PHYSICAL REVIEW D 92, 023509 (2015)
Leptogenesis via neutrino production during Higgs condensate relaxation
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During inflation, scalar fields, including the Higgs boson, may acquire a nonzero vacuum expectation
value, which must later relax to the equilibrium value during reheating. In the presence of the time-
dependent condensate, the vacuum state can evolve into a state with a nonzero particle number. We show
that, in the presence of lepton-number violation in the neutrino sector, the particle production can explain
the observed matter-antimatter asymmetry of the Universe. We find that this form of leptogenesis is
particularly effective when the Higgs condensate decays rapidly and at low reheat scale. As part of the
calculation, we present some exact results for the Bogoliubov transformations for Majorana fermions with a

nonzero time-dependent chemical potential, in addition to a time-dependent mass.
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I. INTRODUCTION

During the inflationary era, the Higgs field may develop
a stochastic distribution of vacuum expectation values
(VEVs) due to the flatness of its potential [1-3], or it
may be trapped in a quasistable minimum. In both cases,
after inflation the Higgs field relaxes to its vacuum state via
a coherent motion [4-6]. At large VEVs, the Higgs field
may be sensitive to physics beyond the Standard Model,
and new terms in the Lagrangian, such as those considered
in models of spontaneous baryogenesis, can generate an
effective potential for baryon and lepton number [7,8].
These terms couple the time-dependent scalar condensate
to the lepton (and baryon) number currents. Consequently,
the thermal bath of particles produced by reheating can
lower its energy by converting particles into antiparticles,
through scattering involving neutrinos, whose Majorana
mass violates lepton number [5,6]. This scenario can
explain the observed matter-antimatter asymmetry of the
Universe; it requires sufficiently fast reheating, such that
the plasma forms before Higgs relaxation is complete,
which restricts the possible parameter space. In addition to
the Higgs boson, an axion or a Majoron relaxation could
generate the baryon asymmetry of the Universe [6,9,10].

However, the relaxation of the Higgs vacuum expect-
ation value itself results in particle production. Generically,
a classically evolving background scalar field coupled to
quantum fields results in particle production; this can be
understood as a consequence of the fact that the initial
vacuum state (which is annihilated by the appropriate
annihilation operators at ¢ = 0) is not annihilated by the
appropriate annihilation operators at later times [11-13].
(More specifically, the time-dependent background mixes
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positive and negative energy solutions of the field equa-
tions, and so an initially diagonal Hamiltonian is non-
diagonal at later times.) This can result in the production of
both scalar bosons [12,13] and fermions [14,15], provided
that the classical scalar field is coupled to both. This has
been explored extensively with respect to the inflaton (e.g.,
[16-18]). In this work, we calculate the excess of neutrinos
over antineutrinos produced by the evolving Higgs con-
densate in the presence of chemical potential, generated by
higher order terms in the Lagrangian, which distinguishes
particles from antiparticles.

During the oscillations of the Higgs condensate, the
effective chemical potential changes sign, which alternates
whether the production of neutrinos or antineutrinos is
favored. Therefore, the maximal asymmetry is produced
with the Higgs condensate decays quickly, which mini-
mizes this wash out. Furthermore, this mechanism favors a
low reheating scale, which minimizes entropy production.

The outline of this paper is as follows: In the next
section, we introduce our model, including the Og operator
which gives rise to an effective chemical potential for
lepton number. Subsequently, we derive an effective
Lagrangian by integrating out the weakly interacting
right-handed neutrino states, and we specialize to the case
of a single fermion family. In Sec. IV, we quantize this
system and find the Bogoliubov transformation equations
which describe particle production. Following this, we
define the occupation number of the physical eigenstates
and lepton number. Finally, we present a numerical analysis
of our model, which demonstrates that resulting asymmetry
can be sufficiently large to account for the observed matter-
antimatter asymmetry.

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.92.023509
http://dx.doi.org/10.1103/PhysRevD.92.023509
http://dx.doi.org/10.1103/PhysRevD.92.023509
http://dx.doi.org/10.1103/PhysRevD.92.023509

PEARCE et al.
II. THE LAGRANGIAN

In this section, we introduce the model Lagrangian. We
begin with the action in general curved spacetime

S = /d“x,/—gﬁ (1)
with a Lagrangian
L=Ly+ L+ Lo, + Lsms (2)

where we use L to denote the Higgs sector contribution,
L, to denote the lepton sector contribution, Lo, to denote
higher-dimensional operators which will generate an effec-
tive chemical potential for baryon and lepton number, and
Lgy represents the Standard Model contributions that do

|
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not appear in Ly or L,. We consider an expanding FLRW
(Friedmann-Lemaitre-Robertson-Walker) spacetime with
signature (+,—,—, —).

The purely Higgs sector contribution is

Ly = ¢"0,079,® — V,(®,T), (3)

where V,(®,T) is the Higgs potential, including any
relevant loop and finite temperature corrections. We note
that, as with the models discussed in [5,6], the potential
V4(®. T) may require higher-dimensional operators involv-
ing the Higgs field ® (and possibly the inflaton field /) in
order to suppress isocurvature perturbations resulting from
variations in the produced baryon density [19-21]. The
Higgs sector is discussed in more detail in Sec. IL A below.
The lepton sector Lagrangian includes the terms

) - - 3 .d . . _ . 3 ..a . _
L,=iy L (g"”yﬂ@y +§g°°;70>L +iy Ny <9””7/,lap + EgOOE}'o)NR =y L Oty

- ZyyZ‘CDNR - Z%(NR)CNR + H.c.,

where L denotes left-handed lepton doublets, £ right-handed
charged leptons, and Ny right-handed neutrinos, and we
implicitly sum over indices and families. The gamma
matrices in the FRW metric are related to those in flat space
time by y, = ay,. We note in Eq. (4) the effect of the spin
connection evaluated on the FLRW background. This
Lagrangian will be discussed further in Sec. II B below.

The third part of the Lagrangian is the higher-
dimensional operator

o
['(96 = W ay]I;}JrL’ (5)

where j; is the lepton current density. One possibility for
generating an operator of this form is to couple the Higgs
field ® to the SU (2) x Uy(1) gauge fields A and B by

o2 n,
06 - (ggeﬂyaﬁAZvAgﬁ - g%eﬂyaﬁB;wBaﬂ)’ (6)
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which can be written in the form of using the electroweak
anomaly equation [7,8]. This transformation requires the
electroweak sphalerons to be in thermal equilibrium, which
may not be satisfied here, although the situation is
complicated by the time-dependent Higgs VEV. For these
reasons, we discuss other ways of generating this operator
in Appendix A.

We will discuss the role of this term further in Sec. II C;
for now, we note only that in the presence of this term, the
Higgs evolution induces a chemical potential that distin-
guishes particles from antiparticles.

(4)

|

Before we discuss each component separately, we will
first rewrite the action using conformal time, such that the
metric is g,, = a(1)1,,,» and’

t dt
]/l = —_—. 7
%o 7
It will be convenient to define the “comoving” fields,
p=ap §=ay (8)

such that we can write

S= /d“x(ZH + Lo+ zo(, + Lsw) 9)

~ ~ a// ~ ~ ~
Ly =099, - ;qﬂ — Vy(@.7),

=~ o~ aM
=Y yLONg-) 2N(NR)CNR+HC,
~ atd®
Lo, == OupiLs
ZSM = a4£SM~ (10)

1Throughout this paper, we will use primes to denote differ-
entiation with respect to conformal time, dots to denote differ-
entiation with respect to physical time, tildes to denote comoving
quantities, and hats to denote two-component fields. Where
necessary, we will use bars in dummy variables.
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In the first equation, we have defined a comoving poten-
tial ‘7(/5 = Cl4V¢.

In the next subsection, we consider how the Higgs field
might acquire a large VEV during inflation, which relaxes
to its equilibrium value during reheating. Then we consider
how this affects the quadratic terms in the lepton sector;
subsequently, we demonstrate that when the Higgs VEV is
in motion the Qg operator produces a chemical potential
for baryon and lepton number. Finally, we gather together
the relevant contributions to the Lagrangian in the final
subsection.

