
will investigate in detail the general first-order scheme
including gravitational waves in the next article of this
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series, where we also identify the transformations and
restrictions that have to be imposed to obtain the known
solutions of the standard perturbation theory, where per-
turbations are embedded into the background spacetime.
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APPENDIX A: EQUIVALENCE OF
INTEGRABILITY OF THE COFRAMES

AND THE FLATNESS OF SPACE

The standard choice of orthonormal coframes ~ηain the
Cartan formalism implies for the spatial metric coefficients
~gij ¼ δab ~η

a
i ~η

b
j, with ~ηaiðtiÞ ≠ δai at initial time, in order to

have an initially nontrivial metric.
The alternative choice of adapted coframes ηa, used in

this article, represents the metric coefficients as gij ¼
Gabη

a
iη

b
j, where we are entitled to require ηaiðtiÞ ¼ δai

at initial time, encoding the initial metric into the coef-
ficients Gab, i.e., Gij ¼ Gabδ

a
iδ

b
j. This makes the com-

parison with the Newtonian choice of Lagrangian
coordinates to coincide with the Eulerian ones at some
initial time more direct.
As we discussed in (36), the basic assumption is that

both coframe types describe the same metric form, i.e.,
g ¼ δcd ~ηc ⊗ ~ηd ¼ Gab ηa ⊗ ηb, from which we infer

Gab ¼ δcd ~η
c
a ~η

d
b; ðA1Þ

where we denote with ~ηca ¼ eci ~ηci the coefficients of the
projection of ~ηc onto the basis ηa.
The MR applied to either of these coframes requires

them to be exact forms, ~ηa ¼ d ~fa or ηa ¼ dfa. They then
define some global Eulerian coordinates, ~xa and xa,
respectively. In the MR, Eq. (A1) is equivalent to

Gab ¼ δcd
∂ ~fc
∂xa

∂ ~fd
∂xb : ðA2Þ

We infer from (A2) that the coefficients Gab just depend on
initial vector displacements after executing the MR. They

are related to the initial deformation gradient in the
orthonormal description, as can be seen by looking at
the metric equivalence relation in an exact Lagrangian
basis, g ¼ ~gijd ~Xi ⊗ d ~Xj ¼ gijdXi ⊗ dXj,

gðXk; tiÞ ¼ δab ~f
a
j ~Xið ~Xk; tiÞ ~fbj ~Xjð ~Xk; tiÞd ~Xi ⊗ d ~Xj

¼ δab ~f
a
jiðXk; tiÞ ~fbjjðXk; tiÞdXi ⊗ dXj

¼ GabðXkÞδaiδbjdXi ⊗ dXj; ðA3Þ

where a slash denotes derivative with respect to the
coordinates Xi, as in the main text, and it is explicitly
noted otherwise. From (A2) we conclude that

g ¼ Gab ηa ⊗ ηb ¼ δcd
∂ ~fc
∂xa

∂ ~fd
∂xb dx

a ⊗ dxb

¼ δcd d~xc ⊗ d~xd; ðA4Þ

which is the Euclidean metric.
Summarizing, execution of the MR leads, in either of

the chosen coframes, to a metric that is equivalent to the
Euclidean metric. The coefficients Gab can then be
expressed in terms of initial vector displacements,
cf. Eq. (A3).

APPENDIX B: ERRATUM AND REMARKS

We correct a mistake in the paper [28] and add a
clarification to the paper [1] concerning the gravitomag-
netic part of the spatially projected Weyl tensor.

1. Newtonian perturbation scheme, Ref. [28]

The perturbative system of equations derived from
Lagrangian Newtonian theory leads to {(65), (66)}

δijd _P
i ∧ ðdXj þ dPjÞ ¼ δija−2dUi ∧ dXj; ðB1Þ

ϵijk

�
ððD − 4πGϱHÞdPiÞ ∧ dXj ∧ dXk

þ ðð2D − 4πGϱHÞdPiÞ ∧ dPj ∧ dXk

þ
��

D −
4πG
3

ϱH

�
dPi

�
∧ dPj ∧ dPk

	

¼ −ϵijk
4πG
3

δϱia−3dXi ∧ dXj ∧ dXk; ðB2Þ

where the operator

D ≔
d2

dt2
þ 2H

d
dt

:

