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This article details the computation of the two-point correlators of the convergence, E and B modes of
the cosmic shear induced by the weak lensing by large scale structure assuming that the background
spacetime is spatially homogeneous and anisotropic. After detailing the perturbation equations and the
general theory of weak lensing in an anisotropic universe, it develops a weak shear approximation scheme
in which one can compute analytically the evolution of the Jacobi matrix. It allows one to compute the
angular power spectrum of the E and B modes. In the linear regime, the existence of B modes is a direct
tracer of a late-time anisotropy and their angular power spectrum scales as the square of the shear. It is then
demonstrated that there must also exist off-diagonal correlations between the E modes, B modes and
convergence that are linear in the geometrical shear and allow one to reconstruct the eigendirections of
expansion. These spectra can be measured in future large scale surveys, such as Euclid and Square
Kilometre Array, and offer a new tool to test the isotropy of the expansion of the universe at low redshift.
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I. INTRODUCTION

A. Motivations

The standardmodel of cosmology describes our Universe
with a very simple solution of general relativity describing a
spatially homogeneous and isotropic spacetime, known as
the Friedmann-Lemaître solution. It is assumed to describe
the geometry of our Universe smoothed on large scales.
Besides, the use of the perturbation theory allows one to
understand the properties of the large scale structure, as well
as its growth from initial conditions set by inflation and
constrained by the observations of the cosmic microwave
background (CMB). It is a very successful model and allows
one to deal with all existing observations in a consistent way
with only six free parameters [1] from primordial nucleo-
synthesis to today, involving mostly general relativity,
electromagnetism and nuclear physics, that is, physics

below 100 MeV and well under control experimentally
(see, e.g., Refs. [2–4] for standard textbooks).
The construction of the cosmological model depends on

our knowledge of microphysics but also on a priori
hypotheses on the geometry of the spacetime describing
our Universe. It relies on four main hypotheses (see Ref. [5]
for a detailed description): (H1) a theory of gravity, (H2) a
description of the matter and the nongravitational inter-
actions, (H3) a symmetry hypothesis, and (H4) an hypothesis
on the global structure, i.e., the topology, of the Universe.
The hypotheses H1 and H2, that refer to the physical
theories, are not sufficient to solve the field equations and
we need an assumption on the symmetries (H3) of the
solutions describing our Universe on large scales.
Among the generic conclusions of this standard model is

the need of a dark sector, including dark matter and dark
energy, which emphasizes the need for extra degrees of
freedom, either physical (new fundamental fields or inter-
actions) or geometrical (e.g., a cosmological solution with
lower symmetry). This has driven a lot of activity to test the
hypotheses of the cosmological model. In that debate, weak
lensing is a key observation to test general relativity on
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cosmological scales [6] and to constrain the scale on which
the fluid limit holds [7]. It complements tests of the other
hypotheses such as the equivalence principle [8] and the
Copernican principle [9]. Our first motivation is thus to
provide a new test on the isotropy of the expansion at late
time, hence providing a new test of the standard cosmo-
logical assumption. Any detection of a violation of a
symmetry of the background spacetime would have impor-
tant implications in terms of model building and on the
understanding of the dark sector.
While in the standard ΛCDM model the cosmological

constant Λ is the source of the acceleration of the Universe,
many models have been proposed to explain the accel-
eration of the cosmic expansion. The property of the dark
sector is often modeled as a fluid with an equation of state,
Pde ¼ wρde, relating its pressure to its energy density. Such
a phenomenological parameterization allows one to char-
acterize the ability of different surveys to actually demon-
strate thatw ¼ −1, as expected for a cosmological constant.
Among the plethora of dark energy models, many enjoy an
anisotropic pressure Πi

j and thus may trigger a phase of
anisotropic expansion at late time when dark energy starts
influencing the dynamics of the Universe. This is for
instance the case of magnetized dark energy [10,11], solid
dark matter [12,13] induced by a network of frustrated
topological defects, bigravity models [14], anisotropic dark
energy [15,16] and in models in which the backreaction
[17] of the large scale structure on the background
evolution is the source of the acceleration. This has led
to the development of a phenomenological parameteriza-
tion of the anisotropic pressure in terms of an anisotropic
equation of state as Πi

j ¼ Δwi
jρde [18–21]. Our second

motivation is thus to propose new observational tests on the
anisotropic pressure of the dark energy sector, hence
constraining another phenomenological deviation from a
pure cosmological constant.
When concerned by anisotropic expansion, we can

distinguish between two classes of models, that allow
one to divide the different methods to constrain anisotropy.
Recall that any perturbed quantity, X say, such as the
gravitational potential, the density contrast, etc., can be
split, in Fourier space, as the product of an initial configu-
ration and a transfer function as Xðt; kÞ ¼ TXðt; kÞXiðkÞ.
First, early anisotropic models (such as anisotropic infla-
tion) have anisotropic initial conditions [in the sense that
the correlation functions of the initial perturbed quantities
are such that hXiðkÞX�

i ðk0Þi ≠ PXðkÞδðk − k0Þ] while the
transfer functions are independent of direction [i.e.,
TXðt; kÞ ¼ TXðt; kÞ] because the geometry has isotropized
at later times. Second, late-time anisotropic models have
been isotropic during most of the history of the Universe
[hence enjoying isotropic correlation functions, e.g.,
hXiðkÞX�

i ðk0Þi ¼ PXðkÞδðk − k0Þ] while their transfer func-
tion at late time is anisotropic, i.e., TXðt; kÞ ≠ TXðt; kÞ.
These two types of models have a huge difference in the

way one attacks observational constraints. In particular the
propagation of light is only affected in the second class of
models.
Without any source during inflation, any primordial

anisotropy is washed out [22,23] by the expansion. It
was however demonstrated that it affects the construction
of the Bunch-Davies state [22] so that it lets very specific
signatures on the primordial power spectrum [24–26] and
affects the onset of inflation [27]. Such deviation from
isotropy can be constrained by CMB observations [28–35].
An early, postinflationary, anisotropy also affects the
synthesis of light elements during primordial nucleosyn-
thesis [36] (mostly because it affects the expansion rate).
Tests of a late-time anisotropy have mostly focused on

the Hubble diagram from type Ia supernovae [21,37–46].
An anisotropic expansion will influence the transfer func-
tion so that it can also be constrained by the study of the
large scale structure [15,47–54] and of the CMB [55–58]. It
was argued that supernovae data lead to Δw < 2.1 × 10−4

[41] and that next-generation galaxy surveys are capable of
constraining anisotropies at the 5% level [21] in terms of
the anisotropic equation of state.
In this article, we follow our former analysis [59] on the

imprint of a late-time anisotropyonweak lensing.According
to the standard lore [60], in a homogeneous and isotropic
background spacetime, weak lensing by the large scale
structure of the Universe induces a shear field which, to
leading order, only containsEmodes. It was demonstrated in
Ref. [59] that, even in the linear regime, anisotropic
expansion will reflect itself in the existence of nonvanishing
Bmodes. The level ofBmodes is used as an important sanity
check during the data processing. On small scales, Bmodes
arise from nonlinear effects [61], intrinsic alignments [62],
Born correction, lens-lens coupling [63], and gravitational
lensing due to the redshift clustering of source galaxies [64].
On large angular scales in which the linear regime holds, it
was demonstrated [59] that nonvanishingBmodeswould be
a signature of a deviation from the isotropy of the expansion,
these modes being generated by the coupling of the back-
ground Weyl tensor to the E modes.
While light propagation in strictly homogeneous Bianchi

universes has been widely investigated [65,66], the analytic
computation of the Jacobi matrix was only determined
recently [67] (see also Ref. [68]). This article focuses on the
computation of the Jacobi matrix taking into account
cosmological perturbations at linear order in a spatially
homogeneous anisotropic Euclidean spacetime of the
Bianchi I family. We provide all the technical tools
(perturbation theory, light propagation, expression of the
observables). The application of our formalism is exposed
in our companion paper [69] in which we compute the
expected signals for the Euclid [70] and Square Kilometre
Array (SKA) [71] observations.
Among our main results, we emphasize that, as soon as

local isotropy does not hold at the background level, there
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exist a series of weak-lensing observables that allow one to
fully reconstruct the background shear and thus test spatial
isotropy. More precisely, as a consequence of the non-
vanishing of the B modes, it can be demonstrated that
(1) the angular correlation function of the B modes,

CBB
l , is nonvanishing [59] and scales as the square of

the ratio of the geometric shear to the Hubble
expansion rate, σ2=H2;

(2) the Bmodes correlate with both the Emodes and the
convergence κ leading to the off-diagonal cross-
correlations hBlmE⋆

l�1m−Mi and hBlmκ
⋆
l�1m−Mi in

which Elm and Blm are the components of the
decomposition of the E and B modes of the cosmic
shear in (spin-2) spherical harmonics and κlm the
components of the decomposition of the conver-
gence in spherical harmonics. These two correlators
scale as σ=H;

(3) the deviation from isotropy also generates off-
diagonal correlations among κ and E modes,
hElmE⋆

l�2m−Mi, hκlmκ⋆l�2m−Mi, and hElmκ
⋆
l�2m−Mi.

These three correlators scale as σ=H;
(4) for each type of correlator, there are five values ofM

so that in principle they can be used to reconstruct
the five components of the geometric shear σij.

This last point is very important since it exhibits a rigidity
between independent observables that can be used to
control systematic effects.

B. Structure of the article

Section II summarizes the description of the spacetime at
the background level (Sec. II A) and for linear perturbations
(Sec. II B). For the sake of clarity, the theory of gauge-
invariant perturbations is detailed in Appendix A. It also
introduces the parameterization of an anisotropic dark
energy sector. The main variables required to describe
the evolution of the background spacetime are summarized
in Table I.
Section III describes the propagation of a light bundle

(Sec. III A) and presents in Sec. III B the central equation
for our analysis, namely the Sachs equation

d2

dv2
Da

b ¼ Ra
cDc

b;

for the 2 × 2 Jacobi matrix Dab, the decomposition of
which is presented in Sec. III C. It concludes by specifying
these general results to the case of a Bianchi I spacetime
(Sec. III D), focusing on the technical but useful use of a
conformal transformation. The main variables required to
describe the evolution of a geodesic bundle are summarized
in Tables II and III.
Since the geometric shear is obviously small, we develop

in Sec. IV an approximation scheme referred to as small
shear limit in which σ=H is considered as a small
parameter. We then use a two-parameter expansion scheme

in which both σ=H and the perturbations of the metric, say
Φ, are small. Thus, a given order fn; pg corresponds to
term of order ðσ=HÞnΦp. In this approximation, the
structure of our computation is the following. We start
from the fact that the Sachs equation can be rewritten as
[see Eq. (4.34)]

TABLE I. Table of most used quantities describing the back-
ground spacetime.

Symbol Meaning Appears at Eq.

μ; ν;… Formal spacetime indices � � �
i; j;… Cartesian spatial indices � � �
i; j;… Spatial tetrad indices (2.11)
0 Time tetrad index (2.13)
a Average scale factor (2.1)
H Cosmic time Hubble expansion rate (2.18a)
βi Log of directional scale factors (2.2)
σ̂ij Geometrical (cosmic time) shear (2.4)
σij Geometrical (conformal time) shear (2.5)
ϑν0 Timelike vector of background tetrad (2.12)
ϑνi Spacelike vector of background tetrad (2.11)
Θν

0 Timelike vector of perturbed tetrad (4.6)
Θν

i Spacelike vector of perturbed tetrad (4.6)

Δwj
i

Equation of state of dark energy
anisotropic stress

(2.16)

βij Homogeneous perturbation of the
Euclidean metric.

(4.5)

TABLE II. Table of most used quantities describing the
propagation of a geodesic bundle.

Symbol Meaning Appears at Eq.

kμ Null geodesic tangent vector (3.1)
~kμ Conformally null geodesic

tangent vector
(3.33)

z Redshift (3.4)
no Initial observed direction (3.5)
na Sachs basis (3.8)
n� Helicity basis (3.11)
ηa Components of the connecting

vector in the Sachs basis
(3.13)

Rab Optical tidal matrix (3.13)
Dab Jacobi matrix (3.14)
~Dab

Conformal Jacobi matrix (3.37)

D̄A Background angular diameter distance (3.17)
DA Angular diameter distance (3.19)
κ Convergence (3.17)
γab Cosmic shear (3.17)
V Rotation (3.17)
κlm Multipolar coefficients of the

convergence
(3.23)

Vlm Multipolar coefficients of the rotation (3.23)
Elm Multipolar coefficients of the cosmic

shear E modes
(3.25)

Blm Multipolar coefficients of the cosmic
shear B modes

(3.25)
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d2Dab

dχ2
þ 1

k0
dk0

dχ
dDab

dχ
¼ 1

ðk0Þ2RacDcb;

where χ is the coordinate along the light cone in
the background Friedmann-Lemaître spacetime (see

Sec. IV D). At order f0; 0g, Rf0;0g
ab ¼ 0 and k0f0;0g ¼ −1

so that the equation takes the form

d2Df0;0g
ab

dχ2
¼ 0

and can be integrated trivially (see Sec. VI B). We then
expand this equation order by order so that it formally takes
the form (since k0f0;0g ¼ −1)

d2Dfn;pg
ab

dχ2
¼ Sfn;pg

in which the source term contains a contribution from Rab

and k0 up to order fn; pg and from Dab at lower order. The
effects to be taken into account are then
(1) the tensor and vector contributions to Rab, which

starts at order f1; 1g and the contribution of the
scalar modes at the relevant order;

(2) the evolution of all the perturbative modes, that is of
the transfer functions, which is decomposed as

TXðk; tÞ ¼ Tf0;1g
X ðk; tÞ þ Tf1;1g

X ðk; tÞ

since the orders f0; 0g and f1; 0g correspond to
homogeneous solutions. This requires one to solve
the equations of Appendix A.

(3) In order to determine k0, we also need to solve
perturbatively the geodesic equation.

(4) A source observed in direction no at distance χ is
located at a spacetime point Pfn;pg and its contri-
bution depends on the local direction of the tangent
vector to the geodesic in nfn;pg, which determines
the local Sachs basis in Pfn;pg. We shall thus proceed
with two operations:
(a) transport Pfn;pg to Pf0;0g (see Fig. 1) and
(b) transport nfn;pg and the local Sachs basis

(see Fig. 2).
This is what we call the central geodesic approximation
and the possibility to go beyond this approximation is
sketched in Appendix C. We however stick to this approxi-
mation, which is sufficient in the small shear approxima-
tion. At lowest order, it corresponds to the usual Born
approximation but at higher order there are post-Born
corrections to include.
Section V describes the computation of the angular

correlation. Our philosophy is to adopt an observer point of
view, that is, to compute all quantities on the celestial
sphere of the observer. Given the previous perturbative
expansion scheme, any observable Xs of spin s can then be
formally expressed as [see Eq. (5.4)]

XsðχS;noÞms
o ¼

Z
χS

0

SXsðχS; χ; noÞms
odχ;

FIG. 1. Comparison of the geodesic in the approximation at order fn; pg. In order to adopt an observer-based point of view, we need to
relate the local direction of propagation nfn;pg to no. The transports for the 3 orders of perturbations are, respectively, detailed in
Eqs. (6.12) and (6.37) that determine xifn;pgðχ; noÞ that can be further split in a radial component δrfn;pgðχ;noÞ and an orthoradial
contribution that defines the deflection angle αafn;pgðχ;noÞ.

TABLE III. Table of most used quantities describing the
propagation of a geodesic bundle.

Symbol Meaning Appears at Eq.

Σ Scalar shear on the sphere (4.15)
Σa Vector shear on the sphere (4.16)
Σab Tensor shear on the sphere (4.16)
Da Covariant derivative on the sphere (4.17)

∂; ∂̄ Spin-raising and -lowering operators (4.21)

Σ2m Multipole of the scalar shear (4.25)
Σ� First derivative of the scalar

shear in the helicity basis
(4.27)

ms
o Spin-s polarization basis (5.1)

SXs Source of the field Xs (5.4)
TXs
lm

Anisotropic transfer function of
the field Xs

(5.13)

XsTLM
lm Multipoles of the anisotropic

transfer function
(5.15)

EXs
lm, B

Xs
lm

Multipoles of the E and B
modes of the field Xs

(5.17)

CEE
l Angular power spectrum of

the E modes
(5.21)

CBB
l Angular power spectrum of

the E modes
(5.21)

B Scalar perturbation of the
spatial metric

(6.5)

αa Deflection angle (6.13)
ϖa Perturbation of propagating

direction
(6.17)

φ Deflection potential (6.27)
N ðχÞ Source distribution (6.43)
PðkÞ Primordial power spectrum (5.14)
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for a source SX
s
located at χS and observed in direction no.

According to the spin s of the quantity we can expand
in the proper spherical harmonics with respect to no.
This allows one to define the expansion of all the
quantities in term of spherical harmonics. As a by-product,
we demonstrate in Sec. V C that the five off-diagonal cor-
relators hBlmE⋆

l�1m−Mi, hBlmκ
⋆
l�1m−Mi, hElmE⋆

l�2m−Mi,
hκlmκ⋆l�2m−Mi, and hElmκ

⋆
l�2m−Mi are nonvanishing.

Equipped with all these tools, we compute these corre-
lators and the angular power spectra of the E and B modes
in Sec. VI order by order. Order f1; 0g recovers the
nonperturbative analysis of Ref. [67] while order f0; 1g
recovers the standard case of lensing by large scale
structure in the linear regime; Sec. VI E gives all the
details of the computation at order f1; 1g. This allows us to
discuss the dominant contribution in Sec. VII. In particular,
we argue that the dominant term for the cosmic shear is
given by

γab ¼ −αcDcDhaDbiφ;

where αc is the deflection angle at order f1; 0g, φ the
deflection potential, and Da the covariant derivative on the
celestial sphere.
Many technicalities are gathered in the Appendixes:

linear perturbation theory (Appendix A), the expressions
of the geometric quantities at first order in perturbation
that are need to compute the source term of the Sachs
equation (Appendix B), details on the lensing method
(Appendix C) and a catalog of useful mathematical
identities (Appendix D). Throughout this work we adopt
units in which c ¼ 1.

II. SPACETIME STRUCTURES

A. Background spacetime

1. Geometry

At the background level, the Universe is described by a
spatially Euclidean, homogeneous, and locally anisotropic
solution of the Einstein equation filled with a perfect fluid.
Its metric takes the general form (see Refs. [72–76] for
general references on Bianchi spacetimes)

ds2 ¼ −dt2 þ
X3
i¼1

X2
i ðtÞðdxiÞ2; ð2:1aÞ

¼ −dt2 þ a2ðtÞγijðtÞdxidxj; ð2:1bÞ

where aðtÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1ðtÞX2ðtÞX3ðtÞ

p
is the volume averaged

scale factor and t the cosmic time. We define the tangent
vector to the fundamental comoving observer by
uμdxμ ≡ dt. It is normalized such that uμuμ ¼ −1. The
spatial metric γij and its inverse γij can be decomposed as

γijðtÞ¼ exp½2βiðtÞ�δij; γijðtÞ¼ exp½−2βiðtÞ�δij; ð2:2Þ

with the constraint

X3
i¼1

βi ¼ 0 ð2:3Þ

that ensures that the comoving volume remains constant
(i.e., _γ ¼ γij _γij ¼ 0). Note that, as a consequence of
Eq. (2.2), some spatial directions should contract while
others grow [24]. Note also that there is no sum on i in the
definition of γij and Latin indices fi; j; k…g are raised with
γij and lowered with γij.
The geometrical shear is defined as

σ̂ij ≡ 1

2
_γij; ð2:4Þ

where a dot refers to a derivative with respect to cosmic
time. We shall also use the conformal time η defined by
aðηÞdη ¼ dt and denote derivatives with respect to it by a
prime. Thus, the conformal shear is defined as

σij ≡ 1

2
γ0ij ¼ aσ̂ij: ð2:5Þ

The amplitude of the shear is defined by

σ̂2 ≡ σ̂ijσ̂
ij ¼

X3
i¼1

_β2i and

σ2 ≡ σijσ
ij ¼ a2

X3
i¼1

_β2i ¼
X3
i¼1

βi
02: ð2:6Þ

FIG. 2. The local Sachs basis at a point Pfn;pg on the geodesic
has to be transported to the point Pf0;0g on the fiducial null
geodesic of the background Friedmann-Lemaître spacetime. This
implies to perform a transport on the tangent space at the same
time that the point of observation is transported in real space. The
transports for the 3 orders of perturbations are, respectively,
detailed in Eqs. (6.15), (6.34) and (6.54) for n and in Eqs. (6.17),
(6.35) and (6.54) for the Sachs basis.
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2. Decomposition of the geometric shear

The shear, being a symmetric and traceless spatial tensor
(σii ¼ 0), has 5 degrees of freedom, three of which
correspond to the Euler angles necessary to express the
shear in a general basis. By choosing the Cartesian basis
(2.2), we have set these three angles to zero so that we are
left with only 2 degrees of freedom, namely the three βi
with the constraint (2.3). The components of the shear can
thus be expressed as

σ̂ijðtÞ ¼ _βi exp½2βiðtÞ�δij; σ̂ijðtÞ ¼ _βi exp½−2βiðtÞ�δij;
σ̂ijðtÞ ¼ _βiδ

i
j: ð2:7Þ

These two independent degrees of freedom can also be
decomposed as a magnitude and an angle φ. The first is
related to the scalar shear while the choice of the angle
defines which of the spatial directions are initially expand-
ing. These variables can be obtained by performing the
decomposition

βiðtÞ≡ CiWðtÞ; ð2:8Þ

with the three constants Ci given by

Ci ¼
ffiffiffi
2

3

r
S sin

�
φþ 2π

3
i

�
; i ∈ f1; 2; 3g ð2:9Þ

and where S is constant. This parameterization obviously
satisfies the required constraintsX

i

Ci ¼ 0;
X
i

C2
i ¼ S2: ð2:10Þ

Therefore, once the Cartesian basis is chosen, we can
choose the two constants ðφ;SÞ to describe the two degrees
of freedom of the shear since σ̂2 ¼ ðS _WÞ2.

3. Spatial triad

It is convenient to introduce a spatial triad—a set of three
orthonormal vectors and covectors; the normalization being
defined from γij and γij—related directly to the Cartesian
coordinates xi. Their components in the coordinates basis
read

ϑji ¼ exp½−βiðtÞ�δji ; ϑ
i
j ¼ exp½βiðtÞ�δij: ð2:11Þ

In such a triad basis, the shear components take the simple
form

σ̂i j ¼ σ̂i j ¼ _βiδij; σi j ¼ σi j ¼ β0iδij: ð2:12Þ

Thus, this triad can easily be extended to a tetrad by using
the observer’s 4-velocity as the normalized timelike vector

ϑμ0 ¼ δμ0 ¼ uμ; ϑ
0
μ ¼ δ0μ ¼ −uμ: ð2:13Þ

4. Description of matter and field equations

Concerning the matter sector, we assume it is com-
posed of a pressureless matter fluid and a dark energy
component. The dark sector is then described by a fluid
whose energy-momentum tensor enjoys a nonvanishing
anisotropic stress:

Tμ
ν ¼ ðρþ PÞuμuν þ Pδμν þ Πμ

ν : ð2:14Þ

The anisotropic stress tensor is symmetric (Πμν ¼ Πνμ),
traceless (Πμ

μ ¼ 0) and transverse (uμΠ
μ
ν ¼ 0) which

means that it has only 5 degrees of freedom encoded
in its spatial part Πij. Unless we define a microscopic
model, we need to use an equation of state for Πi

j. We
decompose it as

Πi
j ≡ ρdeΔwi

j; ð2:15Þ

so that the pressure tensor takes the general form

Pj
i ¼ ρdeðwδji þ Δwj

iÞ; ð2:16Þ

where w is the equation of state relating the isotropic
pressure to the energy density and Δwj

i is an equation of
state for the anisotropic pressure. From a phenomenologi-
cal point of view, this corresponds to an extension of the
dark energy sector, similar to the ansatz (1) of Ref. [41],
which will allow us to address the question of the deviation
from the standard cosmological constant reference (i.e.,
w ¼ −1 and Δwj

i ¼ 0).
Defining the Hubble expansion rate by

H ¼ _a=a; ð2:17Þ

the background equations [22] take the form

3H2 ¼ κðρm þ ρdeÞ þ
1

2
σ̂2; ð2:18aÞ

ðσ̂ijÞ· ¼ −3Hσ̂ij þ κΠi
j: ð2:18bÞ

_ρm ¼ −3Hρm; ð2:18cÞ

_ρde ¼ −3Hð1þ wÞρde − σ̂ijΠij: ð2:18dÞ

The first equation is the analogous of the Friedmann
equation in the presence of a spatial shear; the second is
obtained from the traceless and transverse part of the
Einstein equation and dictates the evolution of the shear.
The last two equations are the continuity equations for the
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dark matter (P ¼ Πi
j ¼ 0) and dark energy sector. We have

set1 κ ¼ 8πG≡M−2
P .

