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During inflation, scalar fields, including the Higgs boson, may acquire a nonzero vacuum expectation
value, which must later relax to the equilibrium value during reheating. In the presence of the time-
dependent condensate, the vacuum state can evolve into a state with a nonzero particle number. We show
that, in the presence of lepton-number violation in the neutrino sector, the particle production can explain
the observed matter-antimatter asymmetry of the Universe. We find that this form of leptogenesis is
particularly effective when the Higgs condensate decays rapidly and at low reheat scale. As part of the
calculation, we present some exact results for the Bogoliubov transformations for Majorana fermions with a
nonzero time-dependent chemical potential, in addition to a time-dependent mass.
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I. INTRODUCTION

During the inflationary era, the Higgs field may develop
a stochastic distribution of vacuum expectation values
(VEVs) due to the flatness of its potential [1–3], or it
may be trapped in a quasistable minimum. In both cases,
after inflation the Higgs field relaxes to its vacuum state via
a coherent motion [4–6]. At large VEVs, the Higgs field
may be sensitive to physics beyond the Standard Model,
and new terms in the Lagrangian, such as those considered
in models of spontaneous baryogenesis, can generate an
effective potential for baryon and lepton number [7,8].
These terms couple the time-dependent scalar condensate
to the lepton (and baryon) number currents. Consequently,
the thermal bath of particles produced by reheating can
lower its energy by converting particles into antiparticles,
through scattering involving neutrinos, whose Majorana
mass violates lepton number [5,6]. This scenario can
explain the observed matter-antimatter asymmetry of the
Universe; it requires sufficiently fast reheating, such that
the plasma forms before Higgs relaxation is complete,
which restricts the possible parameter space. In addition to
the Higgs boson, an axion or a Majoron relaxation could
generate the baryon asymmetry of the Universe [6,9,10].
However, the relaxation of the Higgs vacuum expect-

ation value itself results in particle production. Generically,
a classically evolving background scalar field coupled to
quantum fields results in particle production; this can be
understood as a consequence of the fact that the initial
vacuum state (which is annihilated by the appropriate
annihilation operators at t ¼ 0) is not annihilated by the
appropriate annihilation operators at later times [11–13].
(More specifically, the time-dependent background mixes

positive and negative energy solutions of the field equa-
tions, and so an initially diagonal Hamiltonian is non-
diagonal at later times.) This can result in the production of
both scalar bosons [12,13] and fermions [14,15], provided
that the classical scalar field is coupled to both. This has
been explored extensively with respect to the inflaton (e.g.,
[16–18]). In this work, we calculate the excess of neutrinos
over antineutrinos produced by the evolving Higgs con-
densate in the presence of chemical potential, generated by
higher order terms in the Lagrangian, which distinguishes
particles from antiparticles.
During the oscillations of the Higgs condensate, the

effective chemical potential changes sign, which alternates
whether the production of neutrinos or antineutrinos is
favored. Therefore, the maximal asymmetry is produced
with the Higgs condensate decays quickly, which mini-
mizes this wash out. Furthermore, this mechanism favors a
low reheating scale, which minimizes entropy production.
The outline of this paper is as follows: In the next

section, we introduce our model, including the O6 operator
which gives rise to an effective chemical potential for
lepton number. Subsequently, we derive an effective
Lagrangian by integrating out the weakly interacting
right-handed neutrino states, and we specialize to the case
of a single fermion family. In Sec. IV, we quantize this
system and find the Bogoliubov transformation equations
which describe particle production. Following this, we
define the occupation number of the physical eigenstates
and lepton number. Finally, we present a numerical analysis
of our model, which demonstrates that resulting asymmetry
can be sufficiently large to account for the observed matter-
antimatter asymmetry.
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II. THE LAGRANGIAN

In this section, we introduce the model Lagrangian. We
begin with the action in general curved spacetime

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ð1Þ

with a Lagrangian

L ¼ LH þ Ll þ LO6
þ LSM; ð2Þ

where we use LH to denote the Higgs sector contribution,
Ll to denote the lepton sector contribution, LO6

to denote
higher-dimensional operators which will generate an effec-
tive chemical potential for baryon and lepton number, and
LSM represents the Standard Model contributions that do

not appear in LH or Ll. We consider an expanding FLRW
(Friedmann-Lemaitre-Robertson-Walker) spacetime with
signature ðþ;−;−;−Þ.
The purely Higgs sector contribution is

LH ¼ gμν∂μΦ†
∂νΦ − VϕðΦ; TÞ; ð3Þ

where VϕðΦ; TÞ is the Higgs potential, including any
relevant loop and finite temperature corrections. We note
that, as with the models discussed in [5,6], the potential
VϕðΦ; TÞ may require higher-dimensional operators involv-
ing the Higgs field Φ (and possibly the inflaton field I) in
order to suppress isocurvature perturbations resulting from
variations in the produced baryon density [19–21]. The
Higgs sector is discussed in more detail in Sec. II A below.
The lepton sector Lagrangian includes the terms

Ll ¼ i
X

L̄

�
gμν ~γμ∂ν þ

3

2
g00

a0

a
~γ0

�
Lþ i

X
N̄R

�
gμν ~γμ∂ν þ

3

2
g00

a0

a
~γ0

�
NR −

X
ylL̄ΦlR

−
X

yνL̄ΦNR −
XMN

2
ðNRÞcNR þ H:c:; ð4Þ

where L denotes left-handed lepton doublets, l right-handed
charged leptons, and NR right-handed neutrinos, and we
implicitly sum over indices and families. The gamma
matrices in the FRW metric are related to those in flat space
time by ~γμ ¼ aγμ. We note in Eq. (4) the effect of the spin
connection evaluated on the FLRW background. This
Lagrangian will be discussed further in Sec. II B below.
The third part of the Lagrangian is the higher-

dimensional operator

LO6
¼ −

Φ2

M2
∂μj

μ
BþL; ð5Þ

where jμL is the lepton current density. One possibility for
generating an operator of this form is to couple the Higgs
field Φ to the SULð2Þ × UYð1Þ gauge fields A and B by

O6 ¼ −
Φ2

M2

ng
32π2

ðg22ϵμναβAa
μνAa

αβ − g21ϵ
μναβBμνBαβÞ; ð6Þ

which can be written in the form of using the electroweak
anomaly equation [7,8]. This transformation requires the
electroweak sphalerons to be in thermal equilibrium, which
may not be satisfied here, although the situation is
complicated by the time-dependent Higgs VEV. For these
reasons, we discuss other ways of generating this operator
in Appendix A.
We will discuss the role of this term further in Sec. II C;

for now, we note only that in the presence of this term, the
Higgs evolution induces a chemical potential that distin-
guishes particles from antiparticles.

Before we discuss each component separately, we will
first rewrite the action using conformal time, such that the
metric is gμν ¼ a2ðηÞημν, and1

η ¼
Z

t

0

dt̄
aðt̄Þ : ð7Þ

It will be convenient to define the “comoving” fields,

~ϕ ¼ aϕ ~ψ ¼ a3=2ψ ð8Þ
such that we can write

S ¼
Z

d4xð ~LH þ ~Ll þ ~LO6
þ ~LSMÞ ð9Þ

where

~LH ¼ ∂
μ ~Φ∂μ ~Φ −

a00

a
~Φ2 − ~Vϕð ~Φ; TÞ;

~Ll ¼ i
X

~̄L∂ ~Lþ i
X

~̄NR∂
~NR −

X
y0 ~̄L ~Φ ~lR

−
X

y ~̄L ~Φ ~NR −
XaMN

2
ð ~NRÞc ~NR þ H:c:;

~LO6
¼ −

a4 ~Φ2

M2
∂μj

μ
BþL;

~LSM ¼ a4LSM: ð10Þ

1Throughout this paper, we will use primes to denote differ-
entiation with respect to conformal time, dots to denote differ-
entiation with respect to physical time, tildes to denote comoving
quantities, and hats to denote two-component fields. Where
necessary, we will use bars in dummy variables.
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In the first equation, we have defined a comoving poten-
tial ~Vϕ ¼ a4Vϕ.
In the next subsection, we consider how the Higgs field

might acquire a large VEV during inflation, which relaxes
to its equilibrium value during reheating. Then we consider
how this affects the quadratic terms in the lepton sector;
subsequently, we demonstrate that when the Higgs VEV is
in motion the O6 operator produces a chemical potential
for baryon and lepton number. Finally, we gather together
the relevant contributions to the Lagrangian in the final
subsection.

A. The Higgs sector

The Standard Model Higgs boson has the tree-level
potential

VϕðΦÞ ¼ m2Φ†Φþ λðΦ†ΦÞ2; ð11Þ

where Φ is the Higgs SU(2) doublet. The parameters m
and λ, although constant at tree level, are modified by both
loop and finite temperature corrections. For the experi-
mentally preferred top quark mass and Higgs boson mass,
loop corrections result in a negative running coupling λ at
sufficiently large VEVs, with the result that the

ffiffiffiffiffiffiffiffiffi
hϕ2i

p
¼

vEM ¼ 246 GeV minimum is metastable at zero temper-
ature [22]. We note, though, that a stable vacuum is possible
within current experimental uncertainties [22], and the
stability of the potential is also sensitive to Planck-scale
corrections [23].
Therefore, the running quartic coupling produces a

shallow potential, and consequently, the Higgs field may
develop a large VEV during inflation due to quantum
fluctuations [4]. Qualitatively, the scalar field in a de Sitter
space can develop a large VEV via quantum effects, such as
Hawking-Moss instantons [1,24] or stochastic growth
[2,25,26]. Subsequently, the field would relax to its
equilibrium value via a classical motion on the time scale
∼ðd2V=dϕ2Þ−1=2, unless Hubble friction delays this relax-
ation. If HI ≫

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2V=dϕ2

p
then quantum jumps occur

frequently enough to maintain a large VEV.
Alternatively, the Higgs potential is sensitive to higher-

dimensional operators at large VEVs, which can have the
effect of lifting the second minimum, stabilizing the
electroweak vacuum. During inflation, the Higgs field
may have a stochastic distribution of VEVs similar to that
of the inflaton itself in chaotic inflation models. During
inflation, sufficiently large VEVs evolve towards the false
vacuum from above, and then remain trapped in this false
vacuum until destabilized by thermal corrections during
reheating. Subsequently, the field rolls to the global
minimum, until electroweak symmetry is broken at a
significantly later time.
Therefore, it is quite natural to consider scenarios in

which the Higgs field has a large vacuum expectation value

during inflation, which subsequently relaxes to its equi-
librium value. Both of the above scenarios have been
explored previously [5,6]. Here, we consider the classical
motion of the Higgs field towards equilibrium generically,
without specifying the mechanism which generates the
initial large vacuum expectation value.
We note that if the field has expectation value

hΦi ¼ 1ffiffiffi
2

p
�
vðtÞ
0

�
; ð12Þ

then the comoving field has expectation value

h ~Φi ¼ 1ffiffiffi
2

p
�
~vðηÞ
0

�
¼ 1ffiffiffi

2
p
�
avðηÞ
0

�
ð13Þ

where we have defined ~v ¼ av. For completeness, we
discuss the equation of motion for ~v in the Standard Model,
including loop and finite temperature corrections, in
Appendix B.

