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We consider a higher-order term in the δN expansion for the cosmic microwave background power
asymmetry generated by a superhorizon isocurvature field fluctuation. The term can generate the
asymmetry without requiring a large value of fNL. Instead it produces a nonzero value of gNL. A
combination of constraints leads to an allowed region in fNL − gNL space. To produce the asymmetry with
this term without a large value of fNL we find that the isocurvature field needs to contribute less than the
inflation towards the power spectrum of the curvature perturbation.
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I. INTRODUCTION

Inflation is widely accepted as the likely origin for
structure in our Universe. Its generic predictions of a nearly
scale-invariant and close to Gaussian primordial curvature
perturbation, ζ, have been confirmed with increasing
precision by successive cosmic microwave background
(CMB) experiments. There are, however, also observational
anomalies which are harder to explain within the standard
inflationary paradigm. One such anomaly is the hemi-
spherical power asymmetry—the observation that for
scales with l ≤ 60 there is more power in CMB temperature
fluctuations in one half of the sky than the other. First
identified in the Wilkinson Microwave Anisotropy Probe
data [1–4], it was later confirmed by the Planck
Collaboration [5] and others [6–8], although its signifi-
cance remains disputed [9]. In this work we treat the
asymmetry as a real effect which requires a primordial
origin. So far, CMB data has been fitted to a template which
models the asymmetry as a spatially linear modulation.
The leading primordial explanation for this asymmetry is

the Erickcek-Kamionkowski-Carroll (EKC) mechanism
[10,11], in which a long-wavelength isocurvature pertur-
bation modulates the power on shorter scales. Further work
investigating this effect includes Refs. [12–20]. The origin
of the long-wavelength mode may be explicitly realized in
the open inflation scenario of Ref. [13] or due to a domain
wall, as in, for example, Refs. [21,22].
The δN formalism provides a convenient expression for

the modulation of power by a superhorizon mode, as
reviewed below. In principle many terms in this δN
expansion can contribute to the observed asymmetry.
Until now, however, most theoretical work has focused
on the leading term, which can have the form of a spatially
linear modulation.

If the leading term in δN is responsible for the asym-
metry then a further consequence is that the local bispec-
trum parameter must satisfy the constraint fNL ≳ 30β
[12,23] on the scales that are modulated. A value of
β < 1 can be achieved but only if our observable
Universe is located at a fine-tuned region within the
long-wavelength perturbation [12], and otherwise it can
be much larger than one. Combined temperature and
polarization data bounds a purely scale-independent local
bispectrum as fNL ¼ 0.8� 5.0 at 68% C.L. [24], while we
work with fNL ≲ 10 as a rough 95% C.L. The asymmetry
appears to be scale dependent [25], and hence the non-
Gaussianity produced must also be, but there are no direct
constraints on such a strongly scale dependent non-
Gaussianity. A new parametrization of the scale depend-
ence of the non-Gaussianity and its application to the scale
dependence of the asymmetry was given in Ref. [26],
which includes an accompanying gNL. It is, however,
perhaps unlikely that a very large value of fNL could be
accommodated by current observations, even if fNL decays
with scale.
In this short paper, therefore, we investigate whether the

next term in the δN expression for the asymmetry could
instead be responsible. We find it can, without violating any
other observational or self-consistency constraints. It con-
tributes a more general modulation of the power, leading to
an asymmetry, which does not necessarily only involve a
spatially linear modulation [27]. Using this higher-order
term requires a nonzero value of gNL, but allows for a
smaller value of fNL than when the linear term alone
contributes. If this higher-order term is responsible for the
asymmetry, then the allowed parameter space indicates
the modulating isocurvature field must contribute less than
the inflaton towards the total power spectrum of the
curvature perturbation on scales which are modulated,
and this may be considered a fine-tuning of the model.
Related to this, we find that if this higher-order term is
dominant in our observable patch, then in certain neighbor-
ing patches the linear term will instead be dominant.
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In this paper, as a first step we only focus on one of the
higher-order terms, but the idea is more general and could
be applied to a combination of higher-order terms.
Satisfying the constraints in that case might be more
complicated than the simple use of exclusion plots that
we employ here.