5. Dynamics

The set of equations (2.18) can be formally integrated.
As usual, the dark matter energy density scales as

ρm ¼ ρm0

�
a0
a

�
3

: ð2:19Þ

Equation (2.18b) has a first integral given by

σ̂ij ¼
�
a0
a

�
3
�
Cij þ κ

Z
Πi

j

�
a
a0

�
2 dða=a0Þ

H

�
; ð2:20Þ

where Cij is a constant tensor representing the decaying
mode of the shear. Note that if the term proportional to Cij is
not negligible, then the shear is not proportional to the
anisotropic stress so that σij andΠij cannot be diagonalized
in the same basis. Integrating Eq. (2.18d) leads to

ρde ¼
�
a
a0

�
−3ð1þwÞ�

ρde0 −
Z

σ̂jiΠi
j

�
a
a0

�
2þ3w dða=a0Þ

H

�
ð2:21Þ

or, if one uses the decomposition (2.15), as

ρde ¼ ρde0

�
a
a0

�
−3ð1þwÞ

exp

�
−
Z

σ̂jiΔwi
j
da
aH

�
: ð2:22Þ

In the particular case where w ¼ −1, this latter equation
teaches us that the dark energy density does not remain
constant.

B. Linear perturbations

Cosmological perturbation theory around a Bianchi I
background spacetime, in the Bardeen formalism, was first
investigated in Refs. [22,24]. The perturbed spacetime has a
metric of the form

ds2 ¼ a2½−ð1þ 2AÞdη2 þ 2Bidxidηþ ðγij þ hijÞdxidxj�;
ð2:23Þ

where A is a free scalar function, Bi ≡ ∂iBþ B̄i and hij ≡
2Cðγij þ σij

HÞ þ 2∂i∂jEþ 2∂ðiEjÞ þ 2Eij defined together
with the usual transversality and trace-free condi-
tions ∂iB̄i ¼ 0 ¼ ∂iEi; Ei

i ¼ 0 ¼ ∂iEij.

As summarized in Sec. A 2, one can define 2 scalar (Φ
andΨ), 2 vector (Φi) and 2 tensor (Eij) degrees of freedom,
which are gauge invariant; see Eq. (A25). Similarly,
one can define gauge-invariant variables for the matter
sector, leading to four scalar variables (δρ̂, δP̂, v̂ and π̂S,
respectively, for the density, pressure, velocity and aniso-
tropic stress), four vector variables ( ˆ̄vi and π̂Vi ) and two
tensor variables (π̂Tij) the expressions of which are gathered
in Eqs. (A33) and (A35).
Appendix A summarizes all the techniques and results

needed to study the perturbations, including the definition
of the Fourier transform (Sec. A 1), and the construction of
the gauge-invariant variables (Sec. A 2). It then derives the
full set of Einstein equations (Sec. A 3) and the conserva-
tion equations (Sec. A 4).
Among the important features that differ from the

standard perturbation theory around a Friedmann-
Lemaître spacetime, let us mention

(i) the fact that only the components ki of the wave (co)
vector are constant so that both ki and k are time
dependent—see e.g., Eq. (A2);

(ii) the fact that the scalar-vector-tensor modes do not
decouple;

(iii) the fact that, even at late time, the two Bardeen
potentials are not equal because of the anisotropic
stress.

III. WEAK LENSING IN A GENERAL SPACETIME

This section provides the definitions and equations
describing the propagation of a geodesic bundle (geodesic
equation and Sachs equation) in a general spacetime and in
the particular case of a Bianchi I universe.

A. Geodesic bundle

Weak lensing is concerned with the deformation of an
infinitesimal bundle of light rays propagating in curved
spacetimes. It is thus related to the geodesic deviation
equation.

1. Geodesic equation

The central quantity in the geodesic equation, obtained
as the eikonal limit of Maxwell’s equations, is the wave
vector of an electromagnetic wave, kμðvÞ≡ dxμ=dv, where
v is an affine parameter of a given geodesic xμðvÞ and
defined such that it is zero at the observer and increases
towards the source. We shall be working in the eikonal
approximation where kμ is a null vector satisfying the
geodesic equation

kν∇νkμ ¼ 0: ð3:1Þ
If we parameterize the bundle of null geodesics by xμðv; sÞ,
where s is a continuous parameter labeling each ray of the
bundle, then each ray has a wave vector given by

1In order to easily check the homogeneity of the equations, we
recall that

½H�∼MP; ½ρ�∼M4
P; ½κ�∼M−2

P ; ½σ�∼MP; ½Π�∼M4
P:
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kμðv; sÞ ¼ ∂xμ=∂v, whereas the vector ημ ¼ ∂xμ=∂s gives
the infinitesimal separation between two neighboring geo-
desics of the bundle. The photon wave vector can always be
decomposed in components, respectively, parallel and
orthogonal to uμ as

k̂μ ≡U−1kμ ¼ −uμ þ nμ; ð3:2Þ
where nμ are the components of the local directional vector
n, defined such that

uμnμ ¼ 0; nμnμ ¼ 1: ð3:3Þ

Once the geodesic equation is solved, any comoving
observer with 4-velocity uμ, normalized such that
uμuμ ¼ −1, defines the redshift of a source by

1þ zðv; noÞ≡ ðkμuμÞv
ðkμuμÞo

; ð3:4Þ

where v is the affine parameter that specifies the position of
the source down the light cone and

no ≡ nðv ¼ 0Þ ð3:5Þ
is the direction of observation. The energy of a photon at a
given redshift is

Uðv; noÞ ¼ Uo½1þ zðv; noÞ�; Uo ¼ ðkμuμÞo: ð3:6Þ

By definition, the local spacelike vector n is a function of
the affine parameter v and of the direction of observation
observer no, that is, the spacelike vector pointing along the
line of sight.

2. Geodesic deviation equation

A (narrow) light beam is a collection of neighboring light
rays. The behavior of any such geodesic, with respect to an
arbitrary reference one, is described by the separation (or
connecting) vector ημ. Assuming that all the rays converge
at a given eventO (the location of the observer), ημð0Þ ¼ 0.
The evolution of ημðvÞ along the beam is governed by the
geodesic deviation equation

d2ημ

dv2
¼ Rμ

ναβkνkαηβ; ð3:7Þ

where Rμ
ναβ is the Riemann tensor.

3. Sachs basis and screen space

For any observer whose worldline intersects the light
beam at an event different from O, the beam has a nonzero
extension, since a priori ημ ≠ 0. The observer can thus
project it on a screen to characterize its size and shape.
This screen is by essence a two-dimensional spacelike

hypersurface and chosen to be orthogonal to the local line
of sight nμ. Two such spatial vectors required to construct a
basis for the tangent space, na with a ¼ f1; 2g, are defined
by the requirement that

nμanbμ ¼ δab; nμauμ ¼ nμanμ ¼ 0: ð3:8Þ

With these definitions we can construct a tensor which
projects any geometrical quantity on the two-dimensional
surface orthogonal to n:

Sμν ≡ gμν þ uμuν − nμnν: ð3:9Þ

Then, with the help of the orthogonality relations (3.8), this
two-dimensional screen basis can be parallel propagated
along null geodesics as [77]

Sμσkν∇νnσa ¼ 0: ð3:10Þ

A basis satisfying the condition (3.8) and propagated
according to Eq. (3.10) is called a Sachs basis. It is
important to note that the basis formed by the vectors na
is defined up to an overall rotation around no. We can fix
this freedom by introducing a spherical basis at the
observer (i.e., at v ¼ 0) by demanding that fno; no1;no2g ¼
fnor ; noθ; noφg. With this choice, the integration of Eq. (3.10)
allows us to define a unique three-dimensional basis
fnr;nθ; nφgðno; v̂Þ at each point along the geodesics; see
Ref. [59]. Furthermore, it will be convenient to define a
helicity basis as

n� ≡ 1ffiffiffi
2

p ðnθ ∓ inφÞ ¼
1ffiffiffi
2

p ðn1 ∓ in2Þ; ð3:11Þ

whose components in the na basis read

na� ¼ n� · na ¼
1ffiffiffi
2

p ðδa1 ∓ iδa2Þ ð3:12Þ

and are, by construction, constant.

B. Sachs equation

The screen projection of the connecting vector,
ηa ≡ nμaημ, represents the relative position on the screen
of the two light spots associated with two rays separated by
ημ. Similarly, and if we set by convention Uo ¼ 1, θa ≡
ðdηa=dvÞo represents the angular separation of those rays,
as observed from O.
The geodesic equation can be recast as [2] an equation

for ηa as

d2ηa
dv2

¼ Rabη
b; Rab ≡ Rμναβkνkαn

μ
an

β
b: ð3:13Þ

Rab is the screen projected Riemann tensor which can be
split into its symmetric traceless partRhabi and its trace part
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R≡Rabδ
ab=2. It is also referred to as the optical tidal

matrix. Furthermore, thanks to the linearity of Eq. (3.13),
one can decompose the connection vector on the geodesic
to its initial derivative as

ηaðvÞ ¼ Da
bðvÞ

�
dηb

dv

�
v¼0

: ð3:14Þ

This defines the Jacobi map Dab that satisfies the Sachs
equation [2,78]

d2

dv2
Da

b ¼ Ra
cDc

b; ð3:15Þ

subject to the following initial conditions:

Da
bð0Þ ¼ 0;

dDa
b

dv
ð0Þ ¼ δab: ð3:16Þ

C. Decomposition of the Jacobi matrix and observables

The Jacobi matrix entering the Sachs equation (3.15)
encodes all the information about the deformation of a light
beam when propagating through a curved spacetime. This
2 × 2 matrix can be decomposed in different ways.
The usual decomposition is described in terms of a

convergence κ, a rotation V, and a shear γab as

DabðvÞ≡ D̄AðvÞ½ð1þ κÞIab þ Vϵab þ γab� ð3:17Þ

with

ϵab ¼ 2in−½an
þ
b�; γaa ¼ 0; ð3:18Þ

and where screen-basis indices a and b are manipulated
with Iab ≡ Sμνn

μ
anνb ¼ δab, that is, with a two-dimensional

Euclidian metric.
A canonical decomposition was introduced in

Ref. [67] as

DabðvÞ≡DAðvÞ
�

cosψ sinψ
− sinψ cosψ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

rotation

exp

�
−Γ1 Γ2

Γ2 Γ1

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

cosmic shear

:

ð3:19Þ

According to this decomposition, the real size and shape of
the light source are obtained from the image by performing
the following transformations: (i) an area-preserving shear
ðΓ1;Γ2Þ, (ii) a global rotation ψ , and (iii) a global scaling.
The latter defines the angular distance as

DAðvÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDabðvÞ

p
; ð3:20Þ

which does not assume any background spacetime and
perturbative expansion. On the other hand, the definition

(3.17) introduces the background angular distances D̄A.
Both are related by

DAðvÞ≃ D̄AðvÞ½1þ κðvÞ�: ð3:21Þ
As for the deformation of the source shape, it is given by
the reduced shear

Dhabiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detDab

p ≃ γab
ð1 − κÞ : ð3:22Þ

Each one of the above observables are defined on our
past light cone, and, as such, they are functions of no and v.
The convergence and the rotation are scalar functions and
therefore can be expanded in terms of scalar spherical
harmonics as

κðno; vÞ ¼
X
l;m

κlmðvÞYlmðnoÞ; ð3:23aÞ

Vðno; vÞ ¼
X
l;m

VlmðvÞYlmðnoÞ: ð3:23bÞ

The cosmic shear, on the other hand, being a spin-2
quantity, can be expanded in terms of the polarization
basis as

γabðno; vÞ≡
X
λ¼�

γλðno; vÞnλanλb: ð3:24Þ

The coefficients γ� can be further expanded in terms of E
and B modes on a basis of spin-2 spherical harmonics as

γ�ðno; vÞ ¼
X
l;m

½ElmðvÞ � iBlmðvÞ�Y�2
lmðnoÞ: ð3:25Þ

It should be stressed that we adopt an observer-based
point of view. This means that all quantities are expressed
in terms of ðno; v̂Þ. In general, nðno; v̂Þ ≠ no, with the
obvious exception of, e.g., Friedmann-Lemaître spacetimes
and spacetimes with a local spherical symmetry for an
observer located at the center of symmetry. Therefore, one
of the difficulties in obtaining cosmological observables as
a function of v, or equivalently as a function of the redshift
z, lies in the determination of these coefficients.

D. Particular case of a Bianchi I spacetime

1. Geodesic equation

The Bianchi I spacetime enjoys three Killing vectors ∂i
that allow one to construct three conserved quantities
gð∂i; kÞ ¼ ki along any geodesic. It implies that

ki ¼ cst ð3:26Þ

on each geodesic so that
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ki ¼ γijkj
a2

: ð3:27Þ

k being a null vector, one concludes that ω2 ≡ ðktÞ2 ¼
gijkikj with

ω≡ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðe−βikiÞ2
vuut : ð3:28Þ

It follows that the components of the direction of obser-
vation vector nμ are given by

ni ¼ ki=ω; ni ¼ ki=ω: ð3:29Þ
The constants of motion ki are then directly related to the
direction in which the observer in O needs to look to detect
the light signal, i.e., the direction of the source nμo. The
redshift of a source is then given by

1þ zðno; tSÞ≡ ωS

ωo
¼ ao

aðtSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
3
i¼1 ½e−βiðtSÞki�2P
3
i¼1 ½e−βiðtoÞki�2

s
: ð3:30Þ

It is always possible to choose the normalization such
that ao ¼ 1 and βiðtoÞ ¼ 0, but we do not make that
choice here.

2. Jacobi matrix

The study of the Sachs equation is simplified after
performing a conformal transformation of the metric by
a scale factor a:

gμν ¼ a2 ~gμν: ð3:31Þ

It can be checked that any null geodesic for gμν, affinely
parametrized by v, is also a null geodesic for ~gμν, affinely
parametrized by ~v with dv ¼ a2d ~v. The associated wave
four-vectors then read ~kμ ¼ a2kμ. Since the 4-velocities of
the comoving observers for both geometries are, respec-
tively, u ¼ ∂t and ~u ¼ ∂η, so that ~uμ ¼ auμ, we deduce that

ω≡ gμνuμkν ¼ a−1 ~gμν ~uμ ~k
ν ≡ a−1 ~ω: ð3:32Þ

The 3þ 1 decomposition of ~kμ is therefore

~kμ ¼ ~ωð− ~uμ þ ~nμÞ ð3:33Þ

with ~nμ ≡ anμ implying ~nμ ¼ nμ=a and

~ni ¼
~ki
~ω
: ð3:34Þ

The Sachs basis ð ~nμaÞ for the conformal geometry is then
related to the original one (3.8) by

~nμa ¼ anμa; ~naμ ¼ a−1naμ: ð3:35Þ

One can indeed check that the orthonormality (3.8) and the
parallel transport conditions (3.10) are preserved by the
conformal transformation with the use of the projection
matrix ~Sμν ¼ a−2Sμν, instead of Eq. (3.9).
The separation four-vector ημ is defined by comparing

events only, independently from any metric. It is therefore
invariant under conformal transformations. However, its
projection over the Sachs basis changes (since the Sachs
basis itself changes), indeed

ηa ≡ naμημ ¼ a ~naμ ~ημ ¼ a~ηa: ð3:36Þ

This implies that the Jacobi matrix transform as [61,67]

Dab ¼ a ~Dab: ð3:37Þ
Hence, the angular distance DA in the Universe described
by a metric gμν is just a ~DA, where ~DA is the angular
distance in the Universe described by the metric ~gμν. At
lowest order in perturbations, κ is the relative perturbation
of angular diameter distance whatever is the metric used.
As for the reduced shear, it remains unaffected by the
conformal transformation. In the remainder of this article,
we will thus discard the effect of an overall scale factor, in
order to simplify the computation. However it should be
recalled that, as shown by Eq. (3.32), a conformal trans-
formation has an effect on the energetic aspects of light
propagation, that is, on the relation between the redshift and
the affine parameter UðvÞ.

3. General solution

Using such a conformal transformation, it was shown in
Ref. [67] that the Sachs equation can be solved analytically
in a Bianchi I universe. This solution relies on the fact that
the Sachs equation can be rewritten as

d2 ~Dab

d ~v2
¼ ~Rac

~Dcb; ð3:38Þ

with the rescaled optical matrix given by

~Rab ¼ ~ω2

�
ðσabÞ0 þ σacσcb þ

~ω0

~ω
σab

�
: ð3:39Þ

The explicit solution of this equation is given in Secs. VIIA
and B of Ref. [67].

IV. SMALL SHEAR LIMIT

A. Definition

The current observational status of the ΛCDM model
shows that if the expansion is anisotropic, σ=H has to be
small. Moreover, since any primordial anisotropy is washed
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out by the expansion of the Universe, the term Cij in the
evolution of the background shear is negligible compared
to the integral term in Eq. (2.20).
As discussed in the introduction, a late-time anisotropy

may be generated during the acceleration of the Universe,
but the effect we are looking for needs to have an amplitude
small enough to be below the detection threshold of
ongoing observational surveys.
In full generality a linear and gauge-invariant perturba-

tive expansion around an anisotropic background should be
performed. It was developed in Refs. [22,24] in the context
of inflation and Appendix A derives the full perturbation
theory for a postinflationary era. While a numerical
integration of these equations can be performed, it is clear
from the previous arguments that an analytical insight in the
regime σ=H ≪ 1 is sufficient.
We shall thus work in the small shear limit in which the

background shear induced at late time by the anisotropic
stress-energy tensor of the dark component is small, that is,
in the limit σ=H ≪ 1. More precisely, we assume that γij −
δij ≃ 2βiδij is a small dimensionless perturbation and
σij=H is of the same order as this homogeneous perturba-
tion. We shall thus consider the Bianchi I spacetime as a
homogeneous perturbation around an isotropic Friedmann-
Lemaître spacetime, hence ignoring nonlinear corrections
in the background shear as well. In order to implement this
approximation scheme, we introduce a two-parameter
perturbation scheme (see e.g., Ref. [79]) in which, besides
the usual scalar-vector-tensor (SVT) perturbations over a
flat Friedmann-Lemaître background, the geometrical shear
is considered as an extra perturbative degree. We refer to
Ref. [80] for a detailed description of general Bianchi
spaces in this approach.

B. Spacetime description

1. Metric

We shall thus adopt the metric

ds2 ¼ a2½−ð1þ 2ΦÞdη2 þ 2B̄idxidηþ ðγij þ hijÞdxidxj�;
ð4:1Þ

where hij is defined as [see Eqs. (A19) and (A36)]

hij ¼ −2
�
γij þ

σij
H

�
Ψþ 2Eij ð4:2Þ

and γij is here understood as the Euclidian metric plus a
small perturbation

γij ≃ δij þ 2

Z
a

0

σij
H

da0

a0
;

σij
H

≪ 1: ð4:3Þ

In order to simplify the notation, we also define the matrix

βij ≡ diagðβiÞ ð4:4Þ

such that

γij ¼ exp½2β�ij ≃ δij þ 2βij; σi j ¼ σij ¼ β0ij: ð4:5Þ

Thus, βij controls the homogeneous perturbation. Indices
are now raised and lowered with the Euclidian metric δij
and δij, and the vector modes Bi and tensor modes Eij

satisfy ∂iBi ¼ ∂iEij ¼ Ei
i ¼ 0. But since βij is homog-

enous, everything happens as if we had usual cosmological
perturbation, but also an infinite wavelength perturbation
2βij to the spatial metric.
To control the perturbative series, we introduce the

fn; pg notation, where n and p indicate powers in β and
SVT variables, respectively. Thus, a term like σij=H is of
order f1; 0g, terms likeΨ and Φ are of order f0; 1g, while a
product like σji∂jΨ=H is of order f1; 1g. However, since
vector and tensor modes only appear due to the coupling
between the shear and scalar modes [22], vector perturba-
tions Bi and tensor perturbations Eij are also of order
f1; 1g. Hence, for any quantity X, one will consider the
different quantities:

(i) Xf0;0gðηÞ.—the Friedmann-Lemaître background
value;

(ii) Xf1;0gðηÞ.—the first-order (homogeneous) scalar
perturbed quantity in σ=H;

(iii) Xf0;1gðη; xÞ.—the first-order inhomogeneous per-
turbed quantity in Ψ;…;

(iv) Xf1;1gðη; xÞ.—the first-order inhomogeneous per-
turbed quantity in both σ=H and Ψ;… and vector
and tensor perturbations.

Before moving on we should make some general
remarks about the adopted perturbative scheme. Indeed,
one might be worried that adding σij=H or βij as a small
homogeneous perturbation to the background metric would
not have any significant observable effect, since the SVT
decomposition was already designed to describe the most
general perturbation over a flat Friedmann-Lemaître uni-
verse. Note however that SVT modes do not include a zero
Fourier mode in their spectrum (i.e., an infinite wavelength
perturbation), since these modes will be isotropic by
construction and hence merely rescale the background
geometry. The tensor βij, on the other hand, is a homo-
geneous (i.e., space-independent) field, which by definition
corresponds to an anisotropic zero mode. Thus, its effect
cannot be absorbed in a simple rescaling of the scale factor.
Moreover, this field sources the background dynamics
through Einstein’s equations.

2. Tetrad basis

Given this expansion scheme, the tetrad basis associated
to the perturbed metric up to order f1; 1g is explicitly
given by

WEAK LENSING BY THE LARGE SCALE STRUCTURE IN … PHYSICAL REVIEW D 92, 023501 (2015)

023501-11



Θj
i ≃ ðδji − βijÞð1þΨÞ þ β0ij

H
Ψ − Ej

i ; Θ0
i ¼ 0;

Θi
j ≃ ðδij þ βijÞð1 −ΨÞ − β0ij

H
Ψþ Ei

j; Θi
0 ¼ B̄i;

Θ0
0 ¼ 1 − Φ; Θi

0 ¼ −B̄i;

Θ0

0 ¼ 1þ Φ; Θ0
i ¼ 0; ð4:6Þ

where ϑji refers to the background spatial triad defined in
Eq. (2.11). By choosing the observer to coincide with the

timelike vector of the tetrad (uμ ¼ Θμ
0, uμ ¼ −Θ0

μ) we
obtain in general the components of the direction vector
n in the tetrad basis as

ki ¼ −k0ni; ni ¼ Θi
μnμ: ð4:7Þ

At the position of the observer, the direction of the geodesic
in the tetrad basis nio is also the direction in which the
observation is made. Again, we recall that we are interested
in the observables related to light propagation as expressed
in function of this observed direction nio.
Since we have introduced two types of tetrads (fϑg and

fΘg), there is an ambiguity whenever a tetrad index i
appears on a tensorial quantity. First, for the geometric
shear tensor, the tetrad index is defined with respect to
the triad ϑμi and we recall that σi j ¼ σi j ¼ σij ¼
diagðβi0Þ ¼ β0ij; see Eq. (2.12). Second, for partial deriv-
atives the tetrad index corresponds also to the tetrad fϑg
and we define

∂i ≡ ϑji∂j ≃ ∂i − βji∂j: ð4:8Þ

It makes clear the difference between a derivative in the
direction of a tetrad vector ∂i and the derivative in the
direction of the vectors ∂i associated with the Cartesian
coordinates. Since the vector perturbations Bi and the
tensor perturbations Eij are already of order f1; 1g, there
is absolutely no difference between their tetrad components
Bi and Ei j at this order of perturbations and there is no need

to be particularly careful. Everywhere else, a tetrad index
refers to the tetrad fΘg defined in Eqs. (4.6).

C. Technical interlude

Since we are interested in computing observables on
the celestial sphere, spherical coordinates are much more
convenient than Cartesian coordinates. This section
describes the use of such spherical coordinates in real
space and of the associated derivatives (radial and on the
unit sphere). Several definitions of covariant derivatives
have to be distinguished. We finish by relating them to
each other and to the spin-raising operator of spherical
harmonics.