A. The Higgs sector

The Standard Model Higgs boson has the tree-level
potential

V(@) = m*®T® 4 A(DTD)?, (11)

where @ is the Higgs SU(2) doublet. The parameters m
and 4, although constant at tree level, are modified by both
loop and finite temperature corrections. For the experi-
mentally preferred top quark mass and Higgs boson mass,
loop corrections result in a negative running coupling 4 at

sufficiently large VEVs, with the result that the \/(¢?) =
vEm = 246 GeV minimum is metastable at zero temper-
ature [22]. We note, though, that a stable vacuum is possible
within current experimental uncertainties [22], and the
stability of the potential is also sensitive to Planck-scale
corrections [23].

Therefore, the running quartic coupling produces a
shallow potential, and consequently, the Higgs field may
develop a large VEV during inflation due to quantum
fluctuations [4]. Qualitatively, the scalar field in a de Sitter
space can develop a large VEV via quantum effects, such as
Hawking-Moss instantons [1,24] or stochastic growth
[2,25,26]. Subsequently, the field would relax to its
equilibrium value via a classical motion on the time scale
~(d?V /d¢?*)~/2, unless Hubble friction delays this relax-

ation. If H; > \/d*V/d¢?* then quantum jumps occur
frequently enough to maintain a large VEV.

Alternatively, the Higgs potential is sensitive to higher-
dimensional operators at large VEVs, which can have the
effect of lifting the second minimum, stabilizing the
electroweak vacuum. During inflation, the Higgs field
may have a stochastic distribution of VEVs similar to that
of the inflaton itself in chaotic inflation models. During
inflation, sufficiently large VEVs evolve towards the false
vacuum from above, and then remain trapped in this false
vacuum until destabilized by thermal corrections during
reheating. Subsequently, the field rolls to the global
minimum, until electroweak symmetry is broken at a
significantly later time.

Therefore, it is quite natural to consider scenarios in
which the Higgs field has a large vacuum expectation value
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during inflation, which subsequently relaxes to its equi-
librium value. Both of the above scenarios have been
explored previously [5,6]. Here, we consider the classical
motion of the Higgs field towards equilibrium generically,
without specifying the mechanism which generates the
initial large vacuum expectation value.

We note that if the field has expectation value

@ - ("), (12

then the comoving field has expectation value

@:L(f?(n)) :i(av(n)) (13)
V21 0 V2L 0

where we have defined © = av. For completeness, we
discuss the equation of motion for » in the Standard Model,

including loop and finite temperature corrections, in
Appendix B

B. The neutrino sector
Next, we consider the effect of the evolving Higgs VEV

on the quadratic terms in £,, given by the second line of
Eq. (10). Including multiple generations, we write this as

f - lZLaaL + IZNRI a]VRI ;y&zﬁldaa@ f/}R
a

= ~ ~ MN’“iN
- ZyzxajeahLaa(I)bNRj - Z 3 Y (NR,')CNRJ' + H.C.,
aj ij

(14)

where & is the comoving Higgs doublet, L is the comoving
left-handed (v, ¢ ) lepton SU; doublet of species L, and
N are right-handed Majorana neutrino states. Greek indices
label flavors (e, u, ), while the latin indices i and j label
right-handed neutrinos. The indices a and b are SU;_ labels.
These are the only renormalizable terms which describe the
interactions between the Higgs and lepton doublets, given
the gauge symmetries of the Standard Model.

When the comoving Higgs field acquires a vacuum
expectation value, this becomes

DI R S LR B
a i af

yl/aj MNij ~ R
- Ngi)°Ng; +H.c.,
%: \/— DLa Ri Z 2 ( Rl) RJ+ C
(15)

where the comoving mass is M = aM. The right-handed
Majorana neutrinos induce lepton-number violation in
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interaction involving neutrinos; however, there is no
corresponding effect for the charged leptons. Therefore,
these terms will not affect our analysis, and so we will

absorb them into ESM. We define the neutrino sector
Lagrangian

L, = iZE_Laa’;La + iZ Ngi ONg; - ZMgNRiﬂLa
a i ai
1 ~ T~
_EZMNij(NRi)LNRj—i_H‘C" (16)
ij
where the comoving Dirac mass is

t o~
5 y) = 2?0, (17)

V2

We note that since v = aw, this has the expected scaling of
a comoving mass.

It will be convenient to use two-component comoving
Weyl spinors; we work in the chiral basis, with conventions
outlined in Appendix C.

We denote the two component spinors with tildes, as in

- (5) me(2)
0)((1) é)-(o D).

N )((1) :)):(N}; 0). (18)

l~/L = (i}L
Ne=(0

i
R

The conjugated comoving fields are

NR:CNR = (O —iNITqﬁz ), (19)
where the charge conjugation operator C is also given in
Appendix C.

In terms of these two-component comoving spinors, the
neutrino sector Lagrangian can be written as

P VSN N4t o
L, = lZvLaaﬂaﬂuLa —+ ZZNRiG”()”NR,-
a i

~ D&t A ~ Diat
- Z(MiaNIQiULa + MuiTUZaNRi)

1 RPN - RN .
—EZ(lMNUNzTe;UzNRj - IM}LVjiNI?jGZNRi)7 (20)
ij
and we note that if we introduce the fields
N§ = —io, N} (21)

the mass term has the expected Majorana form,
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—(NZ'Ng + NpNR), (22)

where we remind our readers that these are comoving
fields.

C. The Og4 operator

Next, we turn our attention to the Og operator introduced
in Sec. II; we use the lepton and baryonic currents

, 1 ,
fp=)_—dre.  ji=) e (23)
qg ¢ ¢

where the sums are over all leptonic fields, including right-
handed neutrinos, and baryonic fields respectively. In a
general curved spacetime, we assume this becomes

- P2 )
LO(, = _a4gﬂyWVﬂJuL7 (24)

which generally holds if the gravitational anomaly is
canceled by having equal numbers of left- and right-handed
neutrinos, as discussed in Appendix A. Next, we integrate
by parts by moving the derivative onto the Higgs vacuum
expectation value. As we are in flat FLRW spacetime, we
may replace V, with 9, to find

; 002
Lo, = —a* ]/(/12 ],;HL- (25)

Finally, we want to express this in terms of the comoving
fields. We note that the current is

JuB+L = WYy = a_Z}ﬂB+La (26)

where we have defined }'ﬂBJrL = l/:/yﬂli/. We here introduce
the notation of a prime to denote a derivative with respect to
conformal time. This allows us to write

9,8% - 2d'®*8,/a -,

[’(9(, = Mz .]B+L ’ (27)

where
9,8° = 2aa'? + a*0, 9?5,

!
= 2L.8%,, + a%9,92. (28)
a

When & acquires a time-dependent vacuum expectation
value v, this is

=2 122
0" —2d'v /a~

ZO() = Y7e JB+L> (29)

where we emphasize that d, = d/dn. We define
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0p1” — 2ad'1?/a

2M? (30)

h=
since this term acts like a chemical potential for B + L
charge. We note that in terms of v and M, this has the
expected form

1 d dal
= —— (—52 —2—a—1~12>

w2
Therefore, we also define

1 dv

KT

(32)
such that ;i = au. We note that since the Higgs VEV is
initially decreasing, dv/dt is initially negative. The neg-
ative sign in Og was chosen in order to bias the creation of
particles over antiparticles.

As mentioned previously, lepton number is violated only
in the neutrino sector, and therefore we are interested only
in contribution to the current from the neutrinos. Thus the
relevant part of the Oy operator is

fasi (0 () o)()
() o) (s)

:ﬁZ(i)Zai)La+N;€iﬁRi)' (33)
a

+ (N,

D. Complete two-component neutrino Lagrangian

Using the results of the previous subsections, the
complete effective Lagrangian for the comoving two-
component neutrino fields is

PHYSICAL REVIEW D 92, 023509 (2015)
L=i0Y 01,600, +1y Nio'd,Np
a i

- Z(ngN;iﬁLa + Malz)iTifLaNRi)

ai
i N0, Ri = i1}y N 0,
2(1 NijiVRiO2INRj — UM ;i g 02 ki)

+ i Z D) oPra + NN wi), (34)

which will be the basis for our subsequent analysis. This
describes a set of left-handed and right-handed neutrinos,
with a Dirac mass and a right-handed Majorana mass, and a
chemical potential for neutrino number, obtained from (33).