II. GENERATING THE ASYMMETRY

A. The δN formalism

Our calculation is performed within the δN formalism
[28–32] which states that ζ can be associated with the
difference in the number of e-folds undergone by neigh-
boring positions in the Universe from an initial flat
hypersurface at horizon crossing to a final uniform-density
one when the dynamics have become adiabatic: ζ ¼ δN.
On the flat hypersurface the inflationary fields are not
constant, and by writing N as a function of the fields, δN
can be written as a Taylor expansion in the horizon-crossing
field fluctuations.
We consider two scalar fields, though our work easily

generalizes for more than two fields, and we take both our
fields to have canonical kinetic terms. We choose the
inflaton field, denoted ϕ, to be the direction in field space
aligned with the inflationary trajectory at horizon exit, t�, so
that ϵ� ¼ ϵ�ϕ and this implies the derivative of N with
respect to the inflaton is a constant

N;ϕ ¼ ð2ϵ�Þ−1=2: ð1Þ
The isocurvature field orthogonal to ϕ is denoted χ, and the
curvature perturbation has contributions from both fields

ζ ¼ N;ϕδϕþ N;χδχ þ
1

2
N;χχδχ

2 þ 1

6
N;χχχδχ

3 þ… ð2Þ

where we have neglected terms with higher-order ϕ
derivatives since they are negligible. The arguments of
N and its derivatives are usually taken to be the average
values of the fields within our observable Universe,
denoted ϕ0 and χ0, while δϕ and δχ contain all fluctuations
in ϕ and χ with wavelengths of order the size of our
observable Universe or less.
The power spectrum of the curvature perturbation is then

given by

Pζ ¼ N;IN;I

�
H
2π

�
2

ð3Þ

where I runs over fϕ; χg, the summation convention has
been used, and we have neglected higher-order δϕ and δχ
correlators.
Non-Gaussianities in ζ are generated because of the

nonlinear relationship between ζ and δχ in Eq. (2). In
particular, one finds for the local bispectrum, fNL, and
trispectrum, gNL, parameters that [33,34]

fNL ¼ 5

6

N;χχN2
;χ

ðN;IN;IÞ2
; ð4Þ

gNL ¼ 25

54

N;χχχN3
;χ

ðN;IN;IÞ3
: ð5Þ

In what follows we will only be concerned with the
magnitude of fNL and gNL, jfNLj and jgNLj, but to avoid
clutter we will drop the absolute symbols. We will also use
the expression for the tensor-to-scalar ratio

r ¼ 8

N;IN;I
ð6Þ

and wewill find it convenient to define the contribution of χ
to the total power spectrum

x≡ Pχ

Pζ
¼ N2

;χ

N;IN;I
¼ 1 −

r
16ϵ�

: ð7Þ

B. Superhorizon fluctuation

In addition to the background value of the fields inside
our observable Universe, fϕ0; χ0g and their fluctuations
with wavelength inside our observable Universe, fδϕ; δχg,
the EKC mechanism works by postulating a superhorizon
field fluctuation in χ, denotedΔχðxÞ, with wavelength, k−1L ,
much larger than the size of our observable Universe, this
size given by the distance to the last scattering surface, xd,
such that kLxd ≪ 1. We assume the leading-order behavior
ΔχðxÞ ¼ Δχðn̂ · k̂LÞ for x within our observable Universe,
where n̂ ¼ x=jxj and k̂L ¼ kL=jkLj, and we do not
assume any particular form for the fluctuation outside of
our observable patch. Note that in this paper we take Δχ to
be the maximum variation in χ across our patch about our
observable Universe’s average field value χ0 as seen in the
left panel of Fig. 1 [35].
Superhorizon fluctuations source multipole moments in