B. The neutrino sector

Next, we consider the effect of the evolving Higgs VEV
on the quadratic terms in ~Ll, given by the second line of
Eq. (10). Including multiple generations, we write this as

~Ll ¼ i
X
α

~Lα ∂
~Lα þ i

X
i

~NRi ∂
~NRi −

X
αβ

ylαβ ~̄Lαa
~Φa

~lβR

−
X
αj

yναjϵab ~̄Lαa
~Φb

~NRj −
X
ij

~MNij

2
ð ~NRiÞc ~NRj þH:c:;

ð14Þ

where ~Φ is the comoving Higgs doublet, ~L is the comoving
left-handed ðνL;lLÞ lepton SUL doublet of species L, and
~N are right-handed Majorana neutrino states. Greek indices
label flavors (e, μ, τ), while the latin indices i and j label
right-handed neutrinos. The indices a and b are SUL labels.
These are the only renormalizable terms which describe the
interactions between the Higgs and lepton doublets, given
the gauge symmetries of the Standard Model.
When the comoving Higgs field acquires a vacuum

expectation value, this becomes

~Ll ¼ i
X
α

~Lα ∂
~Lα þ i

X
i

~NRi ∂
~NRi −

X
αβ

ylαβ ~vffiffiffi
2

p ~lLα
~lRβ

−
X
αj

yναj ~vffiffiffi
2

p ~νLα ~NRi −
X
ij

~MNij

2
ð ~NRiÞc ~NRj þ H:c:;

ð15Þ

where the comoving mass is ~M ¼ aM. The right-handed
Majorana neutrinos induce lepton-number violation in
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interaction involving neutrinos; however, there is no
corresponding effect for the charged leptons. Therefore,
these terms will not affect our analysis, and so we will
absorb them into ~LSM. We define the neutrino sector
Lagrangian

~Lν ¼ i
X
α

~νLα ∂ ~νLα þ i
X
i

~NRi ∂
~NRi −

X
αi

~MD
iα
~NRi ~νLα

−
1

2

X
ij

~MNijð ~NRiÞc ~NRj þ H:c:; ð16Þ

where the comoving Dirac mass is

~MD
iαðηÞ ¼

y†ναi ~vðηÞffiffiffi
2

p : ð17Þ

We note that since ~v ¼ av, this has the expected scaling of
a comoving mass.
It will be convenient to use two-component comoving

Weyl spinors; we work in the chiral basis, with conventions
outlined in Appendix C.
We denote the two component spinors with tildes, as in

~νL ¼
�
ν̂L

0

�
; ~NR ¼

�
0

N̂R

�
;

~νL ¼ ð ν̂†L 0 Þ
�
0 1

1 0

�
¼ ð 0 ν̂†L Þ;

~NR ¼ ð 0 N̂†
R Þ
�
0 1

1 0

�
¼ ð N̂†

R 0 Þ: ð18Þ

The conjugated comoving fields are

~Nc
R ¼ C ~̄NR

T ¼ ð 0 −iN̂T
Rσ2 Þ; ð19Þ

where the charge conjugation operator C is also given in
Appendix C.
In terms of these two-component comoving spinors, the

neutrino sector Lagrangian can be written as

~Lν ¼ i
X
α

ν̂†Lασ̄
μ
∂μν̂Lα þ i

X
i

N̂†
Riσ

μ
∂μN̂Ri

−
X
αi

ð ~MD
iαN̂

†
Riν̂Lα þ ~MD†

αi ν̂
†
LαN̂RiÞ

−
1

2

X
ij

ði ~MNijN̂
T
Riσ2N̂Rj − i ~M†

NjiN̂
†
Rjσ2N̂

�
RiÞ; ð20Þ

and we note that if we introduce the fields

N̂C
R ¼ −iσ2N̂�

R ð21Þ

the mass term has the expected Majorana form,

−ðN̂C†
R N̂R þ N̂†

RN̂
C
RÞ; ð22Þ

where we remind our readers that these are comoving
fields.

C. The O6 operator

Next, we turn our attention to theO6 operator introduced
in Sec. II; we use the lepton and baryonic currents

jμB ¼
X
q

1

nc
q†γμq; jμL ¼

X
l

l†γμl; ð23Þ

where the sums are over all leptonic fields, including right-
handed neutrinos, and baryonic fields respectively. In a
general curved spacetime, we assume this becomes

~LO6
¼ −a4gμν

Φ2

M2
∇μjνL; ð24Þ

which generally holds if the gravitational anomaly is
canceled by having equal numbers of left- and right-handed
neutrinos, as discussed in Appendix A. Next, we integrate
by parts by moving the derivative onto the Higgs vacuum
expectation value. As we are in flat FLRW spacetime, we
may replace ∇μ with ∂μ to find

~LO6
¼ −a4

∂μΦ2

M2
jμBþL: ð25Þ

Finally, we want to express this in terms of the comoving
fields. We note that the current is

jμBþL ¼ ψ̄ ~γμψ ¼ a−2~jμBþL; ð26Þ

where we have defined ~jμBþL ¼ ~̄ψγμ ~ψ . We here introduce
the notation of a prime to denote a derivative with respect to
conformal time. This allows us to write

~LO6
¼ −

∂μ
~Φ2 − 2a0 ~Φ2δ0μ=a

~M2
~jμBþL; ð27Þ

where

∂μ
~Φ2 ¼ 2aa0Φ2 þ a2∂μΦ2δ0μ

¼ 2
a0

a
~Φ2δ0μ þ a2∂μΦ2: ð28Þ

When ~Φ acquires a time-dependent vacuum expectation
value ~v, this is

~LO6
¼ −

∂0 ~v2 − 2a0 ~v2=a
2 ~M2

~j0BþL; ð29Þ

where we emphasize that ∂0 ¼ ∂=∂η. We define
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~μ≡ ∂0 ~v2 − 2a0 ~v2=a
2 ~M2

ð30Þ

since this term acts like a chemical potential for Bþ L
charge. We note that in terms of v and M, this has the
expected form

~μ≡ −
1

2 ~M2

�
∂

∂η
~v2 − 2

da
dη

1

a
~v2
�

¼ a
M2

v
dv
dt

: ð31Þ

Therefore, we also define

μ ¼ −
1

M2
v
dv
dt

ð32Þ

such that ~μ ¼ aμ. We note that since the Higgs VEV is
initially decreasing, dv=dt is initially negative. The neg-
ative sign in O6 was chosen in order to bias the creation of
particles over antiparticles.
As mentioned previously, lepton number is violated only

in the neutrino sector, and therefore we are interested only
in contribution to the current from the neutrinos. Thus the
relevant part of the O6 operator is

~LO6
¼ ~μ

X
α

�
ð 0 ν̂†Lα Þ

�
0 1

1 0

��
ν̂Lα

0

�

þ ð N̂†
Ri 0 Þ

�
0 1

1 0

��
0

N̂Ri

��

¼ ~μ
X
α

ðν̂†Lαν̂Lα þ N̂†
RiN̂RiÞ: ð33Þ

D. Complete two-component neutrino Lagrangian

Using the results of the previous subsections, the
complete effective Lagrangian for the comoving two-
component neutrino fields is

~L ¼ i
X
α

ν̂†Lασ̄
μ
∂μν̂Lα þ i

X
i

N̂†
Riσ

μ
∂μN̂Ri

−
X
αi

ð ~MD
iαN̂

†
Riν̂Lα þ ~MD†

αi ν̂
†
LαN̂RiÞ

−
1

2
ði ~MNijN̂

T
Riσ2N̂Rj − i ~M†

NjiN̂
†
Rjσ2N̂

�
RiÞ

þ ~μ
X
α

ðν̂†Lαν̂Lα þ N̂†
RiN̂RiÞ; ð34Þ

which will be the basis for our subsequent analysis. This
describes a set of left-handed and right-handed neutrinos,
with a Dirac mass and a right-handed Majorana mass, and a
chemical potential for neutrino number, obtained from (33).

III. THE EFFECTIVE LAGRANGIAN FOR ONE
GENERATION OF LEFT-HANDED NEUTRINOS

The Lagrangian in Eq. (34) includes several generations
of both left- and right-handed neutrinos. It will be con-
venient to integrate out the heavy right-handed neutrinos2

and specialize to a single generation, which will be a
sufficiently rich model to capture the asymmetry produc-
tion of interest here.
The comoving right-handed neutrinos obey the equa-

tions of motion

0 ¼ iσμ∂μ ~NRi −
X
α

M̂Diα ~νLα þ i
X
j

ðM̂†
NÞijσ2 ~N�

Rj

þ ~μ ~NRi: ð35Þ

In the limit of small ~μ and when the kinetic term is
negligible, namely at scales below that of the right-handed
Majorana mass eigenvalues, this equation is solved by

N̂Rk ¼ −i
X
αi

ðM̂T−1
N ÞkiðM̂�

DÞiασ2 ~ν�Lα; ð36Þ

which when substituted into the Lagrangian gives

~Leff ¼ i
X
α

ν̂†Lασ̄
μ
∂μν̂Lα −

i
2

X
α;β

½ð ~MT
D
~M�−1
N

~MDÞαβν̂TLασ2ν̂Lβ − ð ~M†
D
~MT−1
N

~M�
DÞβαν̂†Lβσ2ν̂�Lα� þ ~μ

X
α

ν̂†Lαν̂Lα

þ ~μ
X
α;β

ð ~M†
D
~M†−1
N

~M−1
N

~MDÞαβν̂†Lαν̂Lβ: ð37Þ

Doing so induces a Majorana mass for the left-handed neutrinos, of magnitude,

~ML ¼ ~MT
D
~M�−1
N

~MD: ð38Þ
Thus this Lagrangian may be written (using implicit notation for the sums)

2We do emphasize that we integrate out ~NR, which are not, strictly speaking, identical with the heavy mass eigenstate. This is a good
approximation below the scale of the right-handed Majorana mass eigenvalues.
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~Leff ¼ iν̂†Lασ̄
μ
∂μν̂Lα −

i
2
½ð ~MLÞαβν̂TLασ2ν̂Lβ − ð ~M†

LÞβαν̂†Lβσ2ν̂�Lα� þ ~μν̂†Lαν̂Lα þ ~μð ~M†
D
~M†−1
N

~M−1
N

~MDÞαβν̂†Lαν̂Lβ; ð39Þ

which has the equations of motion,

0 ¼ iσ̄μ∂μν̂Lα þ i
X
β

ð ~M†
LÞαβσ2ν̂�Lβ þ ~μν̂Lα

þ ~μð ~M†
D
~M†−1
N

~M−1
N

~MDÞαβν̂Lβ: ð40Þ

It is beneficial at this point to specialize to the one-
generation case, since, as we will show, one generation is
enough to obtain a nonvanishing asymmetry in the presence
of the O6 operator. We see explicitly that the induced
Majorana mass transforms with the form appropriate to a
comoving mass,

~ML ¼
~M2
D

~MN

¼ a
y2v2

2MN
: ð41Þ

Thus we use the effective Lagrangian,

Leff ¼ iν̂†Lσ̄
μ
∂μν̂L−

i ~ML

2
½ν̂TLσ2ν̂L− ν̂†Lσ2ν̂

�
L�þ ~μeff ν̂

†
Lν̂L; ð42Þ

where

~μeff ¼ ~μ

�
1þ

~M2
D

~M2
N

�
≈ ~μ; ð43Þ

when ~M2
D= ~M2

N ¼ y2νv2=2M2
N ≪ 1. We have rotated the

field ν̂L to eliminate the phase in M̂L which arises from
the phase in the Yukawa coupling yν. (Note that the Higgs
VEV v can be taken to be real at all times.)