1. Spherical coordinates in real space

Consider a tensor depending on Cartesian coordinates
Ti1…inðxiÞ (with indices raised and lowered, respectively,
with δij and δij); it can always be constructed by consid-
ering the tetrad components of a given tensor. In spherical
coordinates, one can then define from the partial derivative
∂i ¼ ∂=∂xi a covariant derivativeDi on the unit sphere and
a radial derivative ∂r. To be more precise, this requires the
use of the projectors

Sij≡δij− x̂ix̂j; x̂i≡xi

r
; with r2 ¼

X3
i¼1

ðxiÞ2: ð4:9Þ

Recall that Sij ¼ δipδjqSpq and Sji ¼ δipSpj. The covariant
derivative on the unit sphere S2jspace of the Cartesian

coordinates centered on the observer is denoted by DR3

i
and is defined from the general projection

1

r
DR3

i Tj1…jn ≡ Ski S
q1
j1
…Sqnjn

∂
∂xk Tq1…qn ≡ P

� ∂
∂xi Tj1…jn

�
;

ð4:10Þ
where P½…� is to be understood as the projection of all free
Cartesian indices with the projector Sji. This derivative only
makes sense if the tensor itself is a projected tensor, that is,
if it satisfies P½Tj1…jn � ¼ Tj1…jn .
The radial derivative is then obtained simply by

∂rTj1…jn ≡ x̂i
∂
∂xi Tj1…jn : ð4:11Þ

Now, any combination of partial derivatives ∂i applied to
some tensor can be decomposed in terms of radial deriv-
atives ∂r and covariant derivatives on the sphere DR3

i . The
simplest such decomposition is

∂if ¼ x̂i∂rf þ 1

r
DR3

i f; ð4:12Þ

for any scalar function f. The decompositions for projected
tensors of various ranks is detailed in Appendix D 1. For
general tensors which are not necessarily projected, it is
necessary to split them into their projected components on
the sphere and their radial components before decomposing
any derivative applying on them. Such decomposition for
the vector and tensor modes is given in Eqs. (D5). To finish,
it is easy to check that

DR3

i Sjk ¼ 0; DR3

i ϵjk ¼ 0; ð4:13Þ

where the completely antisymmetric tensor on the sphere is

ϵij ≡ ϵijkx̂k: ð4:14Þ
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2. Covariant derivative on the tangent space

For any spatial tensor constant in space, such as σi j, one
can define scalar, vector and tensor fields on the unit
sphere. First, one can define a scalar field on the unit sphere
of observing directions, S2jobs, by contracting all free
indices with the direction of observation:

Σ≡ 1

2
σi kn

i
on

k
o: ð4:15Þ

Indeed, the observing direction can be considered as a point
on S2jobs, whose spherical coordinates are ðθo;φoÞ, and Σ
from the expression (4.15) is thus a function of ðθo;φoÞ,
that is, a scalar field on S2jobs. Then, to define a vector field
on the unit sphere, one needs to contract one index with the
observing direction and project the remaining one on the
sphere. Furthermore, in order to get a tensor field on
the unit sphere, we shall project the two free indices on the
sphere. These projections are obtained by contraction with
the screen basis vectors noa at the observer. For instance, the
vector and tensor fields on the sphere build from the
geometric shear are simply

Σa ≡ noa
jσj in

i
o; Σab ≡ noainob

kσi k: ð4:16Þ

We remark that Σab, which is a symmetric 2 × 2 matrix, is
not traceless. In fact, using the partition of the identity

δij ¼ ninj þ ni1n
j
1 þ ni2n

j
2, the trace is given by

δabnoainob
kσi k ¼ −σi knink ¼ −2Σ. Alternatively, the vector

and tensor fields (4.16) can be obtained by applying
successively the covariant derivative on the unit sphere
Da to Σðθo;φoÞ. Indeed, with this method, we find the
relations

Σa ¼ DaΣ; Σab ¼ DaDbΣþ 2δabΣ;

DaDaΣ ¼ −6Σ; Σhabi ¼ DhaDbiΣ: ð4:17Þ

Note that the metric and the antisymmetric tensor on the
sphere are obtained from

δab ¼ 2nðþa n−Þb ; ϵab ¼ 2in½−a n
þ�
b ð4:18Þ

and satisfy

Daδbc ¼ 0; Daϵbc ¼ 0: ð4:19Þ

3. Background geodesics and identification of
covariant derivatives

The covariant derivative Da, related to the unit sphere in
the observer’s tangent space, and the derivativeDR3

i , related
to the unit sphere of Cartesian coordinates, are fundamen-
tally different. But, they can be related in a simple way.
Indeed, the solution to the background geodesic at order

f0; 0g, that is, the geodesics of the spatially flat Friedmann-
Lemaître spacetime, is given by

ni ¼ nio; nia ¼ noai;

dxif0;0g

dχ
¼ nio ⇒ xif0;0g ¼ χnio; ð4:20Þ

where, we remind the reader, nio is the direction of the
geodesic at the position of the observer in the tetrad basis.
This is the direction of observation, since we have oriented
the geodesic toward the past.
There is thus a straightforward identification between the

sphere of the directions of observation, lying in the tangent
space at the observer (the set of directions S2jobs spanned by
nio), and the set of points of R3 reached at an affine
parameter χ (or η) on the background geodesic. Indeed, the
points spanned by the coordinates xif0;0g at a given affine
parameter χ are such that

δijxif0;0gxjf0;0g ¼ r2ðχÞ ¼ χ2

and form a sphere in the Cartesian coordinates. We can then
subsequently identify this sphere of radius χ to the unit
sphere S2jspace.
This means that we can identify ni0 with x̂i and then Da

on S2jobs with noaiDR3

i , the projection onto the screen basis
noa being used only to switch from the extrinsic point of
view of the derivative (the projection of the Cartesian
derivative onto the sphere) to an intrinsic point of view on
the sphere. In the rest of this article we thus replace the
notation DR3

i by Di, noaiDR3

i by Da, and no�
iDR3

i by D�.

4. Link with spin-raising operator and spin-weighted
spherical harmonics

The covariant derivative on the unit sphere is related to
the usual spin-raising and spin-lowering operators. In
spherical coordinates, these operators are defined for a
spin-s quantity by

∂Xs ¼ −sinsθ
�
∂θ þ i

1

sin θ
∂φ

�
ðsin−sθXsÞ; ð4:21aÞ

∂̄Xs ¼ −sin−sθ
�
∂θ − i

1

sin θ
∂φ

�
ðsinsθXsÞ: ð4:21bÞ

They are related to the covariant derivative through

∂ ¼ −
ffiffiffi
2

p
no−aDa ¼ −

ffiffiffi
2

p
Dþ;

∂̄ ¼ −
ffiffiffi
2

p
noþaDa ¼ −

ffiffiffi
2

p
D−; ð4:22Þ

the vector no� being defined in Eq. (3.11). Hence, for a tensor
field of spin þjsj on the sphere, Xν1…νs ¼ Xsnoþν1…noþνs ,
and a tensor of spin−jsj, Zν1…νs ¼ Z−sno−ν1…no−νs , we have
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−
ffiffiffi
2

p ∇μXν1…νs ¼ ð∂XsÞnoþμnoþν1…noþνs

þ ð∂̄XsÞno−μnoþν1…noþνs ; ð4:23aÞ

−
ffiffiffi
2

p ∇μZν1…νs ¼ ð∂Z−sÞnoþμno−ν1…no−νs

þ ð∂̄Z−sÞno−μno−ν1…no−νs : ð4:23bÞ

Since the spin-weighted spherical harmonics satisfy the
property

Ys
lm ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffi
ðl−sÞ!
ðlþsÞ!

q
∂sYlm if 0 ≤ s ≤ l;

ð−1Þs
ffiffiffiffiffiffiffiffiffiffi
ðlþsÞ!
ðl−sÞ!

q
∂̄−sYlm if − l ≤ s ≤ 0;

ð4:24Þ

any number of covariant derivatives applied on a spherical
harmonic can be computed using the properties (4.23).
As an application, consider the expansion of the variable

Σ in spherical harmonics

Σðχ; nioÞ ¼
Xþ2

m¼−2
Σ2mðχÞY2mðnioÞ: ð4:25Þ

If we align the azimuthal direction with an eigendirection of
the geometric shear, the multipoles coefficients are then
given by

Σ20ðχÞ ¼ −
ffiffiffi
π

5

r
½β01ðχÞ þ β̂02ðχÞ�;

Σ̂2�2ðχÞ ¼
ffiffiffiffiffi
π

30

r
½β01ðχÞ − β02ðχÞ�: ð4:26Þ

The most useful derivatives are then easily obtained to be

Σ�ðχ; nioÞ ¼ no∓kno
jσk jðχÞ ¼ D�Σðχ; nioÞ

¼∓ ffiffiffi
3

p X
m

Σ2mðχÞY�1
2mðnioÞ; ð4:27aÞ

Σ��ðχ; nioÞ ¼ noh∓kno∓i
jσk jðχÞ ¼ D�D�Σðχ; nioÞ

¼
ffiffiffi
6

p X
m

Σ2mðχÞY�2
2mðnioÞ: ð4:27bÞ

Similarly, if we expand a scalar field φðχ; xiÞ in spherical
harmonics

φðχ; xiÞ ¼
X
l;m

φlmðχ; rÞYlmðx̂iÞ; ð4:28Þ

then the most useful derivatives are

D�φðχ; xiÞ ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r X
l;m

φlmðχ; rÞY�1
lmðx̂iÞ; ð4:29aÞ

D�D�φðχ; xiÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s X
l;m

φlmðχ; rÞY�2
lmðx̂iÞ;

ð4:29bÞ

2D�D∓φðχ; xiÞ ¼ DaDaφðχ; xiÞ
¼ −lðlþ 1Þ

X
l;m

φlmðχ; rÞYlmðx̂iÞ:

ð4:29cÞ

D. Geodesics and Sachs equations in term of the
Friedmannian coordinates

In the approximation that we are considering, we can
solve the perturbation equations and the Sachs equation up
to order f1; 1g. We shall define the distance down to the
light cone on the Friedmann-Lemaître background space-
time as

χ ≡ η0 − η: ð4:30Þ
The geodesic equation (3.1) takes the form

dkν

dv
þ Γν

αβk
αkβ ¼ 0; k0 ¼ −

dχ
dv

ð4:31Þ

and using (4.7) can be rewritten directly in terms of tetrad
components as

dki

dv
¼ dki

dv
¼ ðk0Þ2ðωk j inkn

j þ ω0 0 i − ωj 0 in
j − ω0 j in

jÞ;
ð4:32aÞ

dk0

dv
¼ −

dk0
dv

¼ ðk0Þ2ð−ωi j 0nin
j þ ω0 i 0niÞ; ð4:32bÞ

where the affine connections are defined in Appendix B 1.
Instead of the parameter v we shall use the parameter χ
since, once the wave vector is integrated, we have

dxμ

dχ
¼ −

kμ

k0
: ð4:33Þ

The position on the geodesic then becomes a function of the
parameter χ and the initial direction nio. Finally, the Sachs
equation with the parameter χ reads [61]

d2Dab

dχ2
þ 1

k0
dk0

dχ
dDab

dχ
¼ 1

ðk0Þ2RacDcb: ð4:34Þ

V. ANGULAR MULTIPOLE CORRELATIONS IN
ANISOTROPIC SPACES

As previously explained, we adopt an observer point of
view in which all observable quantities are considered as
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functions of the direction of observation no and of the affine
parameter v or, equivalently, of the redshift z, keeping in
mind that the latter also depends on no. All these quantities
can be decomposed on a basis of spin-weighted spherical
harmonics, Ys

lm. The goal of this section is to derive a set of
formal expressions concerning these expansions and to
establish general results of the two-point correlation func-
tion valid in Bianchi I geometries.
We consider that the Universe has undergone an early

period of isotropic expansion followed by a late-time
anisotropic phase. This is in sharp contrast with the
approach of Ref. [30], in which the Universe is supposed
to have an early inflationary stage followed by an isotropic
evolution (so that geodesics are Friedmann-Lemaître geo-
desics and anisotropy is imprinted only in the source term).
The tools we shall develop are not specific to weak

lensing and can be used in other contexts, such as the study
of the cosmic microwave background. We first describe, in
Sec. VA, the general expansion of spin-s quantities. This
will allow us to express their angular power spectrum in
Sec. V B. We conclude by demonstrating that, while spatial
parity symmetry implies that the EB correlation matrix
vanishes, some off-diagonal correlations are necessarily
nonvanishing and encode information on the geometri-
cal shear.

A. Multipolar expansions

The spin-s polarization basis is defined as a tensor
product of s polarization vectors as

ms
o ≡

�
nþo ⊗ � � � ⊗ nþo if s > 0;

n−o ⊗ � � � ⊗ n−o if s < 0:
ð5:1Þ

Under the action of an active rotation R, this basis trans-
forms as

R½ms
o�≡ R ·ms

oðR−1 · noÞ; ð5:2Þ

where no is the vector along the line of sight at the point of
observation. Spin-weighted spherical harmonics transform
under the same rotation as

R½Ys
lmðnoÞms

o�≡ Ys
lmðR−1 · noÞR½ms

o�
¼

X
m0

Ys
lm0 ðnoÞms

oDl
m0mðRÞ; ð5:3Þ

where Dl
mm0 ðRÞ are the components of the Wigner D

matrix. This means that they transform like normal
spherical harmonics provided they are accompanied by
the polarization basis to which they are associated.
Now, any cosmological observable Xs of spin s can be

expressed in the form

XsðχS; noÞms
o ¼

Z
χS

0

SXsðχS; χ; noÞms
odχ; ð5:4Þ

where χS refers to the position of the source. Note that we
are explicitly making use of the small shear expansion,
since the source term is integrated along a geodesic of the
Friedmann-Lemaître spacetime. This means that in order to
compute Xs at order fn; pg one needs to determine the
source SXs at the same order. The source term SXsðχS; χ; noÞ
has to be understood as

SXsðχS; χ; noÞ ¼ SXsðχS; χ; xi;noÞjxi¼χn
i
o
; ð5:5Þ

that is, evaluated on the background geodesic. Moreover,
thanks to Eq. (4.30), the parameters χ and χS can be thought
as time coordinates. The intrinsic angular dependence of
SXs on no is a consequence of the (possible) nonscalar
nature of the source. Moving forward, it is convenient to
decompose Xs into spherical harmonics as

XsðχS; noÞms
o ¼

X
l;m

Xs
lmðχSÞYs

lmðnoÞms
o; ð5:6Þ

which will allow us to define multipolar correlations at
unequal times of the form hXs

lmðχS1ÞXs⋆
l0m0 ðχS2Þi. In order to

compute these angular correlators, we first need to take the
Fourier transform of the source (5.4) off the line of sight

SXsðχS; χ; xi;noÞms
o ¼

Z
d3k

ð2πÞ3=2 S
XsðχS; χ; k; noÞeik·xms

o;

ð5:7Þ

in the sense that we do not bind xi to χ by the relation
xi ¼ χnio and χ has to be thought as a time coordinate
thanks to Eq. (4.30). Then, the intrinsic dependence of the
source on no is further expanded in terms of spherical
harmonics, with the latter being defined with respect to an
axis aligned with the Fourier mode k. That is,

SXsðχS; χ; ; k; noÞms
o

¼
X
l;m

SXs
lmðχS; χ; kÞil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Rk½Ys

lmðnoÞms
o�; ð5:8Þ

where Rk is a rotation that transports the azimuthal
direction to the direction of the Fourier mode k (see
Appendix C for details about this notation). The terms
with m ¼ 0; 1; 2 correspond here to scalar, vector and
tensor perturbations, respectively. If we now make use
of the Rayleigh expansion
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eik·x ¼ 4π
X
l;m

iljlðkrÞY⋆
lmðk̂ÞYlmðnoÞ

¼
X
l

il
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞð2lþ 1Þ

p
jlðkrÞRk½Yl0ðnoÞ�; ð5:9Þ

with r ¼ δijxixj, and insert the decomposition (5.8) into
Eq. (5.7), we find, after comparing Eqs. (5.6) and (5.7), that

Xs
lmðχSÞ ¼

ffiffiffi
2

π

r Z
d3k

Z
χS

0

dχ0
X
m0

Dl
mm0 ðRkÞil

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r X
l0

sjðl
0m0Þ

l ðkrÞSXs
l0m0 ðχS; χ; kÞ;

ð5:10Þ

where we have introduced the definitions

sjðl
0m0Þ

l ðxÞ≡X
L

sCm00m0
lLl0 jLðxÞiLþl0−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πÞð2Lþ 1Þ

ð2lþ 1Þð2l0 þ 1Þ

s

ð5:11Þ

and

sCm1m2m3

l1l2l3
≡
Z

d2ΩYs;⋆
l1m1

ðnoÞYl2m2
ðnoÞYs

l3m3
ðnoÞ: ð5:12Þ

The dynamical evolution and the initial conditions of the
source can be split as

SXs
lmðχS; χ; kÞ ¼ TXs

lmðχS; χ; kÞΦiðkÞ; ð5:13Þ

where TXs
lm is the (anisotropic) transfer function and ΦiðkÞ

is the primordial gravitational potential. Then, assuming
that anisotropies are induced at late-time evolution only, the
statistics of the primordial power spectrum must obey

hΦiðkÞΦ⋆
i ðqÞi ¼ PðkÞδ3ðk − qÞ; ð5:14Þ

with PðkÞ being the (isotropic) primordial power spectrum.
To account for the angular dependence of the transfer
functions, we further decompose them as

TXs
lmðχS; χ; kÞ ¼

X
L;M

XsTLM
lm ðχS; χ; kÞYLMðk̂Þ: ð5:15Þ

B. Expression of the two-point angular correlators

These formulas can now be combined [using in
particular Eq. (D25) to integrate out all spherical har-
monics] to give an expression for the correlation between
the multipoles of two different observables Xs1 and Zs2 .
We find

hXs1
l1m1

ðχS1ÞZs2⋆
l2m2

ðχS2Þi ¼
2

π
ðiÞl1ð−iÞl2

Z
∞

0

dkk2PðkÞ
Z

χS1

0

dχ1

Z
χS2

0

dχ2
X
l;m

X
l0
1
;m0

1

l0
2
;m0

2

X
L1 ;M1
L2 ;M2

ð−1Þm0
1
þm0

2
s1j

ðl0
1
m0

1
Þ

l1

× ðkχ1Þs2jðl
0
2
m0

2
Þ⋆

l2
ðkχ2Þ−m0

1Cm1mM1

l1lL1

−m0
2Cm2mM2

l2lL2

Xs1TL1M1

l1m1
ðχS1; χ1; kÞZs2TL2M2⋆

l2m2
ðχS2; χ2; kÞ: ð5:16aÞ

A central quantity in this description is the two-point correlation function of the E and Bmodes of a given spin-2 observable

(as, for instance, the cosmic shear γ). This expression requires the decomposition of X�s, �sjðl
0m0Þ

l and SXs
lm in their even or

odd parity pieces as

Xs
lmðχÞ ¼ EXs

lmðχÞ þ i sgnðsÞBXs
lmðχÞ; ð5:17aÞ

�sjðl
0m0Þ

l ðxÞ ¼ jsjϵðl
0m0Þ

l ðxÞ þ i sgnðsÞjsjβðl0m0Þ
l ðxÞ; ð5:17bÞ

SXs
lmðχS; χ; kÞ ¼ ½TEXs

lm ðχS; χ; kÞ þ i sgnðsÞTBXs

lm ðχS; χ; kÞ�ΦiðkÞ: ð5:17cÞ

Note that a spin s ¼ 2 field will have both E and B modes, while a scalar (s ¼ 0) field will only have the E mode, so that
0βðl

0m0Þ
l ¼ 0 and BX0

lm ¼ 0.
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From these expressions and Eq. (5.10), one can verify that

EXs
lmðχSÞ ¼

ffiffiffi
2

π

r Z
d3k

Z
χS

0

dχ
X
m0

Dl
mm0 ðRkÞil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r

×
X
l0

½jsjϵðl0m0Þ
m ðkχÞTEXs

l0m0 ðχS; χ; kÞ − jsjβðl
0m0Þ

m ðkχÞTBXs

l0m0 ðχS; χ; kÞ�ΦiðkÞ; ð5:18aÞ

BXs
lmðχSÞ ¼

ffiffiffi
2

π

r Z
d3k

Z
χS

0

dχ
X
m0

Dl
mm0 ðRkÞil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ

4π

r

×
X
l0

½jsjϵðl0m0Þ
m ðkχÞTBXs

l0m0 ðχS; χ; kÞ þ jsjβðl
0m0Þ

m ðkχÞTEXs

l0m0 ðχS; χ; kÞ�ΦiðkÞ: ð5:18bÞ

Then, the EE and BB covariance matrices can be computed by simply taking appropriate combinations of X�s
lm. In order to

simplify the notation we define

MACA0C0
l1m1l2m2

ðχS1; χS2Þ≡ 2

π
ðiÞl1ð−iÞl2

Z
∞

0

dkk2PðkÞ
Z

χS1

0

dχ1

Z
χS2

0

dχ2

×
X
l;m

X
l0
1
;m0

1

l0
2
;m0

2

X
L1 ;M1
L2 ;M2

ð−1Þm0
1
þm0

2
A0
j
ðl0

1
m0

1
Þ

l1
ðkχ1ÞC0

j
ðl0

2
m0

2
Þ⋆

l2
ðkχ2Þ−m0

1Cm1mM1

l1lL1

−m0
2Cm2mM2

l2lL2

ATL1M1

l0
1
m0

1

× ðχS1; χ1; kÞCTL2M2;⋆
l0
2
m0

2
ðχS2; χ2; kÞ ð5:19aÞ

together with the notation

Ajðl
0m0Þ

l ¼
� jsjϵðl

0m0Þ
l if A ¼ EXs;

jsjβðl
0m0Þ

l if A ¼ BXs:

Thus, the EE and BB correlations become

hEXs
l1m1

EXs⋆
l2m2

i ¼
X
A;C

MACAC
l1m1l2m2

½δEAδEC þ δBAδ
B
C − δEAδ

B
C − δBAδ

E
C�; ð5:20aÞ

hBXs
l1m1

BXs⋆
l2m2

i ¼
X
A;C

MACĀ C̄
l1m1l2m2

½δEAδEC þ δBAδ
B
C þ δEAδ

B
C þ δBAδ

E
C�; ð5:20bÞ

where, in the last equality, we have introduced the notation according to which Ā equals EXs (respectively, BXs) whenever A
is equal to BXs (respectively, EXs), the same holding for C̄. The EB correlation can be computed using the same method.
The expression (5.20) is quite general. Let us first focus on its diagonal part, which can be characterized by the following

estimators of

CEE
l ðχS1; χS2Þ ¼

1

2lþ 1

X
m

hEXs
lmðχS1ÞEXs⋆

lm ðχS2Þi; ð5:21aÞ

CBB
l ðχS1; χS2Þ ¼

1

2lþ 1

X
m

hBXs
lmðχS1ÞBXs⋆

lm ðχS2Þi: ð5:21bÞ

The angular power spectra are then given by simpler expressions

CEE
l ðχS1;χS2Þ ¼

2

π

Z
∞

0

dkk2

4π
PðkÞ

X
m;L;M;A;C

½δEAδECþ δBAδ
B
C − δEAδ

B
C− δBAδ

E
C�

×

�X
l1

Z
χS1

0

dχ1ATLM
l1m

ðχS1;χS2; kÞAjðl1mÞ
l ðkχ1Þ

��X
l2

Z
χS2

0

dχ2CTLM
l2m

ðχS1;χS2; kÞCjðl2mÞ
l ðkχ2Þ

�⋆
ð5:22aÞ

with, again, a similar expression for the B modes.
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The case where the transfer functions are isotropic is
easily recovered. To see that, let us consider the simpler
situation where Xs1 ¼ Zs2 ¼ Θ, with Θ being the CMB
temperature fluctuations. Since Θ is a scalar, then it is a
pure E mode with no B mode. In the previous formalism,
we just need to set ETLM

lm ¼ ΘTLM
lm and BTLM

lm ¼ 0. Then,
using ΘTLM

lm ¼ ffiffiffiffiffiffi
4π

p
TΘ
lmδ

L0δM0, we get from Eq. (5.16) the
standard result

CΘΘ
l ¼ 2

π

Z
∞

0

k2dkPðkÞ
X
m

×

				
Z

∞

0

dχ0
X
l0
TΘ
l0mðk; χ0Þjðl

0mÞ
l ðkχ0Þ

				2; ð5:23Þ

where in this specific case it must be understood that the
visibility function is included in the transfer functions
TΘ
lmðk; χ0Þ. If we consider only scalar sources, then only the

m ¼ 0 mode contributes. Analogously, if we also have
sources with no intrinsic direction (like, for example, no
Doppler effect in the CMB), then we have l0 ¼ 0.

