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We show that there is a special choice of parameters for which the Galileon theory is invariant under an
enhanced shift symmetry whose nonlinear part is quadratic in the coordinates. This symmetry fixes the
theory to be equivalent to one with only even powers of the field, with no free coefficients, and accounts for
the improved soft-limit behavior observed in the quartic Galileon S-matrix.
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I. INTRODUCTION

Effective theories with derivative interactions have been
of great interest recently. Much of this work has focused on
a particular family of scalar field theories, the Galileons [1].
These theories have primarily been of interest in cosmol-
ogy, where they arise in various infrared modifications of
gravity, but they have potential applications in many
corners of high-energy physics, cosmology and even
condensed matter. In this paper, we show that for a specific
choice of Galileon parameters, the theory enjoys an
enhanced symmetry, with associated improved physical
properties. Aside from the consequences we explore, this
unexpected additional structure of the Galileon may aid the
understanding of the fundamental physical origin of these
theories.
Galileons were first seen to arise in the decoupling limit

of the Dvali-Gabadadze-Porrati model [2–4], and have
since been seen to also appear in massive gravity [5,6]. As
such, they are of great interest to cosmologists as effective
descriptions of various modifications of gravitational phys-
ics. In these applications, the idea is that new physics
residing within the gravitational sector may be responsible
for cosmic acceleration. The discovery of the Galileons has
galvanized new interest in derivatively coupled scalar
theories, and a proliferation of models has ensued. (For
reviews, see Refs. [7–9].) However, the Galileons retain a
distinguished position amongst this collection, owing to
their enhanced symmetries. In what follows, we will see
that particular Galileon theories have an even greater
enhancement of their symmetries.
Though Galileons first arose in a gravitational context, it

is not obvious that this is the most natural place for them to
appear. It may be that in the real world Galileons most aptly
describe low-energy or condensed matter systems in a

nonrelativistic context. One concrete argument for this
position is that Galileons appear in the nonrelativistic limit
of theories describing fluctuating hypersurfaces [10–13]—
this is clearly of import in high-energy physics—which
may be of interest for biophysics or soft condensed matter
applications, where the study of thin films and membranes
is of great importance. The Galileons and their higher-shift
analogues may also be useful for describing Goldstone
bosons near multicritical points [14–16], where their
symmetries can stabilize exotic dispersion relations which
are seen in some physical systems, e.g., Refs. [17–20].
Elucidating the full symmetry structure underlying the
Galileons may aid the search for such a laboratory example
of a Galileon system.
Galileons possess a number of interesting field-theoretic

properties: they obey a nonrenormalization theorem [2,21],
which indicates that they may be employed to address
naturalness problems. They can exhibit classically non-
linear behavior without losing control of quantum correc-
tions—this is the essence of the Vainshtein mechanism
which can screen the presence of the Galileon from Solar
System tests [22,23]. Additionally, the Galileons can be
interpreted as Wess-Zumino terms for a particular sponta-
neously broken spacetime symmetry [24].
The Galileon has two essential defining properties:

second-order equations of motion (which ensures that
the theory does not propagate an Ostrogradsky-type ghost)
and invariance under the symmetry

δϕ ¼ cþ bμxμ; ð1Þ

where c is a constant, bμ is a constant vector and xμ is the
spacetime coordinate. There are a finite number of terms
with these properties; Dþ 1 of them in D dimensions.
In this paper, we show that, up to field redefinitions,

there is a single choice of coefficients for the Galileon terms
for which the theory is additionally invariant under a
higher-shift symmetry. Up to field redefinitions, this
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symmetry fixes all the coefficients of the Galileon, and the
resulting theory is equivalent to one with only even powers
of the field. For example, in four dimensions, the theory
containing only the quartic Galileon term,

L ¼ −
1

2
ð∂ϕÞ2 þ 1

12Λ6
ð∂ϕÞ2½ð□ϕÞ2 − ð∂μ∂νϕÞ2�; ð2Þ

where Λ is the strong coupling scale, is invariant under

δϕ ¼ sμνxμxν þ
1

Λ6
sμν∂μϕ∂νϕ; ð3Þ

where sμν is a traceless symmetric constant tensor
sμν ¼ sνμ, sμμ ¼ 0.
As with all global symmetries, this symmetry has