IV. QUANTIZATION AND BOGOLIUBOV
TRANSFORMATIONS

Let us now discuss quantization. First, we consider the
scenario in which the mass and chemical potential are time
independent; we solve the equations of motion and deter-
mine the creation and annihilation operators which diag-
onalize the Hamiltonian.
Then we include the time dependence of the mass and

chemical potential, which induces a mixing between the
positive and negative energy solutions of the field equation.
Consequently, even if the Hamiltonian is diagonal at time
t ¼ 0, at a later time it will be nondiagonal. It may be
diagonalized with a time-dependent redefinition of the
creation and annihilation operators; the coefficients of this
diagonalization are known as the Bogoliubov coefficients,
and in the subsequent section, we will relate these coef-
ficients to the occupation number of physical eigenstates

and to the lepton number. This follows the procedure
of e.g. [27–29].
We do note that in the multigeneration case, the time-

dependent rotation that diagonalizes the mass matrix can
introduce novel effects into particle production, as dis-
cussed in [29]; however, such features will not be necessary
to generate a nonzero lepton number. Therefore we work in
the one generation limit, using Eq. (42), where these terms
are absent.

A. Constant mass and chemical potential

The equation of motion for Lagrangian with a single
comoving Weyl field, Eq. (42), with constant comoving
mass ~ML and comoving chemical potential ~μeff , is

ði∂0 − iσ · ∂Þν̂L ¼ − ~MLðiσ2Þν̂�L − ~μeff ν̂L; ð44Þ

or in momentum space,

ði∂0 þ hj~kjÞν̂L ¼ − ~MLðiσ2Þν̂�L − ~μeff ν̂L: ð45Þ

For consistency, we will use ~k for the comoving momen-
tum, and p for the physical momentum. We consider a
solution of the form

ν̂L ¼
Z

d3 ~k
ð2πÞ3

X
h¼�1

½uðh; ~kÞaðhÞ~k
χðhÞð~kÞei~k·x

− vðh; ~kÞ�aðhÞ†~k
χð−hÞð~kÞe−i~k·x�; ð46Þ

where χðhÞð~kÞ is the two-spinor which is an eigenstate of
the helicity operator (appropriate to ~k) with eigenvalue
h ¼ �1. This ansatz, when substituted into the equation of
motion, requires

ði∂0 þ hj~kjÞuðh; ~kÞ ¼ h ~MLvðh; ~kÞ − ~μeffuðh; ~kÞ
ði∂0 þ hj~kjÞvðh; ~kÞ� ¼ −h ~MLuðh; ~kÞ� − ~μeffvðh; ~kÞ�:

ð47Þ

These equations can be decoupled,

ði∂0 þ hj~kj þ ~μeffÞð−i∂0 þ hj~kj þ ~μeffÞF ¼ − ~M2
LF ð48Þ

with F ¼ u; v, satisfies

∂
2
0F ¼ ½ðhj~kj þ ~μeffÞ2 þ ~M2

L�F: ð49Þ

This has solutions of the form F ¼ e�i ~ωη, where
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~ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhj~kj þ ~μeffÞ2 þ ~M2

L

q
: ð50Þ

Therefore, we take

uðh; ~kÞ ¼ αffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
e−i ~ωη þ βffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

ei ~ωη;

vðh; ~kÞ ¼ hαffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
e−i ~ωη −

hβffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
ei ~ωη; ð51Þ

where

f ¼ hj~kj þ ~μeff
~ω

; ð52Þ

and α and β are constant coefficients. (In the time-
dependent case, these will be the Bogoliubov coefficients.)
One can verify that these satisfy the first order equations of
motion.
The state ν̂L obeys the anticommutation relations

fν̂LðxÞ; ν̂LðyÞ†g ¼ δð3Þðx − yÞ;
fν̂LðxÞ; ν̂LðyÞg ¼ 0; fν̂†LðxÞ; ν̂†LðyÞg ¼ 0: ð53Þ

These follow from the ansatz

faðhÞ~k
; aðh̄Þ†~q g ¼ ð2πÞ3δð3Þð~k − ~qÞδh;h̄;

faðhÞ~k
; aðh̄Þ~q g ¼ 0; faðhÞ†~k

; aðh̄Þ†~q g ¼ 0: ð54Þ

along with the normalization condition jαj2 þ jβj2 ¼ 1.
Next we proceed to diagonalize the Hamiltonian; the

appropriate creation and annihilation operators will not be

the aðhÞ~k
and aðhÞ†~k

operators themselves, but linear combi-
nations of these operators. Note that even with the O6

operator, the equation of motion ensures L ¼ 0; this
follows from the fact that the equation of motion is first
order. Therefore the Hamiltonian is

H ¼ i
2

Z
d3xðν̂†L∂0ν̂L − ð∂0ν̂†LÞν̂LÞ: ð55Þ

In terms of the a operators, this Hamiltonian is

H ¼ 1

2

Z
d3 ~k
ð2πÞ3

X
h

~ω ½2½jαj2 − jβj2�aðhÞ†~k
aðhÞ~k

þ 2hα�β�ζð~k; hÞaðhÞ†~k
aðhÞ†~kD

þ 2hαβζð~k; hÞ�aðhÞ~kD
aðhÞ~k

�; ð56Þ

where we have introduced the notation pD for the four-
vector ðE;−~kÞ. ζð~k; hÞ is a phase factor which arises
from the product of the two spinors. For the interested
reader, the important steps in this derivation are discussed
in Appendix D. This can be written as a matrix equation:

H ¼ 1

2

Z
d3 ~k
ð2πÞ3

X
h

~ω
�
aðhÞ†~k

aðhÞ~kD

�

·

 
jαj2 − jβj2 2hα�β�ζð~k; hÞ

2hαβζð~k; hÞ� jβj2 − jαj2

!0@ aðhÞ~k

aðhÞ†~kD

1
A: ð57Þ

We introduce the rotated states:

0
@AðhÞ†

~k

AðhÞ
~kD

1
A¼

�
α� hβζð~k;hÞ�

−hβ�ζð~k;hÞ α

�0@aðhÞ†~k

aðhÞ~kD

1
A ð58Þ

which diagonalizes the Hamiltonian

H ¼ 1

2

Z
d3 ~k
ð2πÞ3

X
h

~ωðAðhÞ†
~k

AðhÞ
~k

− AðhÞ
~kD
AðhÞ†
~kD

Þ

¼
Z

d3 ~k
ð2πÞ3

X
h

~ωAðhÞ†
~k

AðhÞ
~k
; ð59Þ

where we have normal ordered and changed the integration
variable to −p in the second term. We note that since
h2 ¼ 1, we can also write the eigenvalues as

~ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj~kj þ h~μeffÞ2 þ ~M2

L

q
: ð60Þ

Additionally, we note that as expected, ~ω ¼ aω, where

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj þ hμeffÞ2 þM2

L

q
; ð61Þ

and p is the physical momentum corresponding to the
comoving momentum ~k.

B. Time-dependent mass and chemical potential

Now we consider the case in which both the comoving
mass and comoving chemical potential evolve in time. We
again use an expansion of the comoving Weyl spinor of the
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form of Eq. (46), and the equation of motion again requires
u and v to satisfy equations of the form of Eq. (47), but with
time-dependent quantities ~ML and ~μeff .
We will consider solutions of the form

uðh; ~kÞ ¼ αffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
e−i
R

η

0
~ωdη̄ þ βffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ f
p

ei
R

η

0
~ωdη̄

vðh; ~kÞ ¼ hαffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1þ f

p
e−i
R

η

0
~ωdη̄ −

hβffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
ei
R

η

0
~ωdη̄:

ð62Þ

As shown in Appendix E, this leads to the differential
equations

dα
dη

¼ −
β

2

1

~ω2

�
~ML

d ~μeff
dη

− ðhj~kj þ ~μeffÞ
d ~ML

dη

�

· e2i
R

η

0
~ωdη̄ ð63Þ

dβ
dη

¼ α

2

1

~ω2

�
~ML

d~μeff
dη

− ðhj~kj þ ~μeffÞ
d ~ML

dη

�

· e−2i
R

η

0
~ωdη̄: ð64Þ

We take the initial conditions to be αðη ¼ 0Þ ¼ 1,
βðη ¼ 0Þ ¼ 0. This is consistent with the normalization
condition jαj2 þ jβj2 ¼ 1, and at t ¼ 0, the A operators
align with the a operators, so the Hamiltonian (at this time)
is diagonal when expressed in terms of either set. The
diagonalization of the Hamiltonian proceeds as in the time-
independent case, as discussed in Appendix E.
The effect of the time-dependent comoving mass ~ML and

chemical potential ~μeff is to mix positive and negative
frequency modes, as is evident by the fact that β will
generally be nonzero at later times. From the transforma-
tion matrix Eq. (58), the operators that diagonalize the
Hamiltonian at later times will generally be nontrivial linear

combinations of aðhÞp and aðhÞ†p .