the CMB, upon which there are constraints from the
observed homogeneity of the Universe [10,11]. Using
the nonlinear results of Ref. [12], together with the multi-
pole constraints from Ref. [11], we have the following
homogeneity constraints from the quadrupole and octupole
respectively [36]:

jN;χχðΔχÞ2j < 1.1 × 10−4; ð8Þ

jN;χχχðΔχÞ3j < 8.6 × 10−4 ð9Þ

where we have assumed no cancellation between δN terms.
We also take the following constraint:

jN;χΔχj < aP1=2
ζ ð10Þ
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where Pζ ¼ 2.2 × 10−9 [37] and a is some threshold
parameter.

C. Asymmetry

The superhorizon fluctuation modulates the power spec-
trum on shorter scales, and so it depends on the direction n̂
through

Pζ½n̂� ¼ Pζ½χ0 þ Δχðn̂Þ�: ð11Þ

Since Δχðn̂Þ < Δχ in our patch, and Δχ is small, we can
Taylor expand Pζ in Eq. (11) in powers of Δχðn̂Þ giving

Pζ½n̂� ¼ Pζ

�
1þ 2

X∞
m¼1

Amðn̂ · k̂LÞm
�

ð12Þ

where the round brackets indicate multiplication,

Am ≡ 1

2Pζ

ðΔχÞm
m!

∂mPζ

∂χm ð13Þ

and we have used the shorthand that when Pζ and its
derivatives appear without an argument they are taken to be
evaluated at the average field values of the observable
Universe. Observations indicate a power asymmetry, with
the power along the preferred direction n̂ ¼ k̂L being
greater than the power on the opposite side of the sky
n̂ ¼ −k̂L. We note that only the odd m terms in Eq. (12)
can contribute towards an asymmetry of this sort, with the
even terms contributing only towards general anisotropy.
Usually only the m ¼ 1 term is kept, and the data has

been fitted to this with the result that [5] A1 ¼ 0.07. The

m ¼ 1 and m ¼ 2 terms were considered in Ref. [26,38].
Here we consider instead the m ¼ 3 term, since this can
contribute towards asymmetry [39]. Ideally a fit to the data
with m ¼ 1; 2; 3 terms should be done to constrain the
parameters A1; A2 and A3. In the absence of this, we will
look at the simplest case involving only them ¼ 3 term and
take [40] A3 ≳ 0.07.

D. Linear term asymmetry

It has been noted in e.g Refs. [12,15,19] that a large fNL
accompanies the asymmetry when only the m ¼ 1 term is
considered, and we briefly review this now. Differentiating
Eq. (3) gives

A1 ¼
N;χχN;χΔχ
N;IN;I

: ð14Þ

We now combine this with the constraint (8) giving

fNL ≈
5N;χχN2

;χ

6ðN;IN;IÞ2
≳ 37

�
A1

0.07

�
2

; ð15Þ

which is outside of the observational bounds for a local-
type non-Gaussianity [41].

E. Cubic term asymmetry

The asymmetry may be due to multiple odd m terms
in Eq. (12). We will now show that postulating the cubic
m ¼ 3 term is dominant over the linear m ¼ 1 term, and is
responsible for the asymmetry, allows the constraint on fNL
to be relaxed, but introduces new ones on gNL. Later wewill
check the self-consistency of ignoring the m ¼ 1 term
compared to the m ¼ 3 one.
Differentiating Eq. (3) three times gives

Pζ ;χχχ

Pζ
¼ 6N;χχχN;χχ þ 2N;χχχχN;χ

N;IN;I
: ð16Þ

We will be interested in the case where the asymmetry is
generated by the N;χχχN;χχ term, and we neglect N;χχχχ , so
that our asymmetry is given by [42]