III. THE EFFECTIVE LAGRANGIAN FOR ONE
GENERATION OF LEFT-HANDED NEUTRINOS

The Lagrangian in Eq. (34) includes several generations
of both left- and right-handed neutrinos. It will be con-
venient to integrate out the heavy right-handed neutrinos®
and specialize to a single generation, which will be a
sufficiently rich model to capture the asymmetry produc-
tion of interest here.

The comoving right-handed neutrinos obey the equa-
tions of motion

0 = ic"d,Ng; — ZMDiaﬂLa + iZ(Mva)ijUzN;Ej
a J
+ iN ;. (35)

In the limit of small g and when the kinetic term is
negligible, namely at scales below that of the right-handed
Majorana mass eigenvalues, this equation is solved by

Ngp = —zz (MY

which when substituted into the Lagrangian gives

kt MD tocGZI/L()z7 (36)

- ~ i
Legy = lzvgagﬂaﬂ’/m - EZ[(MDMT\/ IMD) /ﬂ/LaO'zVL/; - (M M IMD)/}(IVL/JGZULa + i ZVLaVLa

a ap a
—f—:l2 Z(MEM;/_IMXJIMD)(I/}ﬁIaﬁLﬂ‘ (37)
ap
Doing so induces a Majorana mass for the left-handed neutrinos, of magnitude,
ML :MgM;FV_lMD. (38)

Thus this Lagrangian may be written (using implicit notation for the sums)

*We do emphasize that we integrate out N, which are not, strictly speaking, identical with the heavy mass eigenstate. This is a good
approximation below the scale of the right-handed Majorana mass eigenvalues.
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R PN ~ " ~ ~ AT ~ ~at A ~ b ert=1 =11 AT A
‘Ceff = ”/LaaﬂauDLa - 5 [( L)aﬁV{aGZI/L/} - (MZ)ﬁaI/L/}GZUZa} + Ml/z(lULll + M(M;)MN MNIMD)a/JVZaI/Lﬁv (39)

which has the equations of motion,

0=i6"0uDpq + 1) (M])us020; 5 + i1
p

+ﬂ(M£ML_1MI_\/1MD)(z;ﬁL/3- (40)

It is beneficial at this point to specialize to the one-
generation case, since, as we will show, one generation is
enough to obtain a nonvanishing asymmetry in the presence
of the Og operator. We see explicitly that the induced
Majorana mass transforms with the form appropriate to a
comoving mass,

oMby
M L— = —=4a .

(41)

Thus we use the effective Lagrangian,

‘ceff:wzo'”aﬂVL_T[ ooy — Dy 0o} | +iierely Dp, (42)
where
. . M2\
ﬂff=M<1+~—>%M, (43)
€ M]zv

when M?3,/M3 = y2v?/2M3 < 1. We have rotated the
field 7, to eliminate the phase in M, which arises from
the phase in the Yukawa coupling y,. (Note that the Higgs
VEV v can be taken to be real at all times.)

IV. QUANTIZATION AND BOGOLIUBOV
TRANSFORMATIONS

Let us now discuss quantization. First, we consider the
scenario in which the mass and chemical potential are time
independent; we solve the equations of motion and deter-
mine the creation and annihilation operators which diag-
onalize the Hamiltonian.

Then we include the time dependence of the mass and
chemical potential, which induces a mixing between the
positive and negative energy solutions of the field equation.
Consequently, even if the Hamiltonian is diagonal at time
t =0, at a later time it will be nondiagonal. It may be
diagonalized with a time-dependent redefinition of the
creation and annihilation operators; the coefficients of this
diagonalization are known as the Bogoliubov coefficients,
and in the subsequent section, we will relate these coef-
ficients to the occupation number of physical eigenstates

|
and to the lepton number. This follows the procedure
of e.g. [27-29].

We do note that in the multigeneration case, the time-
dependent rotation that diagonalizes the mass matrix can
introduce novel effects into particle production, as dis-
cussed in [29]; however, such features will not be necessary
to generate a nonzero lepton number. Therefore we work in
the one generation limit, using Eq. (42), where these terms
are absent.

A. Constant mass and chemical potential

The equation of motion for Lagrangian with a single
comoving Weyl field, Eq. (42), with constant comoving
mass M; and comoving chemical potential ji.g, iS

(idy — i6 - )b, = =M (i6,)0}; — fiefDL.» (44)

or in momentum space,
(idy + hlk|)D, = =M (i6)0; — fiegeD.  (45)
For consistency, we will use k for the comoving momen-

tum, and p for the physical momentum. We consider a
solution of the form

b= / his > u(h. kyal” 7O (k) et
(27)* h==1 g
— o(h Ky al" Y () e, (46)

where y() (INc) is the two-spinor which is an eigenstate of

the helicity operator (appropriate to INc) with eigenvalue
h = +1. This ansatz, when substituted into the equation of
motion, requires

(idp + h\15|>u(h, i‘) = hMLU(h’ INC) = Hegru(h, 7‘)
(idy + hlk|)v(h. k)* = =AM u(h,k)* — fiegrv(h. k)*.
(47)

These equations can be decoupled,
(io + hk| + fierr) (—idg + hlke| + fiegr) F = —M7F (48)
with F = u, v, satisfies
RF = [(hlke| + fier)> + ME]F. (49)

This has solutions of the form F = e*®1 where
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&=\ (W] + ) + 372 (50)

Therefore, we take

M(l’l, ]}) = % £/ 1 —fe_i(:’” + % mei&m’
1}(]1, ];) i/l/ai A\/1 + e—ion _ ﬂ \/—emm (51)
where
k| + fiegr
f=—"7"" (52)

and o and f are constant coefficients. (In the time-
dependent case, these will be the Bogoliubov coefficients.)
One can verify that these satisfy the first order equations of
motion.

The state ; obeys the anticommutation relations

{ﬁL(x)vﬁL(y)T} = (3)(3‘ -¥)s
{(x),0.(v)} =0 {0} (x).2,(»)} =0.  (53)

where we have introduced the notation pp for the four-
vector (E,—k). {(k,h) is a phase factor which arises
from the product of the two spinors. For the interested
reader, the important steps in this derivation are discussed
in Appendix D. This can be written as a matrix equation:

(e -lpr e (4
2hapt(k.h)* |BP — laf w

We introduce the rotated states:

A hﬁc(é,m*) a
A —npek.h) o«

which diagonalizes the Hamiltonian

1 [ &Pk . .
=5 [ G ol - el + 2nacpre(h
h

PHYSICAL REVIEW D 92, 023509 (2015)

These follow from the ansatz

{a?, ;’1 } = (22)60 (k - )5,

{a .t =0.  {a" T,a,g T}:o. (54)

along with the normalization condition |a|? + |8|* = 1.
Next we proceed to diagonalize the Hamiltonian; the
appropriate creation and annihilation operators will not be

(h) (h)t
the a; and a;

nations of these operators. Note that even with the Og
operator, the equation of motion ensures L = 0; this
follows from the fact that the equation of motion is first
order. Therefore the Hamiltonian is

operators themselves, but linear combi-

H =5 [ @xtow - @) (59)

In terms of the a operators, this Hamiltonian is

mal" a"" + 2hapt (k. byl ), (56)

L[ Pk S () () ()
=7 ey 2 P AL

Eh ot )
_/(271)32}1:@% A, (59)

where we have normal ordered and changed the integration
variable to —p in the second term. We note that since
h? = 1, we can also write the eigenvalues as

5=\ (k| + hie)? + 073 (60)

Additionally, we note that as expected, @ = aw, where

= \/(p| + hper)? + M3, (61)

and p is the physical momentum corresponding to the
comoving momentum k.