V. PARTICLE NUMBER AND LEPTON-NUMBER
OPERATORS

Next, we express the expectation values of the occupa-
tion number operator (for the physical eigenstates) and the
lepton-number operator in terms of the Bogoliubov coef-
ficients α and β. As the operators AðhÞ and AðhÞ† diagonalize
the Hamiltonian, these correspond to physical particles.
The procedure that we follow is this: We first express Nh
and Leff in terms of these operators and normal order (for a
discussion on normal ordering see [30]). We then express

the operator in terms of the aðhÞp and aðhÞ†p operators using

the transformation equations (58). Then, we take the
expectation value with the state jVAC; 0i, the vacuum at
time t ¼ 0.
The total number of physical particles of helicity h is

~Nh ¼
Z

d3 ~k
ð2πÞ3 hVAC; 0jA

ðhÞ†
~k

AðhÞ
~k
jVAC; 0i: ð65Þ

This operator is already normal ordered, so we proceed to

write this in terms of the time-independent aðhÞ~k
operators,

AðhÞ†
~k

AðhÞ
~k

¼ jβj2aðhÞ~kD
aðhÞ†~kD

þ hα�β�ζð~k; hÞaðhÞ†~k
aðhÞ†~kD

þ hαβζð~k; hÞ�aðhÞ~kD
aðhÞ~k

þ jαj2aðhÞ†~k
aðhÞ~k

: ð66Þ

We assume that we are in the state jVAC; 0i, the vacuum
state at time t ¼ 0. Therefore, all operators of the form aðhÞ~k
annihilate the vacuum. Therefore,

hVAC; 0jAðhÞ†
~k

AðhÞ
~k
jVAC; 0i

¼ jβj2hVAC; 0jaðhÞ~kD
aðhÞ†~kD

jVAC; 0i: ð67Þ

This matrix element is

hVAC; 0jaðhÞ~kD
aðhÞ†~kD

jVAC; 0i
¼ ð2πÞ3δð3Þð0Þδh;hhVAC; 0jVAC; 0i
− hVAC; 0jaðhÞ†~kD

aðhÞ~kD
jVAC; 0i

¼ Vcm; ð68Þ

where Vcm stands for the comoving volume [and we
have used the usual formal manipulation ð2πÞ3δð0Þ ¼R
d3 ~xei~x·0 ¼ Vcm]. This gives the expected result

~Nh ¼ Vcm

Z
d3 ~k
ð2πÞ3 jβ ~k;hj2; ð69Þ

where in general, β may depend on the momentum and
helicity, as we have noted.
Next we consider effective lepton number, which is

carried by the neutrinos. This charge is given by

~Leff ¼
Z

d3xν̂†Lν̂L: ð70Þ

Following the procedure outline above gives us a normal
ordered expression
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~Leff ¼
Z

d3 ~k
ð2πÞ3

X
h

�
ð−fÞAðhÞ†

~k
AðhÞ
~k

−
~ML

2 ~ω
e2i
R

η

0
~ωdη̄ζðh; ~kÞAðhÞ†

~k
AðhÞ†
~kD

−
~ML

2 ~ω
e−2i

R
η

0
~ωdη̄ζ�ðh; ~kÞAðhÞ

~kD
AðhÞ
~k

�
; ð71Þ

where the important steps are described in Appendix F. Taking the inner product with the t ¼ 0 vacuum gives

hVAC; 0j∶ ~Leff∶jVAC; 0i ¼
Z

d3 ~k
ð2πÞ3

X
h

�
ð−fÞhVAC; 0jAðhÞ†

~k
AðhÞ
~k
jVAC; 0i

−
~ML

2 ~ω
e2i
R

η

0
~ωdη̄ζhVAC; 0jAðhÞ†

~k
AðhÞ†
~kD

jVAC; 0i −
~ML

2 ~ω
e−2i

R
η

0
~ωdη̄ζ�hVAC; 0jAðhÞ

~kD
AðhÞ
~k
jVAC; 0i

�
: ð72Þ

We express these in terms of the aðhÞ operators, which
annihilate the state jVAC; 0i; however, now that we have
normal ordered the operator we are careful to maintain any
Dirac delta functions that arise from using the anticommu-
tation relations. The second and third matrix elements are

hVAC; 0jAðhÞ†
~k

AðhÞ†
~kD

jVAC; 0i ¼ hα�βζ�Vcm

hVAC; 0jAðhÞ
~kD
AðhÞ
~k
jVAC; 0i ¼ hαβ�ζVcm: ð73Þ

Therefore, the lepton number as a function of time is

hVAC; 0j∶ ~Leff∶jVAC; 0i

¼ Vcm

Z
d3 ~k
ð2πÞ3

X
h

�
ð−fÞjβ2j

−
~ML

2 ~ω
hðα�βe2i

R
η

0
~ωdη̄ þ αβ�e−2i

R
η

0
~ωdη̄Þ
�

ð74Þ

where f ¼ ðhj~kj þ ~μeffÞ= ~ω.

VI. ROTATED OPERATORS

At this point, it is convenient to define the rotated
operators:

ᾱ ¼ αe−i
R

η

0
~ωdη̄

β̄ ¼ βei
R

η

0
~ωdη̄ ð75Þ

which obey the differential equations

dᾱ
dη

¼ −cðηÞβ̄ − i ~ω ᾱ

dβ̄
dη

¼ cðηÞᾱþ i ~ω β̄; ð76Þ

where

c≡ 1

2

1

~ω2

�
~ML

d~μeff
dη

− ðhj~kj þ ~μeffÞ
d ~ML

dη

�
; ð77Þ

and we also have the normalization condition jᾱj2 þ jβ̄j2 ¼
1 along with the initial condition ᾱ ¼ 1 and β̄ ¼ 0.
Note that we can rewrite this so that the helicity h

multiplies the chemical potential,

c ¼ h
2

1

~ω2

�
~MLh

d~μeff
dη

− ðj~kj þ h ~μeffÞ
d ~ML

dη

�
: ð78Þ

In terms of these rotated coefficients, the number
densities and lepton number are

hVAC; 0j∶ ~Nh∶jVAC; 0i ¼ Vcm

Z
d3 ~k
ð2πÞ3 jβ̄ ~k;hj2;

hVAC; 0j∶ ~Leff∶jVAC; 0i ¼ Vcm

Z
d3 ~k
ð2πÞ3

X
h

�
−
hj~kj þ ~μeff

~ω
jβ̄2~k;hj −

~ML

2 ~ω
hðᾱ�~k;hβ̄ ~k;h þ ᾱ~k;hβ̄

�
~k;h
Þ
�

ð79Þ

which has eliminated the fast oscillatory time dependence. The comoving number densities are therefore
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~nh ¼
Z

d3 ~k
ð2πÞ3 jβ̄ ~k;hj2;

~nL ¼
Z

d3 ~k
ð2πÞ3

X
h

�
−
hj~kj þ ~μeff

~ω
jβ̄ ~k;hj2 −

~ML

2 ~ω
hðᾱ�~k;hβ̄ ~k;h þ ᾱ~k;hβ̄

�
~k;h
Þ
�
: ð80Þ

At late times, the Higgs VEV v approaches zero, and
therefore the comoving VEV ~v ¼ av also does. Conse-
quently, ~ML → 0, ~μeff → 0, and ~ω → j~kj. Therefore, the
limit of the comoving lepton asymmetry is

lim
t→∞

~nL ¼
Z

d3 ~k
ð2πÞ3

X
h

ð−hÞjβ̄ ~k;hj2: ð81Þ

As expected, this is the difference in the number of helicity
states.
The physical number density and lepton density are

nh ¼
1

aðtÞ3
Z

d3 ~k
ð2πÞ3 jβ̄ ~k;hj2;

lim
t→∞

nL ¼ 1

aðtÞ3
Z

d3 ~k
ð2πÞ3

X
h

ð−hÞjβ̄ ~k;hj2: ð82Þ

The final lepton asymmetry is given by

ηL ≡ lim
t large

nL
nγ

¼ −
π

2ζð3ÞTðtÞ3
1

aðtÞ3
Z

d3 ~k
ð2πÞ3

X
h

ð−hÞjβ̄ ~k;hj2; ð83Þ

which should be evaluated at a time after the completion of
reheating, so that aðtÞTðtÞ approaches an asymptotic
constant value, but before electroweak sphalerons redis-
tribute the charge between lepton and baryons. Following
this, further entropy production results in a final baryonic
asymmetry about an order of magnitude smaller than ηL.

VII. APPROXIMATIONS AND NUMERICAL
ANALYSIS

During the evolution of the Higgs VEV, cðηÞ [defined in
(77)] is nonzero, which results in β̄ðηÞ ≠ 0, signaling
particle production. Additionally, since cðη; h ¼ þÞ ≠
cðη; h ¼ −Þ generically, we expect a nonzero lepton
asymmetry. At late times, cðηÞ → 0 for both helicity values,
resulting in β̄ ∼ expðij~kjηÞ, which gives a nonzero asymp-
totic value for j ~βj2, which is not generically identical for the
two helicity values. Therefore, we expect a nonzero
asymmetry to survive at late times, after the Higgs VEV
(and hence ML and μ) approaches zero.

Calculating this asymmetry is complicated by the lack of
analytic closed form solutions to the differential equa-
tions (76), which must be solved numerically. In this
section, we introduce a sequence of useful approximations
which simplify this problem significantly; we then present
a numerical analysis of the resulting asymmetry. We focus
particularly on the range of parameter space in which an
asymmetry matching the observed cosmological baryonic
abundance is generated.