C. Implication of spatial parity

We would like to briefly elucidate the relationship
between the symmetries of the underlying background
spacetime and the cross-correlation functions of different
observables. In particular, we want to show that (spatial)
parity symmetry implies that the diagonal piece of the EB
correlation matrix is zero, while off-diagonal terms may not
necessarily be.
We start by noticing that under a parity inversion

fx; y; zg → f−x;−y;−zg, or, equivalently, fno; nθ; nϕg →
f−no;−nθ; nϕg, the polarization vectors transform as

n�o ðnoÞ → −n∓o ðnoÞ: ð5:24Þ

This implies that the polarization basis should transform
under parity as

ms
oðnoÞ → ð−1Þsm−s

o ðnoÞ: ð5:25Þ

Moreover, the sources transform as

SXsðχS;χ;k;noÞms
oðnoÞ→ ð−1ÞsSXsðχS;χ;−k;−noÞm−s

o ðnoÞ:
ð5:26Þ

We now demand that any physical quantity remains
invariant under a full parity inversion. That is, if at the
same time we transform k → −k, no → −no and ms

o →
ð−1Þsm−s

o , the source SXs of a physical observable Xs

should remain invariant, which from Eqs. (5.7) and (5.26)
implies the condition

SXsðχS; χ; k; noÞ ¼ ð−1ÞsSX−sðχS; χ;−k;−noÞ: ð5:27Þ

If we take into account the parity transformations of the
Wigner matrices and of the spherical harmonics–see
Eqs. (D9)–(D11)—then a comparison of the previous
expression with Eq. (5.8) shows that the parity condition
translates to

SXs
lmðχS; χ; kÞ ¼ ð−1ÞmþsSX−s

l;−mðχS; χ;−kÞ: ð5:28Þ

Then, we rewrite Eq. (5.10) as

Xs
lmðχSÞ ¼

ffiffiffi
2

π

r Z
d3kXs

lmðχS; kÞΦiðkÞ: ð5:29Þ

The above expression should be seen as a definition of
Xs
lmðχS; kÞ and corresponds to the contribution of each

Fourier mode to the observable, but it is not its Fourier
component. Its expression can be obtained by plugging
Eq. (5.13) into Eq. (5.10) and then comparing with
Eq. (5.29). Then, if we impose the symmetry (5.28)
to Eq. (5.29), using again the parity transformation of the
Wigner matrices, we finally find that

Xs
lmðχS; kÞ ¼ ð−1ÞlþsX−s

lmðχS;−kÞ: ð5:30Þ

From this expression, it is straightforward to check that
the E and B modes of a spin-2 quantity transform under
parity as

EX2

lmðχ; kÞ ¼
1

2
ðX2

lmðχ; kÞ þ X−2
lmðχ; kÞÞ

¼ ð−1ÞlEX2

lmðχ;−kÞ; ð5:31aÞ

BX2

lmðχ; kÞ ¼
−i
2
ðX2

lmðχ; kÞ − X−2
lmðχ; kÞÞ

¼ ð−1Þlþ1BX2

lmðχ;−kÞ: ð5:31bÞ

We can now establish our main conclusion: given the above
symmetry, together with translational invariance of primor-
dial fluctuations [see Eq. (5.14)], it follows that, for the E
and B modes of a spin-2 field, we have

hEX2

l1m1
ðχÞBX2⋆

l2m2
ðχÞi

¼ 2

π

Z
d3khEX2

l1m1
ðχ; kÞBX2⋆

l2m2
ðχ; kÞiPðkÞ

¼ ð−1Þl1þl2þ1
2

π

Z
d3khEX2

l1m1
ðχ;−kÞBX2⋆

l2m2
ðχ;−kÞiPðkÞ

¼ ð−1Þl1þl2þ1
2

π

Z
d3khEX2

l1m1
ðχ; kÞBX2⋆

l2m2
ðχ; kÞiPðkÞ

¼ ð−1Þl1þl2þ1hEX2

l1m1
ðχÞBX2⋆

l2m2
ðχÞi; ð5:32Þ

where, from the second to the third line, we have usedRþ∞
−∞ d3k ¼ R

−∞
þ∞ d3ð−kÞ. Similarly, one can show that the

EE and BB covariance matrices obey
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hEX2

l1m1
EX2�
l2m2

i ¼ ð−1Þl1þl2hEX2

l1m1
EX2�
l2m2

i; ð5:33aÞ

hBX2

l1m1
BX2�
l2m2

i ¼ ð−1Þl1þl2hBX2

l1m1
BX2�
l2m2

i: ð5:33bÞ

We have thus proved that correlations between E and B
modes will vanish whenever l1 þ l2 is an even number. In
particular, the diagonal part of the EB covariance matrix is
always zero in spacetimes that respect parity (but not
necessarily isotropy). Evidently, the same holds for the
multipolar coefficients of a spin-0 quantity, such as the
CMB temperature alm’s (see e.g., Ref. [81]).

VI. PERTURBATION SCHEME IN THE SMALL
SHEAR LIMIT

A. Expansion scheme

The structure of the computation has been detailed in
Sec. I B. Let us recall that order by order, we need to
(1) solve the geodesic equation perturbatively in order to

determine the displacement from the reference
Friedmann-Lemaître geodesic xifn;pgðχ;noÞ and
the local direction of propagation nfn;pgðχ; noÞ. Note
that xifn;pgðχ; noÞ is split in a radial component
δrfn;pgðχ; noÞ and an orthoradial component which
will be related to the deflection angle αafn;pgðχ; noÞ;

(2) determine the transport of the Sachs basis,

nfn;pga ðχ; noÞ;
(3) expand the Sachs equation and determine the source

terms for Dfn;pg
ab ðχ;noÞ;

(4) determine the evolution of the perturbations at the
required order;

(5) perform the multipolar expansion in terms of the
direction of observation no.

To avoid confusion, we shall use the notation that Xfn;pg

includes all terms up to order fn; pg while δXfn;pg contains
only the terms of order fn; pg.

B. Order f0;0g
Since on the background (i.e., a Friedmann-Lemaître

spacetime) the metric is just the Minkowski metric, thanks
to the overall conformal transformation described in
Sec. III D 2, the (conformal) Riemann tensor vanishes,
so that Rf0;0g

ab ¼ 0. Since the wave vector is decomposed
in accordance to Eq. (3.2), in which we can always choose
to set Uo ¼ 1, one deduces that it is given by

k0f0;0g ¼ −1; kif0;0g ¼ nio: ð6:1Þ
The Sachs equation (4.34) trivially reduces to

d2Df0;0g
ab

dχ2
¼ 0; ð6:2Þ

so that the Jacobi matrix is given by

Df0;0g
ab ¼ Df0;0g

A ðχÞIab; Df0;0g
A ðχÞ ¼ χ; ð6:3Þ

and its components reduce to

κf0;0g ¼ γf0;0gab ¼ Vf0;0g ¼ 0: ð6:4Þ

This completely specifies the property of the geodesic
bundle at the background level.

C. Order f1;0g
At this order, the spacetime remains homogeneous, but it

now has an anisotropic perturbation described by the shear
σij, from which we can define a scalar field Σ on the 2-
sphere by

ΣðχÞ≡ 1

2
σi kðχÞnionko: ð6:5Þ

We also introduce a new scalar function

BðχÞ≡ 1

2
βikðχÞnionko; ð6:6Þ

where βij is defined in Eqs. (4.4) and (4.5).
We will now show that all results at this order can be

expressed in terms of these two fields on the unit 2-sphere
and the covariant derivative Da defined in Sec. IV C 2. In
what follows we shall use the convention Bo ¼ Bðχ ¼ 0Þ.

1. Geodesic equation: Tangent vector

At this order, the 4-velocity of a fundamental observer is
just uμ ¼ ðdηÞμ ¼ ϑ

0
μ, so that

U ¼ kμuμ ¼ k0 ¼ k0: ð6:7Þ

From Eq. (4.31), and using the fact that, at first order, the
only nonvanishing Christoffel symbols are [22]

δΓ0f1;0g
ij ¼ σij; δΓif1;0g

0j ¼ σij; ð6:8Þ

we obtain that

dk0f1;0g

dχ
¼ dk0f1;0g

dχ
¼ −σi kn

i
on

k
o: ð6:9Þ

It thus follows that

k0f1;0g ¼ k0f1;0g ¼ −1þ 2½BðχÞ − Bo�≡ −1þ δk0f1;0g:
ð6:10Þ

This result is expected given, that for a Bianchi I spacetime,
ki is a constant [67]; see Sec. III D 1. Alternatively, this
result could have been obtained using Eq. (4.32), with
the f1; 0g order of the affine connections given in
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Appendix B 1. Its physical interpretation is simple since the
factor 2½BðχÞ − Bo� can be identified to the Einstein effect
between the events of emission and reception.
The evolution of the spatial components of the wave

vector is easily obtained using the tetrad components first.
From Eq. (4.32) we obtain

kif1;0gðχÞ ¼ nio þ
Z

χ

0

σijðχ0Þn
j
odχ0

¼ nio þ ½βijð0Þ − βijðχÞ�n
j
o; ð6:11aÞ

kif1;0gðχÞ ¼ kif1;0gðχÞ − βijðχÞn
j
o

¼ nio þ ½βijð0Þ − 2βijðχÞ�n
j
o; ð6:11bÞ

kf1;0gi ðχÞ ¼ kf1;0gi ðχÞ þ βijðχÞn
j
o ¼ nio þ βijð0Þn

j
o: ð6:11cÞ

Again, this corresponds to the small shear limit of our
previous general result [67], where ki ¼ kið0Þ is used first.

2. Geodesic equation: Real space

The parametric equation of the geodesic is obtained from
the integration of Eq. (4.33) at order f1; 0g. Separating the
difference between the position at order f1; 0g and the
position of the background geodesic into a radial displace-
ment and an orthoradial displacement according to

xif1;0gðχÞ ¼ χnio þ δxif1;0g with

δxif1;0g ¼ nioδrf1;0g þ χαaf1;0gnoai; ð6:12Þ

which defines the deflection angle αaf1;0g, and where we
have used that xif0;0gðχÞ ¼ χnio, we get

δrf1;0gðχÞ ¼ −2
Z

χ

0

Bðχ0Þdχ0; ð6:13aÞ

αaf1;0gðχÞ ¼ DaBo −
2

χ

Z
χ

0

DaBðχ0Þdχ0; ð6:13bÞ

in which DaBo stands for ðDaBÞχ¼0, and where the last
equalities of the equations above made use of an integration
by parts. Note that

lim
χ→0

xif1;0g

χ
¼ nio − βijð0Þn

j
o: ð6:14Þ

This can be interpreted simply, because it means that very
close to the observer, everything happens as if βij is constant
and equal to βijð0Þ. Thus a constant change of coordinates
~xi ≡ xi þ βijð0Þxj transforms the metric from γij ¼ δij þ
2βijð0Þ to theEuclidianmetric δij. Thegeodesic in these new

coordinates is simply the Euclidian one, ~xiðχÞ ¼ χnio.

3. Evolution of the direction and screen vectors

The infinitesimal change of a unit vector lies in the plan
orthogonal to it. The perturbation of the direction vector is
thus of the form

nif1;0g ¼ nio þϖaf1;0gnoai: ð6:15Þ

From the previous results for ki and k0, we get immediately

nif1;0g ¼ nio þϖaf1;0gnoai; ϖaf1;0g ¼
Z

χ

0

DaΣdχ0:

ð6:16Þ
The transport equation for the screen basis is in turn
given by

nif1;0ga ¼ noai − nioϖ
f1;0g
a ; ð6:17Þ

and it can be checked that the screen basis (3.10) does
remain orthogonal to the direction vector.

4. Sachs equation

At order f1; 0g, given that Rf1;0g
ab ¼ 0, the right-hand

side of Eq. (4.34) reduces to

Rf1;0g
ab Df0;0g

bc ¼ Rf1;0g
ab χδbc ¼ χRf1;0g

ac ;

so that the Sachs equation (4.34) reduces to

d2δDf1;0g
ab

dχ2
¼ dδk0f1;0g

dχ
δab þ χRf1;0g

ab : ð6:18Þ

Its first integral yields

dδDf1;0g
ab

dχ
¼ δab þ

Z
χ

0

�
dδk0f1;0g

d~χ
δab þ ~χRf1;0g

ab

�
d~χ:

ð6:19Þ

The first term gives δab½1þδk0f1;0gðχÞ�¼δab½2þk0f1;0gðχÞ�,
so that

δDf1;0g
ab ðχ; noÞ ¼ δab

Z
χ

0

½2þ k0f1;0gð~χÞ�d~χ

þ
Z

χ

0

dχ0
Z

χ0

0

~χRf1;0g
ab ð~χ; noÞd~χ: ð6:20Þ

The double integral on the right-hand side can be per-
formed by means of an integration by parts. This givesZ

χ

0

dχ0
Z

χ0

0

~χRf1;0g
ab ð~χ; noÞd~χ

¼
Z

χ

0

~χðχ − ~χÞRf1;0g
ab ð~χ; noÞd~χ
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from where we finally conclude that

δDf1;0g
ab ðχ; noÞ

¼
Z

χ

0

f½2þ k0f1;0gð~χÞ�δab þ ðχ − ~χÞ~χRf1;0g
ab ð~χ; noÞgd~χ:

ð6:21Þ

As detailed in Appendix B 2, the source term takes the
form

Rf1;0g
ab ðχ; noÞ ¼ −

1

2
ðσ0ijnionjoÞδab þ noihan

oj
biðσijÞ0

¼ −δabΣ0 þDhaDbiΣ0: ð6:22Þ

By inserting the above in Eq. (6.21) and using Eq. (6.11),
we find the following expressions for the convergence and
shear:

κf1;0gðχ; noÞ ¼ −
Z

χ

0

ðχ − ~χÞ
χ

½2Σþ ~χΣ0�d~χ; ð6:23aÞ

γf1;0gab ðχ; noÞ ¼
Z

χ

0

ðχ − ~χÞ~χ
χ

DhaDbiΣ0d~χ; ð6:23bÞ

which simplify to

κf1;0gðχ; noÞ ¼ −BðχÞ − 3Bo þ
4

χ

Z
χ

0

Bð~χÞd~χ; ð6:24aÞ

γf1;0gab ðχ; noÞ ¼ DhaDbiBo þDhaDbiB

−
2

χ

Z
χ

0

DhaDbiBð~χÞd~χ: ð6:24bÞ

Note that in the limit χ → 0, κf1;0g → 0 and γf1;0gab → 0 as it
should be, given the initial condition (3.16) for the Jacobi
matrix. Finally, since the Jacobi matrix (6.20) is symmetric,
at this order we have

Vf1;0g ¼ 0: ð6:25Þ

We have checked that these results match those found in
[67] when expanded in the small shear limit (where the
special choice Bo ¼ 0 is made).
We can now perform the expansion of these observable

quantities in terms of spin-weighted spherical harmonics.
Using the results of Sec. IV C 4, the shear can be projected
into the helicity basis so as to transform the covariant
derivatives into spin-raising and spin-lowering operators.
The spherical harmonics components of the convergence κ
and of the cosmic shear γ� are then easily obtained at order
f1; 0g. Both reduce to a quadrupolar contribution, inherited
from the quadrupolar contribution of Σ, so that their only
nonvanishing coefficients are

κf1;0g2m ðχÞ ¼ −3Bo
2m − B2m þ 4

χ

Z
χ

0

B2mð~χÞd~χ; ð6:26aÞ

γ�f1;0g
2m ðχÞ¼

ffiffiffi
6

p �
Bo
2mþB2m−

2

χ

Z
χ

0

B2mð~χÞd~χ
�
: ð6:26bÞ

We conclude that Bγf1;0g
lm ¼ 0 and Eγf1;0g

2m ¼ γ�f1;0g
2m .

D. Order f0;1g
We follow the same method for the order f0; 1g as for

the order f1; 0g. This corresponds to the standard
approach to weak lensing in the linear regime of cosmo-
logical perturbations. Our main goal is to rederive
these standard results in our formalism, so as to serve
as a basis for the study at order f1; 1g. Note that, at this
order, we only need to include scalar perturbations since,
as stressed before, vectors and tensors modes are of
order f1; 1g.

1. Geodesic equation: Tangent vector

Using the definition of the deflecting potential as
φ≡ ΦþΨ, the energy of a photon evolves according to

dk0f0;1g

dχ
¼ −

∂φ
∂χ þ dΦ

dχ
;

dk0f0;1g

dχ
¼ −

∂φ
∂χ þ 2

dΦ
dχ

;

ð6:27Þ
the solution of which is

k0f0;1g ¼ k0f0;1g þ Φ ¼ −1þ 2Φ − Φo −
Z

χ

0

∂φ
∂ ~χ d~χ

≡ −1þ δk0f0;1g; ð6:28Þ

where it is understood the integrand is evaluated on the
background geodesic, i.e., that xi ¼ ~χnio, at a time asso-
ciated with ~χ. The notation is intentionally simplified in
this section, so, for example, k0;f0;1g means k0f0;1gðχ; nioÞ,
Φ means Φðχ; xiÞ with xi ¼ χnio, and so on. In other
words, it is understood that everything is evaluated on the
background geodesic at parameter χ. The only exception
is Φo, which is the potential Φ evaluated at the observer,
that is, at χ ¼ 0. Note that the total derivative d=dχ,
i.e., the total derivative along the background geodesic,
satisfies

dφ
dχ

¼ ∂φ
∂χ þ φ;r ¼ −φ0 þ x̂i∂iφ; ð6:29Þ

since, from Eq. (4.30),

∂φ
∂χ ¼ −φ0: ð6:30Þ
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2. Evolution of the direction and screen vectors

The spatial component of the vector kμ evolves accord-
ing to

dkif0;1g

dχ
¼ −∂iφþ nio

dΨ
dχ

;
dkif0;1g

dχ
¼ −∂iφþ 2nio

dΨ
dχ

;

ð6:31Þ

the solution of which is

kif0;1g ¼ kif0;1g þ nioΨ

¼ nio½1þ 2ΨðχÞ −Ψo� −
Z

χ

0

∂iφd~χ: ð6:32Þ

Using Eq. (4.7), we then deduce the evolution of the
direction vector

dnif0;1g

dχ
¼ −Si j∂jφ; ð6:33Þ

the solution of which is

nif0;1gðχ; nioÞ ¼ nio þϖaf0;1gðχ; nioÞnoai;

ϖaf0;1gðχ; nioÞ≡ −
Z

χ

0

Daφd~χ: ð6:34Þ

Similarly, the evolution of the screen projectors leads to

nif0;1ga ðχ; nioÞ ¼ noai −ϖaf0;1gðχ; nioÞnoi: ð6:35Þ

3. Geodesic equation: Real space

We can then determine xif0;1g from Eq. (4.33) using�
dxi

dχ

�f0;1g
¼ −

�
ki

k0

�f0;1g
¼ nioð1þ φÞ −

Z
χ

0

Si j∂jφd~χ;

ð6:36Þ

and this leads to

xif0;1g ¼ χnio þ nio

Z
χ

0

φd~χ − noai
Z

χ

0

d~χ
ðχ − ~χÞ

~χ
Daφ:

ð6:37Þ

4. Sachs equation

Finally, at order f0; 1g, the right-hand side of Eq. (4.34)

is simplyRf0;1g
ab Df0;0g

bc ¼ χRf1;0g
ac . Thus, the Sachs equation

becomes

d2δDf0;1g
ab

dχ2
¼ dk0f0;1g

dχ
δab þ χRf0;1g

ab : ð6:38Þ

The solution of the Sachs equation follows formally the
same steps as in the case f1; 0g. That is, it can be integrated
twice, and after an integration by parts for the double
integral over the Riemann term, we get

δDf0;1g
ab ðχ; noÞ ¼

Z
χ

0

f½2þ k0f0;1gð~χÞ�δab

þ ðχ − ~χÞ~χRf0;1g
ab ð~χ; noÞgd~χ: ð6:39Þ

Now, using the perturbed expression for Rab found in
Appendix B 2 (with σij ¼ 0),

χ2Rf0;1g
ab ¼ χ2noainob

j½−∂i∂jφ − δijðΨ00 − 2ni∂iΨ0

þ npnq∂p∂qΨÞ� ð6:40aÞ

¼ −DhaDbiφ − δabχ
2

�
1

2
∂i∂iφþΨ00 − 2ni∂iΨ0

þ 1

2
npnq∂p∂qðΨ − ΦÞ

�
ð6:40bÞ

and the expression dk0f1;0g=dχ given in Eq. (6.28),
one obtains the formal solution of the Sachs equation (4.34)
as [61]

δDf0;1g
ab ¼ χ

�
δab

�
1 −ΨðχÞ − Φo þ

1

χ

Z
χ

0

φð~χÞd~χ

−
1

2

Z
χ

0

χ − ~χ

χ ~χ
DcDcφð~χÞd~χ

�

−
Z

χ

0

χ − ~χ

χ ~χ
DhaDbiφð~χÞd~χ

�
; ð6:41Þ

from which κ and γab can be read directly from the
expression in brackets in the first and second lines,
respectively; see our definitions in Eq. (3.17). Note that,

since there is no antisymmetric part in δDf0;1g
ab , we conclude

that Vf0;1g ¼ 0.
Dropping the (unobservable) monopole correction due to

the local potential Φo, we get their multipoles as

κf0;1glm ¼ −ΨlmðχÞ þ
1

χ

Z
χ

0

φlmð~χÞd~χ

þ lðlþ 1Þ
2

Z
χ

0

χ − ~χ

χ ~χ
φlmð~χÞd~χ; ð6:42aÞ

γ�f0;1g
lm ¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
χ

0

χ − ~χ

χ ~χ
φlmð~χÞd~χ; ð6:42bÞ

from which we conclude that Bγf1;0g
lm ¼0 and

Eγf1;0g
lm ¼γ�f1;0g

lm .
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5. Angular power spectra

To determine the angular power spectrum of the con-
vergence κ and of the E modes of the cosmic shear, we
follow the procedure described in Sec. V. At the order
f0; 1g, the transfer function is isotropic and there are only
scalar sources. Consequently, only E modes are generated.
The power spectrum for the E modes is then just given by

CEEf0;1g
l ¼ 2

π

Z
∞

0

k2dkPðkÞ
				
Z

∞

0

dχN ðχÞ
Z

χ

0

d~χgElðk;χ; ~χÞ
				2;

ð6:43Þ

where the function gE is defined as

gElðk;χ; ~χÞ¼−
χ− ~χ

χ ~χ
jlðk~χÞ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2Þ!
ðl−2Þ!

s
Tφðk; ~χÞ: ð6:44Þ

In Eq. (6.43),N ðχÞ represents the distribution of sources as
a function of the radial distance χ defined such thatN ðχÞdχ
is the number of sources between χ and χ þ dχ. At order
f0; 1g, it is sufficient to consider the homogeneous source
distribution, so that the observed shear and convergence for
sources distributed up to χþ are then defined by

κoðχþ; noÞ ¼
Z

χþ

0

N ðχÞκðχ; noÞdχ;

γ�o ðχþ; noÞ ¼
Z

χþ

0

N ðχÞγ�ðχ; noÞdχ: ð6:45Þ

Since here N depends on χ alone, this integration can be
performed after the multipolar decomposition so that we
perform the replacement, e.g.,

ElmðχÞ →
Z

χþ

0

N ð~χÞElmð~χÞd~χ; ð6:46Þ

in order to build the cosmological observables. Let us
emphasize that this derivation can actually be performed in
a simpler way [2]: since the source term derives from a
potential, one could have simply used the Fourier transform
directly in Eq. (6.41) and then expanded the exponential
according to Eq. (5.9). The present derivation is however
more general when used to higher orders fn; pg.
On small angular scales, that is, in the limit l ≫ 1, it is

possible to use the Limber approximation [82]. Such
approximation consists in using

Z
∞

0

dxfðxÞjlðxÞ≃
ffiffiffiffiffiffi
π

2L

r
fðLÞ ð6:47Þ

with L≡ lþ 1=2. If we commute the time integrals
according to

Z
∞

0

dχ
Z

χ

0

d~χfðχ; ~χÞ ¼
Z

∞

0

d~χ
Z

∞

~χ
dχfðχ; ~χÞ; ð6:48Þ

we arrive at the simple expression

CEEf0;1g
l ≃ 1

4

ðlþ 2Þ!
ðl − 2Þ! Pl; ð6:49Þ

with

Pl ≡
Z

∞

0

d~χ
~χ2

P

�
L
~χ

�				Tφ

�
L
~χ
; ~χ

�Z
∞

~χ
dχN ðχÞ ðχ − ~χÞ

χ ~χ

				2:
ð6:50Þ

The angular power spectrum of the convergence κ is
obtained in a similar way. Indeed, if we consider only the
dominant contribution of Eq. (6.42a) at small scales, it is
sufficient to replace gEl by

gκlðk; χ; ~χÞ ¼
lðlþ 1Þ

2

χ − ~χ

χ ~χ
jlðk~χÞTφðk; ~χÞ ð6:51Þ

in the previous expressions to get Cκκf0;1g
l . Using the

Limber approximation, we then obtain

Cκκf0;1g
l ≃ l2ðlþ 1Þ2

4
Pl; ð6:52Þ

and we check immediately that for large l, Cκκf0;1g
l ≃

CEEf0;1g
l .
Finally, the angular power spectrum of the cross-

correlations between the shear and the convergence is
given by

CκEf0;1g
l ¼ 2

π

Z
∞

0

k2dkPðkÞ
�Z

∞

0

dχN ðχÞ
Z

χ

0

d~χgElðk;χ; ~χÞ
�

×

�Z
∞

0

dχN ðχÞ
Z

χ

0

d~χgκlðk;χ; ~χÞ
�

for which the Limber approximation gives

CκEf0;1g
l ≃ −

lðlþ 1Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
Pl: ð6:53Þ

E. Order {1,1}

1. Geodesic equation

In principle, we need to determine k0f1;1g from the
geodesic equation and then xif1;1g. As we shall see, these
terms are only needed for the expression of the convergence
κf1;1g. We will instead focus on the computation of the

cosmic shear γf1;1gab and also the rotation Vf1;1g, since they
give the leading order of the B mode and the rotation.
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Fortunately, that computation does not require the solution
of the geodesic equation up to order f1; 1g.