B. Time-dependent mass and chemical potential

Now we consider the case in which both the comoving
mass and comoving chemical potential evolve in time. We
again use an expansion of the comoving Weyl spinor of the
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form of Eq. (46), and the equation of motion again requires
u and v to satisfy equations of the form of Eq. (47), but with

time-dependent quantities M; and fi.g.
We will consider solutions of the form

o A g i [ady B i [V
u(h’k)_\/z 1 fe +—\/§ 1+ e
A —iﬁ)"rbdﬁ_hﬁ i [l wan
LN R N s
(62)

As shown in Appendix E, this leads to the differential
equations

da  B1 [~ diy - dM;
—=—-=—=|M — (hlk —
d’7 2&)2 |: L d’7 ( | |+ﬂeff) dl’[ :|
el i aodn (63)
dp a1l [~ diig - dM;
—=—-=|M — (hlk
dyn 2 2 |: L dn ( | | +ﬂeff) dn
X e—2i j;;] (})dﬁ. (64)

We take the initial conditions to be a(n=0)=1,
B(n=0) =0. This is consistent with the normalization
condition |a|*> 4[> =1, and at t =0, the A operators
align with the a operators, so the Hamiltonian (at this time)
is diagonal when expressed in terms of either set. The
diagonalization of the Hamiltonian proceeds as in the time-
independent case, as discussed in Appendix E.

The effect of the time-dependent comoving mass M; and
chemical potential ji.; is to mix positive and negative
frequency modes, as is evident by the fact that f will
generally be nonzero at later times. From the transforma-
tion matrix Eq. (58), the operators that diagonalize the
Hamiltonian at later times will generally be nontrivial linear

combinations of a;,h) and a,(,hﬁ.

V. PARTICLE NUMBER AND LEPTON-NUMBER
OPERATORS

Next, we express the expectation values of the occupa-
tion number operator (for the physical eigenstates) and the
lepton-number operator in terms of the Bogoliubov coef-
ficients a and . As the operators A" and A" diagonalize
the Hamiltonian, these correspond to physical particles.
The procedure that we follow is this: We first express N,
and L. in terms of these operators and normal order (for a

discussion on normal ordering see [30]). We then express

(h)

the operator in terms of the a, * and al(,h>T operators using
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the transformation equations (58). Then, we take the
expectation value with the state |[VAC, 0), the vacuum at
time ¢t = 0.

The total number of physical particles of helicity 4 is

~ d*k T
Ny = / W(VAC;OME{” AMIVAC;0).  (65)

This operator is already normal ordered, so we proceed to
(h)

write this in terms of the time-independent a; " operators,

h)t 4 (h hy (h)t « (1 nyt (b
APTAN = |ﬁ|2aﬁkb>alg; + ha B¢ (k. h)a.” alglj

+ hapl (k. h) " + lafa) al. (66)

We assume that we are in the state |VAC, 0), the vacuum

state at time r = 0. Therefore, all operators of the form ag')

annihilate the vacuum. Therefore,
. ()t 4 (h) .
<VAC,0|AI~< A/E [VAC;0)
= [BP(VAC; 0la\" a!""|VAC; 0). (67)

This matrix element is

.0l ()T .
<VAC,O|al~CD ap, [VAC;0)
= (27)%6(0)8,,,(VAC; 0| VAC; 0)
n)i (h
- <VAC;O|a§~€D) a;{D)|VAC;O>
= Vem, (68)
where V., stands for the comoving volume [and we

have used the usual formal manipulation (27)35(0) =
[ d®xe™® =V, ]. This gives the expected result

- Bk
Ny, = ch/mwlgﬂz, (69)

where in general, § may depend on the momentum and
helicity, as we have noted.

Next we consider effective lepton number, which is
carried by the neutrinos. This charge is given by

Ly = / B} by . (70)

Following the procedure outline above gives us a normal
ordered expression
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- Bk hle hh.M_i,,d)_*Nhh
Lo / 3Z|:_f al;Zf dﬂChk) () () _Z_&I;EZL d”C(h’k)A]%D)A]%):|’ (71)

where the important steps are described in Appendix F. Taking the inner product with the t = 0 vacuum gives

- &k
(VAC;0|: Loy : [VAC; 0) = / > [(—f) (VAC;0]a" A [VAC; 0)
h

(27)

M M
S LA (v AC; 014" AV VA 0) - e e I (vAC; 0]AL" h)|VAC;O>] (72)
w

20

I
We express these in terms of the a") operators, which ~ which obey the differential equations
annihilate the state |VAC;0); however, now that we have
normal ordered the operator we are careful to maintain any
Dirac delta functions that arise from using the anticommu- da

tation relations. The second and third matrix elements are d_ﬂ =—cp-iva
( APAl T|VAC 0) = ha*BC*Vem fz_f = c(na+ i p, (76)
(VAC;O|A/~(D A].( |VAC;O> = hapf*CV n- (73)
Therefore, the lepton number as a function of time is where
(VAC;0|: Ly : [VAC; 0) L1 Ts di i,
c=372 M, d — (hlk| + fetr) an | (77)

=mJg§;@mm

> L h(ape™ Joaan afre™ Js @y | (74)  and we also have the normalization condition |a|? + ||* =
@ 1 along with the initial condition @ = 1 and § = 0.
Note that we can rewrite this so that the helicity &

where f = (h|k| 4 jiesr) / @. multiplies the chemical potential,

VI. ROTATED OPERATORS

At this point, it is convenient to define the rotated hl [~  dig - _ dML
operators: ¢=573 Mph dn _(|k|+h/"eff>d—n‘ (78)

= ae—iﬁ;’ adi
B = pe' Ji o (75)

In terms of these rotated coefficients, the number
densities and lepton number are
|

. 0~ . . d3k
(VAG;01: ¥ [VAC0) = Ven | 13551

Pk _ hlk| 4 fiess 72
(27,)3 - ” k,h

which has eliminated the fast oscillatory time dependence. The comoving number densities are therefore

{

2 M —% N — D%
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np =

3

[ s
=

]; |: h|k| +/'teff

At late times, the Higgs VEV v approaches zero, and
therefore the comoving VEV ¥ = av also does. Conse-

quently, M, — 0, jier — 0, and & — |I:t| Therefore, the
limit of the comoving lepton asymmetry is

~
fimi, = | %Z(—hnﬁm (81)
h

As expected, this is the difference in the number of helicity
states.
The physical number density and lepton density are

1 &Pk
0= 7| G Pl
1 &k
timn, = s [ 5 G I (82)

The final lepton asymmetry is given by

.. np
np = lim —
tlarge ny

. &P
T T 2B)T(P alt / )Z

h

h)Bi,l?. (83)

which should be evaluated at a time after the completion of
reheating, so that a(¢)7T(7) approaches an asymptotic
constant value, but before electroweak sphalerons redis-
tribute the charge between lepton and baryons. Following
this, further entropy production results in a final baryonic
asymmetry about an order of magnitude smaller than #; .

VII. APPROXIMATIONS AND NUMERICAL
ANALYSIS

During the evolution of the Higgs VEV, ¢(5) [defined in
(77)] is nonzero, which results in (1) # 0, signaling
particle production. Additionally, since c(n,h = +) #
c¢(n,h = —) generically, we expect a nonzero lepton
asymmetry. At late times, ¢(r7) — 0 for both helicity values,
resulting in 8 ~ exp(i |I~c|;7) which gives a nonzero asymp-
totic value for |3|2, which is not generically identical for the
two helicity values. Therefore, we expect a nonzero
asymmetry to survive at late times, after the Higgs VEV
(and hence M; and u) approaches zero.
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|ﬁkh|2 _L (khﬂkh_'_akhﬁkh) (80)

Calculating this asymmetry is complicated by the lack of
analytic closed form solutions to the differential equa-
tions (76), which must be solved numerically. In this
section, we introduce a sequence of useful approximations
which simplify this problem significantly; we then present
a numerical analysis of the resulting asymmetry. We focus
particularly on the range of parameter space in which an
asymmetry matching the observed cosmological baryonic
abundance is generated.