A. Higgs oscillations

We first note that it is desirable to have significant
damping in the oscillations of the Higgs VEV. This is
because the chemical potential ~μeff ∼ vv0 changes sign
frequently during the oscillations, and so whether particle
or antiparticle production is favored also oscillates.
Therefore, a significant damping in the amplitude of the
oscillation avoids washout from this alternation.
As we explain below, this allows us to make two

simplifications: First, that the asymmetry production occurs
on a time scale during which aðtÞ is approximately
constant, and second, particle production occurs primarily
in those comoving momenta least affected by washout.
We noted above that washout is significant unless the

Higgs VEV is significantly damped. Consequently, the
asymmetry production is dominated by the particle pro-
duction during the initial relaxation of the Higgs VEV,
which may be a fast process, compared to the evolution of
the Universe. We have mentioned in Sec. II A that there are
several reasons why the Higgs field may have a large
vacuum expectation value after inflation. In one scenario,
the Higgs VEV grows due to quantum fluctuations within
the unmodified Standard Model, or alternatively, the Higgs
field may be trapped in a false vacuum during inflation. In
the latter example, it is quite natural that the evolution of the
Higgs VEV, once it is released from the false vacuum,
would occur on time scales τ ≪ 1=H. This is more difficult
to arrange in the former scenario, as the condition for
the VEV to grow requires meff ≲HI , and the time scale of
the Higgs VEVevolution is∼1=meff . Rapid evolution of the
Higgs VEV may still be arranged, as both meff and H are
functions of time, although this may be somewhat
unnatural.
In the limit that the evolution of the Higgs VEV is rapid

compared to the expansion of the Universe, we may
approximate aðtÞ ∼ aðtSÞ constant, where we define t ¼
tS to be the time at which the Higgs VEV begins rolling
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significantly. The comoving momentum during the epoch
of particle production is ~k ¼ aðtSÞp, and it is convenient to
express β̄ and ᾱ as functions of physical time t instead of
conformal time η. They obey the differential equations

dᾱ
dt

¼ −CðtÞβ̄ − iωᾱ;

dβ̄
dt

¼ CðtÞᾱþ iωβ̄; ð84Þ

with

CðtÞ ¼ cðtÞ
aðtÞ ¼

h
2ω2

½MLðHðtÞμeff þ _μeffÞ

− ðjpj þ hμeffÞ2ðHðtÞML þ _MLÞ�: ð85Þ

We remind our readers that the untilded μeff ,ML, and ω are
the physical, and not comoving, quantities. For self-con-
sistency, we drop the terms proportional to HðtÞ, giving

CðtÞ ≈ h
2ω2

½ML _μeff − ðjpj þ hμeffÞ _ML�: ð86Þ

We emphasize that these expressions involve the physical,
not comoving, momentum. However, when the evolution of
the Higgs VEV is fast, these are related by the constant
factor aðtSÞ; we use this assumption to write

ηL ¼ −
πaðtSÞ3

2ζð3ÞTðtÞ3aðtÞ3
Z

d3p
ð2πÞ3

X
h

ð−hÞjβ̄p;hðtEÞj2; ð87Þ

where tE is the effective end of particle production. We
emphasize that our assumption is that aðtÞ is approximately
constant while the neutrino asymmetry is produced (for
tS ≤ t ≤ tE), which allows us to use j~kj ∼ aðtSÞjpj in the
integral of Eq. (83). Once the Higgs VEV relaxes to zero,
no further asymmetry is produced; however, the physical
volume continues expanding∼aðtÞ3. This is responsible for
the factor of aðtÞ3 in the denominator, which may be large;
that is, this equation continues to hold even when
aðtÞ=aðtSÞ ≫ 1, provided that aðtEÞ ∼ aðtSÞ.
Next we observe that if jβ̄j2 ≪ 1 at all times, we can

approximate ᾱ ≈ 1 and the relevant differential equation is
simply

β̄ ¼
Z

t

0

Cðt̄Þdt̄: ð88Þ

Sample plots of ωðtÞ2CðtÞ [the factor ω2 cancels the 1=ω2

dependence in Eq. (86)] and CðtÞ are shown in Fig. 1. We
note that ML=μeff ∼ y2νM2v=MN _v ∼ y2νM2=HIMN , and
y2ν=MN ∼ 10−20 GeV−1 is fixed by the observed neutrino
masses differences. Therefore, it is not surprising that for
these parameters the typical scale of μeff ≈ μ is about 12

orders of magnitude larger than the typical scale of ML.
We proceed to describe the qualitative behavior of
these plots.
The CðtÞ panel (top) has a sequence of sharp peaks for

h ¼ −1, of alternating sign, while these peaks are absent
for h ¼ þ1. These are a consequence of the 1=ω2 factor in
CðtÞ. We note that during the initial pass of the Higgs field
towards zero, μðtÞ is positive, and therefore, ω ∼ jpj þ hμ
has a significant cancellation when jpj ∼ μ for h ¼ −1,
while for h ¼ þ1 these factors always add. Additionally,
for h ¼ −1, jpj þ hμ changes sign at this peak. As the scale
of _μ is larger than the scale of the left-handed neutrino mass
_ML, CðtÞ changes sign “within” this peak. This is respon-
sible for the very sharp positive and negative peaks. When
evaluating this integral, these peaks cancel to a significant
precision.
To understand the behavior better, we consider ω2CðtÞ,

which eliminates the sharp peaks. This plot is shown in the
bottom panel of Fig. 1. We observe that in contrast to the
CðtÞ plot, the h ¼ þ1 functions generally have smaller
magnitudes than their h ¼ −1 counterparts. This is because
CðtÞ ∝ jpj þ hμ, and so there is a partial cancellation that
affects ω also affects the overall magnitude of CðtÞ
for h ¼ −1.
Additionally, for h ¼ −1, the factors of ðjpj þ hμÞ

change sign (since μ is negative), which affects the _ML.

5. � 10�121. � 10�111.5 � 10�112. � 10�112.5 � 10�113. � 10�113.5 � 10�11

� 2 � 108

� 1 � 108

1 � 108

2 � 108

�p� � Μmax

�p� � Μmax �2

5. � 10�12 1. � 10�11 1.5 � 10�11 2. � 10�11 2.5 � 10�11 3. � 10�11 3.5 � 10�11

� 2 � 1012

� 1 � 1012

1 � 1012

2 � 1012

3 � 1012

4 � 1012

�p� � Μmax

�p� � Μmax �2

�p� � Μmax �3

�p� � Μmax �5

FIG. 1 (color online). CðtÞ (top) and ωðtÞ2CðtÞ (bottom). The
solid lines are for h ¼ þ1, while the dashed lines are for h ¼ −1.
These plots cover the initial pass of the Higgs VEV to zero. For
concreteness, we have used the IC-2 scenario of Refs. [5,6] with
the parameters ΛI ¼ 1013 GeV and ΓI ¼ 105 GeV, along with
M, the scale in O6, equal to 1011 GeV. This is about 4 orders of
magnitude larger than the initial Higgs VEV. μmax is the
maximum of jμðtÞj. Units are appropriate powers of GeV.
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This factor is responsible for the various sign changes in the
bottom plot of Fig. 1, even though the Higgs VEV is
decreasing during the entire time shown. We also note that
the sharp spikes occur when _μ ¼ 0, and so, momentarily,
these plots are dominated by the _ML term, which (at this
time) happens to be much larger in magnitude.
As a simpler toy model, we consider a Higgs field which

obeys the equation of motion,

d2v
dt2

þ 3H
dv
dt

þm2vþ ΓH
dv
dt

¼ 0; ð89Þ

along with the boundary condition vðt0Þ ¼ v0, _vðt0Þ ¼ 0.
This is easier to analyze numerically, as opposed
to considering the Higgs potential with running, and
temperature-dependent, coupling constants. Furthermore,
the Standard Model Higgs field decays primarily through
nonperturbative effects [4,31]. For self-consistency, we
again assume the Hubble friction term is negligible. This
has the approximate solution

vðtÞ ¼ v0e−ΓHðt−t0Þ=2 cosðΩðt − t0ÞÞ; ð90Þ
where Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − Γ2

H

p
. We have taken t ¼ 0 as the time at

which the Higgs starts oscillating, and so tS ¼ 0.
We note that a particularly interesting scenario is the

case in which the potential VðvÞ ¼ λv4=4; this is well-
motivated by the fact that the Standard Model potential at
large VEVs is dominated by this term. In this case, the
term m2v in the equation of motion would be replaced by
λeffv3, and in the solution the cosine function would
instead be cnðv0t=λ1=4Þ, where cn is a Jacobi sinusoidal
function [32].
The Higgs potential is not known at large VEVs;

therefore, we will consider the parameters v0, m, and ΓH
to be independent, and furthermore, which may be chosen
independently of any parameters describing inflation and
reheating. We do note that in the scenario in which the
initially large Higgs field VEV is produced via quantum
fluctuations, v0 will be determined by the scale of inflation,
although it will also be affected by any higher-dimensional
operators that influence the Higgs potential.
We also made these further approximations: First, we

assumed Ω ≫ ΓH, such that

ML ≈
y2v20
4MN

e−ΓHtð1 − cosð2ΩtÞÞ;

_ML ≈ −
y2v20Ω
2MN

e−ΓHt sinð2ΩtÞ;

μ ≈
v20Ω
2M2

e−ΓHt sinð2ΩtÞ;

_μ ≈
v20Ω2

M2
e−ΓHt cosð2ΩtÞ: ð91Þ

Although we want significant damping, this is self-
consistent, as we must have Ω≳ ΓH in order for the
Higgs VEV to undergo oscillatory motion.
Next, we observe that the d3p integral is dominated by

momenta jpj ∼ μmax, where μmax is the maximum of jμðtÞj
This is because these momentum values suffer the least
washout during the subsequent oscillations of the Higgs
VEV. Therefore, we approximate

η ≈ −
π

2ζð3ÞTðtÞ3
aðtSÞ3
aðtÞ3

μ3max

ð2πÞ3
X
h

hjβ̄μmax;hðtEÞj2: ð92Þ

B. Low scale of inflation

For simplicity, we assume coherent oscillations begin
instantly at the end of the inflationary epoch. We normalize
the scale factor to one at the end of inflation, when the
coherent oscillations of the inflaton start. In the following
computations, we approximate that the Higgs oscillations
also start at this time. This is a good approximation in the
case when the Higgs VEV is prevented from rolling by
Hubble friction; when the Higgs is instead trapped in a false
vacuum, this approximation will only be valid for suffi-
ciently small barriers.
Next we consider the factor of aðtÞ3TðtÞ3 in the

denominator of η given by Eq. (92). We emphasize that
aðtÞTðtÞ is the value approached at relatively late times,
well into the radiation dominated epoch after Higgs
relaxation has ended, but before the Standard Model
degrees of freedom have decoupled. This is completely
determined by the two inflationary parameters, the infla-
tionary scaleΛI and the decay rate of the inflaton, ΓI , where
the Hubble parameter during inflation is

HI ¼
ffiffiffiffiffiffi
8π

3

r
Λ2
I

MPl
: ð93Þ

Since we do not fix a specific model of inflation, we take
these to be independent parameters. We note that aðtÞTðtÞ
becomes constant once reheating has completed, and the
asymptotic value is shown in Fig. 2. We can obtain the
scaling of this factor as a function of the parameters of
the inflationary sector, under the assumption of instanta-
neous inflaton decay at H ¼ ΓI and of instantaneous
thermalization. This gives

aðtÞTðtÞ ∝ Λ4=3
I

M1=6
Pl Γ

1=6
I

; ð94Þ

or in terms of the reheat temperature,

1

ðaðtÞTðtÞÞ3 ∝
TRH

Λ4
I
; ð95Þ

where we recall that the scale factor a has been normalized
to one at the end of inflation, which we take to be
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simultaneous with the beginning of Higgs relaxation. We
see that a large baryon asymmetry is obtained for a low
inflationary scale. For this reason we consider values in the
bottom left corner of Fig. 2, which are characterized by a
relatively low ΛI. By consistency, TRH then needs to be
below ΛI.
We note that alteringΛI and ΓI may modify the evolution

of the Higgs VEV, particularly if finite temperature cor-
rections to the Higgs potential are significant. In particular,
in scenarios in which the Higgs VEV begins in a false
minimum which is destabilized by thermal fluctuations,
there is a minimum reheat temperature which constrains ΛI
and ΓI .