2. Sachs basis

In order to get a definite expression involving only
covariant and radial derivatives, we need to expand the
direction vector ni around its background value nio, so as to
use the definition of Sec. IV C 3, taking into account the
contributions of order f0; 1g and f1; 0g, and similarly for

the projection vectors nia. We must use

niðχ; nioÞ ¼ nio þ ½ϖaf0;1gðχ; nioÞ þϖaf1;0gðχ; nioÞ�noai;
ð6:54aÞ

niaðχ; nioÞ ¼ noai − ½ϖf0;1g
a ðχ; nioÞ þϖf1;0g

a ðχ; nioÞ�nio:
ð6:54bÞ

It turns out that only the expression for the projection
vectors is needed since the direction vector ni appears only
in terms which are already of order f1; 1g. Additionally, we
must convert the derivative along the tetrads ϑi noted by ∂i

to derivatives along the Cartesian coordinates, and these are
related from Eq. (4.8). This correction is only relevant for
the term ∂i∂jφ because the other terms are already of order

f1; 1g. We thus use

∂i∂jφ ¼ ∂i∂jφ − 2βkði∂jÞ∂kφ; ð6:55aÞ

βij ¼ DiDjB þ 2BSij þ 2DðiBnojÞ þ Bnoi n
o
j : ð6:55bÞ

3. General form

Since in Eq. (4.34) the two terms 1
k0

dk0
dχ

dDab
dχ and

1
ðk0Þ2 RacDcb do not contain Df1;1g

ab (because dk0=dχ and

Rab vanish at order f0; 0g), it can be integrated to give

dδDf1;1g
ab

dχ
¼ δab þ

Z
χ

0

�
−
d ln k0

dχ
dDab

dχ
þ 1

ðk0Þ2RacDcb

�
dχ0:

ð6:56Þ

(We remind the reader of our convention, in which we
split k0 and Dab, respectively, as k0 ¼ −1þ δk0 and
Dab ¼ χδab þ δDab.) In the first term of the integral, given
that dk0=dχ is at least of order f1; 0g þ f0; 1g, the termD0

ab
can be expressed using the formulas found in the two
previous sections, that is,

dδDf1;0g=f0;1g
ab

dχ
¼

Z
χ

0

�
dk0;f1;0g=f0;1g

dχ
δab þ ~χRf1;0g=f0;1g

ab

�
d~χ:

ð6:57Þ

Equation (6.56) can then be integrated as

δDf1;1g
ab ðχÞ ¼

Z
χ

0

χ − ~χ

~χ
Sf1;1gab ð~χÞd~χ; ð6:58Þ

where Sf1;1gab contains all source terms of order f1; 1g. It is
explicitly given by

Sf1;1gab ðχÞ ¼ χ2Rab

ðk0Þ2 þ χRacδDcb −
d ln k0

d ln χ
ð2þ k0Þδab

þ dk0

d ln χ

Z
χ

0

d~χ ~χRab þ χ2δxi∂iRab; ð6:59Þ

evaluated at order f1; 1g, and where the last term arises
from the fact that, at this order, there is a correction to be
considered since we have to go beyond the Born approxi-
mation. That is, we cannot just integrate on the Friedmann-
Lemaître geodesic; instead we integrate on the geodesic
~xiðχ; noÞ ¼ χnio þ δxiðχ; noÞ, so that the source term is

Sabð~xiðχ; noÞÞ ¼ Sabðχ; nioÞ þ δxiðχ; noÞ∂jSab; ð6:60Þ

which implies that

Sf1;1gab ð~xiðχ; noÞÞ ¼ Sf1;1gab ðχ; nioÞ þ δxj;f1;0gðχ; noÞ∂jS
f0;1g
ab ;

ð6:61Þ

since ∂iS
f0;0g
ab ¼ ∂iS

f1;0g
ab ¼ 0. It follows that the source

term is explicitly given by

Sf1;1gab ðχÞ ¼ χ2
�
Rab

ðk0Þ2

f1;1g

þ χ
dδk0f1;1g

dχ
δab

þ χ

�
Rf1;0g

ac δDf0;1g
cb þRf0;1g

ac δDf1;0g
cb þ dδk0f0;1g

δχ

×
Z

χ

0

~χRf1;0g
ab d~χ þ dδk0f1;0g

δχ

Z
χ

0

~χRf0;1g
ab d~χ

�

þ χδab

�
dðδk0f1;0gδk0f0;1gÞ

dχ
þ δk0f1;0gδk0f0;1g

�
þ χ2δxj;f1;0g∂jR

f0;1g
ab : ð6:62Þ

We see on this expression that the general source Sf1;1gab ðχÞ
has several contributions. First, it has contributions from
the vector and tensor modes B̄i and Eij (respectively, noted
Sf1;1gV and Sf1;1gT) which are at least of order f1; 1g since
they vanish in the pure Friedmann-Lemaître case; they

enter the terms Rf1;1g
ab and δk0f1;1g. Then, all the other

contributions are formally products of the scalar perturba-
tions by the geometrical shear; they appear as products of
f1; 0g × f0; 1g terms. To compute explicitly these terms,
we decompose the source term as
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Sf1;1gab ðχÞ ¼ Sf1;1gVab ðχÞ þ Sf1;1gTab ðχÞ þ Sf1;1gquadab ðχÞ:
ð6:63Þ

Each contribution can be further decomposed into its trace,
symmetric traceless and antisymmetric parts as

Sab ¼ δabSþ Shabi þ S½ab�: ð6:64Þ

Since our goal is to compute the effect of an anisotropic
phase on the cosmic shear, and not on the convergence,
we are mostly interested only in the symmetric traceless
part. We shall thus not report the computation of the trace
contribution to the trace part, except for the contribution
coming from vectors and tensors, so as to be able to
compare our results with the standard results in the
literature, in the cases where the vector and tensor modes
are considered even around a Friedmann-Lemaître back-
ground. A full computation may be useful in order to
cross-correlate weak lensing with the magnitude of
supernovae.

4. Vector and tensor mode contributions

The vector and tensor contributions are easily found
from the literature [61,83]. Splitting the vector mode into a
radial and orthoradial parts as

B̄i ¼ ~Bi þ r̂iBr; Eij ¼ ~Eij þ 2r̂ði ~EjÞ þ Err̂ir̂j;

ð6:65Þ

the expression for the Riemann tensor given in Appendix B
2 for vector and tensor modes gives

Rf1;1gT
ab ¼ noainob

j½E00
ij − 4nq∂ ½qE0

i�j þ npnqð∂i∂jEpq

þ ∂p∂qEijÞ − 2npnq∂q∂ðiEjÞp�; ð6:66aÞ

Rf1;1gV
ab ¼ noainob

jð−∂ðiB̄0
jÞ þ nq∂q∂ðiB̄jÞ − nq∂i∂jB̄qÞ:

ð6:66bÞ

Using the projections of partial derivatives into radial and
covariant derivatives (see Appendix D 1), we deduce that
the vector and tensor contributions to the sources (6.63)
are

Sf1;1gVab ðχÞ ¼ χδabBr;r þ
δab
2

�
−DcDcBr þ

1

χ2
d
dχ

ðχ3Dc ~BcÞ

þ 2

χ

d
dχ

ðχ2BrÞ
�
þ d
dχ

ðχDha ~BbiÞ −DhaDbiBr;

ð6:67aÞ

Sf1;1gTab ðχÞ¼ χδab
∂Er

∂χ þδab
2

�
DcDcEr−χ2

d2

dχ2
Er

−6
d
dχ

ðχErÞ−
2

χ

d
dχ

ðχ2Dc ~EcÞ
�

þχ
d2

dχ2
ðχ ~EhabiÞþDhaDbiEr−2

d
dχ

ðχDha ~EbiÞ;

ð6:67bÞ

with the notation for the radial derivative ;r ≡ x̂i∂i. The
first terms of each expression are, respectively, the V and T
contribution of the term in δk0f1;1g in Eq. (6.62). For each of
these two expressions, the first line contributes to the trace
of the Jacobi matrix, that is, to convergence κf1;1g. The
second line contributes to the cosmic shear γf1;1gab , since it is
symmetric and traceless. By construction there is no
antisymmetric part, so the vectors and tensors do not
contribute to the rotation Vf1;1g.
In order to compare and recover the results of

Refs. [61,83], we must use the fact that vector modes
are transverse and that tensor modes are transverse and
traceless. This allows us to get the relations (see also
Appendix D 1)

0 ¼ Da ~Ba þ χðBrÞ;χ þ 2Br; ð6:68aÞ

0 ¼ Da ~Eab þ 3 ~Eb þ χð ~EbÞ;χ ; ð6:68bÞ

0 ¼ Da ~Ea þ 3Er þ χðErÞ;χ : ð6:68cÞ

5. Trace-free part of the quadratic contributions

Starting from the general expression (6.62), the only
contribution of the terms of order f1; 1g to the trace-free

part is χ2Rf1;1g
habi . Then, the terms δDf1;0g=f0;1g

ab are decom-

posed as

δDf1;0g=f0;1g
ab ¼ χκf1;0g=f0;1gδab þ χγf1;0g=f0;1ghabi ; ð6:69Þ

since, as we have just seen, there is no rotation at order
f1; 0g and f0; 1g. To finish, it is obvious that

dδk0f1;0g=f0;1g

dχ
¼

�
dk0

dχ

�f1;0g=f0;1g
: ð6:70Þ

It follows that the trace-free part of the quadratic contri-
bution of the source term is given by
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Sf1;1gquadhabi ðχÞ ¼ χ2
�
Rab

ðk0Þ2

f1;1g

þ χ2Rf1;0g
habi κ

f0;1g þ χ2Rf0;1g
habi κ

f1;0g þ χ2Rf1;0gγf0;1ghabi þ χ2Rf0;1gγf1;0ghabi

þ χ

�
dk0

dχ

�f0;1g Z χ

0

~χRf1;0g
habi d~χ þ χ

�
dk0

dχ

�f1;0g Z χ

0

~χRf0;1g
habi d~χ þ χ2δxif1;0g∂iR

f0;1g
habi : ð6:71Þ

All terms, except the first one, involve products of quantities which are f0; 1g and f1; 0g and have been already computed.
Note that the first term is kept in the form ðRhabiÞ=ðk0Þ2Þf1;1g, and its detailed expression must be found using the perturbed
Riemann tensor given in Appendix B 2. This is indeed more convenient since we shall express everything in terms of the
tetrad basis, and we will just need to use the fact that

k0 ¼ k0Θ0
0 ¼ ð1 − ΦÞk0: ð6:72Þ

We find for this first term�
Rhabi
ðk0Þ2

�f1;1g
¼ nihan

j

bi

�
−σi jðφ0 þ 2φ;rÞ þ 2σkðink∂jÞφ − ∂i∂jφ −

�
σijΨ

H

�00

− 2

�
σijΨ;r

H

�0
þ 2

�
σiknk

H
∂jΨ

�0
−
σij
H

Ψ;rr −
σklnknl

H
∂i∂jΨþ 2

σiknk

H
∂jΨ;r

�
: ð6:73Þ

Then, we can split all partial derivatives into covariant and radial derivatives, using the expressions of Appendix D 1. This
term is then given by

�
χ2Rhabi
ðk0Þ2

�f1;1g
¼ −χ2DhaDbiΣð2φ;r þ φ0Þ þ 2χDhaΣDbiφþ 2χ2DhaBDbi

�
φ

r

�
;r
þ 2DcDhaBDbiDcφ − ð1 − 2BÞDhaDbiφ

− χ2
�
ΨDhaDbiΣ

H

�00
− 2χ2

�
Ψ;rDhaDbiΣ

H

�0
þ 2χ2

�
DhaΣDbiΨ

H

�0
− χ2

DhaDbiΣ
H

Ψ;rr

−
Σ
H

DhaDbiΨþ 2χ2

H
DhaΣDbi

�
Ψ
r

�
;r
− 2χ2DhaΣ0ϖf0;1g

bi þ 2χ2ϖf1;0g
ha Dbi

�
φ

r

�
;r
: ð6:74Þ

Finally, the last term of Eq. (6.71) needs to be evaluated.
It can be read directly from the previous results at order
f1; 0g and f0; 1g. We need only to split it into radial and
covariant derivatives using the formulas of Appendix D 1.
We find that its contribution to the traceless part of the
Jacobi matrix is given by

χ2δxif1;0g∂iR
f0;1g
habi

¼ −δrf1;0gDhaDbi

�
φ;r − 2

φ

χ

�

− αcf1;0gDcDhaDbiφ − 2χ2αf1;0gha Dbi

�
φ

r

�
;r
: ð6:75Þ

Let us emphasize that, when αa ≠ ϖa, the source is
partially seen on its side.
To conclude, the source term (6.62) is obtained by

combining the two terms (6.67) for the vector and tensor
contribution to the f1; 1g part, the term (6.73) for the
quadratic scalar contribution and the term (6.75) for the

post-Born approximation, to which we need to add the
six terms which are products f1; 0g × f0; 1g in (6.71),
obtained from the expressions of the former paragraphs. In
principle, once all these contributions to the sources of the
Sachs equation are identified and decomposed into radial
and covariant derivatives, one should apply the formalism
detailed in Appendix V and expand each term in spherical
harmonics for both the angular dependence and the Fourier
dependence.
This procedure is however extremely long and includes a

large number of terms. We will not detail it here but instead
just identify the dominant contribution and compute its
effect on the Jacobi matrix in order to derive the leading
contribution to the B modes in the next section. Indeed,
once we convert the covariant derivatives into spin-raising
and spin-lowering operators, each covariant derivative is
clearly associated with a factor l. In the flat sky approxi-
mation, that is, in the small angle approximation, the
dominant contribution arises from the first term on the
second line of Eq. (6.75),
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δγf1;1gab ðχ; noÞ

≃ −
Z

χ

0

χ − ~χ

~χ
αcf1;0gð~χ; noÞDcDhaDbiφð~χ; noÞd~χ;

ð6:76Þ

as it enjoys three covariant derivatives.

6. Trace part of the quadratic contributions

As discussed in the previous paragraph, the computation
of the trace of δDf1;1g

ab involves a lot of terms such as k0;f1;1g
and the fourth line of Eq. (6.62). This tedious computation
can indeed be performed with all the details given in this
article. It will however give only a small correction to κ, the
leading order of which is the standard convergence κf0;1g.
We thus decide not to include this computation here

since we are mostly interested by the lowest order dominant
effect related to the anisotropic expansion.

7. Rotation quadratic contributions

As we have seen, the rotation vanishes at orders f0; 1g
and f1; 0g so that its leading-order contribution appears at

order f1; 1g. Since Rf1;1g
ab is symmetric, its contribution

arises simply from the two first terms of the second line of
Eq. (6.62), that is, from the source term

Sf1;1g½ab� ðχÞ ¼ χðRf1;0g
½ajc δDf0;1g

cjb� þRf0;1g
½ajc δDf1;0g

cjb� Þ
≡ ϵabS

f1;1g
rot ðχÞ: ð6:77Þ

Using the expression of the previous sections, it is
explicitly given by

Sf1;1grot ðχ; noÞ ¼ −
i
2
DþDþΣ0

Z
χ

0

χðχ − ~χÞ
~χ

D−D−φð~χÞd~χ

− ð−↔þÞ

−
i
2
DþDþφ

Z
χ

0

ðχ − ~χÞ~χ
χ

D−D−Σ0ð~χÞd~χ

− ð−↔þÞ: ð6:78Þ

The general expression for the rotation is then obtained
through

Vf1;1gðχ; noÞ ¼
Z

χ

0

χ − ~χ

~χ
Sf1;1grot ð~χ; noÞd~χ: ð6:79Þ

The rotation is thus sourced by the coupling between the
usual cosmic shear of the standard scalar perturbation
around a Friedmann-Lemaître spacetime (DþDþφ) and
the quadrupolar contribution due to the geometric
shear (D−D−B00 ¼ D−D−Σ0).

8. Integration over the source distribution

The last point that needs to be discussed before turning to
the multipolar decomposition and the computation of the
angular power spectra is the source distribution.
The source distribution represents the mean number of

object normalized to the mean density observed in a solid
angle dΩo, that is,

dN
dΩ0dχ

→ N : ð6:80Þ

In the Friedmann-Lemaître and Bianchi I background
spacetimes, which are both homogeneous, N is constant
on any constant time hypersurface, which means that it
depends on χ alone. Thus

N ðχ; noÞ ¼ N ðχÞ þN f0;1gðχ; xiÞ þN f1;0gðχÞ; ð6:81Þ

where the second term is the standard fluctuation of the
number density due to the large scale cosmological
perturbations and for which it is understood that the
position xi is evaluated on the background geodesic, that
is, xi ¼ χnio.
Note however than when one turns to redshift space, on

which the observations are actually performed, one needs
to take into account that z is a function of χ and the
direction of observation no, so that we should rather use

N ðz; noÞ ¼ N ðzÞ þN f0;1gðz; xiÞ þN f1;0gðz; noÞ;
ð6:82Þ

where again the position is evaluated on the background
geodesic with xi ¼ χnio. It follows that, when computing
the observed quantities,

γf1;1gab ðχ; noÞ ¼
Z

dχ½N ðχÞγf1;1gab þN f0;1gðχ; xiÞγf1;0gab

þN f1;0gðχÞγf0;1gab �:

The second term is the standard correlation between the
fluctuations of the source distribution and the cosmic shear.
It inherits a directional dependence from the spatial
dependence N f0;1gðχ; xiÞ given that it is evaluated on the
background line of sight, that is, with xi ¼ χnio. Because of

the coupling to the pure E mode γf1;0gab it will induce B
modes in the source averaged cosmic shear. This compo-
nent is expected to be important on large angular scales.
The third term is a correction that arises from the fact that
the formation of structure differs a priori in the presence of
a geometrical shear, but it does not contribute the B modes
since it does not have a directional dependence. However,
it induces a correction for the E modes and for the
convergence.
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Now, in redshift space, one needs to be more careful
since

γf1;1gab ðz;noÞ ¼
Z

d~z½N ð~zÞγf1;1gab þN f0;1gð~z; xiÞγf1;0gab

þN f1;0gð~z; noÞγf0;1gab �:

Both the second and the third term depend now explicitly
on the direction of observation, so that the convolution by
the source distribution has to be performed before the
decomposition in spherical harmonics, and both terms will

generate B modes out of the E modes of γf1;0gab and γf0;1gab ,
respectively. However, these effects should not dominate
for small angular scales and we shall thus neglect them.

VII. ORDERS OF MAGNITUDE

The previous sections have provided all the elements
needed to compute the contribution of the Bmodes at order
f1; 1g and their correlations with the E modes and the
cosmic shear. It is obvious that any further computation has
to be performed numerically. It is however important to
exhibit the dominant contribution.

A. Dominant effects

Once the covariant derivatives are expressed in terms of
spin-raising and spin-lowering operators, it is rather
straightforward to realize that any covariant derivative is
associated with a factor l in multipole space. The dominant
terms contributing to the shear are thus the ones with the
highest number of covariant derivatives applied to φ.
For instance, at order f0; 1g, the convergence is domi-

nated by the last term of Eq. (6.42a) on small scales.
That is,

κf0;1glm ∼
lðlþ 1Þ

2

Z
χ

0

χ − ~χ

χ ~χ
φlmð~χÞd~χ;

simply because of the geometrical factor l2. It is indeed the
term which is usually presented in textbooks. This term
dominates over the second one even at small l, i.e., for
l > 2–3, that is for all practical purposes.
When applying this small scale approximation scheme

at order f1; 1g, we realize that there is just one dominant
term—the first one on the second line of Eq. (6.75)—which
possesses three covariant derivatives, that is,

δγf1;1gab ðχ; noÞ

≃ −
Z

χ

0

χ − ~χ

~χ
αcf1;0gð~χ; noÞDcDhaDbiφð~χ; noÞd~χ:

Physically it corresponds to the orthoradial displacement of
the central geodesic on which the Sachs equation is
evaluated, when compared with the background geodesic.

It is as if the sources of order f0; 1g contributing to the
Jacobi map had been lensed by the orthoradial displace-
ment of order f1; 0g, resulting in an order f1; 1g effect.
This is similar to the lensing of first-order sources of CMB
around the last-scattering surface by first-order gravita-
tional potential in the foreground, resulting in a second-
order lensing effect in the CMB.
The first consequence of this is that the formalism used

to compute the CMB lensing can also be applied to obtain
the resulting Jacobi map due to this leading-order term.
However, there is a slight difference. Indeed, for the CMB
the sources are all located in a background around the last-
scattering surface, for which there is a deflection due to the
gravitational potential crossed between emission and recep-
tion. For the general solution giving the Jacobi map,
however, the sources are distributed from the observer
up to the maximum redshift of the survey. For each source
there is a different deflection angle as it depends on the
trajectory between the source and the observer.
Finally, we must recall that the treatment of CMB lensing

by a gradient expansion [84] holds only until the deflection
angle is comparable to the angle of structures in the CMB.
Beyond that scale, this method underestimates the effect of
lensing and one has to resort to a full-lensing method as
exposed in Refs. [77,85]. Since we are interested in an
order of magnitude estimate of the effect of geometrical
shear on the cosmic shear, we will present in the next
section a gradient expansion method based on Ref. [84], but
one should be aware that for any amplitude of the geometric
shear, there must exist a scale l� beyond which this
treatment is inaccurate. The method for the full-lensing
method is exposed briefly in Appendix C.

B. Lensing of the central geodesic

1. General formalism of the gradient expansion

Any observable at a given affine parameter χ in a given
direction no is formally obtained from an integration on the
background geodesic over its sources given by Eq. (5.4),
that is,

Xsðχ; noÞms
o ¼

Z
χ

0

SXðχ; ~χ; noÞms
od~χ: ð7:1Þ

However, and as discussed above, a true observable like the
cosmic shear is obtained by averaging over the true
normalized profile N ðχÞ of sources as

XsðnoÞms
o ¼

Z
∞

0

dχN ðχÞXsðχ; noÞms
odχ

¼
Z

∞

0

N ðχÞdχ
Z

χ

0

SXðχ; ~χ; noÞms
od~χ: ð7:2Þ

Note that the integrals can be interchanged using
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Z
∞

0

dχN ðχÞ
Z

χ

0

d~χfðχ; ~χÞ ¼
Z

∞

0

d~χ
Z

∞

~χ
dχN ðχÞfðχ; ~χÞ:

ð7:3Þ
We consider only the effect of the dominant term in
Eq. (6.75), which corresponds to the lensing of the sources;
that is, it transforms the sources according to a parallel
transport along the lensing vector α. A lensed observable
~Xs is then obtained from an integration over the lensed
sources. If the lensing effect is small, it is sufficient to use a
Taylor expansion of the lensed sources to express them in
terms of the unlensed sources, the small parameter being
the lensing vector α. Furthermore, if the lensed vector can
be written as the gradient of a scalar, as αa ¼ Daα, then at
lowest order in the Taylor expansion, we get for the lensed
source

~SX
sðχ; ~χ; noÞms

o ¼ SX
sðχ; ~χ; noÞms

o

þDaαð~χ; noÞDa½SXsðχ; ~χ; noÞms
o�:
ð7:4Þ

Using Eq. (D26), the multipoles are easily extracted as

~SX
s

lmðχ; ~χÞ ¼ SX
s

lmðχ; ~χÞ þ
X

m1;l2;m2

α2m1
ð~χÞSXs

l2m2
ðχ; ~χÞsImm1m2

l2l2
;

ð7:5Þ

where the αlm are the multipoles of the lensing scalar when
decomposed into spherical harmonics and the coefficients
sI

mm1m2

ll1l2
are defined in Eq. (D28).