A. Higgs oscillations

We first note that it is desirable to have significant
damping in the oscillations of the Higgs VEV. This is
because the chemical potential i ~ v0' changes sign
frequently during the oscillations, and so whether particle
or antiparticle production is favored also oscillates.
Therefore, a significant damping in the amplitude of the
oscillation avoids washout from this alternation.

As we explain below, this allows us to make two
simplifications: First, that the asymmetry production occurs
on a time scale during which a(¢) is approximately
constant, and second, particle production occurs primarily
in those comoving momenta least affected by washout.

We noted above that washout is significant unless the
Higgs VEV is significantly damped. Consequently, the
asymmetry production is dominated by the particle pro-
duction during the initial relaxation of the Higgs VEV,
which may be a fast process, compared to the evolution of
the Universe. We have mentioned in Sec. II A that there are
several reasons why the Higgs field may have a large
vacuum expectation value after inflation. In one scenario,
the Higgs VEV grows due to quantum fluctuations within
the unmodified Standard Model, or alternatively, the Higgs
field may be trapped in a false vacuum during inflation. In
the latter example, it is quite natural that the evolution of the
Higgs VEV, once it is released from the false vacuum,
would occur on time scales 7 < 1/H. This is more difficult
to arrange in the former scenario, as the condition for
the VEV to grow requires m.; < H;, and the time scale of
the Higgs VEV evolution is ~1/m.g. Rapid evolution of the
Higgs VEV may still be arranged, as both m.; and H are
functions of time, although this may be somewhat
unnatural.

In the limit that the evolution of the Higgs VEV is rapid
compared to the expansion of the Universe, we may
approximate a(f) ~ a(tg) constant, where we define ¢ =
tg to be the time at which the Higgs VEV begins rolling
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significantly. The comoving momentum during the epoch
of particle production is k = a(tg)p, and it is convenient to

express f# and @ as functions of physical time ¢ instead of
conformal time #. They obey the differential equations

da -

T —C(1)p - iwa,
dp
v = C(t)a + iwp, (84)
with
) = 53 = 50z ML (H O + )
= (Ip| + hpese)* (H(6)M, + M)]. (85)

We remind our readers that the untilded p.¢, M, and w are
the physical, and not comoving, quantities. For self-con-
sistency, we drop the terms proportional to H(¢), giving

h

2k (86)

C(1) 5 [Mfiese = (Ip| + hpterr) M.
We emphasize that these expressions involve the physical,
not comoving, momentum. However, when the evolution of
the Higgs VEV is fast, these are related by the constant

factor a(tg); we use this assumption to write
ma(ts)’ /
=- E t
’/IL 241(3),1—'([)3 3 |/}ph E

where ¢ is the effective end of particle production. We
emphasize that our assumption is that a(¢) is approximately
constant while the neutrino asymmetry is produced (for
ts < t < tg), which allows us to use |k| ~ a(ts)|p| in the
integral of Eq. (83). Once the Higgs VEV relaxes to zero,
no further asymmetry is produced; however, the physical
volume continues expanding ~a(t)>. This is responsible for
the factor of a(z)? in the denominator, which may be large;
that is, this equation continues to hold even when
a(t)/a(tg) > 1, provided that a(rg) ~ a(ts).

Next we observe that if |$|> < 1 at all times, we can
approximate @ ~ 1 and the relevant differential equation is
simply

)P, (87)

(88)

Sample plots of w(#)>C(t) [the factor w? cancels the 1/w?
dependence in Eq. (86)] and C(7) are shown in Fig. 1. We
note that M, /ue ~ y2M*v/Mybv ~y2M?/H,My, and
y2/My ~ 10720 GeV~! is fixed by the observed neutrino
masses differences. Therefore, it is not surprising that for
these parameters the typical scale of p¢ = p is about 12
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FIG. 1 (color online). C() (top) and w(¢)*C(t) (bottom). The
solid lines are for 4 = +1, while the dashed lines are for h = —1.
These plots cover the initial pass of the Higgs VEV to zero. For
concreteness, we have used the IC-2 scenario of Refs. [5,6] with
the parameters A; = 103 GeV and I'; = 10° GeV, along with
M, the scale in O, equal to 10'' GeV. This is about 4 orders of
magnitude larger than the initial Higgs VEV. pu.. is the
maximum of |u(#)|. Units are appropriate powers of GeV.

orders of magnitude larger than the typical scale of M.
We proceed to describe the qualitative behavior of
these plots.

The C(¢) panel (top) has a sequence of sharp peaks for
h = —1, of alternating sign, while these peaks are absent
for h = +1. These are a consequence of the 1/w? factor in
C(t). We note that during the initial pass of the Higgs field
towards zero, u(t) is positive, and therefore, @ ~ |p| + hu
has a significant cancellation when |p| ~u for h = —1,
while for & = +1 these factors always add. Additionally,
for h = —1, |p| + hu changes sign at this peak. As the scale
of i is larger than the scale of the left-handed neutrino mass
M, C(1) changes sign “within” this peak. This is respon-
sible for the very sharp positive and negative peaks. When
evaluating this integral, these peaks cancel to a significant
precision.

To understand the behavior better, we consider @*C(1),
which eliminates the sharp peaks. This plot is shown in the
bottom panel of Fig. 1. We observe that in contrast to the
C(t) plot, the h = +1 functions generally have smaller
magnitudes than their 4 = —1 counterparts. This is because
C(t) « |p| + hu, and so there is a partial cancellation that
affects w also affects the overall magnitude of C(r)
for h = —1.

Additionally, for h = —1, the factors of (|p|+ hu)
change sign (since y is negative), which affects the M.
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This factor is responsible for the various sign changes in the
bottom plot of Fig. I, even though the Higgs VEV is
decreasing during the entire time shown. We also note that
the sharp spikes occur when g = 0, and so, momentarily,

these plots are dominated by the M . term, which (at this
time) happens to be much larger in magnitude.

As a simpler toy model, we consider a Higgs field which
obeys the equation of motion,

d*v dv dv
dt2+3H S miy Ty =0, (89)

along with the boundary condition v(#) = v, ¥(fy) = 0.
This is easier to analyze numerically, as opposed
to considering the Higgs potential with running, and
temperature-dependent, coupling constants. Furthermore,
the Standard Model Higgs field decays primarily through
nonperturbative effects [4,31]. For self-consistency, we
again assume the Hubble friction term is negligible. This
has the approximate solution

v(t) = vge =02 cos(Q(t — 1)), (90)

where Q = /m? —T'},. We have taken 7 = 0 as the time at
which the Higgs starts oscillating, and so tg = 0.

We note that a particularly interesting scenario is the
case in which the potential V(v) = Av*/4; this is well-
motivated by the fact that the Standard Model potential at
large VEVs is dominated by this term. In this case, the
term m?v in the equation of motion would be replaced by
Aer??, and in the solution the cosine function would
instead be cn(vyt/A!/4), where cn is a Jacobi sinusoidal
function [32].

The Higgs potential is not known at large VEVs;
therefore, we will consider the parameters vy, m, and I'y
to be independent, and furthermore, which may be chosen
independently of any parameters describing inflation and
reheating. We do note that in the scenario in which the
initially large Higgs field VEV is produced via quantum
fluctuations, v, will be determined by the scale of inflation,
although it will also be affected by any higher-dimensional
operators that influence the Higgs potential.

We also made these further approximations: First, we
assumed Q > 'y, such that

Y
M, ~ ﬁe‘rﬁ’(l — cos(2Q1)),
2,2
. Q
My~ =200 o Tut gin(2Q1),
M,
2Q
U % e Tnlsin(2Q1),
292
i 2 Tt cos(2Q1), (91)
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Although we want significant damping, this is self-
consistent, as we must have Q > Ty in order for the
Higgs VEV to undergo oscillatory motion.

Next, we observe that the d°p integral is dominated by
momenta |p| ~ piy., Where g, is the maximum of |u(7)]
This is because these momentum values suffer the least
washout during the subsequent oscillations of the Higgs
VEV. Therefore, we approximate

(S Zhw,,nm (tp)2. (92)

B. Low scale of inflation

For simplicity, we assume coherent oscillations begin
instantly at the end of the inflationary epoch. We normalize
the scale factor to one at the end of inflation, when the
coherent oscillations of the inflaton start. In the following
computations, we approximate that the Higgs oscillations
also start at this time. This is a good approximation in the
case when the Higgs VEV is prevented from rolling by
Hubble friction; when the Higgs is instead trapped in a false
vacuum, this approximation will only be valid for suffi-
ciently small barriers.