A3 ¼
N;χχχN;χχðΔχÞ3

2N;IN;I
: ð17Þ

In this case, we now show there is still a lower bound on
fNL, but this time it depends on x defined in Eq. (7). Using
Eq. (17) together with the octupole constraint (9), we find

fNL ≈
5N;χχN2

;χ

6ðN;IN;IÞ2
≳ 9.5

�
A3

0.07

��
x

0.07

�
: ð18Þ

We see that if x is sufficiently small, we can have an
acceptably small fNL in this scenario. We will later show

FIG. 1 (color online). Left: The value of χ varies by an amount
Δχ from its average value, χ0, within our observable Universe
(the interior of the two vertical lines), due to the long-wavelength
fluctuation (solid wave). The average within our observable
Universe (long-dashed line) is not necessarily the same as the
background value over the entire Universe (dotted horizontal
line). Right: Exclusion plot for Eqs. (22) (dark blue), (23)
(orange), (24) (green), (25) (red), (26) (purple), and (27) (brown),
with x ¼ 0.07, a ¼ 10, b ¼ 0.25 and c ¼ 1. The red and brown
lines are hard to see on this scale at the bottom of the plot. The
allowed region is left white.
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that there is a lower bound x≳ A3, and so 9.5 is the smallest
value of fNL allowed from this cubic term alone [43], which
is an improvement compared to the contribution from the
linear term alone.

F. Consistency checks

For simplicity we assumed that the asymmetry is only
due to the m ¼ 3 term in Eq. (12), which then must be
larger than the m ¼ 1 term. We therefore require

N;χχχN;χχðΔχÞ2
2N;χχN;χ

> 1: ð19Þ

Even powers of Δχ do not contribute towards the asym-
metry but they do still cause more general anisotropy of the
power spectrum. Since these anisotropies have not been
observed, we also demand the following:

N;χχχN;χχΔχ
N;χχχN;χ

> b ð20Þ

and
N;χχχN;χχΔχ

N2
;χχ

> c ð21Þ

where b; c are some threshold parameters.
There is a lower limit on x ¼ xðχ0Þ coming from

xðχ0 − ΔχÞ > 0, by the definition (7). Expanding out
xðχ0 − ΔχÞ to cubic order and neglecting the linear term,
we find xðχ0Þ ≳ A3 for b; c ∼Oð1Þ.

G. Allowed parameters

We have six constraints to simultaneously satisfy:
Eqs. (8), (9), (10), (19), (20) and (21). Using Eq. (17) to
substitute for Δχ, and using Eqs. (4), (5) and (6) the six
constraints become, respectively,

gNL >

�
x

0.07

��
A3

0.07

�
4.3 × 103f1=2NL ; ð22Þ

fNL >

�
x

0.07

��
A3

0.07

�
9.5; ð23Þ

gNL >
�

x
0.07

�
4
�

A3

0.07

�
1.8 × 107a−3=2f−1NL; ð24Þ

gNL >

�
x

0.07

��
A3

0.07

�
−2
19f2NL; ð25Þ

gNL <

�
x

0.07

�
−2
�

A3

0.07

�
19b−3f2NL; ð26Þ

gNL >

�
x

0.07

�
−1=2

�
A3

0.07

�
−1=2

6.7c3=2f2NL: ð27Þ

In the right panel of Fig. 1 we plot the allowed region, left
in white, for Eqs. (22)–(27), with x ¼ A3 ¼ 0.07, a ¼ 10,
b ¼ 0.25 and c ¼ 1. We find that the cubic term can
generate the required asymmetry with a lower value of fNL
than from the linear term alone. Moreover it requires a
nonzero value of gNL ≳ 5 × 104 for the smallest allowed
values of fNL. Note that if x is much bigger than 0.07 then
this pushes the allowed values of fNL and gNL up. The small
value of x ¼ 0.07may be considered a fine-tuning required
when only the m ¼ 3 term generates the asymmetry.