2. Multipoles of the lensing vector

The previous expression depends on the multipoles of
the lensing scalar, that can actually be obtained very easily.
First, following the definitions (6.5) and (6.6) we define a
matrix αij such that

α�ðn0; χÞ≡D�αðno; χÞ ¼ D�

�
1

2
αijðχÞnionjo

�
: ð7:6Þ

Given Eqs. (6.13b) and (6.75), the components of αijðχÞ are
just

αijðχÞ ¼ −βijð0Þ þ 2

Z
χ

0

dχ0
χ − χ0

χ
σijðχ0Þ ð7:7aÞ

¼ βijð0Þ −
2

χ

Z
χ

0

dχ0βijðχ0Þ: ð7:7bÞ

Then, similarly to the computation of the coefficients
Σ2m in Eq. (4.26), the multipoles of αðno; χÞ defined by
α ¼ P

mα2mY2m reduce to a quadrupole and are explicitly
given by

α20ðχÞ ¼ −
ffiffiffi
π

5

r
½αxxðχÞ þ αyyðχÞ�;

α2�2ðχÞ ¼
ffiffiffiffiffi
π

30

r
½αxxðχÞ − αyyðχÞ�; ð7:8Þ

if the coordinates system is adapted to the eigendirections
of the geometrical shear.

3. Extracting the spatial shear components from
off-diagonal correlations

A by-product of the formalism just developed is that we
can extract information about the geometric shear σij from
cross-correlations between the E- and B-mode multipoles
of the cosmic shear, Elm and Blm, and the multipoles κlm
of the convergence κ, that would otherwise vanish in the
pure Friedmann-Lemaître case. Indeed, even if the Bmodes
are not sourced initially, as is the case of a Friedmann-
Lemaître background, at the perturbative level there will be
a lensed B-mode term sourced by the E modes of the
background shear. In order to extract this effect we
decompose the (lensed) E and B modes of the source as

~Sγ
�
lmðχ; ~χÞ ¼ ~SElmðχ; ~χÞ � i ~SBlmðχ; ~χÞ ð7:9Þ

with a similar decomposition for the (unlensed) SXlm. Then,
using the properties (D28), it follows that

~SBlmðχ; ~χÞ ¼ −i
X
m1 ;m2
l2¼l�1

α2m1
ð~χÞSEl2m2

ðχ; ~χÞþ2I
mm1m2

l2l2
; ð7:10aÞ

~SElmðχ; ~χÞ ¼ SElmðχ; ~χÞ þ
X
m1 ;m2

l2¼l;l�2

α2m1
ð~χÞSEl2m2

ðχ; ~χÞþ2I
mm1m2

l2l2
:

ð7:10bÞ

We recall that there is no tilde on SElm on the right-hand side
of the above equation, since it corresponds to the unlensed
sources. Since the convergence is a spin-0 quantity, then
from Eq. (7.5), its sources are transformed under lensing as

~Sκlmðχ; ~χÞ ¼ Sκlmðχ; ~χÞ þ
X
m1 ;m2

l2¼l;l�2

α2m1
ð~χÞSκl2m2

ðχ; ~χÞImm1m2

l2l2
:

ð7:11Þ

From these expressions, it is clear that the off-diagonal
terms coming from the EB, EE, κκ, κE, κB cross-
correlation matrices allow us to put constraints on α2m
and, consequently, on the geometric shear components σij
by means of Eqs. (7.7). To see how that is possible, we must
remember that the sources should be convolved with N ðχÞ
by means of Eq. (7.2).
In Sec. VI D 5, the EE, κκ, and κE correlations at order

f0; 1g (that is, without the effect of lensing by the geometric
shear) have been computed and they are of the form
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CXZ
l ¼

Z
∞

0

d~χ1

Z
∞

~χ1

dχ1N ðχ1Þ
Z

∞

0

d~χ2

Z
∞

~χ2

dχ2N ðχ2ÞCXZ
l ðχ1; χ2; ~χ1; ~χ2Þ; ð7:12Þ

where the indices X and Z take the values κ; E, and with the source correlations

hSXl1m1
ðχ1; ~χ1ÞSZl2m2

ðχ2; ~χ2Þi ¼ δl1l2δm1m2
CXZ
l1
ðχ1; χ2; ~χ1; ~χ2Þ; ð7:13aÞ

CXZ
l ðχ1; χ2; ~χ1; ~χ2Þ≡ 2

π

Z
∞

0

k2dkPðkÞgXl ðk; χ1; ~χ1ÞgZlðk; χ2; ~χ2Þ: ð7:13bÞ

For the lensed observables, we define similarly

PXZ
lM ≡

Z
∞

0

d~χ1

Z
∞

~χ1

dχ1N ðχ1Þ
Z

∞

0

d~χ2

Z
∞

~χ2

dχ2N ðχ2Þα2Mð~χ1ÞCXZ
l ðχ1; χ2; ~χ1; ~χ2Þ

¼ 2

π

Z
∞

0

k2dkPðkÞ
�Z

∞

0

d~χ1

Z
∞

~χ1

dχ1N ðχ1Þα2Mð~χ1ÞgXl ðk; χ1; ~χ1Þ
�

×

�Z
∞

0

d~χ2

Z
∞

~χ2

dχ2N ðχ2ÞgZlðk; χ2; ~χ2Þ
�
; ð7:14aÞ

such that the following nonvanishing correlations are expressed as

h ~BX
lmEX⋆

l�1m−Mi ¼ −iþ2I
mMðm−MÞ
l2l�1 PEE

l�1M; ð7:15aÞ

h ~BX
lmκ

X⋆
l�1m−Mi ¼ −iþ2I

mMðm−MÞ
l2l�1 PEκ

l�1M: ð7:15bÞ

Not only do we get off-diagonal contributions for B modes with the E modes and the convergence, but we also get off-
diagonal correlations between κ and E modes. They read

h ~EX
lm

~EX⋆
l�2m−Mi ¼ þ2I

mMðm−MÞ
l2l�2 ðPEE

l�2M þ PEE
lMÞ; ð7:16aÞ

h~κXlm ~κX⋆l�2m−Mi ¼ ImMðm−MÞ
l2l�2 ðPκκ

l�2M þ Pκκ
lMÞ; ð7:16bÞ

h ~EX
lm ~κ

X⋆
l�2m−Mi ¼ þ2I

mMðm−MÞ
l2l�2 PEκ

l�2M þ ImMðm−MÞ
l2l�2 PκE

lM: ð7:16cÞ

Note that in all these cross-correlators, M ranges from −2 to 2, thus spanning the 5 degrees of freedom of the lensing
potential α2M and consequently of the underlying Bianchi geometrical shear σij. These expressions for the correlators are
however not ideal to relate the correlations to the lensing potential and thus to the components of σij. Instead, we define
appropriate combinations of the correlators by resumming them as [86]

XZA2M
l1l2

≡X
m

ffiffiffi
5

p
ð−1Þmþl1þl2

�
l1 2 l2

−m M m −M

�
h ~XX

l1mZ
X⋆
l2;m−Mi: ð7:17Þ

For instance, for the EB and EE correlations, we get

BEA2M
ll�1 ≡

X
m

ffiffiffi
5

p
ð−1Þmþ1

�
l 2 l� 1

−m M m −M

�
h ~BX

lmE
X⋆
l�1;m−Mi; ð7:18aÞ

EEA2M
ll�2 ≡

X
m

ffiffiffi
5

p
ð−1Þm

�
l 2 l� 2

−m M m −M

�
h ~EX

lm
~EX⋆
l�2;m−Mi: ð7:18bÞ

Then, by using the definition of the symbols þ2I
mMm0
l2l�1 and I

mMm0
l2l�1 and the orthogonality relations of the Wigner 3j symbols,

we get
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BEA2M
ll�1 ¼ i 2

Fl2l�1ffiffiffi
5

p PEE
l�1M; ð7:19aÞ

BκA2M
ll�1 ¼ i

Fl2l�1ffiffiffi
5

p PEκ
l�1M; ð7:19bÞ

EEA2M
ll�2 ¼ 2Fl2l�2ffiffiffi

5
p ðPEE

l�2M þ PEE
lMÞ; ð7:19cÞ

κκA2M
ll�2 ¼

Fl2l�2ffiffiffi
5

p ðPκκ
l�2M þ Pκκ

lMÞ; ð7:19dÞ

EκA2M
ll�2 ¼ 2Fl2l�2ffiffiffi

5
p PEκ

l�2M þ Fl2l�2ffiffiffi
5

p PκE
lM; ð7:19eÞ

where the symbols 2Fll1l2
are defined in Appendix D 4.

Approximate expressions of this correlators can be
obtained in the Limber approximation (6.47) and read

Pκκ
lM ≃ l2ðlþ 1Þ2

4
PlM; ð7:20aÞ

PκE
lM ≃ PEκ

lM ¼ lðlþ 1Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
PlM; ð7:20bÞ

Pκκ
lM ≃ 1

4

ðlþ 2Þ!
ðl − 2Þ! PlM; ð7:20cÞ

with the function PlM given by

PlM ≡
Z

∞

0

d~χ
~χ2

P

�
L
~χ

�
α2Mð~χÞ

×

				Tφ

�
L
~χ
; ~χ

�Z
∞

~χ
dχN ðχÞ ðχ − ~χÞ

χ ~χ

				2; ð7:21Þ

where we used the notation L≡ lþ 1=2.
This provides the expressions of the five (off-diagonal)

correlators (7.19), each having five components, and all
being linear in σij. We stress that the measurement of these
quantities from further surveys will allow us to get stronger
constraints on the spatial isotropy of the Universe, thus
pushing forward the “beyond ΛCDM” program.

4. Autocorrelations of B modes from the lensing
of the central geodesic

The previous off-diagonal correlators are the most direct
consequence of a late-time geometrical shear on weak
lensing. However, experiments are mostly designed to
measure the diagonal part. In this section we compute
the autocorrelation of B modes induced by the dominant
lensing term. This angular power spectrum will thus be
quadratic in σij. Contrary to the previous estimators, it does
not allow us to reconstruct the full geometrical shear σij but
can be used to set constraints on σ2.
Using the properties of the Wigner 3j symbols given in

Appendix D 4 and starting from the lens sources (7.10), we
obtain that the B-mode angular power spectrum of weak-
lensing cosmic shear generated by the lensing of the central
geodesic is

CBBf1;1g
l ¼

Z
∞

0

dχ1

Z
∞

0

dχ2N ðχ1ÞN ðχ2Þ
Z

χ1

0

dχ01

Z
χ2

0

dχ02
X

s¼�1;m

α2mðχ01Þα⋆2mðχ02Þ
5

CEE
lþsðχ1; χ2; χ01; χ02Þ

ð2Fl2lþsÞ2
2lþ 1

: ð7:22Þ

If we now factorize the time integrals, we simply get

CBBf1;1g
l ¼ 2

5π

Z
∞

0

k2dkPðkÞ
X
s¼�1

ð2Fl2lþsÞ2
2lþ 1

X
m

				
Z

∞

0

dχN ðχÞ
Z

χ

0

dχ0α2mðχ0Þglþsðk; χ; χ0Þ
				2: ð7:23Þ

Note that for large l the F coefficients behave as

lim
l→∞

ð2Fl2lþ1Þ2
2lþ 1

¼ 15

2π
; lim

l→∞

ð2Fl2l−1Þ2
2lþ 1

¼ 15

2π
: ð7:24Þ

Apart from the six terms (sum over m ¼ −2; 0;þ2 and over s ¼ �1), this is numerically as fast as computing the
correlation CEE

l at order f0; 1g. Then, using the Limber approximation (6.47), with the definitions Ls ¼ Lþ s ¼
lþ 1=2þ s and ls ¼ lþ s, it leads to

CBBf1;1g
l ≃ 1

20

Z
∞

0

d~χ
~χ2

X
s¼�1

ðls þ 2Þ!
ðls − 2Þ! P

�
Ls

~χ

� ð2Fl2lþsÞ2
2lþ 1

×
X
m

				Tφ

�
Ls

~χ
; ~χ

�
α2mð~χÞ

Z
∞

~χ
dχN ðχÞ ðχ − ~χÞ

χ ~χ

				2: ð7:25Þ
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Finally, using (7.8) to getX
m

jα2mðχÞj2 ¼
2π

15
αijðχÞαijðχÞ≡ 2π

15
jαðχÞj2; ð7:26Þ

we obtain a very compact expression, valid only for large l,
which is

CBBf1;1g
l ≃ l4

10

Z
∞

0

d~χ
~χ2

P

�
l
~χ

�

×

				Tφ

�
l
~χ
; ~χ
�
αð~χÞ

Z
∞

~χ
dχN ðχÞ ðχ − ~χÞ

χ ~χ

				2:
ð7:27Þ

A numerical analysis of some simple anisotropic phenom-
enological models, together with observational constraints
from Euclid [70] and SKA [71] surveys, will appear in a
companion paper [69].

VIII. DISCUSSION

In this article we have derived the observational signature
of a late-time anisotropic expansion on the weak-lensing
observables. To that purpose, we have provided all the
technical tools, including the evolution of the background
spacetime, the perturbation theory, the description of the
evolution of a geodesic bundle and the manipulation of
observables on the celestial sphere.
Our strategy is to adopt an approach based on the

observer point of view, in which all observables are
expressed in terms of the direction of observation at the
observer. Since a full solution to the problem cannot be
attained straightforwardly, and given that CMB observa-
tions suggest that spatial anisotropy cannot be too large, we
have developed a small shear approximation scheme. It
allowed us to identify the following contributions com-
pared to the standard Friedmann-Lemaître case:
(1) the tensor and vector contributions to the source

of the Sachs equation, which starts at order f1; 1g,
and the contribution of the scalar modes coupled to
the geometrical shear, which is of order f1; 1g
as well;

(2) the evolution of all the perturbative modes, that is,
of the transfer functions, which are decomposed
as TXsðk; tÞ, where the dependence with the direc-
tion of k comes from the coupling with the geomet-
rical shear in the Einstein equation (for that, see
Appendix A);

(3) the fact that the geodesic deviates from the
Friedmannian form and which leads to post-Born
corrections;

(4) the effect of the source distributions which are
affected by the background shear or the scalar
perturbations—that are, respectively, at orders
f1; 0g and f0; 1g—and for which we would in
principle need a theory of structure formation.

We have then argued that the dominant term is related to the
orthoradial displacement of the central geodesic on which
the Sachs equation is evaluated, when compared with the
background geodesic.
While we have provided all the elements to perform the

full computation, we have focused on this dominant term
and demonstrated that there exist five off-diagonal corre-
lators between Elm, Blm and κlm each of which has five
independent components and thus allow one in principle to
fully reconstruct the geometrical shear σij. All of them are
linear in σ=H and only two of them involve the B modes.
We advocate that their measurements in future surveys such
as Euclid and SKA, on scales where the linear regime
holds, can set strong constraints on the anisotropy. The
amplitude for these two surveys is estimated in our
companion article [69].
The existence of nonvanishing B modes also reflects

itself in the existence of an angular power spectrum that is
quadratic in σ=H. While probably easier to measure, it does
not allow one to fully reconstruct the shear σij.
This analysis sets the ground for stronger constraints on

an anisotropic expansion, and possibly on the anisotropic
stress on the dark energy sector. The new estimators that we
proposed will also allow the control of systematics and are
new in the weak-lensing literature.

ACKNOWLEDGMENTS

We thank Pierre Fleury and Yannick Mellier for dis-
cussions. This work was made in the ILP LABEX (under
reference ANR-10-LABX-63) and was supported by
French state funds managed by the ANR within the
Investissements d’Avenir program under reference ANR-
11-IDEX-0004-02, the Programme National Cosmologie et
Galaxies, and the ANR THALES (ANR-10-BLAN-0507-
01-02). T. S. P. thanks the Brazilian funding agency CNPq
for its financial support, as well as the Institut
d’Astrophysique de Paris for hospitality during his visits.
C. P. thanks the State University of Londrina for its friendly
reception during the conclusion of this work.

APPENDIX A: PERTURBATION THEORY IN
BIANCHI I UNIVERSES

This section summarizes the general framework of linear
perturbation theory in Bianchi I universes. Our approach is
an extension of the formalism we introduced in Ref. [22],
where perturbation theory was developed in the context of
an early anisotropic stage. Here, we adapt this formalism
for the physics of the late-time universe. Before we
introduce the parameterization of the perturbations and
the whole machinery of gauge-invariant linear perturbation
theory, we summarize some results regarding the appro-
priate Fourier transform in anisotropic spacetimes and
show how they can be used to extract the dynamics of
scalar, vector and tensor modes from Einstein’s equations.
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We then use these tools to decompose the background shear
and anisotropic stress in a general basis adapted to our
coordinate system.

1. Mode decomposition

a. Fourier and SVT decomposition

In order to correctly describe the dynamics of perturba-
tive modes one needs a complete set of spatial eigenfunc-
tions adapted to the symmetries of the spacetime one is
dealing with. Since Bianchi I universes are spatially flat, at
each constant time hypersurface these eigenfunctions
are standard plane waves. Therefore, any scalar function
of the comoving coordinates fxig and time can be Fourier
decomposed as

fðxj; ηÞ ¼
Z

d3ki
ð2πÞ3=2 f̂ðki; ηÞe

ikixi ðA1Þ

with the obvious inverse transformation. Because of the
lack of rotational symmetry, the direction of a wave vector
will vary with time. In particular, since ki is constant, ki ¼
γijkj varies with time—its rate of change being given by

ðkiÞ0 ¼ −2σijkj: ðA2Þ

Note however that kixi ¼ kixi remains constant. From the
above expression, one can easily deduce the time evolution
of the modulus k2 ≡ kikj and unit vector k̂i ≡ ki=k as

k0

k
¼ −σijk̂ik̂j; ðk̂iÞ0 ¼ ðσjlk̂jk̂lÞk̂i − 2σijk̂j: ðA3Þ

As we are going to see, these expressions are crucial for
extracting different perturbative modes from Einstein
equations.
Once equipped with a Fourier transform, we can proceed

and decompose any three-dimensional geometrical object
in terms of its scalar, vector and tensor pieces. We start by
decomposing any (three-dimensional) vector Vi in its
longitudinal and transverse pieces as Vi ¼ ∂iV þ V̄i, with
∂iV̄i ¼ 0. In Fourier space, this decomposition is equiv-
alent to2

Vi ¼ k̂iV þ V̄i; k̂iV̄i ¼ 0: ðA4Þ
Since V̄i is orthogonal to k̂

i, it can be further decomposed as

V̄i ¼
X
a¼1;2

Vaðk̂i; ηÞeaðk̂iÞ; ðA5Þ

where feai g represents a two-dimensional basis defined
so that

eai k
i ¼ 0; eai e

b
i γ

ij ¼ δab: ðA6Þ

Analogously, any (three-dimensional) symmetric
tensor Vij can be decomposed into a trace plus a traceless
part as Vij¼TγijþΔijSþ2∂ðiV̄jÞþ2V̄ij, whereΔij≡∂i∂j−
γijΔ=3, V̄i is transverse and V̄ij is transverse and traceless.
In Fourier space, such decomposition becomes

Vij ¼ Tγij þ
�
k̂ik̂j −

γij
3

�
Sþ 2k̂ðiV̄jÞ þ V̄ij; ðA7Þ

where V̄i is given by Eq. (A5). V̄ij is a transverse and
traceless tensor decomposed as

V̄ij ¼
X
λ¼þ;×

Vλðk̂i; ηÞελijðk̂iÞ ðA8Þ

with the traceless (ελijγ
ij ¼ 0), transverse (ελijk̂

i ¼ 0) and

perpendicular (ελijε
ij
μ ¼ δλμ) polarization tensor being de-

fined as

ελij ¼
e1i e

1
j − e2i e

2
jffiffiffi

2
p δλþ þ e1i e

2
j þ e2i e

1
jffiffiffi

2
p δλ×: ðA9Þ

Given the above decomposition, the correspondence
between SVT components of any geometrical equation
can be extracted uniquely. For example, the scalar part of
any vectorial equation of the form Vi ¼ 0 can be extracted
by projecting it along k̂i, whereas its vector part can be
extracted with the help of the projector

Pij ≡ γij − k̂ik̂j ¼ e1i e
1
j þ e2i e

2
j : ðA10Þ

Likewise, the scalar components of any tensorial equation
like Vij ¼ 0 can be extracted by projecting it along γij and
Tij, with the later projector defined as

Tij ≡ k̂ik̂j −
1

3
γij: ðA11Þ

The remaining vector and tensor pieces can be extracted
with the help of Pi

lk̂
j and Λab

ij , respectively, where

Λab
ij ¼ Pa

i P
b
j −

1

2
PijPab: ðA12Þ

In conclusion, the SVT degrees of freedom of any tridimen-
sional vector and tensor are given explicitly by

Vi ¼ ðk̂jVjÞk̂i þ Pj
iVj;

Vij ¼
�
1

3
γklVkl

�
γij þ

�
3

2
TklVkl

�
Tij

þ 2k̂ði½Pm
jÞk̂

nVmn� þ Λmn
ij Vmn: ðA13Þ2Note that we can always reabsorb i factors in the terms of the

decomposition.
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b. Mode evolution

The SVT decomposition introduced above is based on the
properties of a tensor according to the rotation symmetries of
the background spacetime. As such, in Friedmann-Lemaître
spacetimes this decomposition is always possible and will
hold during the entire cosmic evolution. In the Bianchi I
case, on the other hand, this decompositionwill hold, strictly
speaking, only on a given constant-time hypersurface.
Because of the anisotropic evolution of space, SVT modes
which are initially decoupledwill couple nontrivially as time
evolves, implying in a set of coupled dynamical equations
already at linear order in perturbations. Therefore, it is
important to have expressions for the time evolution of basis
vectors and polarization tensors, which will be directly
dependent on the spacetime shear. We have already met the
time evolution of k̂i, Eq. (A3). For completeness, we also
give the time evolution of the vector eai and polarization
tensor ελij [22]:

ðk̂iÞ0 ¼ ðσjlk̂jk̂lÞk̂i − 2σijk̂j; ðA14aÞ

ðeiaÞ0 ¼ −
X
b

ðσjlejaelbÞeib; ðA14bÞ

ðελijÞ0 ¼ −ðσklελklÞPij − ðσklPklÞελij þ 4σkðiε
λ
jÞk: ðA14cÞ

Special care is needed when extracting SVT modes from
Einstein equations, for the projections of SVT modes do
not commute with time evolution anymore. As an illus-
tration, let us consider the extraction of the scalar compo-
nent of an equation like ðV̄iÞ0 þHV̄i ¼ 0, where V̄i is any
transverse tensor. In Friedmann-Lemaître-Robertson-
Walker this equation does not have a scalar component,
since k̂iV̄i ¼ 0. However, due to Eq. (A3) we now get

k̂i½ðV̄iÞ0 þHV̄i� ¼ ðk̂iV̄iÞ0 − ðk̂iÞ0V̄i ¼ 2σijk̂jV̄i; ðA15Þ

which is only zero when σij ¼ 0. Further mode-extracting
relations can be easily found in an analogous manner.
For a comprehensive list of relations the reader can
check Ref. [22].

c. Background shear and anisotropic stress

Both the (background) spatial shear σij and spatial
anisotropic stress Πij are transverse and traceless tensors.
As such, each of them is described by five independent
degrees of freedom, which are best described in the basis
fk̂i; e1i ; e2i g adapted to the modes we are considering. In this
basis, these two tensors can be written in terms of ten new
scalar functions as

σij ¼
3

2

�
k̂ik̂j −

1

3
γij

�
σ∥ þ 2

X
a¼1;2

σVa k̂ðieajÞ þ
X
λ¼þ;×

σTλελij;

ðA16aÞ

Πij ¼
3

2

�
k̂ik̂j −

1

3
γij

�
Π∥ þ 2

X
a¼1;2

ΠVa k̂ðieajÞ þ
X
λ¼þ;×

ΠTλελij:

ðA16bÞ

It is important to note that these new functions, which
depend of both k̂i and time, are not the Fourier transform of
their respective tensors, which in fact are homogeneous and
depend only on time. In other words, the dependence of
ðσ∥; σVa ; σTλÞ and ðΠ∥;ΠVa ;ΠTλÞ with k̂i arises solely from
the local anisotropy of space.
With the help of background Einstein equations (2.18a)

and (2.18b) written in conformal time and the mode
evolution described by Eqs. (A14a), one can show with
a bit of algebra that

ðσ0Þ∥ ≡ σ0∥ þ 2Hσ∥ þ 2
X
a

σ2Va ¼ κa2Π∥; ðA17aÞ

ðσ0ÞVa ≡ σ0Va þ 2HσVa −
3

2
σVaσ∥

þ
X
b;λ

σVbσTλMλ
ab ¼ κa2ΠVa ; ðA17bÞ

ðσ0ÞTλ ≡ σ0
Tλ þ 2HσTλ − 2

X
a;b

Mλ
abσVaσVb ¼ κa2ΠTλ ;