C. Numerical example

As a numerical example, we used v0 ¼ M ¼ Ω ¼
1012 GeV and ΓH ¼ 1011 GeV, which gives
μmax ≈ 4.6 × 1011 GeV. A plot of CðtÞ is shown in
Fig. 3; the above-mentioned spikes are small for these
parameters.
β̄ asymptotically approaches 0.0008 (for h ¼ þ1) and

0.006 (for h ¼ −1). We have verified that β̄ < :1 at all
times, so that our approximation in Eq. (88) is reasonable.
The resulting asymmetry is

ηL ≈
1028 GeV3

aðtÞ3TðtÞ3 : ð96Þ

We must ensure that the Higgs energy density does not
dominate the energy density of the Universe, causing
additional inflationary expansion, which requires

ΛI ≳ 1012 GeV. For the minimum value, the inflationary
Hubble parameter is then HI ¼ 2 × 105 GeV. If we
take ΓI ¼ 105 GeV, then at late times aðtÞTðtÞ →
5 × 1011 GeV. The resulting lepton asymmetry ηL ≈ 10−7.
We note that as m ∼Ω ≫ HI , a realistic implementation

of these parameters would likely have the Higgs VEV
trapped in a false vacuum. The relaxation of the Higgs field
would then commence after the start of coherent oscilla-
tions, or tS > tend of inflation. The asymmetry is then enhanced
by the factor aðtSÞ3=aðtend of inflationÞ3 > 1.
This asymmetry will be diluted by a factor of 30 due to

further entropy production, and it will be distributed
between baryons and leptons by electroweak sphalerons.
Therefore final baryonic asymmetry is about 1 or 2 orders
of magnitude smaller.
In summary, we have shown an explicit numerical

example in which the asymmetry generated through neu-
trino production is more than sufficient to explain the
cosmological baryon abundance. We have also seen that
production of a large asymmetry requires significant
damping of the oscillations of the Higgs VEV, and also
favors a low inflationary scale.

VIII. CONCLUSIONS

In this work, we have explored particle production
during an epoch of post-inflationary Higgs relaxation, with
a particular emphasis on the production of a lepton
asymmetry, which can be converted into the observed
baryonic asymmetry. Unlike in previously considered
models [5,6], the asymmetry considered here is produced
via the evolution Higgs condensate directly, and does not
involve interactions in the plasma produced by inflaton
decay. Therefore, these models do not require a fast
reheating, and in fact, we have shown a low reheating
scale is desirable.
In particular, we have introduced a specific O6 operator

which involves only Standard Model fields (although
extensions of the Standard Model may be necessary to
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FIG. 2 (color online). Contours of asymptotic late time aT; the
scale factor is normalized to 1 at the time the inflaton starts
oscillating. In the gray area, ΓI > HI , and there is no inflationary
epoch.
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ΓH ¼ 1011 GeV, which governs the differential equations for β̄.
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produce this operator). This operator produces an effective
chemical potential for lepton number.
We have solved the equations of motion exactly, includ-

ing both this operator and a time-dependent Majorana
mass. We then used a Bogoliubov transformation to relate
the time-dependent creation and annihilation operators to
the corresponding operators fixed at the time when the
Higgs relaxation began. The resulting Bogoliubov coef-
ficients describe the rate of neutrino production during
Higgs relaxation. From this, we calculated the resulting
lepton asymmetry.
After completing this formal analysis, we performed a

numerical analysis, using a simplified model for the Higgs
condensate evolution. This emphasized the importance of
rapid condensate decay, which suppresses washout due to
the oscillating sign of the effective chemical potential, and
also the low reheat scale. We developed an approximation
scheme that smooths out the sharp peaks that occur when
jpj ≈ μðtÞ. We finally illustrated a choice of parameters for
which the resulting asymmetry is comparable to the
observed value.
Our scenario differs significantly from other scenarios of

leptogenesis. In particular, the asymmetry can be generated
for reheat temperatures well below the right-handed neu-
trino masses. This paves the way for a supersymmetric
generalization of the model in which the problem of
gravitino overproduction does not arise. Furthermore, the
final asymmetry is not tied to the parameters of the neutrino
mass matrix as in thermal leptogenesis, and a successful
leptogenesis is possible even for the neutrino masses above
0.2 eV, in which case thermal leptogenesis is stymied by
excessive washout [33].
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APPENDIX A: THE ORIGIN OF THE
O6 OPERATOR

In this appendix, we discuss methods of generating the
O6 operator

LO6
¼ −

Φ2

M2
∂μj

μ
BþL: ðA1Þ

In the Standard Model in a flat static spacetime, the ABJ
(Adler-Bell-Jackiw) anomaly allows the relation

∂μj
μ
BþL ¼ ng

�
g22

32π2
ϵμναβAa

μνAa
αβ −

g21
32π2

ϵμναβBμνBαβ

�
;

ðA2Þ

where A and B are the SULð2Þ and UYð1Þ gauge fields,
respectively, and ng is the number of fermion generations.
The substitution of Eq. (A2) into Eq. (A1) is valid when the
decay of electroweak sphalerons is fast, as compared
to the Hubble parameter. Otherwise, the term (A1) involves
the Chern-Simons number density, which is not changed by
Higgs relaxation unless the phase of the Higgs VEV
evolves.
As to coupling these gauge fields to the Higgs field, we

note that an effective term of precisely this form can be
generated within the Standard Model, using quark loops
and the CP-violating phase of the CKM (Cabibbo-
Kobayashi-Masakawa) matrix [34,35]. This term is small
due to the small Yukawa couplings and small CP-violating
phase. However, such a term can also be generated by
heavier states with a different source of CP violation. The
scale in the denominator may be the temperature, due to
thermal loops, or the mass scale of new physics [34–37].
The sphaleron transition rate per unit volume at finite

temperature, for constant Higgs VEVs, is

Γsp ¼ kα5WT
4 expð−MW=gWTÞ; ðA3Þ

where the exponential factor accounts for the suppression
due to being in the broken phase; it is equivalent to
expð−v=2TÞ where v is the Higgs VEV. Electroweak
sphalerons are in equilibrium when this is greater than
H4, whereH is the Hubble parameter. The transition rate in
the presence of a quickly evolving Higgs VEV has not been
explored, although the rate during the electroweak phase
transition from v ¼ 0 to v ¼ 247 GeV has been analyzed
on the lattice, as a function of vðTÞ [38].
In Sec. V, we found that the asymmetry is suppressed by

a factor of ðaðtÞTðtÞÞ3, which favors a low inflationary
scale. This generally corresponds to a slow reheating, while
Higgs relaxation frequently occurs on a faster time scale.
Therefore, during much of the relaxation period, v ≳ T and
the sphalerons may not be in thermal equilibrium; the
conditions for electroweak sphalerons to be in thermal
equilibrium in the presence of a time-dependent back-
ground have not been extensively explored.
In each oscillation of the Higgs VEV, there is a brief

period as the VEV passes zero during which v ≲ T, during
which the above-mentioned suppression is absent. This also
corresponds to the time of maximal particle production,
which occurs when ~v ¼ aðtÞvðtÞ ≈ 0. However, the time
when the maximal asymmetry is produced is slightly offset
from this time, as the effective chemical potential ~μ ∝ ~v ~v0 is
zero when ~v ¼ 0. It seems unlikely that the time scale of
sphaleron transitions will be less than the relevant time
scale during which v≲ T, even if the time of maximal
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asymmetry production is within this period. At the very
least, it is difficult to arrange for this to hold.
Therefore we note that, if there is another gauge group

which couples chirally to leptons, it will also contribute to
the divergence in Eq. (A2). (The chiral coupling is
necessary due to Furry’s Theorem.) Provided that inter-
actions between the gauge field configurations and
fermions are in thermal equilibrium, we find

∂μj
μ
BþL ¼ ðEWanomalyÞ þ ngCg2

32π2
ϵαβμνFμνFαβ; ðA4Þ

where F is the new gauge field and C is a constant
determined by the charges of the leptons and baryons
under the new gauge group. Provided that these gauge
bosons acquire masses which are not proportional to the
Higgs VEV, it is possible for these to be in thermal
equilibrium at the relevant temperatures. [There may
dynamical symmetry breaking in this sector, via a separate
Higgs mechanism, or in the case of a U(1) symmetry,
via the Stückleberg mechanism.) This equation can be
rewritten as

ngCg2

32π2
ϵαβμνFμνFαβ ¼ ∂μj

μ
BþL−CS; ðA5Þ

where jCS is the current associated with the electroweak
Chern-Simons charge density. If the electroweak sphaler-
ons are out of equilibrium, this is conserved, and therefore
has no effect on the analysis of Secs. III through VII
(similarly to how the baryonic current has no effect).
Therefore, if the electroweak sphaleron rate is insuffi-

cient, we can couple the Higgs boson to a new gauge field
combination, ϵαβμνFμνFαβ, to generate a term similar to
(A1). As in the electroweak case, the coupling of Φ2 to
ϵαβμνFμνFαβ can be accomplished through either thermal
loops or heavy fermions. In the latter case, it is important
that the fermions do not acquire masses through the
Standard Model Higgs mechanism; otherwise, the Higgs
VEV dependence cancels out. Such fermions may have soft
masses similar to higgsinos and gauginos in supersym-
metric models, or if a different Higgs sector is used to give
masses to the F gauge boson, this field may also give
masses to the relevant fermions.
The divergence equation (A4) holds only in static, flat

spacetime; the situation is more complicated in a curved
and/or expanding spacetime. Generically, there may be
contributions on the right-hand side of the anomaly
equation, proportional to the gravitational anomaly [39].
If there are Nng right-handed neutrinos present, then

(generalizing the results of [39])

ngCg2

32π2
ϵαβμνFμνFαβ ¼ ∇μj

μ
BþL−CS −

ng
32π2

ð1 − NÞ
�
−
ϵαβγδ

24
RμναβRμν

γδ þ
ϵαβγδ

48
Sβ;γSδ;α þ

1

6
□Sα;α þ

1

96
ðSαSνSαÞ;ν

−
1

6

�
RναSα −

1

2
RSν

�
;ν

�
; ðA6Þ

where S describes the torsion of the spacetime, and R is the
usual Ricci scalar. However, if there are the same number of
right-handed and left-handed neutrinos then

ngCg2

32π2
ϵαβμνFμνFαβ ¼ ∇μj

μ
BþL−CS: ðA7Þ

We consider only the scenario with N ¼ 1; that is, there are
the same number of right-handed and left-handed neutrinos.