consequences for correlation functions and scattering
amplitudes. We show that the soft-ϕ theorem associated
to this extended shift symmetry implies that the soft limit of
scattering amplitudes starts atOðq3Þ, higher than theOðq2Þ
behavior of a generic Galileon. This explains a phenome-
non seen recently in Ref. [25]. In addition, the exact tree-
level S-matrix for this special Galileon theory was recently
constructed in Ref. [26] through a type of dimensional
reduction of graviton scattering amplitudes; understanding
that this theory has additional symmetry may shed light on
why it is precisely this theory which appears in this context.
Further, in four dimensions, this special Galileon theory
enjoys self-duality under the Legendre transformation
of Ref. [27].
Conventions: We use the mostly plus signature. D is the

number of spacetime dimensions. ≃ denotes equality up to
a total derivative.

II. GALILEON LAGRANGIANS AND
USEFUL QUANTITIES

The Galileon Lagrangians can be conveniently written in
terms of certain total derivative combinations. We define
the matrix of second derivatives: Φμ

ν ≡ ∂μ∂νϕ. At each
order in ϕ, there is a unique combination of Φ’s that is a
total derivative [1,28],

LTD
n ¼

X
p

ð−1Þpημ1pðν1Þημ2pðν2Þ…ημnpðνnÞ

× ðΦμ1ν1Φμ2ν2…ΦμnνnÞ: ð4Þ

The sum is over all permutations of the ν indices, where
ð−1Þp is the sign of the permutation. The first few cases are

LTD
1 ¼ ½Φ�;

LTD
2 ¼ ½Φ�2 − ½Φ2�;

LTD
3 ¼ ½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�;

LTD
4 ¼ ½Φ�4 − 6½Φ2�½Φ�2 þ 8½Φ3�½Φ� þ 3½Φ2�2 − 6½Φ4�;
..
. ð5Þ

where the brackets are traces of the enclosed matrix
product. We also define LTD

0 ¼ 1. Since one cannot
antisymmetrize more than D indices in the definition
(4), the term LTD

n vanishes identically when n > D, so
there are only a finite number of nontrivial such
combinations.
The Galileon terms are given by

Ln ¼ −
1

2
ð∂ϕÞ2LTD

n−2 ≃ 1

n
ϕLTD

n−1; ð6Þ

with the last equality up to integration by parts [29].
L1 ¼ ϕ is a tadpole and L2 ¼ − 1

2
ð∂ϕÞ2 is the kinetic

term. The general Galileon theory is a linear combination of
the terms (6) with coefficients c1;…; cDþ1

L ¼
XDþ1

n¼1

cnLn: ð7Þ

There is an energy scale, Λ, which suppresses the terms
relative to each other, and at which the theory becomes
strongly coupled. We have chosen units such that Λ ¼ 1.
An important ingredient will be the tensors XðnÞ

μν con-
structed out of Φμν as follows1:

XðnÞ
μν ¼ 1

nþ 1

δ

δΦμν
LTD
nþ1: ð8Þ

The first few are

Xð0Þ
μν ¼ ημν;

Xð1Þ
μν ¼ ½Φ�ημν − Φμν;

Xð2Þ
μν ¼ ð½Φ�2 − ½Φ2�Þημν − 2½Φ�Φμν þ 2Φ2

μν;

Xð3Þ
μν ¼ ð½Φ�3 − 3½Φ�½Φ2� þ 2½Φ3�Þημν

− 3ð½Φ�2 − ½Φ2�ÞΦμν þ 6½Φ�Φ2
μν − 6Φ3

μν;

..

. ð9Þ

The XðnÞ
μν are symmetric, identically conserved ∂μXðnÞ

μν ¼ 0,
and satisfy the recursion relation [6]

1These are the same tensors which appear in the decoupling
limit of massive gravity [6] (see the appendix of Ref. [30] for
more on their properties).
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XðnÞ
μν ¼ −nΦμ

λXðn−1Þ
λν þ LTD

n ημν; ð10Þ

as well as the contraction property ΦμνXðnÞ
μν ¼ LTD

nþ1.
The most important property for what follows is that

these tensors satisfy dimension-dependent identities: XðnÞ
μν

vanishes identically for n ≥ D,

XðnÞ
μν ¼ 0; n ≥ D: ð11Þ

This is because LTD
n vanishes for n > D.