ðA17cÞ
where Mλ

ab is defined as [22]

Mλ
ab ¼

1ffiffiffi
2

p
�
1 0

0 −1
�
δλþ þ 1ffiffiffi

2
p

�
0 1

1 0

�
δλ×:

2. Gauge-invariant variables

a. Geometry

The most general linearly perturbed metric over a
Bianchi I spacetime can be parameterized as follows:

ds2 ¼ a2½−ð1þ 2AÞdη2 þ 2Bidxidηþ ðγij þ hijÞdxidxj�;
ðA18Þ

where A is a free scalar function and

Bi ≡ ∂iBþ B̄i; ðA19aÞ

hij ≡ 2C

�
γij þ

σij
H

�
þ 2∂i∂jEþ 2∂ðiEjÞ þ 2Eij; ðA19bÞ

defined together with the usual transversality and trace-free
conditions:
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∂iB̄i ¼ 0 ¼ ∂iEi; Ei
i ¼ 0 ¼ ∂iEij: ðA20Þ

Under an active coordinate transformation, the coordi-
nates of any point will change according to

xμ → ~xμ ¼ xμ − ξμðxνÞ; ðA21Þ
where the gauge vector ξμ is itself decomposed as

ξ0 ¼ T; ξi ¼ ∂iLþ Li ðA22Þ

with ∂iLi ¼ 0. Under the transformation of Eq. (A21), the
perturbations of the metric will transform as

δgμν → δgμν þ Lξḡμν; ðA23Þ

where Lξḡμν is the Lie derivative of the background metric
along ξ. Using the above parameterization and the mode
decomposition introduced in Sec. A 1, it is straightforward
to show that the scalar and vector metric potentials trans-
form, respectively, as

A → Aþ T 0 þHT; ðA24aÞ

B → B − T þ ðk2LÞ0
k2

; ðA24bÞ

C → CþHT; ðA24cÞ

E → Eþ L; ðA24dÞ

B̄i → B̄i þ γijðLjÞ0 − 2ikjσljPl
iL; ðA24eÞ

Ei → Ei þ Li; ðA24fÞ

whereas Eij is automatically gauge invariant. Based on
these transformations, we can construct the following
gauge-invariant variables:

Φ ¼ Aþ 1

a

�
a

�
B −

ðk2EÞ0
k2

�
0
; ðA25aÞ

Ψ ¼ −C −H
�
B −

ðk2EÞ0
k2

�
; ðA25bÞ

Φi ¼ B̄i − γijðEjÞ0 þ 2ikjσljPl
iE: ðA25cÞ

It is easily verifiable that whenever σij ¼ 0 the Fourier
wave vector k will be constant and the above variables
become the standard Bardeen variables for a Friedmann-
Lemaître universe.

b. Matter sector

Moving forward, we now parameterize the perturbations
of the energy-momentum tensor defined in Eq. (2.14),
which can be decomposed as

Tμ
ν ¼ T̄μ

ν þ δTμ
ν : ðA26Þ

From the normalization condition of the fluid total four
velocity we can write

δuμ ¼ 1

a
ð−A; viÞ; vi ¼ ∂ivþ v̄i ðA27Þ

with ∂iv̄i ¼ 0, as usual. Likewise, the perturbations to the
energy density (δρ), pressure (δP) and anisotropic stress
(δπij) are introduced as follows:

δT0
0 ¼ −δρ; ðA28aÞ

δT0
i ¼ ½ρð1þ wÞγij þ Πij�ðvj þ BjÞ; ðA28bÞ

δTi
0 ¼ −ρð1þ wÞvi þ γijδπj0; ðA28cÞ

δTi
j ¼ δPδij þ γilδπlj − Πjkhki; ðA28dÞ

where Bi and hij were defined in Eqs. (A19). Special care
to the notation is in order here because, as one can
check, ḡμλδπλν ≠ δπμν ≡ ḡμλδπλν þ Πλνδgλμ.
We also need to parametrize the perturbed anisotropic

stress tensor δπij. From the transversality condition
ðuμ þ δuμÞðΠμν þ δπμνÞ ¼ 0, we conclude that

δπ00 ¼ 0; δπ0i ¼ −Πijvj: ðA29Þ

Note however that these conditions do not fix δπij. We
therefore further decompose δπij as

δπij ¼ 2½πTγij þ ∂i∂jπ
S þ ∂ðiπVjÞ þ πTij�; ðA30Þ

where T in πT stands for “trace” and where, as usual, we
have

∂iπVi ¼ 0 ¼ ∂iπTij; πTii ¼ 0: ðA31Þ

Moreover, note that ḡμνδπμν ¼ −Πμνδgμν ≠ 0, which is why
the above decomposition tensor has a trace.
Under the gauge transformation (A21) and using again

the appropriate Fourier decomposition, the above variables
transform as

δρ → δρþ ρ0T; ðA32aÞ

δP → δPþ P0T; ðA32bÞ

v → v −
ðk2LÞ0
k2

; ðA32cÞ

v̄i → v̄i − ðLiÞ0 þ 2ikjσljPliL: ðA32dÞ
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These transformations suggest the introduction of the
following gauge-invariant variables:

δρ̂≡ δρþ ρ0
�
B −

ðk2EÞ0
k2

�
; ðA33aÞ

δP̂≡ δPþ P0
�
B −

ðk2EÞ0
k2

�
; ðA33bÞ

v̂≡ vþ ðk2EÞ0
k2

; ðA33cÞ

ˆ̄vi ≡ v̄i þ B̄i: ðA33dÞ

The perturbed variables in Eq. (A30), on the other hand, do
not have simple transformations as above, essentially
because there is no simplifying relation between the
background tensor Πμν and the wave vector ki. Using

LξΠij ¼ Π0
ijT þ Πilξ

l
;j þ Πjlξ

l
;i;

we find that

πT → πT þ
�
−
1

4
TijΠ0

ij þ
1

3
σijΠij

�
T; ðA34aÞ

πS → πS −
3

4k2
TijΠ0

ijT þ Πijk̂
ik̂jL − iΠij

k̂i

k
Lj; ðA34bÞ

πVi → πVi −
i
k
Pj
i k̂

lΠ0
jlT þ ikPj

iΠjlk̂
lLþ Pj

iΠjlLl; ðA34cÞ

πTij → πTij þ
1

2
Λlm
ij Π0

lmT; ðA34dÞ

where Pij, Tij and Λij
kl were defined in Eqs. (A10), (A11)

and (A12). From the variables above we construct the
following new variables:

π̂T ≡ πT þ
�
−
1

4
TijΠ0

ij þ
1

3
σijΠij

��
B −

ðk2EÞ0
k2

�
;

ðA35aÞ

π̂S ≡ πS −
3

4k2
TijΠ0

ij

�
B −

ðk2EÞ0
k2

�

− Πijk̂
ik̂jEþ iΠij

k̂i

k
Ej; ðA35bÞ

π̂Vi ≡ πVi −
i
k
Pj
i k̂

lΠ0
jl

�
B −

ðk2EÞ0
k2

�
− ikPj

iΠjlk̂
lE − Pj

iΠjlEl; ðA35cÞ

π̂Tij ≡ πTij þ
1

2
Λlm
ij Π0

lm

�
B −

ðk2EÞ0
k2

�
; ðA35dÞ

which, as one can easily check, are gauge invariant.

c. Gauge choice

From the construction of gauge-invariant variables pre-
sented above, it is clear that an enormous simplification will
be achieved if we work in a gauge where

B ¼ E ¼ 0 ¼ Ei: ðA36Þ

In this gauge the scalar modes become

Φ ¼ A; Ψ ¼ −C; δρ̂ ¼ δρ; δP̂ ¼ δP;

v̂ ¼ v; π̂T ¼ πT; π̂S ¼ πS; ðA37Þ

whereas the vector and tensor variables become

Φ̄i ¼ B̄i; ˆ̄vi ¼ v̄i þ B̄i; π̂Vi ¼ πVi ; π̂Tij ¼ πTij:

ðA38Þ

Apart from the spatial velocity ˆ̄vi, in this gauge the gauge-
invariant variables coincide with the original potentials. In
other words, by working in this gauge the final equations
can be trivially (again, apart from ˆ̄vi) replaced with the
same equations satisfied by gauge-invariant variables. Note
that this choice fixes the gauge completely and is slightly
different from the choice made in [22].

3. Perturbed Einstein’s equations in Bianchi I

We have now everything needed to obtain the fully
mode-projected and gauge-invariant Einstein equations.
This is a tedious but straightforward procedure which
requires careful computation of time derivatives and the
Fourier vectors through the use of Eqs. (A14a)–(A14c). We
note that the main difference with the approach followed in
Ref. [22] is that the trick below Eq. (3.21) in [22] cannot be
used when Πij is nonzero.

a. Scalar modes

Einstein equations give four equations for the evolution
of the scalar modes. The first of them comes from δG0

0 ¼
κδT0

0 and is given by

k2Ψþ 3HðΨ0 þHΦÞ − 1

2
σ2½X − 3Ψ� − k2

2H
σ∥Ψ

−
1

2
ik
X
a

σVaΦa −
1

4H
Ψ½ðσ2Þ0 þ 4Hσ2�

þ 1

2

X
λ

�
E0
λσTλ þ 2Eλ

X
a;b

σVaσVbMλ
a;b

�
¼ −a2

κ

2
δρ;

ðA39aÞ

where, for simplicity, we have introduced the new variable
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X ≡Ψþ Φþ
�
Ψ
H

�0
:

The second scalar equation can be extracted from δG0
i ¼ κδT0

i by projecting it along the vector k̂i and is given
by ðσ0Þ∥

Ψ0 þHΦ −
σ∥
2
X þ ðσ2 − ðσ0Þ∥Þ

Ψ
2H

−
1

2

X
λ

EλσTλ ¼ −
a2

2
κ

�
ρð1þ wÞvþ Π∥v −

i
k

X
a

ΠVava

�
: ðA40Þ

The third and fourth equations come from trace and traceless parts of δGi
j ¼ κδTi

j. They are

Ψ00 þ 2HΨ0 þHΦ0 þ ð2H0 þH2ÞΦ −
1

3
k2ðΦ −ΨÞ − 1

6

k2

H
σ∥Ψþ 1

2
σ2ðX − 3ΨÞ

−
1

2

X
λ

�
E0
λσTλ þ 2Eλ

X
a;b

σVaσVbMλ
ab

�
þ 1

2
ik
X
a

σVaΦa þ
Ψ
4H

½ðσ2Þ0 þ 4Hσ2�

¼ a2κ

�
1

2
δPþ πT −

1

3
k2πS þ 1

3

�
Ψ
H

Πijσij −
X
λ

EλΠTλ

��
ðA41aÞ

and

2

3
k2ðΦ −ΨÞ − σ∥

�
X0 −

k2

3

Ψ
H

�
− 2ik

X
a

σVaΦa − 2Xðσ0Þ∥ −
Ψ
H

ððσ0Þ∥Þ0 þ 4
X
a;b;λ

σVaσVbEλMλ
ab

¼ a2κ

�
−
4

3
k2πS þ Ψ

H
Π∥σ∥ þ

8

3

Ψ
H

X
a

ΠVaσVa −
2

3

Ψ
H

X
λ

σTλΠTλ þ 2

3

X
λ

EλΠTλ

�
; ðA42aÞ

respectively. Note that, despite the appearance of i factors, these equations are real.

b. Vector modes

The two equations for the vector modes can be obtained through the combinations eiaðδG0
i − κδT0

i Þ ¼ 0 and
k̂ie

j
aðδGi

j − κδTi
jÞ ¼ 0. They are given, respectively, by

Φa −
2i
k
σVaX þ 4i

k

X
b;λ

EλσVbMλ
ab ¼

−2a2κ
k2

�
ρð1þ wÞva þ ikΠVav −

1

2
Π∥va þ

X
b;λ

Mλ
abΠTλvb − ik

Ψ
H

ΠVa

�
ðA43aÞ

and

Φ0
a þ 2HΦa −

5

2
σ∥Φa þ

X
b;λ

ΦbσTλMλ
ab −

2i
k
σVaX0 þ 2iΨ

kH

�
3σ∥ðσ0ÞVa − 3σVaðσ0Þ∥ þ 2

X
b;λ

Mλ
abðσVbðσ0ÞTλ − σTλðσ0ÞVbÞ

�

þ 4i
k

X
b;λ

Eλ½Mλ
abðσ0ÞVb þN abσVbðσTþδ×λ − σT×δþλ Þ� þ

4i
k

X
b;λ

E0
λσVbMλ

ab

−
4i
k
Xðσ0ÞVa −

2iΨ
kH

�
ððσ0ÞVaÞ0 − 3σ∥

2
ðσ0ÞVa − 2Hðσ0ÞVa þ

X
b;λ

Mλ
abðσ0ÞVb

�

¼ 2i
k
a2κ

�
ikπVa þ 2ΨΠVa þ 2

Ψ
H

�
σ∥ΠVa −

1

2
σVaσ∥ þ

X
b;λ

σVbΠTλMλ
ab

��
: ðA44aÞ
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c. Tensor modes

There is only one dynamical equation for the tensor modes. This equation follows from the projection
ελji ðδGi

j − κδTi
jÞ ¼ 0, which gives

E00
λ þ 2HE0

λ þ k2Eλ − 2Eλ

X
a

σ2Va − 2Eλσ
2
Tð1−λÞ þ 2Eð1−λÞσTþσT× − σTλ

�
k2
�
Ψ
H

�
þ X0

�
− 2Xðσ0ÞTλ

þ 2ik
X
a;b

σVbΦaMλ
ab −

Ψ
H

ððσ0ÞTλÞ0 ¼ a2κ
�
2πTλ þ Π∥Eλ −

Ψ
H

�
σ∥ΠTλ þ σTλΠ∥ þ

X
a;b

ΠVaσVbMλ
ab

��
: ðA45aÞ

4. Perturbed fluid equations

The perturbed conservation equation follows from

ðδ∇μÞTμ
ν þ∇μðδTμ

νÞ ¼ 0: ðA46Þ

Working in the gauge (A36), the time component (ν ¼ 0) of the above expression gives the perturbed continuity equation

δρ0 þ ρð1þ wÞ∇2vþ 3Hðδρþ δPÞ − ðρþ PÞ3Ψ0

¼ ∂jδπj0 −Hγijδπij þHΠijhij − σijδπilγ
lj þ σijΠilhlj −

1

2
ðhjiÞ0Πi

j; ðA47aÞ

where we recall that hij was introduced in Eq. (A19). Likewise, the perturbed Euler equation follows from spatial part
(ν ¼ i) of Eq. (A46). We find

∂
∂η f½ρð1þ wÞγij þ Πij�vjg þ ∂iδPþ ∂lδπli þ ð1þ wÞρ∂iΦþ Πj

i∂jΦ

þ 4Hf½ρð1þ wÞγij þ Πij�vjg − Πil∂jhlj þ
1

2
Πj

i∂jhll −
1

2
Πjk∂ihjk ¼ 0: ðA48aÞ

Despite their generality, the above equations are not very useful since they are implemented in real space. In order to
obtain their Fourier counterparts we need to project these equations along the scalar ðk̂iÞ and vector ðeiaÞ modes. This
mode extraction procedure is tedious but straightforward and requires special attention to the use of the evolution
Eqs. (A14a)–(A14c) of the Fourier wave vectors.

a. Scalar modes

Both continuity and Euler equations lead to conservation equations for the scalar modes. They are given, respectively, by

δ0 þ 3H½ðc2s − wÞδþ ωΓ� − ð1þ wÞðk2vþ 3Ψ0Þ − δ

ρ
σijΠij ¼

1

ρ

���
Ψ
H

�0
σij −

Ψ
H

ðσijÞ0
�
Πij

þ 2a2κ
Ψ
H

ΠijΠij − 8ΨΠijσij þ k2Π∥v − ik
X
a

ΠVaðva − ΦaÞ − 6HπT þ 2k2πSðHþ σ∥Þ

− 2ik
X
a

σVaπVa − 2
X
λ

σTλπTλ −
X
λ

EλðσTλΠ∥ þ σ∥ΠTλÞ þ
X
λ

Πλð2HEλ − E0
λÞ



ðA49aÞ

and
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v0 þHð1 − 3c2sÞvþ Φþ 1

1þ w

�
c2sδþ wΓþ 2

ρ
ðπT − k2πSÞ

�
−
2i
k

X
a

σVava −
σijΠij

ρ
v

�
1þ c2s
1þ w

�

¼ −1
ikð1þ wÞρ

�
ikðΠ∥vÞ0 þ ikΠ∥Φþ 4H

�
ikΠ∥vþ

X
a

ΠVava

�
þ ikΨΠ∥

�
2σ∥
H

− 1

�
− ik

X
λ

ΠTλEλ

þ
�
2
X
a

ΠVaσVa þ Πijσij

�
ikΨ
H

þ
X
a

½ðΠVavaÞ0 þ σ∥ΠVava þ 2ikσVaΠVav�

−
X
a

�
Π∥σVava þ 2

X
b;λ

σVavbMλ
abΠTλ

�

; ðA50aÞ

where we have made use of the equation

w0 ¼ −
�
3Hð1þ wÞ þ Πijσij

ρ

�
ðc2s − wÞ ðA51Þ

and of the definition [2]

δ ¼ δρ

ρ
; δP ¼ c2sδρþ wρΓ; ðA52Þ

where c2s and Γ are the sound speed and the entropy perturbation, respectively.

b. Vector modes

There is only one conservation equation for the vector modes, which follows from the vector projection of Eq. (A50).
This equation is given by

v0a þHð1 − 3c2sÞva −
k2πVa

ρð1þ ωÞ −
Πijσij
ρ

�
1þ c2s
1þ ω

�
va −

1

2
σ∥va þ

X
b;λ

Mλ
abσTλvb

¼ −
1

ð1þ ωÞρ
�
∂η

�
ikΠVav −

X
b

Vabvb

�
− ik

X
b

UabΠVbvþ
X
b;c

UabVbcvc

þ 4H
�
ikΠVav −

X
b

Vabvb

�
ikΠVaΦþ ik

�
2
X
λ;b

ΠTλσVbMλ
ab þ 2ΠVaσ∥ − Π∥σVa −HΠVa

�
Ψ
H

�
; ðA53aÞ

where we have introduced

Uab ≡ −σijeiae
j
b; Vab ≡ −Πijeiae

j
b: ðA54Þ

c. Friedmannian limit

It is a straightforward exercise to verify that the above equations have a well-defined Friedman-Lemaître limit.
Redefining δπij → Pδπij and πT → k2πS=3 to compare with Ref. [2], we find immediately that

δ0 þ 3H½ðc2s − ωÞδþ ωΓ� ¼ ð1þ ωÞðk2vþ 3Ψ0Þ; ðA55aÞ

v0 þHð1 − 3c2sÞvþ Φ ¼ −
c2s

1þ ω
δ −

ω

1þ ω

�
Γ −

2

3
ð2k2πSÞ

�
; ðA55bÞ

va0 þHð1 − 3c2sÞva ¼
ω

1þ ω
k2πVa ; ðA55cÞ

which are the expected equations.
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APPENDIX B: PERTURBED GEOMETRIC
QUANTITIES

This section gathers the expression of the geometrical
quantities at order f1; 1g, as needed for the computation of
this article.

1. Connections

Using the commutators of the tetrad field c

γca b ≡ Θc
μ½Θa;Θb�μ; γc a b ≡ ηc dγ

d
a b; ðB1Þ

the Ricci rotation coefficients are obtained through

ωab c ≡ ηb dΘd
νΘa

μ∇μΘc
ν;

ωab c ¼
1

2
ðγa b c þ γc b a − γb c aÞ: ðB2Þ

Up to order f1; 1g, the commutators are

γ00 0 ¼ γi0 0 ¼ 0; ðB3aÞ

γ00 i ¼ −γ0i 0 ¼ ∂iΦ ¼ ∂iΦ − βji∂jΦ; ðB3bÞ

γj0 i ¼ −γji 0 ¼ −Eij
0 þ

�σi jΨ
H

�0
þ ∂iB̄j

− σi jð1 − ΦÞ þΨ0δji ; ðB3cÞ

γki j ¼ −2∂ ½iEj�k þ
2

H
∂ ½iΨσj�k þ 2∂ ½iΨδkj� − 2βq½i∂qΨδkj�;

ðB3dÞ

and the Ricci rotation coefficients are thus

ω0 0 i ¼ −ω0 i 0 ¼ −exp½−β�ij∂jΦ; ðB4aÞ

ωi 0 j ¼ −ωi j 0 ¼ δijΨ0 þ
�
σij
H

Ψ

�0
− σi jð1 − ΦÞ

− E0
ij þ ∂ðiB̄jÞ; ðB4bÞ

ω0 i j ¼ −ω0 j i ¼ ∂ ½jB̄i�; ðB4cÞ

ωi j k ¼ −ωi k j ¼ 2δi½k∂j�Ψþ 2
σi½k∂j�Ψ

H
− 2∂ ½jEk�i: ðB4dÞ

2. Riemann and Ricci tensors

We report the Riemann and Ricci tensor components of
the metric (4.1), where the overall scale factor a2 has been
removed by a conformal transformation, up to order f1; 1g.
We first give their components in the coordinated basis
(with the use of the package XPAND [87]) and then in the
tetrad basis fΘg.

In the coordinate basis, the nonvanishing components are
given by

R0i0j ¼ γijΨ00 þ
�
σij
H

Ψ

�00
þ σijðΦ0 þ 2Ψ0Þ − σ0ijð1 − 2ΨÞ

þ ∂i∂jΦ − E00
ij þ ∂ðiB̄0

jÞ; ðB5aÞ

R0ijk ¼ 2γi½jσk�q∂qΨ − 2σi½j∂k�φ − 2

��
γi½j þ

σi½j
H

�
∂k�Ψ

�0
þ ∂i∂ ½jB̄k� þ 2∂ ½kE0

j�i; ðB5bÞ

Rijpq ¼−4γ½i½pσj�q�Ψ0 þ 4

�
γ½i½pþ

σ½i½p
H

�
∂j�∂q�Ψ− ∂q∂jEip

− ∂i∂pEjqþ ∂p∂jEiqþ ∂q∂iEjp; ðB5cÞ

and

R00 ¼ 3Ψ00 þ γij∂j∂iΦ; ðB6aÞ

R0i¼ 2∂iΨ0−σji∂jðΦþ3ΨÞ−1

2
ΔB̄i−

�
σji∂jΨ

H

�0
; ðB6bÞ

Rij ¼ σ0ijð1 − 2Φ − 2ΨÞ − σijðΦ0 þ 3Ψ0Þ
þ γij½γkq∂q∂kΨ −Ψ00�
þ ∂i∂jðΨ − ΦÞ þ E00

ij − ΔEij − ∂ðiB̄0
jÞ

−
�
σijΨ

H

�00
þ σij

H
∂k∂kΨ − 2

σkði
H

∂jÞ∂kΨ: ðB6cÞ

Projecting using the tetrad (4.6) leads to the components in
the tetrad basis

R0 i0j ¼ δijΨ00 þ
�σij
H

Ψ

�00
þσijðΦ0 þ2Ψ0Þ−σ0ijð1−2ΦÞ

þ∂i∂jΦ−E00
ijþ∂ðiB̄0

jÞ; ðB7aÞ

R0 i j k ¼ 2δi½jσk�
q∂qΨ − 2σi½j∂k�φ − 2δi½j∂k�Ψ0

− 2

�σi½j∂k�Ψ

H

�0
þ ∂i∂ ½jB̄k� þ 2∂ ½kE0

j�i; ðB7bÞ

Ri jpq ¼ −4δ½i½pσj�q�Ψ0 þ 4ðδ½i½pþσ½i½p=HÞ∂j�∂q�Ψ

− ∂q∂jEip − ∂i∂pEjq þ ∂p∂jEiq þ ∂q∂iEjp;

ðB7cÞ

and

R0 0 ¼ 3Ψ00 þ ∂i∂iΦ; ðB8aÞ
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R0 i¼ 2∂iΨ0−σ
j
i∂jðΦþ3ΨÞ−1

2
ΔB̄i−

�σji∂jΨ

H

�0
; ðB8bÞ

Ri j ¼ σ0i jð1 − 2ΦÞ − σi jðΦ0 þ 3Ψ0Þ þ δi j½∂k∂kΨ −Ψ00�
þ ∂i∂jðΨ − ΦÞ þ E00

ij − ΔEij − ∂ðiB̄0
jÞ

−
�σi jΨ

H

�00
þ
σi j

H
∂k∂kΨ − 2

σ
k
ði
H

∂jÞ∂kΨ: ðB8cÞ

APPENDIX C: GLIMPSE ON THE FULL
LENSING METHOD

This section details how a tensor field on the sphere X is
lensed by a vector field α, the lensing being defined as the
result of a parallel transport with respect to this vector field.
First, for any direction on the sphere, there exists a

rotation which connects the azimuthal direction with this
particular direction n. If this direction has spherical
coordinates ðθ;φÞ, this is simply

n≡ Rn · ez; Rn ¼ Rðφ; θ; 0Þ ¼ RzðφÞ · RyðθÞ · Rzð0Þ;
ðC1Þ

where Rðα; β; γÞ is a general rotation parameterized by
Euler angles. Now, if we want to define the helicity basis at
a given direction n as a result of this rotation applied to the
helicity basis at the north pole, we have to face the fact that
the helicity basis at the north pole is not well defined, since
eφ is not defined at this point. We choose that at the north
pole n�ðezÞ≡ 1ffiffi

2
p ðex ∓ ieyÞ, since this ensures that the

helicity basis at any point is obtained from the one at the
north pole through a rotation, that is,

n�ðnÞ ¼ Rn · n�ðezÞ: ðC2Þ

A spin-s tensor is defined as XðnÞ≡ XsðnÞmsðnÞ ¼
½Xsms�ðnÞ. Its components on the polarization basis are
simply obtained by projection

XsðnÞ ¼ m−sðnÞ · XðnÞ ¼ m−sðezÞ · ½R−1
n :XðnÞ�

¼ m−sðezÞ · ½R−1
n X�ðezÞ: ðC3Þ

This means that instead of projecting a tensor on the
polarization basis at a point n we can equivalently rotate it
so that the point which is initially in n becomes located on
the azimuthal direction. Then we can evaluate its compo-
nents on the polarization basis at this azimuthal direction.