Next we consider the factor of a(#)3T(¢)? in the
denominator of # given by Eq. (92). We emphasize that
a(t)T(t) is the value approached at relatively late times,
well into the radiation dominated epoch after Higgs
relaxation has ended, but before the Standard Model
degrees of freedom have decoupled. This is completely
determined by the two inflationary parameters, the infla-
tionary scale A; and the decay rate of the inflaton, I';, where
the Hubble parameter during inflation is

8 A2
H, = 93
3 93)

Since we do not fix a specific model of inflation, we take
these to be independent parameters. We note that a(z)7(¢)
becomes constant once reheating has completed, and the
asymptotic value is shown in Fig. 2. We can obtain the
scaling of this factor as a function of the parameters of
the inflationary sector, under the assumption of instanta-
neous inflaton decay at H =1 and of instantaneous
thermalization. This gives

A4/3
a(t)T (1) W (94)
Pl
or in terms of the reheat temperature,
1 Try
, 95
(7@ A >

where we recall that the scale factor a has been normalized
to one at the end of inflation, which we take to be
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FIG. 2 (color online). Contours of asymptotic late time aT’; the
scale factor is normalized to 1 at the time the inflaton starts
oscillating. In the gray area, I'; > H/, and there is no inflationary
epoch.

simultaneous with the beginning of Higgs relaxation. We
see that a large baryon asymmetry is obtained for a low
inflationary scale. For this reason we consider values in the
bottom left corner of Fig. 2, which are characterized by a
relatively low A;. By consistency, Try then needs to be
below A;.

We note that altering A; and I'; may modify the evolution
of the Higgs VEV, particularly if finite temperature cor-
rections to the Higgs potential are significant. In particular,
in scenarios in which the Higgs VEV begins in a false
minimum which is destabilized by thermal fluctuations,

there is a minimum reheat temperature which constrains A;
and I7}.

C. Numerical example

As a numerical example, we used v =M =Q =
10" GeV  and Ty =10"" GeV, which  gives
Hmax X 4.6 x 101 GeV. A plot of C(t) is shown in
Fig. 3; the above-mentioned spikes are small for these
parameters.

p asymptotically approaches 0.0008 (for & = +1) and
0.006 (for h = —1). We have verified that § < .1 at all
times, so that our approximation in Eq. (88) is reasonable.
The resulting asymmetry is

10?8 GeV?
N——. 96
We must ensure that the Higgs energy density does not
dominate the energy density of the Universe, causing
additional inflationary expansion, which requires
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FIG. 3 (color online). C(t) for vy = M = Q = 10> GeV and
I'y = 10" GeV, which governs the differential equations for j.
Units are GeV~! for time and GeV for C(z).

A; = 10" GeV. For the minimum value, the inflationary
Hubble parameter is then H; =2 x 10° GeV. If we
take T; =10° GeV, then at late times a(t)T(t) —
5 x 10" GeV. The resulting lepton asymmetry 7, ~ 107"

We note that as m ~ Q > H/, a realistic implementation
of these parameters would likely have the Higgs VEV
trapped in a false vacuum. The relaxation of the Higgs field
would then commence after the start of coherent oscilla-
tions, Or fg > fendofinflation- 1N€ asymmetry is then enhanced
by the factor a(tS)B/a(tend0finﬂation)3 > L

This asymmetry will be diluted by a factor of 30 due to
further entropy production, and it will be distributed
between baryons and leptons by electroweak sphalerons.
Therefore final baryonic asymmetry is about 1 or 2 orders
of magnitude smaller.

In summary, we have shown an explicit numerical
example in which the asymmetry generated through neu-
trino production is more than sufficient to explain the
cosmological baryon abundance. We have also seen that
production of a large asymmetry requires significant
damping of the oscillations of the Higgs VEV, and also
favors a low inflationary scale.

VIII. CONCLUSIONS

In this work, we have explored particle production
during an epoch of post-inflationary Higgs relaxation, with
a particular emphasis on the production of a lepton
asymmetry, which can be converted into the observed
baryonic asymmetry. Unlike in previously considered
models [5,6], the asymmetry considered here is produced
via the evolution Higgs condensate directly, and does not
involve interactions in the plasma produced by inflaton
decay. Therefore, these models do not require a fast
reheating, and in fact, we have shown a low reheating
scale is desirable.

In particular, we have introduced a specific Og operator
which involves only Standard Model fields (although
extensions of the Standard Model may be necessary to
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produce this operator). This operator produces an effective
chemical potential for lepton number.

We have solved the equations of motion exactly, includ-
ing both this operator and a time-dependent Majorana
mass. We then used a Bogoliubov transformation to relate
the time-dependent creation and annihilation operators to
the corresponding operators fixed at the time when the
Higgs relaxation began. The resulting Bogoliubov coef-
ficients describe the rate of neutrino production during
Higgs relaxation. From this, we calculated the resulting
lepton asymmetry.

After completing this formal analysis, we performed a
numerical analysis, using a simplified model for the Higgs
condensate evolution. This emphasized the importance of
rapid condensate decay, which suppresses washout due to
the oscillating sign of the effective chemical potential, and
also the low reheat scale. We developed an approximation
scheme that smooths out the sharp peaks that occur when
Ip| ~ u(t). We finally illustrated a choice of parameters for
which the resulting asymmetry is comparable to the
observed value.

Our scenario differs significantly from other scenarios of
leptogenesis. In particular, the asymmetry can be generated
for reheat temperatures well below the right-handed neu-
trino masses. This paves the way for a supersymmetric
generalization of the model in which the problem of
gravitino overproduction does not arise. Furthermore, the
final asymmetry is not tied to the parameters of the neutrino
mass matrix as in thermal leptogenesis, and a successful
leptogenesis is possible even for the neutrino masses above
0.2 eV, in which case thermal leptogenesis is stymied by
excessive washout [33].
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APPENDIX A: THE ORIGIN OF THE
Os OPERATOR

In this appendix, we discuss methods of generating the
Qg operator

<I)2
Lo, = _Way]g‘+L' (A1)
In the Standard Model in a flat static spacetime, the ABJ

(Adler-Bell-Jackiw) anomaly allows the relation
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2 2
; 93 I
Ol ="y (32712 SRRy = 32 " BuBa )

(A2)

where A and B are the SU; (2) and Uy(1) gauge fields,
respectively, and n, is the number of fermion generations.
The substitution of Eq. (A2) into Eq. (A1) is valid when the
decay of electroweak sphalerons is fast, as compared
to the Hubble parameter. Otherwise, the term (A1) involves
the Chern-Simons number density, which is not changed by
Higgs relaxation unless the phase of the Higgs VEV
evolves.

As to coupling these gauge fields to the Higgs field, we
note that an effective term of precisely this form can be
generated within the Standard Model, using quark loops
and the CP-violating phase of the CKM (Cabibbo-
Kobayashi-Masakawa) matrix [34,35]. This term is small
due to the small Yukawa couplings and small CP-violating
phase. However, such a term can also be generated by
heavier states with a different source of CP violation. The
scale in the denominator may be the temperature, due to
thermal loops, or the mass scale of new physics [34-37].

The sphaleron transition rate per unit volume at finite
temperature, for constant Higgs VEVs, is

Fsp = ka%VT4 exp(_MW/gWT)’ (A3)
where the exponential factor accounts for the suppression
due to being in the broken phase; it is equivalent to
exp(—v/2T) where v is the Higgs VEV. Electroweak
sphalerons are in equilibrium when this is greater than
H*, where H is the Hubble parameter. The transition rate in
the presence of a quickly evolving Higgs VEV has not been
explored, although the rate during the electroweak phase
transition from » = 0 to v = 247 GeV has been analyzed
on the lattice, as a function of v(T) [38].