III. THE SYMMETRY

The general transformation we will consider includes a
part with no fields, a part with one power of the field, and a
part with two powers of the field,

δϕ ¼ δ0ϕþ 2βδ1ϕþ ðαþ β2Þδ2ϕ; ð12Þ

where α, β are constant parameters (the specific para-
metrization is chosen for later convenience), and

δ0ϕ ¼ sμνxμxν; δ1ϕ ¼ sμν∂μϕxν;

δ2ϕ ¼ sμν∂μϕ∂νϕ;
ð13Þ

where sμν is a constant, symmetric, traceless tensor,

sμν ¼ sνμ; sμμ ¼ 0: ð14Þ

The Euler-Lagrange derivatives of the variation of the
general Galileon terms under the three pieces (13) take a
simple form in terms of the tensors (8) (see the Appendix
for the proof),

δ

δϕ
ðδ0LnÞ ¼ 2ðn − 1ÞsμνXðn−2Þ

μν ;

δ

δϕ
ðδ1LnÞ ¼ −2sμνXðn−1Þ

μν ;

δ

δϕ
ðδ2LnÞ ¼

2

n
sμνXðnÞ

μν : ð15Þ

Looking at the form of Eq. (15), we see that if we choose
relative coefficients properly, the terms of various order in
the Galileon Lagrangian (7) can be made to cancel against
each other under the action of Eq. (12), up to a total
derivative. To accomplish this, we demand

cnðαþ β2Þδ2Ln þ 2cnþ1βδ1Lnþ1 þ cnþ2δ0Lnþ2 ≃ 0;

ð16Þ

which yields the recursion relation

ðnþ 1Þcnþ2 − 2βcnþ1 þ ðαþ β2Þ 1
n
cn ¼ 0: ð17Þ

This relation determines all the coefficients of Eq. (7) in
terms of c1; c2 and the parameters α; β of the
transformation.
To establish invariance of the action, we must also show

that the lowest-order terms are invariant under the lowest-
order parts of the symmetry, and that the highest terms are
invariant under the highest parts of the symmetry. For the
lower part, it is straightforward to see that the kinetic term
and tadpole terms are invariant up to a total derivative under
the lowest-order parts of the symmetry,

δ0L2 ≃ 0; δ0L1 ≃ 0; δ1L1 ≃ 0: ð18Þ

The highest terms are invariant under the higher-order parts
of the symmetry because of the dimension-dependent
identity (11)

δ2LD ≃ 0; δ2LDþ1 ≃ 0; δ1LDþ1 ≃ 0: ð19Þ

Without loss of generality, we may take c1 ¼ 0 by
expanding around a background solution ϕ ∝ x2 [1] and,
assuming the background is stable, we may canonically
normalize the kinetic term to set c2 ¼ 1 [the form of the
ansatz (12) is unchanged under these field redefinitions].
Taking these values as initial conditions, the recursion
relation (17) can be solved to give

cn ¼
ðβ þ ffiffiffiffiffiffi

−α
p Þn−1 − ðβ − ffiffiffiffiffiffi

−α
p Þn−1

2
ffiffiffiffiffiffi
−α

p ðn − 1Þ! : ð20Þ

IV. BEHAVIOR UNDER GALILEON DUALITY

Galileon duality [31,32] gives a one-parameter redun-
dancy of the Galileon Lagrangians. By performing a field
redefinition

ϕ0 ¼ eθδϕ; δϕ ¼ −
1

2
ð∂ϕÞ2; ð21Þ

we transform a Galileon theory with one set of parameters
into a Galileon theory with a different set of parameters
which are related by [33],

XDþ1

n¼1

cnLnðϕ0Þ ¼
XDþ1

n¼1

dnðθÞLnðϕÞ;

dnðθÞ ¼
Xn
m¼1

θn−m

ðn −mÞ! cm:

Under this duality, the symmetry (3) with ϕ → ϕ0 becomes

δϕ ¼ sμνxμxν þ 2ðβ þ θÞsμνxμ∂νϕ

þ ðαþ ðβ þ θÞ2Þsμν∂μϕ∂νϕ: ð22Þ

Given our canonically normalized theory with no tad-
pole, the coefficient c3 simply shifts by θ under duality, so a
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convenient way to fix the duality ambiguity is to choose θ
so that c3 ¼ 0. From Eq. (20), we have c3 ¼ β, so we
choose θ ¼ −β, after which the symmetry (22) takes the
form

δϕ ¼ sμνxμxν þ αsμν∂μϕ∂νϕ; ð23Þ

and the Lagrangian coefficients (20) become

cn ¼
ð−αÞn2−1
ðn − 1Þ! ; n ¼ 2; 4; 6;… ð24Þ

with the odd cn’s vanishing.
We see that once the duality ambiguity is removed, the

theory with the symmetry (23) contains only even powers
of the field, with the coefficients completely fixed in terms
of one parameter α, which, furthermore, can be reabsorbed
into the energy scale Λ by changing units. Thus, the theory
is completely fixed, with no free parameters other than the
energy scale of strong coupling.