The numerical coefficients of this system differ from the
result presented in Ref. [28], Eqs. (28a)–(28d).
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2. Gravitomagnetic part of the spatially projected
Weyl tensor, Ref. [1]

In Ref. [1] the symmetrization of the spatial parts of the
Weyl tensor has not always been written explicitly, which
may lead to confusion. The idea of a not manifestly
symmetric writing is best seen in the equations for the
gravitoelectric part: its definition in (32) already assumes
that the field equations hold, which are then recovered by
the conditions (33). While having advantages, this repre-
sentation is implicit. The same applies for the gravitomag-
netic part (see Ref. [1], Eqs. (70) and (73), where the
momentum constraints have been inserted and recovered
through an explicit symmetry condition). If we wish to
consider the original geometrical definition of these tensors
without inserting the field equations, then we have to write,
e.g., for the gravitomagnetic part (here written for the
adapted coframes used in this article)

Hij ¼ −
1

J
ϵnklgnðiΘ(jÞk)∥l

¼ −
1

2J
ϵnklgnðiGabððηajÞ _ηbkÞ∥l þ ðηak _ηbjÞÞ∥lÞ

¼ −
1

2J
ϵnklgnðiGabðηajÞ∥l _ηbk þ ηaj _η

b
k∥l

þηak∥l _η
b
jÞ þ ηak _η

b
jÞ∥lÞ; ðB3Þ

where gni ¼ Gabη
a
nη

b
i. Employing the irrotationality con-

dition (28) and taking its covariant derivative,

Gab _η
a½iηbj�∥k þ Gabη

a½j _ηbi�∥k ¼ 0; ðB4Þ

we obtain an expression for Hij that manifestly vanishes
with the passage to the Newtonian theory through the MR
[the covariant derivatives of the (now integrable) coframes
vanish],

Hij ¼ −
1

J
ϵnklgnðiGabðηajÞ _ηbk∥lÞ → HN

j

¼ −
1

J
ϵnklGdeGabfdjnfejðifajjÞð _fbjkl − _fbjmh;cmfcjklÞ

¼ 0; ðB5Þ

which is the result claimed in Ref. [1], Eq. (84), and which
is expected in a concise execution of the Newtonian
limit [46].

3. Remark on the Newton–GR dictionary

The reader may have noticed that the Newtonian tensors
which correspond to the GR tensors in the MR display
mixed indices, e.g., in Sec. II D 3 for the MR of the
gravitoelectric part Ei

j. We explain here why this is
the case.
Consider, e.g., the Newtonian field strength gradient,

ga;b, where a comma denotes a derivative with respect to
Eulerian coordinates. We have on purpose denoted the
vector index by a counterindex here, counting the number
of vector components, and we have also used the counter-
index for the Eulerian derivative, since both become
noncoordinate indices by executing the inverse MR, i.e.,
by passing from the Newtonian deformation gradient with
respect to Lagrangian coordinates, fajk, to the nonintegr-
able coframe coefficients, ηak. This expresses the fact that
the vector embedding space disappears through this oper-
ation; in the integrable case, the components fa can be
considered as coordinate functions with the coordinates
xa→i. Now, the transformation of the field strength gradient
to Lagrangian coordinates involves the inverse of the
transformation fa, which we denote by Xi ¼ hiðxb; tÞ:
ga;b ¼ f̈ajihi;b, where we have also inserted the definition
ga ¼ f̈a. Denoting the coefficients of the inverse of the
coframes by ebi, we see that the inverse MR constructs the
relativistic analog to ga;b, which is F a

b ≔ η̈aiebi.
Projecting this latter field onto the exact basis with the
help of the coframes and their inverse (the frames), we
obtain a field with mixed indices, F a

beaiηbj ¼ F i
j. The

tensor coefficients are then obtained by lowering an index
with the spatial metric, F kj ¼ gkiF i

j ¼ Gabη
a
kη̈

b
j. For

mixed indices, we obtain [compare Eq. (46)]

F i
j ¼ eaiη̈aj ¼

1

2J
ϵabcϵ

iklη̈ajη
b
kη

c
l: ðB6Þ
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