In Sec. V, we found that the asymmetry is suppressed by
a factor of (a(#)T(t)), which favors a low inflationary
scale. This generally corresponds to a slow reheating, while
Higgs relaxation frequently occurs on a faster time scale.
Therefore, during much of the relaxation period, v 2 T and
the sphalerons may not be in thermal equilibrium; the
conditions for electroweak sphalerons to be in thermal
equilibrium in the presence of a time-dependent back-
ground have not been extensively explored.

In each oscillation of the Higgs VEV, there is a brief
period as the VEV passes zero during which v < 7', during
which the above-mentioned suppression is absent. This also
corresponds to the time of maximal particle production,
which occurs when v = a(7)v(r) = 0. However, the time
when the maximal asymmetry is produced is slightly offset
from this time, as the effective chemical potential ;i 77’ is
zero when v = 0. It seems unlikely that the time scale of
sphaleron transitions will be less than the relevant time
scale during which v <7, even if the time of maximal
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asymmetry production is within this period. At the very
least, it is difficult to arrange for this to hold.

Therefore we note that, if there is another gauge group
which couples chirally to leptons, it will also contribute to
the divergence in Eq. (A2). (The chiral coupling is
necessary due to Furry’s Theorem.) Provided that inter-
actions between the gauge field configurations and
fermions are in thermal equilibrium, we find

. n,Cq’
0,J554, = (EW anomaly) + 3‘927€aﬂ/w

FrEes,  (A4)
where F is the new gauge field and C is a constant
determined by the charges of the leptons and baryons
under the new gauge group. Provided that these gauge
bosons acquire masses which are not proportional to the
Higgs VEV, it is possible for these to be in thermal
equilibrium at the relevant temperatures. [There may
dynamical symmetry breaking in this sector, via a separate
Higgs mechanism, or in the case of a U(l) symmetry,
via the Stiickleberg mechanism.) This equation can be
rewritten as

ngCg2

3272 (A5)

uwEaf M
€a/fﬂuF F = wJB+L-CS>

6(1/)’;/5
24

n,Cq* ea ) n
ﬁeaﬂﬂvp‘ FY =V, ir—cs = 32—;;[2 (I-N) (_

1 1
—— (RS, ——Rs") ).
i (rsi=3n) )

where S describes the torsion of the spacetime, and R is the
usual Ricci scalar. However, if there are the same number of
right-handed and left-handed neutrinos then

n,Cq* .
ﬁeaﬂquﬂyFaﬂ = vﬂJl;iJrL—CS‘ (A7)
We consider only the scenario with N = 1; that is, there are

the same number of right-handed and left-handed neutrinos.

APPENDIX B: CONFORMAL HIGGS FIELD
EQUATION OF MOTION

Although we will use a toy model for our numerical
analysis, it is beneficial to find the equation of motion for
the comoving VEV 7. From the Lagrangian in Sec. II,

a” oV B

— =0, Bl
a ov (BI)
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where j.g is the current associated with the electroweak
Chern-Simons charge density. If the electroweak sphaler-
ons are out of equilibrium, this is conserved, and therefore
has no effect on the analysis of Secs. III through VII
(similarly to how the baryonic current has no effect).

Therefore, if the electroweak sphaleron rate is insuffi-
cient, we can couple the Higgs boson to a new gauge field
combination, €4, F*’F%, to generate a term similar to
(A1). As in the electroweak case, the coupling of ®? to
€apuF*F? can be accomplished through either thermal
loops or heavy fermions. In the latter case, it is important
that the fermions do not acquire masses through the
Standard Model Higgs mechanism; otherwise, the Higgs
VEV dependence cancels out. Such fermions may have soft
masses similar to higgsinos and gauginos in supersym-
metric models, or if a different Higgs sector is used to give
masses to the F gauge boson, this field may also give
masses to the relevant fermions.

The divergence equation (A4) holds only in static, flat
spacetime; the situation is more complicated in a curved
and/or expanding spacetime. Generically, there may be
contributions on the right-hand side of the anomaly
equation, proportional to the gravitational anomaly [39].

If there are Nn, right-handed neutrinos present, then
(generalizing the results of [39])

afyd

1 1
RuopR™ s + —o= SpySsa + - LISE + % (878%S,).,

48 6

(A6)

[
where the derivatives signified with a prime are with respect

to n and V = a*V. We note that this is equivalent to the
differential equation for the Higgs VEV v

0
o pgdv OV

w T (B2)

It is necessary to express the potential in terms of comoving
fields; as an example, we will do this with the I-loop
Standard Model Higgs potential, including finite temper-
ature corrections. (However, in our numerical analysis, we
will make use of a simpler effective potential for the
evolution of the Higgs field.) The one-loop, zero temper-
ature potential V, times a*, can be written
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2
Sloloop _ A7 5.y Aoy
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) ()

e (7)) (7))o (o(57) )]

where S is the renormalization scale and the physical
masses for the Higgs boson, Goldstone mode, W bosons, Z
boson, and top masses are

2 (92 +g/2>1}2 ViU
) mZ _fy
2

mg = my + Av’.

2.2
m2 _L’l)
Wy

2

my = my + 3%, (B4)

It is convenient to define a comoving renormalization

scale, S = aS, along with comoving masses
|

A, 1

2 772
myv° + - +(4ﬂ)2 1 2

[0 (1

(B3)
2,2 2~2
=0 _ 29V
my =a 1 )
’;hz _ (92 +g/2)a2v2 _ <92 _'_912)2172
z 4 4
=l =0 @ = a2 (md + 240%) = i + 27

(BS)

These have the same functional dependence on » as the
regular masses have on v. Then the one-loop potential can
be written:

) (4))

" 3ﬁ’v;<5)4 <ln <’71vg(217)2) 3 %) N 315124(17)4

(m (mzs(; >2> —%) - 3ﬁ1t(v)4<ln <m’;f )2) —%)} (B6)

We note that care must be used in evaluating the running couplings as functions of the comoving fields. During reheating
finite temperature corrections may also be relevant; in terms of the comoving fields, these are

Vr(0,T) = - a;”]: [6asz(U)2JB <mWT(v)) +3a’mz(v)* g (mZT(U)) + 12a’>m,(v)*J p <mt;v)>]

27>

where

and we have defined 7 = aT. Note the first three terms of
Egs. (B8) and (B9) are fairly good approximation.
The relevant potential for the comoving VEV is then
V(i T) =V, (@) + V(.7). (B10)
We note that as in [5,6], it may be necessary to add further
higher-dimensional terms to the potential to produce a

_r [6%(5)2]3 <’"WT<”)> + 31y (9)2J (’"2(”)> + 127, ()2 (W;U))] ;

z (B7)

|
quasistable vacuum at large VEVs and/or to suppress
isocurvature perturbations due to variations in baryon
density. Additionally, dissipation effects may be relevant,
and can also influence the production of a baryon asym-
metry [40].

APPENDIX C: TWO-COMPONENT
SPINOR CONVENTIONS

In the chiral basis, the Dirac y matrices are

and the projection operators are
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O R T e L L

0 1 0 0

We also use the four-vector of Pauli matrices,

I note that . .
o' =(1,0") o' = (1,-0"). (C3)
APPENDIX D: DIAGONALIZING THE
(0 ! ) (©3) HAMILTONIAN (CONSTANT MASS
’ AND CHEMICAL POTENTIAL)

In this appendix, we present the important steps leading
from Eqgs. (55) to (56), for the interested reader. The two

and the complex conjugation operator is given by terms in (55) can be written as

N &k =, — o~ F (R) (bt (R =, S = (W (R (W) (<
/ dxi} ddy = / (2”)32{[u<h,k> dou(h. k))ay" a " = [u(h, k) ov (A, kp) a5
Ryt (=h)t (—f_’)]

(h) 5 ) (_h)-l-)((ﬁ) + [v(h,ic)dov(l_l, 1~<)*]ag’)a§~c >-)(]; 1

- [U(hvi()ao”(}_l’ %D)]a,; 4k i (D1)