V. SYMMETRY ALGEBRA

The generators of the Galileon symmetry (1) are

Cϕ ¼ 1; Bμϕ ¼ xμ: ð25Þ

Along with the standard linear Poincaré generators
Pμϕ ¼ −∂μϕ, Jμνϕ ¼ ðxμ∂ν − xν∂μÞϕ, they close to form
the Galileon algebra [24], whose nonzero commutators are

½Pμ; Bν� ¼ ημνC; ½Jμν; Bλ� ¼ ημλBν − ηνλBμ;

along with the standard commutators ½Jμν; Pλ� ¼ ημλPν−
ηνλPμ, ½Jμν; Jλσ� ¼ ημλJνσ − ηνλJμσ þ ηνσJμλ − ημσJνλ of the
Poincaré algebra.
There is a new symmetric traceless generator associated

with the new symmetry (23)

Sμνϕ ¼ xμxν −
1

D
x2ημν þ α

�
∂μϕ∂νϕ −

1

D
ð∂ϕÞ2ημν

�
:

This generator closes with the Galileon algebra to form an
enlarged symmetry algebra whose new nonzero commu-
tators are

½Pμ; Sνλ� ¼ ημνBλ þ ημλBν −
2

D
Bμηνλ;

½Bμ; Sνλ� ¼ −α
�
ημνPλ þ ημλPν −

2

D
Pμηνλ

�
;

½Sμν; Sλσ� ¼ αðημλJνσ þ ηνλJμσ þ ηνσJμλ þ ημσJνλÞ;
½Jμν; Sλσ� ¼ ημλSνσ − ηνλSμσ þ ημσSλν − ηνσSλμ: ð26Þ

When α → 0, this reduces to the algebra of traceless N ¼ 2
extended shift symmetries studied in Ref. [15].

VI. SOFT LIMIT

Recently, the authors of Ref. [25] studied the behavior of
soft limits of scattering amplitudes in various scalar field
theories in D ¼ 4. In particular, they found that Dirac-
Born-Infeld has better behavior [with amplitudes scaling as
Oðq2Þ in the soft limit] than a generic PðXÞ theory, and that
the general Galileon has the best soft behavior among
theories whose terms have N fields and 2ðN − 1Þ deriva-
tives. Additionally, they found a scalar field theory which
has even better soft behavior, with its scattering amplitudes
scaling asOðq3Þ in the soft limit, which they conjectured to
be the quartic Galileon. We are now in a position to see that
this is a consequence of invariance under the extended shift
symmetry (23).
This symmetry leads to a “soft-ϕ” theorem of the

following form (which is analogous to the soft pion
theorems of chiral perturbation theory [34,35] or the
soft-ζ theorems in cosmology [36–38]):

lim
q→0

∂qðμ∂qνÞT

�hϕqϕk1…ϕkN i0
hϕqϕ−qi0

�
¼ D̂hϕk1…ϕkN i0; ð27Þ

which says that the traceless part of the Oðq2Þ soft limit of
the ðN þ 1Þ-point correlation function is given by some
differential operator D̂ acting on the N-point correlator (the
prime denotes a correlation function without the momen-
tum-conserving delta function). The precise form of D̂ is
not important for our present purposes. Now, our theory
contains only Galileons with even numbers of fields, and
this Z2 symmetry causes all odd-point amplitudes to
vanish. Therefore, if ðN þ 1Þ is even, the right-hand side
of the identity (27) is zero, and Eq. (27) tells us that the
traceless part of the Oðq2Þ part of the soft limit vanishes.
Since the Galileon is massless, its 4-momentum is null, so
the trace part vanishes as well. Therefore, in the theory of
the quartic Galileon, the soft limit of amplitudes starts at
Oðq3Þ, in agreement with the findings of Ref. [25] in
explicit computations. Note that in higher dimensions, the
theory (24) we have identified with this extended symmetry
will also enjoy this improved soft-limit behavior, as will all
the theories related to it by Galileon duality. This is also the
same special Galileon theory for which an exact S-matrix
was conjectured in Ref. [26]. In D ¼ 4 it is the Legendre
self-dual model described in Ref. [27].