H. Outside our observable patch

In the above we neglected the first-order m ¼ 1 term in
Eq. (12), assuming that this term is small in our observable
Universe. However, since we are considering a scenario in
which N;χχ and N;χχχ are nonzero, neighboring regions of
the Universe with a different background field value may
have a larger first-order term. This is closely related to a
similar effect in inhomogeneous non-Gaussianity [44–48].
If this term is larger in neighboring patches this would not
violate observational bounds, but would imply that our
position within neighboring regions was finely tuned—in
the sense that neighboring regions would instead see a
dominant first-order term. Although not invalidating the
proposed scenario, it would make it less appealing. The
biggest change in the average value of χ is in a neighboring
patch along the direction of the long-wavelength mode,
where its average value is of order χ0 þ Δχ, since Δχ > δχ.
The first-order term in these patches is then of order

N;χχN;χ jχ0þΔχ ¼ N;χχN;χ jχ0
þ ΔχðN2

;χχ þ N;χχχN;χÞjχ0
þ 3

2
ðΔχÞ2N;χχχN;χχ jχ0 þ � � � ð28Þ

where we have neglected fourth and higher derivatives of
N. The order Δχ term in Eq. (28) is related to the
zeroth-order term by

ΔχðN2
;χχ þ N;χχχN;χÞ
N;χχN;χ

����
χ0

> ðbþ cÞ ð29Þ

and so these terms are of comparable order for b; c ¼ Oð1Þ
and if Eqs. (20) and (21) are not hierarchical inequalities.
The order ðΔχÞ2 term in Eq. (28) is related to the zeroth-
order term using Eq. (19)

3ðΔχÞ2N;χχχN;χχ

2N;χχN;χ

����
χ0

> 3 ð30Þ

so we see that the first-order term in Δχ in Eq. (12) in these
neighboring patches will actually be of the same order or
larger than the cubic one in our own patch which we
consider to be responsible for the asymmetry. This then
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implies that in these neighboring patches the value of fNL is
necessarily larger than in our own patch. This agrees with
the result of Ref. [49] that if gNL ≫ fNL in our observable
patch, then neighboring patches will generically have a
larger value of fNL than in our own. If the asymmetry in our
patch is due to the third-order term rather than the linear
term, then our patch should be considered fine-tuned
compared to its neighbors along the direction of the
long-wavelength mode.

III. CONCLUSION

We have presented a mechanism involving a modulating
isocurvature field which can produce the required hemi-
spherical power asymmetry while satisfying the homo-
geneity constraints, and which produces non-Gaussianity
within observational bounds. A novel feature is the nonzero
value of gNL required to generate this asymmetry. We note
that there are models with a large gNL and small fNL, for
example, Refs. [50] and [51]. A requirement on the model
is that the isocurvature field contributes a small amount
towards the power spectrum of the curvature perturbation,
which could be considered a fine-tuning. We also note that
the large minimal value of gNL required implies our
observable patch of the Universe has a significantly smaller
value of fNL than our neighbors. The observed asymmetry
is scale dependent, with a smaller asymmetry on small
scales, which this model does not account for.
If the observed asymmetry is due to the higher-order

term considered in this work, then this will put strong

bounds on fNL and gNL. Measurements of fNL and gNL
outside of our allowed region would falsify models which
use this cubic term to generate the asymmetry.
The cubic term has a different n̂ dependence compared

to the first-order term. For this paper we assumed
A3 ≳ 0.07, but we would like to see a fit to the data with
the m ¼ 1; 2; 3 terms, in order to properly constrain the
parameters A1; A2 and A3.
This study has shown that a higher-order term can

generate the required asymmetry, relaxing the constraint
on fNL compared to that generated only by the first order.
Perhaps the other cubic-order term in Eq. (16), N;χχχχN;χ ,
may also contribute—although the bound on the nonlinear
parameter, hNL [52], associated to this term is considerably
weaker than that on gNL, and so this term is not as easily
falsifiable. Indeed, since the third-order term can have a
large contribution, other higher-order terms (and combi-
nations of them) may also be significant. Our work prompts
the investigation of the case where δN cannot be Taylor
expanded.
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