’

where we use the notation pj, for the four-vector (E, —k). Similarly,

d3k . n _ . _ s
/ &x(00} )0, / 32 (k. Ryaou(h. k)*)a)”" a5 = [o(h, k) douh. k)*la™ a5

- [u(h,kD)aov(h,k)}a,gma,g;xlg"’”x(_’g + [o(h. k) ogu(h. K)]alal T ), (D2)

{(=k,h) = —n(k, h)
AP =, {(~k,~h) = " (k. 1)
) ) (D4)

—h)t . (~h
)(,g )(,(( '= O_p-h = Onj»

To evaluate the products of the spinors, we note that

(k) = Lk, )y ™ (k). (D3)
Additionally using the anticommutation relations, we may

where { is a phase that obeys write the Hamiltonian as

:%/(jﬂl; Z[[ (h, k)*0gu(h, k) — u(h, k)ogu(h, k)* — v(h, k)ogv(h, k)* + v(h. k)*ov(h 0] (h)’ragl)
= [u(h, k)" dgv (k. Kp)* = v(h, k) dgu(h, )| (k. mal a"
— [v(h, k)dgu(h, kp) — u(h, kp)dgv(h, k)|¢ (K, h)*ag;)a]%m]. D3)

We note that the u’s and v’s depend on the momentum only through |k|; therefore, u(h.kp) = u(h, k) and

v(h, kp) = v(h. k). The first combination is

- - 7 Py k) = v(h.k)dgv(h. k)* = 2id[af? -

u(h, k)*ogu(h, k) — u(h, k)ogu(h, k)* + v(h, k)*dyv(h, k) 2], (D6)
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while the other two are related by complex conjugation.
One can show

u(h. kp)*ogv(h, k)* — v(h, k) dou(h. kp)* = 2idha*f*.
(D7)
Together these give Eq. (56).
APPENDIX E: DIFFERENTIAL EQUATIONS
FOR BOGOLIUBOV COEFFICIENT

In this appendix, we present the important steps in
deriving the differential equations (64) from the equations
of motion. First, we introduce the notation

|

du o g i in P

dn Vo N dar dn
dv .. ha —if”(bdﬁ io hﬂ

— = =1l —= e 0 _e

However, these functions also satisfy

f aap_, du duda dudp

da dr/ dp dn

PHYSICAL REVIEW D 92, 023509 (2015)

g+ = 1£f. (El)

The equations of motion require

du ~ - ~
i— + hlk|u + figeu = hM v,
dn

= —hMu*. (E2)

Since a, f, and @ are time dependent,3

a die_lf wdﬂ+ ﬂ g+ f](l')dﬁ (E3)

dBdy ' /2 dn V2 dn

lf wdn + = dvda dv dﬁ+ ha ngr e—zﬂ) odi hﬁ dg— lf (Ddﬁ. (E4)

V2 dn V2 dn

i g e BN i P 0 R, B) + (R, R) = BT o(h, )

\/i

ﬁ
\/E

—i——

M S5 o, B+ iago(h. B = —hiT,u(h, Ry, (ES)

which allows us to simplify the above equations of motion to

\}Ejzg_e—ifﬂid;dﬁ n \}ijﬁ +eiﬁ)’i(bdﬁ n j_éilgn_ o1 [l \,fgddg’;r o Jladn _
h da —lf wdi hl dﬁ f wdi ha dg+ —lf odij hﬁ dg— If wdip
—_—— — =0. E6
T T A ¢ V2 di (E6)

We may transform these into equations for the derivatives of a and S,

d f a)dn o ( dg_
——(g> + — —+
1 dp o a dg_
\/—d’?(9++g f bl — 7—( ——g
We note that
FAE=1+f+1-f=2, (E9)
and
dg_ dg, 1 df df
— - - =0. E10
g B (- L (E10)

’If F is the antiderivative of @, then [ @dij = F(n) — F(0).

Differentiating this with respect to 7 then gives @ ().

dn

+ddg+>e ,f(;za;dﬁ_£<g dﬂ—g %)ei O”&;dﬁ’ (E7)
n

V2\""dn 7T dn
dg. —if" aan P dg, dg_ if” @di
A P A ES
) 0 V2 T dn 9 dn . (E8)

The remaining combination is
dg, dg_ 1 df
9= G —
dp "Tdn 1= f2dn

Therefore, these equations simplify to

(E11)

@ _ ﬂ 1 df sz wdﬂ

dn 2./1 = f2 d17

dﬂ g 1 df —21f wdn E12
dn 2\/1-f2 dr] (E12)
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(hlle| + fieir) /0, \/T= f? =

da__p i [1dis
dp 2M, @ dn
@_a w |:ldﬁeff

dn_EM_L @ dn

Since f =

h|i‘| + Heft

h|i‘| + Hefr

Finally, we can combine the dj.y/dn terms, using
92 — (h|p| + fiesr)* = M7. This gives Eq. (64), as desired.
Applying Eq. (E8) in Eq. (E4) gives

du A i [Ty | - P i [! i

— = —lw—q._e 0 +iw——=qg.e Jo E14

dn \/ig \/§9+ ( )

dv .. ha —if"(bdﬂ .~ ﬁ l'fq&)dﬁ
—iw—=g 0 iw—=g_e Jo™, E15

dn V2 - V2 s

which shows that the diagonalization of the Hamiltonian
proceeds as in the time-independent case.

- diigy  ~ dM i (" oo
~3 <(h|k| + Hett) Her + M Lﬂe 2 fy o,
w n dn

- Bk
Loy 32[—f (laf? = 18P)al"

PHYSICAL REVIEW D 92, 023509 (2015)

M 1/ @, using the definition of @ above. Differentiating f gives us

oy ~ dﬁeff Iy dML 21 wd
hlk M "
I+ ) D 1, %

(E13)

APPENDIX F: EFFECTIVE LEPTON-NUMBER
OPERATOR

In this appendix, we derive Eq. (71), starting from
Eq. (70). Using the orthonormality of the spinors, anti-
commutation relations, and the fact that u(r, kp) = u(r, k)
and v(r, kp) = v(r, k) because the three-momentum only

appears as |I~c| inside u and v allows us to write

7 2 (r) r)
Lot = 3 E (Jul® -

- u*v*ag )Tag

P, C(k r)—f—vua( a C(k r)*.  (F1)

k

Next we evaluate the products of the u’s and v’s,

Q « =20 | @dy wp 2i [Todiy (W)t (h)
— (aff*e J; + a*pe Js )aic S

_ h|:2 (aze—Qiﬁ)"(Ddﬁ —ﬁ2€2ivﬁy&)dﬁ) +faﬁ:| C(i‘,h)*al(;h)algh)
0 D

_h[zw( «2 th wdij ﬂ*z —th (udn +f *ﬂ*:| Z:( ) (h)Tagh)T:| (FZ)

where f is (h|k|

where

d3k M —21 (1} 1 0] h
ALeff:/ 2,,(,32#{“& 2 o @dil *ﬁzf d”)al(c)

2 2i |"éodq 2 =2i |"@diy /7. nt (h)
~hy (@2 [ g, ">c<k,h>a,%)a%ﬁ}'

Inverting the transformation equations gives

Using this, we find

kp

— [leir) /@ as above. Using the transformation equations, we recognize that this is

3
~eff / s 32

A + ALy, (F3)

1 _ h
al(;h) _h2( 2 2lf adi ﬁ2 2lf u)dn)z:(k h) (h) (’)

4, %

(F4)

(h)t
—hpee [ Az
o ) ( A<h) ) (FS)
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ALy = / ("—kMLZ 2 o (2laplpR — a1 — |al*)cal A%

27a)’

We note that |af* + 2|a?|]* + |B|* =

ALy =

27m

Substituting this into Eq. (F3) gives Eq. (71).

_/ d3k MLZ 2szdnCA TA

PHYSICAL REVIEW D 92, 023509 (2015)

_Ziﬁ)ﬂtbdﬁ(_z‘a|2|ﬁ|2 —Ja]* - |ﬁ|4)§*A§}f;)A]%h)].
(F6)

(la)* + |B|*)> = 1 by the normalization condition, so this gives
_2,f wdqc* A (h) ] (F7)
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