APPENDIX B: CONFORMAL HIGGS FIELD
EQUATION OF MOTION

Although we will use a toy model for our numerical
analysis, it is beneficial to find the equation of motion for
the comoving VEV ~v. From the Lagrangian in Sec. II,

~v00 −
a00

a
~vþ ∂ ~V

∂ ~v
¼ 0; ðB1Þ

where the derivatives signified with a prime are with respect
to η and ~V ¼ a4V. We note that this is equivalent to the
differential equation for the Higgs VEV v

d2v
dt2

þ 3H
dv
dt

þ ∂V
∂v

¼ 0: ðB2Þ

It is necessary to express the potential in terms of comoving
fields; as an example, we will do this with the 1-loop
Standard Model Higgs potential, including finite temper-
ature corrections. (However, in our numerical analysis, we
will make use of a simpler effective potential for the
evolution of the Higgs field.) The one-loop, zero temper-
ature potential V, times a4, can be written
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~V1−loop
ϕ ¼ a2

2
m2

ϕ ~v
2 þ λ

4
~v4 þ 1

ð4πÞ2
�
a4mHðvÞ4

4

�
ln

�
mHðvÞ2

S2

�
−
3

2

�
þ 3a4mGðvÞ4

4

�
ln

�
mGðvÞ2

S2

�
−
3

2

�

þ 3a4mWðvÞ4
2

�
ln

�
mWðvÞ2

S2

�
−
5

6

�
þ 3a4mZðvÞ4

4

�
ln

�
mZðvÞ2

S2

�
−
5

6

�
− 3a4mtðvÞ4

�
ln

�
mtðvÞ2
S2

�
−
3

2

��
;

ðB3Þ

where S is the renormalization scale and the physical
masses for the Higgs boson, Goldstone mode,W bosons, Z
boson, and top masses are

m2
W ¼ g2v2

4
; m2

Z ¼ ðg2 þ g02Þv2
4

; mt ¼
ytvffiffiffi
2

p ;

m2
H ¼ m2

ϕ þ 3λv2; m2
G ¼ m2

ϕ þ λv2: ðB4Þ

It is convenient to define a comoving renormalization
scale, ~S ¼ aS, along with comoving masses

~m2
W ¼ a2

g2v2

4
¼ g2 ~v2

4

~m2
Z ¼ ðg2 þ g02Þa2v2

4
¼ ðg2 þ g02Þ2 ~v2

4

~mt ¼ a
ytvffiffiffi
2

p ¼ yt ~vffiffiffi
2

p ~m2
H ¼ a2ðm2

ϕ þ 2λv2Þ ¼ ~m2
ϕ þ 2λ ~v2

~m2
G ¼ a2ðm2

ϕ þ λv2Þ ¼ ~m2
ϕ þ λ ~v2: ðB5Þ

These have the same functional dependence on ~v as the
regular masses have on v. Then the one-loop potential can
be written:

~V1−loop
ϕ ¼ 1

2
~m2
ϕ ~v

2 þ λ

4
~v4 þ 1

ð4πÞ2
�
~mHð~vÞ4

4

�
ln

�
~mHð~vÞ2
~S2

�
−
3

2

�
þ 3 ~mGð ~vÞ4

4

�
ln

�
~mGð ~vÞ2
~S2

�
−
3

2

�

þ 3 ~mWð~vÞ4
2

�
ln

�
~mWð ~vÞ2
~S2

�
−
5

6

�
þ 3 ~mZð~vÞ4

4

�
ln

�
~mZð ~vÞ2
~S2

�
−
5

6

�
− 3 ~mtðvÞ4

�
ln

�
~mtð~vÞ2
~S2

�
−
3

2

��
: ðB6Þ

We note that care must be used in evaluating the running couplings as functions of the comoving fields. During reheating
finite temperature corrections may also be relevant; in terms of the comoving fields, these are

~VTðv; TÞ ¼ −
a2T2

2π2

�
6a2mWðvÞ2JB

�
mWðvÞ

T

�
þ 3a2mZðvÞ2JB

�
mZðvÞ
T

�
þ 12a2mtðvÞ2JF

�
mtðvÞ
T

��

¼ −
~T2

2π2

�
6 ~mWð~vÞ2JB

�
~mWð ~vÞ
~T

�
þ 3 ~mZð ~vÞ2JB

�
~mZð~vÞ
~T

�
þ 12 ~mtð~vÞ2JF

�
~mtð ~vÞ
~T

��
; ðB7Þ

where

JBðyÞ ¼
X∞
n¼1

1

n2
K2ðnyÞ; ðB8Þ

JFðyÞ ¼
X∞
n¼1

ð−1Þnþ1

n2
K2ðnyÞ; ðB9Þ

and we have defined ~T ¼ aT. Note the first three terms of
Eqs. (B8) and (B9) are fairly good approximation.
The relevant potential for the comoving VEV is then

~Vð ~v; ~TÞ ¼ ~V1−loop
ϕ ð ~vÞ þ ~VTð~v; ~TÞ: ðB10Þ

We note that as in [5,6], it may be necessary to add further
higher-dimensional terms to the potential to produce a

quasistable vacuum at large VEVs and/or to suppress
isocurvature perturbations due to variations in baryon
density. Additionally, dissipation effects may be relevant,
and can also influence the production of a baryon asym-
metry [40].

APPENDIX C: TWO-COMPONENT
SPINOR CONVENTIONS

In the chiral basis, the Dirac γ matrices are

γ0 ¼
�
0 1

1 0

�
; γi ¼

�
0 σi

−σi 0

�
; ðC1Þ

and the projection operators are
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PR ¼
�
0 0

0 1

�
; PL ¼

�
1 0

0 0

�
: ðC2Þ

I note that

γ0PL ¼
�
0 0

1 0

�
; γ0PR ¼

�
0 1

0 0

�
; ðC3Þ

and the complex conjugation operator is given by

C¼ iγ2γ0¼ i

�
0 σ2

−σ2 0

��
0 1

1 0

�
¼ i

�
σ2 0

0 −σ2

�
: ðC4Þ

We also use the four-vector of Pauli matrices,

σμ ¼ ð1; σiÞ σ̄μ ¼ ð1;−σiÞ: ðC5Þ

APPENDIX D: DIAGONALIZING THE
HAMILTONIAN (CONSTANT MASS

AND CHEMICAL POTENTIAL)

In this appendix, we present the important steps leading
from Eqs. (55) to (56), for the interested reader. The two
terms in (55) can be written as

Z
d3xν̂†L∂0ν̂L ¼

Z
d3 ~k
ð2πÞ3

X
h;h̄

½½uðh; ~kÞ�∂0uðh̄; ~kÞ�aðhÞ†~k
aðh̄Þ~k

χðhÞ†~k
χðh̄Þ~k

− ½uðh; ~kÞ�∂0vðh̄; ~kDÞ��aðhÞ†~k
aðh̄Þ†~kD

χðhÞ†~k
χð−h̄Þ
−~k

− ½vðh; ~kÞ∂0uðh̄; ~kDÞ�aðhÞ~k
aðh̄Þ~kD

χð−hÞ†~k
χðh̄Þ
−~k

þ ½vðh; ~kÞ∂0vðh̄; ~kÞ��aðhÞ~k
aðh̄Þ†~k

χð−hÞ†~k
χð−h̄Þ~k

�; ðD1Þ

where we use the notation pD for the four-vector ðE;−~kÞ. Similarly,

Z
d3xð∂0ν̂†LÞν̂L ¼

Z
d3 ~k
ð2πÞ3

X
h;h̄

½½uðh̄; ~kÞ∂0uðh; ~kÞ��aðhÞ†~k
aðh̄Þ~k

χðhÞ†~k
χðh̄Þ~k

− ½vðh̄; ~kDÞ�∂0uðh; ~kÞ��aðhÞ†~k
aðh̄Þ†~kD

χðhÞ†~k
χð−h̄Þ
−~k

− ½uðh̄; ~kDÞ∂0vðh; ~kÞ�aðhÞ~k
aðh̄Þ~kD

χð−hÞ†~k
χðh̄Þ
−~k

þ ½vðh̄; ~kÞ�∂0vðh; ~kÞ�aðhÞ~k
aðh̄Þ†~k

χð−hÞ†~k
χð−h̄Þ~k

�: ðD2Þ

To evaluate the products of the spinors, we note that

χðhÞ†~k
χðh̄Þ~k

¼ δh;h̄;

χð−hÞ†~k
χð−h̄Þ~k

¼ δ−h;−h̄ ¼ δh;h̄;

χð−hÞð−~kÞ ¼ ζð~k; hÞχðhÞð~kÞ; ðD3Þ

where ζ is a phase that obeys

ζð−~k; hÞ ¼ −ηð~k; hÞ
ζð−~k;−hÞ ¼ η�ð~k; hÞ
ζð~k;−hÞ ¼ −η�ð~k; hÞ: ðD4Þ

Additionally using the anticommutation relations, we may
write the Hamiltonian as

H ¼ i
2

Z
d3 ~k
ð2πÞ3

X
h

½½uðh; ~kÞ�∂0uðh; ~kÞ − uðh; ~kÞ∂0uðh; ~kÞ� − vðh; ~kÞ∂0vðh; ~kÞ� þ vðh; ~kÞ�∂0vðh; ~kÞ�aðhÞ†~k
aðh̄Þ~k

− ½uðh; ~kÞ�∂0vðh; ~kDÞ� − vðh; ~kDÞ�∂0uðh; ~kÞ��ζð~k; hÞaðhÞ†~k
aðhÞ†~kD

− ½vðh; ~kÞ∂0uðh; ~kDÞ − uðh; ~kDÞ∂0vðh; ~kÞ�ζð~k; hÞ�aðhÞ~kD
aðhÞ~k

�: ðD5Þ

We note that the u’s and v’s depend on the momentum only through j~kj; therefore, uðh; ~kDÞ ¼ uðh; ~kÞ and

vðh; ~kDÞ ¼ vðh; ~kÞ. The first combination is

uðh; ~kÞ�∂0uðh; ~kÞ − uðh; ~kÞ∂0uðh; ~kÞ� þ vðh; ~kÞ�∂0vðh; ~kÞ − vðh; ~kÞ∂0vðh; ~kÞ� ¼ −2i ~ω½jαj2 − jβj2�; ðD6Þ

LEPTOGENESIS VIA NEUTRINO PRODUCTION DURING … PHYSICAL REVIEW D 92, 023509 (2015)

023509-17



while the other two are related by complex conjugation.
One can show

uðh; ~kDÞ�∂0vðh; ~kÞ� − vðh; ~kÞ�∂0uðh; ~kDÞ� ¼ 2i ~ωhα�β�:

ðD7Þ
Together these give Eq. (56).