VII. CONCLUSIONS

We have identified a family of Galileon theories which
are invariant under an extended symmetry consisting of a
shift quadratic in spacetime coordinates and a shift quad-
ratic in the field. The presence of this symmetry explains
the soft behavior of scattering amplitudes in these theories.
It is possible that this structure generalizes to higher shifts
in both spacetime coordinates and fields, which would lead
to theories with even better soft behavior in higher
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dimensions. We note that a zeroth-order requirement that
makes this plausible is that the kinetic term is invariant
under an arbitrarily high-order traceless shift sym-
metry [15].

ACKNOWLEDGMENTS

Research at Perimeter Institute is supported by the
Government of Canada through Industry Canada and by
the Province of Ontario through the Ministry of Economic
Development and Innovation. This work was made pos-
sible in part through the support of a grant from the John
Templeton Foundation. The opinions expressed in this
publication are those of the author and do not necessarily
reflect the views of the John Templeton Foundation (K. H.).
This work was supported in part by the Kavli Institute for
Cosmological Physics at the University of Chicago through
Grant No. NSF PHY-1125897, an endowment from the
Kavli Foundation and its founder Fred Kavli, and by the
Robert R. McCormick Postdoctoral Fellowship (A. J.).

APPENDIX: PROOF OF EQ. (15)

We write the Galileon Lagrangians in the form
Ln ¼ ðn−1Þ!

n ϕΦ ½μ1
μ1 � � �Φ μn−1�

μn−1 , with antisymmetrization
of weight one, consistent with Eqs. (6) and (4). Using
the antisymmetrization of the derivatives, any variation can
be written as

δLn ≃ ðn − 1Þ!δϕΦ ½μ1
μ1 � � �Φ μn−1�

μn−1 : ðA1Þ

The variation under δ0 is

δLn ≃ ðn − 1Þ!sμνxμxνΦ ½μ1
μ1 � � �Φ μn−1�

μn−1 ; ðA2Þ

which upon integration by parts and using antisymmetry
becomes

δLn ≃ 2ðn − 1Þ!sμνϕδμ½νΦ μ2
μ2 � � �Φ μn−1�

μn−1 : ðA3Þ

Taking the variation with respect to ϕ, again using anti-
symmetry,

δ

δϕ
ðδ0LnÞ ¼ 2ðn − 1Þðn − 1Þ!sμνδμ½νΦ μ2

μ2 � � �Φ μn−1�
μn−1

¼ 2ðn − 1ÞsμνXðn−2Þ
μν ; ðA4Þ

giving the first line of Eq. (15).
The variation under δ2 is

δLn ≃ ðn − 1Þ!sμν∂μϕ∂νϕΦ
½μ1

μ1 � � �Φ μn−1�
μn−1 : ðA5Þ

Taking the variation with respect to ϕ, all the contributions
with three or four derivatives on any ϕ cancel out, and what
remains are the two-derivative contributions,

δ

δϕ
ðδ2LnÞ ¼ −2ðn − 1Þ!sμν∂μ∂νϕΦ

½μ1
μ1 � � �Φ μn−1�

μn−1

¼ 2ðn − 1Þðn − 1Þ!sμν∂μ∂λϕ∂ν∂σϕδλ
½σΦ μ2

μ2 � � �Φ μn−1�
μn−1

¼ −2sμν½ΦμνLTD
n−1 − ðn − 1ÞΦμ

λΦν
σXðn−2Þ

λσ �: ðA6Þ

Now we use the recursion relation (10) twice in order to
reduce the second term in the brackets:

Φμ
λΦν

σXðn−2Þ
λσ ¼ 1

n − 1
Φμ

λ½−Xðn−1Þ
νλ þ LTD

n−1ηνλ�

¼ 1

n − 1

�
1

n
ðXðn−1Þ

μν − LTD
n−1ημνÞ þ ΦμνLTD

n−1

�
:

There is a cancellation between the final term here and the

first term in the brackets of Eq. (A6), and we may ignore the

term proportional to ημν because of the tracelessness of sμν,

leaving the result in the last line of Eq. (15), δ
δϕ ðδ2LnÞ ¼

2
n s

μνXðnÞ
μν . The proof of the second line of Eq. (16) follows

similarly.
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