APPENDIX E: DIFFERENTIAL EQUATIONS
FOR BOGOLIUBOV COEFFICIENT

In this appendix, we present the important steps in
deriving the differential equations (64) from the equations
of motion. First, we introduce the notation

g� ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
: ðE1Þ

The equations of motion require

i
du
dη

þ hj~kjuþ ~μeffu ¼ h ~MLv;

i
dv�

dη
þ hj~kjv� þ ~μeffv� ¼ −h ~MLu�: ðE2Þ

Since α, β, and ~ω are time dependent,3

du
dη

¼ −i ~ω
αffiffiffi
2

p g−e
−i
R

η

0
~ωdη̄ þ i ~ω

βffiffiffi
2

p gþe
i
R

η

0
~ωdη̄ þ du

dα
dα
dη

þ du
dβ

dβ
dη

þ αffiffiffi
2

p dg−
dη

e−i
R

η

0
~ωdη̄ þ βffiffiffi

2
p dgþ

dη
ei
R

η

0
~ωdη̄ ðE3Þ

dv
dη

¼ −i ~ω
hαffiffiffi
2

p gþe
−i
R

η

0
~ωdη̄ − i ~ω

hβffiffiffi
2

p g−e
i
R

η

0
~ωdη̄ þ dv

dα
dα
dη

þ dv
dβ

dβ
dη

þ hαffiffiffi
2

p dgþ
dη

e−i
R

η

0
~ωdη̄ −

hβffiffiffi
2

p dg−
dη

ei
R

η

0
~ωdη̄: ðE4Þ

However, these functions also satisfy

−i ~ω
αffiffiffi
2

p g−e
−i
R

η

0
~ωdη̄ þ i ~ω

βffiffiffi
2

p gþe
i
R

η

0
~ωdη̄ þ hj~kjuðh; ~kÞ þ ~μeffuðh; ~kÞ ¼ h ~MLvðh; ~kÞ

−i ~ω
hαffiffiffi
2

p gþe
−i
R

η

0
~ωdη̄ − i ~ω

hβffiffiffi
2

p g−e
i
R

η

0
~ωdη̄ þ hj~kjvðh; ~kÞ� þ ~μeffvðh; ~kÞ� ¼ −h ~MLuðh; ~kÞ�; ðE5Þ

which allows us to simplify the above equations of motion to

1ffiffiffi
2

p dα
dη

g−e
−i
R R

η

0
~ωdη̄ þ 1ffiffiffi

2
p dβ

dη
gþe

i
R

η

0
~ωdη̄ þ αffiffiffi

2
p dg−

dη
e−i
R

η

0
~ωdη̄ þ βffiffiffi

2
p dgþ

dη
ei
R

η

0
~ωdη̄ ¼ 0;

hffiffiffi
2

p dα
dη

gþe
−i
R

η

0
~ωdη̄ −

h1ffiffiffi
2

p dβ
dη

g−e
i
R

η

0
~ωdη̄ þ hαffiffiffi

2
p dgþ

dη
e−i
R

η

0
~ωdη̄ −

hβffiffiffi
2

p dg−
dη

ei
R

η

0
~ωdη̄ ¼ 0: ðE6Þ

We may transform these into equations for the derivatives of α and β,

1ffiffiffi
2

p dα
dη

ðg2− þ g2þÞe−i
R

η

0
~ωdη̄ ¼ −

αffiffiffi
2

p
�
g−

dg−
dη

þ gþ
dgþ
dη

�
e−i
R

η

0
~ωdη̄ −

βffiffiffi
2

p
�
g−

dgþ
dη

− gþ
dg−
dη

�
ei
R

η

0
~ωdη̄; ðE7Þ

1ffiffiffi
2

p dβ
dη

ðg2þ þ g2−Þei
R

η

0
~ωdη̄ ¼ −

αffiffiffi
2

p
�
gþ

dg−
dη

− g−
dgþ
dη

�
e−i
R

η

0
~ωdη̄ −

βffiffiffi
2

p
�
gþ

dgþ
dη

þ g−
dg−
dη

�
ei
R

η

0
~ωdη̄: ðE8Þ

We note that

g2þ þ g2− ¼ 1þ f þ 1 − f ¼ 2; ðE9Þ
and

g−
dg−
dη

þ gþ
dgþ
dη

¼ 1

2

�
−
df
dη

þ df
dη

�
¼ 0: ðE10Þ

The remaining combination is

g−
dgþ
dη

− gþ
dg−
dη

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p df
dη

: ðE11Þ

Therefore, these equations simplify to

dα
dη

¼ −
β

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p df
dη

e2i
R

η

0
~ωdη̄;

dβ
dη

¼ α

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p df
dη

e−2i
R

η

0
~ωdη̄: ðE12Þ3If F is the antiderivative of ~ω, then

R η
0 ~ωdη̄ ¼ FðηÞ − Fð0Þ.

Differentiating this with respect to η then gives ~ωðηÞ.
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Since f ¼ ðhj~kj þ ~μeffÞ= ~ω,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f2

p
¼ ~ML= ~ω, using the definition of ~ω above. Differentiating f gives us

dα
dη

¼ −
β

2

~ω
~ML

�
1

~ω

d ~μeff
dη

−
hj~kj þ ~μeff

~ω3

�
ðhj~kj þ ~μeffÞ

d ~μeff
dη

þ ~ML
d ~ML

dη

��
e2i
R

η

0
~ωdη̄;

dβ
dη

¼ α

2

~ω
~ML

�
1

~ω

d ~μeff
dη

−
hj~kj þ ~μeff

~ω3

�
ðhj~kj þ ~μeffÞ

d ~μeff
dη

þ ~ML
d ~ML

dη

��
e−2i

R
η

0
~ωdη̄: ðE13Þ

Finally, we can combine the d~μeff=dη terms, using
~ω2 − ðhjpj þ ~μeffÞ2 ¼ ~M2

L. This gives Eq. (64), as desired.
Applying Eq. (E8) in Eq. (E4) gives

du
dη

¼ −i ~ω
αffiffiffi
2

p g−e
−i
R

η

0
~ωdη̄ þ i ~ω

βffiffiffi
2

p gþe
i
R

η

0
~ωdη̄ ðE14Þ

dv
dη

¼ −i ~ω
hαffiffiffi
2

p gþe
−i
R

η

0
~ωdη̄ − i ~ω

hβffiffiffi
2

p g−e
i
R

η

0
~ωdη̄; ðE15Þ

which shows that the diagonalization of the Hamiltonian
proceeds as in the time-independent case.

APPENDIX F: EFFECTIVE LEPTON-NUMBER
OPERATOR

In this appendix, we derive Eq. (71), starting from
Eq. (70). Using the orthonormality of the spinors, anti-
commutation relations, and the fact that uðr; ~kDÞ ¼ uðr; ~kÞ
and vðr; ~kDÞ ¼ vðr; ~kÞ because the three-momentum only
appears as j~kj inside u and v allows us to write

~Leff ¼
Z

d3 ~k
ð2πÞ3

X
r

½ðjuj2 − jvj2ÞaðrÞ†~k
aðrÞ~k

− u�v�aðrÞ†~k
aðrÞ†~kD

ζð~k; rÞ þ vuaðrÞ~k aðrÞ~kD
ζð~k; rÞ��: ðF1Þ

Next we evaluate the products of the u’s and v’s,

~Leff ¼
Z

d3 ~k
ð2πÞ3

X
h

�
−fðjαj2 − jβj2ÞaðhÞ†~k

aðhÞ~k
þ

~ML

~ω
ðαβ�e−2i

R
η

0
~ωdη̄ þ α�βe2i

R
η

0
~ωdη̄ÞaðhÞ†~k

aðhÞ~k

− h

�
~ML

2 ~ω
ðα2e−2i

R
η

0
~ωdη̄ − β2e2i

R
η

0
~ωdη̄Þ þ fαβ

�
ζð~k; hÞ�aðhÞ~kD

aðhÞ~k

− h

�
~ML

2 ~ω
ðα�2e2i

R
η

0
~ωdη̄ − β�2e−2i

R
η

0
~ωdη̄Þ þ fα�β�

�
ζð~k; hÞaðhÞ†~k

aðhÞ†~kD

�
ðF2Þ

where f is ðhj~kj − ~μeffÞ= ~ω as above. Using the transformation equations, we recognize that this is

~Leff ¼
Z

d3 ~k
ð2πÞ3

X
h

½−fAðhÞ†
~k

AðhÞ
~k
� þ ΔLeff ; ðF3Þ

where

ΔLeff ¼
Z

d3 ~k
ð2πaÞ3

X
h

~ML

~ω

�
ðαβ�e−2i

R
η

0
~ωdη̄ þ α�βe2i

R
η

0
~ωdη̄ÞaðhÞ†~k

aðhÞ~k
− h

1

2
ðα2e−2i

R
η

0
~ωdη̄ − β2e2i

R
η

0
~ωdη̄Þζð~k; hÞ�aðhÞ~kD

aðhÞ~k

− h
1

2
ðα�2e2i

R
η

0
~ωdη̄ − β�2e−2i

R
η

0
~ωdη̄Þζð~k; hÞaðhÞ†~k

aðhÞ†~kD

�
: ðF4Þ

Inverting the transformation equations gives

 
aðhÞ†~k

aðhÞ~kD

!
¼
�

α −hβζ�

hβ�ζ α�

� AðhÞ†
~k

AðhÞ
~kD

!
: ðF5Þ

Using this, we find

LEPTOGENESIS VIA NEUTRINO PRODUCTION DURING … PHYSICAL REVIEW D 92, 023509 (2015)

023509-19



ΔLeff ¼
Z

d3 ~k
ð2πaÞ3

~ML

2 ~ω

X
h

½e2i
R

η

0
~ωdη̄ð−2jαj2jβj2 − jβj4 − jαj4ÞζAðhÞ†

~k
AðhÞ†
~kD

þ e−2i
R

η

0
~ωdη̄ð−2jαj2jβj2 − jαj4 − jβj4Þζ�AðhÞ

~kD
AðhÞ
~k
�:

ðF6Þ

We note that jαj4 þ 2jαj2jβj2 þ jβj4 ¼ ðjαj2 þ jβj2Þ2 ¼ 1 by the normalization condition, so this gives

ΔLeff ¼ −
Z

d3 ~k
ð2πaÞ3

~ML

~ω

X
h

½e2i
R

η

0
~ωdη̄ζAðhÞ†

~k
AðhÞ†
~kD

þ e−2i
R

η

0
~ωdη̄ζ�AðhÞ

~kD
AðhÞ
~k
�: ðF7Þ

Substituting this into Eq. (F3) gives Eq. (71).
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