FIG. 3 (color online). The azimuthal point Z is at the azimuthal direction ez, while the point P is located in Rn · ez. Because of lensing
the signal observed in P is coming from P0 whose location is at Rn×αðnÞ · Rn · ez, which corresponds to a covariant transport along α from

the point P. As for the point Z0, it is obtained by applying R−1
n on P0 meaning that it is located at R−1

n · Rn×αðnÞ · Rn · ez. This is equivalent

to Rez×½R−1
n αðnÞ� · ez which corresponds to a covariant transport from the point Z, along the vector R−1

n αðnÞ. The lensed field at P ( ~XP) is

obtained by covariantly transporting back along α the unlensed field at P0 (XP0 ) by application of R−1
n×αðnÞ, and we get

~XP ¼ ðR−1
n×αðnÞ · XÞP, and it is in general different from the unlensed field at that point XP. In order to read the components,

everything is transported back into the azimuthal region by application of R−1
n . We get XZ0 ≡ ðR−1

n · XÞZ0 , XZ ≡ ðR−1
n · XÞZ, and

~XZ ¼ ðR−1
n · ~XÞZ ¼ ðR−1

n · R−1
n×αðnÞ · XÞZ. For the latter, there is an alternative expression, which corresponds to covariantly transporting

back the field XZ0 along R−1
n α, and this leads to ~XZ ¼ ðR−1

ez×½R−1
n αðnÞ� · R

−1
n · XÞ

Z
, from which the components can be read by projection on

the local helicity basis associated with ex and ey. This is precisely the meaning of Eq. (C8) which is used to compute the components of
the lensed field.
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The azimuthal direction can thus be used as a common
reference for all points on the sphere since for each point
there is a unique natural rotation to transport from this point
to the azimuthal direction.
Let us consider that, due to the lensing vector α, the

tensor field we observe in the direction n is now the result
of a parallel transport of the underlying tensor by this vector
field α. Such a parallel transport is equivalent to a rotation
around the axis n × α, so that the lensed tensor field is
related to the unlensed one by

~XðnÞ≡ ½R−1
n×αðnÞX�ðnÞ: ðC4Þ

We use the notation RV to indicate the rotation defined by
the rotation vector V. This is the rotation around the axis
defined by the vector V with an angle obtained from the
norm of V. It must not be confused with the previous
notation Rn, which is the rotation that brings the azimuthal
direction toward the direction n. As emphasized previously,
the components of the lensed tensor field, as any tensor
field, can be obtained by transportation to the azimuthal
direction, that is,

~XsðnÞ ¼ m−sðnÞ: ~XðnÞ ¼ m−sðezÞ · ½R−1
n R−1

n×αðnÞX�ðezÞ:
ðC5Þ

Using the general property of rotations RnRVR−1
n ¼ RRn·V

leads to

R−1
n Rn×αðnÞRn ¼ Rez×½R−1

n αðnÞ�; ðC6Þ

that is, to

R−1
n R−1

n×αðnÞ ¼ R−1
ez×½R−1

n αðnÞ�R
−1
n ; ðC7Þ

which can be used to recast Eq. (C5) as

~XsðnÞ ¼ m−sðezÞ · ½R−1
ez×½R−1

n αðnÞ�R
−1
n X�ðezÞ: ðC8Þ

This can be understood easily once we extract the helicity
components of the lensing vector. Indeed, the helicity
basis components of the lensing vector field are obtained
just like for any vector field as α�ðnÞ ¼ n∓ðnÞ:αðnÞ ¼
1ffiffi
2

p ðex ∓ ieyÞ:½R−1
n αðnÞ�. If we define

αx ¼
1ffiffiffi
2

p ðαþ þ α−Þ; αy ¼
iffiffiffi
2

p ðαþ − α−Þ; ðC9aÞ

αx ¼ αθ cos αφ; αy ¼ αθ sin αφ; ðC9bÞ

where ðαx; αyÞ are the components of the lensing field once
transported to the azimuthal direction and ðαθ; αφÞ their
associated polar components, we obtain that

Rez×½R−1
n αðnÞ� ¼ Rðαφ; αθ;−αφÞ: ðC10Þ

This means that instead of lensing the tensor field at the
point n and subsequently extracting the component, it is
equivalent to transport both the field and the lensing vector
at the azimuthal direction with R−1

n and then let the
transported lensing vector act on the transported tensor
field. This procedure is explained graphically in Fig. 3.
With this crucial result at hand, we just need to compose

the rotations of Eq. (C8) in order to obtain the components
of the lensed field in terms of the multipole components of
the unlensed tensor field. Using the general transformation
law (D16), we get

~XsðnÞ ¼
X

lmm0m00
Ys
lm00 ðezÞDl

m00m0 ½R−1ðαφ; αθ;−αφÞ�Dl
m0m

× ½R−1
n �Xs

lm ðC11aÞ

¼
X
lmm0

ð−1Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Dl

−sm0 ½R−1ðαφ; αθ;−αφÞ�Dl
m0m

× ½R−1
n �Xs

lm ðC11bÞ

¼
X
lmm0

eisαφYs
lm0 ðαθ; αφÞ�Dl

m0m½R−1
n �Xs

lm; ðC11cÞ

where it is understood that the components ðαθ; αφÞ
correspond to the lensing vector field at the position n
considered, and these should be obtained from the defi-
nitions (C9).
From this relation between a tensor acting as a source for

an observable and its lensed version due to the geodesic
structure between the source and the observer, it is possible
in principle to obtain the correlations functions (see e.g.,
Ref. [77] for the case of CMB lensing). A simplification
can be obtained by expanding the spherical harmonics in a
small angle approximation. Indeed, very close to the
azimuthal direction, the spin-weighted spherical harmonics
are approximated by

Ys
lmðθ;φÞ≃ ð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
eimφJmþs½ðlþ 1=2Þθ�;

ðC12Þ

and given that JmþsðxÞ behaves like xmþs when x → 0 there
is a natural way to expand Eq. (C11) in powers of the
lensing angle. More details can be found in Ref. [77].

APPENDIX D: MATHEMATICAL TOOLBOX

1. From Cartesian to spherical derivatives

In this section Di refers to the covariant derivative on
the unit sphere in Cartesian coordinates, that is, DR3

i
defined in Eq. (4.10). The key relation to derive all the
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decompositions from Cartesian derivatives ∂i to radial and
covariant spherical derivatives is the simple relation

r∂ix̂j ¼ Sij; ðD1Þ

which is just the statement that the extrinsic curvature on a
unit sphere is equal to the metric on this sphere. For a
scalar, a projected vector and a projected tensor, we have

∂iφ ¼ Diφ

r
þ φ;rx̂i; ðD2aÞ

∂i
~Bj ¼

Di
~Bj

r
þ ð ~BjÞ;rx̂i −

x̂j
r
~Bi; ðD2bÞ

∂i
~Ejk ¼

Di
~Ejk

r
þ ð ~EjkÞ;rx̂i −

x̂j
r
~Eik −

x̂k
r
~Eji; ðD2cÞ

where we use the notation X;r ≡ x̂i∂iX for the radial
derivative. Note that this radial derivative and the covariant
derivative on the unit sphereDi commute, as they are just the
geometric versions of derivatives in spherical coordinates.
Iterating these relations we obtain for scalar

perturbations

∂i∂jφ ¼ 2x̂ðiDjÞ

�
φ

r

�
;r
þDiDjφ

r2
þ φ;rrx̂ix̂j þ Sij

φ;r

r
;

ðD3aÞ

Sij∂i∂jφ ¼ DiDiφ

r2
þ 2

φ;r

r
; ðD3bÞ

P½x̂j∂i∂jφ� ¼ Di

�
φ

r

�
;r
; ðD3cÞ

Diφ;r ¼ ðDiφÞ;r; ðD3dÞ

Spi S
q
j∂k∂p∂qφ ¼ 2

r
SkðjDiÞ

�
φ

r

�
;r
þ Sij∂k

�
φ;r

r

�

þ ∂k

�
DiDjφ

r2

�
; ðD3eÞ

x̂kSpi S
q
j∂k∂p∂qφ ¼

�
DiDjφ

r2

�
;r
þ Sij

�
φ;r

r

�
;r
; ðD3fÞ

SrkS
p
i S

q
j∂r∂p∂qφ ¼ 2

r
SkðjDiÞ

�
φ

r

�
;r
þ SijDk

�
φ;r

r2

�

þ
�
DkDiDjφ

r3

�
: ðD3gÞ

As for vectors and tensor, the useful relations are

x̂ix̂j∂k∂lEij¼ ∂k∂lEr−
4∂ðk ~ElÞ

r
þ2 ~Ekl

r2
−
2SklEr

r2
−2 ~Eðkx̂lÞ;

ðD4aÞ

x̂l∂i∂jBl ¼
DiDiBr

r2
−
2Di ~Bi

r2
þ ðBrÞ;rr þ 2

ðBrÞ;r
r

−
2Br

r2
:

ðD4bÞ

Finally, using the fact that the vector modes are transverse
and that the tensor modes are transverse and traceless,
we get

Bi ≡ ~Bi þ x̂iBr; ðD5aÞ

Di ~Bi ¼ −2Br − rðBrÞ;r; ðD5bÞ

Eij ≡ ~Eij þ 2 ~Eðix̂jÞ þ Erx̂ix̂j; ðD5cÞ

Sij ~Eij ¼ −Er ¼ 0; ðD5dÞ

Di ~Ei ¼ −3Er − rðErÞ;r; ðD5eÞ

Di ~Eij ¼ −3 ~Ej − rð ~EjÞ;r: ðD5fÞ

2. Spin-weighted spherical harmonics

Spin-weighted spherical harmonics are defined in terms
of Wigner D matrices as [88]

Ys
lmðα; βÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
ð−1ÞmeisγDl

−msðα; β; γÞ ðD6aÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
ð−1ÞmDl

−msðα; β; 0Þ ðD6bÞ

¼ ð−1ÞmþsY−s⋆
l;−mðα; βÞ; ðD6cÞ

where α, β and γ are the Euler angles. Wigner D matrices
are in turn defined in terms of infinitesimal generators of
three-dimensional rotations as [89]

Dl
m1m2

¼ hlm1jUðRÞjlm2i; where

Uðα; β; γÞ ¼ e−iαJze−iβJye−iγJz : ðD7Þ

In the special case in which the direction is aligned with the
z axis we have

Y−s
lmðezÞ ¼ δmsð−1Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
: ðD8Þ

Under the parity transformation
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α → αþ π; β → π − β; γ → γ þ π;

the spherical harmonics and Wigner D matrices transform
as

Ylmðα; βÞ → ð−1ÞlYlmðα; βÞ; ðD9Þ

Dl
mm0 ðα; β; γÞ → ð−1ÞlþmDl

−mm0 ðα; β; γÞ
¼ ð−1Þlþm0

Dl
m;−m0 ðα; β; γÞ: ðD10Þ

In particular, it follows that under parity transformation the
spin-weighted spherical harmonics behaves as

Ys
lmðα; βÞ → ð−1ÞlY−s

lmðα; βÞ: ðD11Þ

3. Rotation of fields on the sphere

The transformation of the spherical harmonics is
given by

½RYlm�ðnÞ≡ YlmðR−1:nÞ ¼
X
m0

hnjlm0ihlm0jRjlmi

¼
X
m0

Ylm0 ðnÞDl
m0mðRÞ; ðD12Þ

where the first equality is the definition of the trans-
formation of a function on a sphere under a rotation. For
a scalar field on the sphere, we can deduce the trans-
formation of its multipolar components of its expansion in
spherical harmonics:

XðnÞ ¼
X
lm

XlmYlmðnÞ

to be

½RX�ðnÞ ¼ XðR−1:nÞ ¼
X
lmm0

Ylm0 ðnÞDl
m0mðRÞXlm ðD13Þ

so that

½RX�lm0 ¼
X
m

Dl
m0mðRÞXlm: ðD14Þ

The rotation of a tensor field on the sphere is very
similar. Once it is broken down into symmetric traceless
tensors, then, by using that such tensors are decomposed as
XðnÞ≡X�sðnÞm�sðnÞ¼½X�sm�s�ðnÞ, it can be expanded
in spin-weighted spherical harmonics as

XðnÞ ¼
X
lm

½Xþs
lmY

þs
lmðnÞmþsðnÞ þ X−s

lmY
−s
lmðnÞm−sðnÞ�:

ðD15Þ

Under a rotation, it transforms as (see Appendix A of
Ref. [85])

½RX�ðnÞ ¼ R:XðR−1:nÞ
¼

X
lmm0

Y�s
lm0 ðnÞDl

m0mðRÞX�s
lmm

�sðnÞ; ðD16Þ

that is,

½RX��s
lm0 ¼ Dl

m0mðRÞX�s
lm: ðD17Þ

We remark that it is exactly the same transformation law as
for scalar fields because we have transformed the full tensor
field X�sðnÞm�sðnÞ and not just its component X�sðnÞ
considered as a scalar function, for which the transforma-
tion law is more complicated [85].

4. Wigner 3j symbols

The 3j symbols satisfy the following properties:�
l1 l2 l3

m1 m2 m3

�
¼
�
l2 l3 l1

m2 m3 m1

�
¼
�
l3 l1 l2

m3 m1 m2

�

¼ð−1Þl1þl2þl3

�
l1 l3 l2

m1 m3 m2

�

¼ð−1Þl1þl2þl2

�
l1 l2 l3

−m1 −m2 −m2

�
:

Moreover, they are identically zero whenever any of the
following conditions are violated:

m1 þm2 þm3 ¼ 0; jli − ljj ≤ lk ≤ li þ lj;

fi; j; kg ¼ f1; 2; 3g:

They are also orthogonal in the sense that

X
m1;m2

�
l1 l2 l

m1 m2 m

��
l1 l2 l0

m1 m2 m0

�
¼ 1

2lþ 1
δll0δmm0

ðD18Þ

and that

X
l;m

ð2lþ 1Þ
�
l1 l2 l

m1 m2 m

��
l1 l2 l

m0
1 m0

2 m

�
¼ δm1m0

1
δm2m2

0 : ðD19Þ

Since Eq. (D19) holds for any set fm1; m0
1; m2; m0

2g, two
important cases follow from this expression. First, consider
the case where m2 ¼ −m1 and m0

2 ¼ −m0
1. Then, using the

selection rule m1 þm2 þm ¼ 0, it follows that

X
l

ð2lþ 1Þ
�
l1 l2 l

m1 −m1 0

��
l1 l2 l

m0
1 −m0

1 0

�
¼ δm1m0

1
:

ðD20Þ
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Second, note that if we further impose that m1 ¼ m0
1 ¼ 0, then

X
l

ð2lþ 1Þ
�
l1 l2 l

0 0 0

�
2

¼ 1: ðD21Þ

Another useful expression is �
l1 l2 0

0 0 0

�
¼ δl1l2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l1 þ 1

p : ðD22Þ

A recurrent expression when dealing with deviations of isotropy is the integral of three spherical harmonics, also known
as the Gaunt integral, and defined as

Z
d2ΩYs1

l1m1
ðn̂ÞYs2

l2m2
ðn̂ÞYs3

l3m3
ðn̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3

−s1 −s2 −s3

��
l1 l2 l3

m1 m2 m3

�
: ðD23Þ

Note that, due to the symmetries of 3j symbols and the properties of spin-weighted spherical harmonics under complex
conjugation, the coefficients sCm1m2m2

l1l2l3
defined in Eq. (5.12) satisfy the following properties:

−sCm1m2m3

l1l2l3
¼ ð−1Þl1þl2þl3 sCm1m2m3

l1l2l3
¼ sC−m1−m2−m3

l1l2l3
: ðD24Þ

From the definitions (D23), (5.12) and the closure relation of spherical harmonics one can also verify that

Yl2m2
ðnÞYs

l3m3
ðnÞ ¼

X
l1;m1

sCm1m2m3

l1l2l3
Ys
l1m1

ðnÞ; ðD25Þ

an identity which is needed in order to derive Eq. (5.16).
Let us also define a useful integral for the gradient expansion approach of lensing by

�s
Im1m2m3

l1l2l3
≡

Z
d2Ω½DaY�s⋆

l1m1
ðn̂Þ�Yl2m2

ðn̂Þ½DaY�s
l3m3

ðn̂Þ�; ðD26Þ

where the polarization basis is voluntarily omitted for a simpler notation. It has the useful property inherited from Eq. (D24)

�s
Im1m2m3

l1l2l3
¼ ð−1Þl1þl2þl3∓s

Im1m2m3

l1l2l3
: ðD27Þ

Its expression can be found using

�s
Im1m2m3

l1l2l3
¼ 1

2
½l2ðl2 þ 1Þ þ l3ðl3 þ 1Þ − l1ðl1 þ 1Þ�

Z
d2ΩY�s⋆

l1m1
ðn̂ÞYl2m2

ðn̂ÞY�s
l3m3

ðn̂Þ ðD28Þ

¼ 1

2
½l2ðl2 þ 1Þ þ l3ðl3 þ 1Þ − l1ðl1 þ 1Þ��sCm1m2m3

l1l2l3
ðD29Þ

¼ �sFl1l2l3

�
l1 l2 l3

−m1 m2 m3

�
ð−1Þm1þs; ðD30Þ

where, following Ref. [84], we defined the symbols

sFll1l2 ≡
1

2
½l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − lðlþ 1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l1 þ 1Þð2l2 þ 1Þ

4π

r �
l l1 l2

s 0 −s

�
: ðD31Þ

In particular we have
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2Fl2lþ1 ¼ ðlþ 4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð2lþ 1Þð2lþ 3Þ

4π

r �
l 2 lþ 1

2 0 −2

�
¼ ð−1Þlðlþ 4Þ

ffiffiffiffiffi
15

π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 3Þðl − 1Þ
lðlþ 1Þðlþ 2Þ

s
;

2Fl2l−1 ¼ ð3 − lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð2lþ 1Þð2l − 1Þ

4π

r �
l 2 l − 1

2 0 −2

�
¼ ð−1Þlðl − 3Þ

ffiffiffiffiffi
15

π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þðl − 2Þ
lðlþ 1Þðl − 1Þ

s
:

[1] P. A. R. Ade and Planck Collaboration, Astron. Astrophys.
566, A54 (2014).

[2] P. Peter and J.-P. Uzan, Primordial Cosmology (Oxford
University, New York, 2009).

[3] V. Mukhanov, Physical Foundations of Cosmology
(Cambridge University Press, Cambridge, England, 2005).

[4] G. F. R. Ellis, R. Maartens, and M. A. H. MacCallum,
Relativistic Cosmology (Cambridge University Press,
Cambridge, England, 2012).

[5] J.-P. Uzan, in Dark Energy, edited by P. Ruiz-Lapuente
(Cambridge University Press, Cambridge, England, 2012),
pp. 3–47.

[6] J.-P. Uzan and F. Bernardeau, Phys. Rev. D 64, 083004
(2001).

[7] C. Clarkson, G. F. R. Ellis, A. Faltenbacher, R. Maartens, O.
Umeh, and J.-P. Uzan, Mon. Not. R. Astron. Soc. 426, 1121
(2012); P. Fleury, H. Dupuy, and J. P. Uzan, Phys. Rev. Lett.
111, 091302 (2013); , Phys. Rev. D 87, 123526 (2013).

[8] J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003); AIP Conf. Proc.
736, 3 (2005); Space Sci. Rev. 148, 249 (2009); Living Rev.
Relativity 14, 2 (2011).

[9] J. Goodman, Phys. Rev. D 52, 1821 (1995); J.-P. Uzan, C.
Clarkson, and G. F. R. Ellis, Phys. Rev. Lett. 100, 191303
(2008); R. R. Caldwell and A. Stebbins, Phys. Rev. Lett.
100, 191302 (2008).

[10] M. Sharif and M. Zubair, Astrophys. Space Sci. 330, 399
(2010).

[11] J. D. Barrow, arXiv:gr-qc/9712020.
[12] M. Bucher and D. N. Spergel, Phys. Rev. D 60, 043505

(1999).
[13] R. A. Battye and A. Moss, J. Cosmol. Astropart. Phys. 06

(2005) 001.
[14] T. Damour, I. I. Kogan, and A. Papazoglou, Phys. Rev. D 66,

104025 (2002).
[15] T. Koivisto and D. Mota, J. Cosmol. Astropart. Phys. 06

(2008) 018.
[16] F. R. Urban and A. R. Zhitnitsky, J. Cosmol. Astropart.

Phys. 09 (2009) 018.
[17] G. Marozzi and J.-P. Uzan, Phys. Rev. D 86, 063528 (2012).
[18] D. F. Mota, J. R. Kristiansen, T. Koivisto, and N. E.

Groeneboom, Mon. Not. R. Astron. Soc. 382, 793 (2007).
[19] T. Koivisto and D. F. Mota, Astrophys. J. 679, 1 (2008).
[20] A. Pradhan, Res. Astron. Astrophys. 13, 139 (2013).
[21] S. A. Appleby and E. V. Linder, Phys. Rev. D 87, 023532

(2013).

[22] T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart.
Phys. 09 (2007) 006.

[23] P. Anninos, R. A. Matzner, T. Rothman, and M. P. Ryan,
Phys. Rev. D 43, 3821 (1991).

[24] C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart.
Phys. 04 (2008) 004.

[25] A. E. Gumrukcuoglu, C. R. Contaldi, and M. Peloso, J.
Cosmol. Astropart. Phys. 11 (2007) 005.

[26] T. R. Dulaney and M. I. Gresham, arXiv:1001.2301.
[27] L. Kofman, J. P. Uzan, and C. Pitrou, J. Cosmol. Astropart.

Phys. 05 (2011) 011.
[28] A. Kogut, G. Hinshaw, and A. J. Banday, Phys. Rev. D 55,

1901 (1997).
[29] S. Bajtlik, R. Juszkiewicz, M. Proszynski, and P.

Amsterdamski, Astrophys. J. 300, 463 (1986).
[30] A. R. Pullen and M. Kamionkowski, Phys. Rev. D 76,

103529 (2007).
[31] A. R. Pullen and C. M. Hirata, J. Cosmol. Astropart. Phys.

05 (2010) 027.
[32] A. E. Gumrukcuoglu, B. Himmetoglu, and M. Peloso, Phys.

Rev. D 81, 063528 (2010).
[33] T. R. Dulaney and M. I. Gresham, Phys. Rev. D 81, 103532

(2010).
[34] X. Chen, R. Emami, H. Firouzjahi, and Y. Wang, J. Cosmol.

Astropart. Phys. 08 (2014) 027.
[35] C. Armendariz-Picon and L. Pekowsky, Phys. Rev. Lett.

102, 031301 (2009).
[36] J. Barrow, Mon. Not. R. Astron. Soc. 175, 359 (1976); 211,

221 (1984); L. Campanelli, Phys. Rev. D 84, 123521
(2011); D.W. Olson, Astrophys. J. 219, 777 (1978);
R. A. Matzner, T. Rothman, and G. F. R. Ellis, Phys. Rev.
D 34, 2926 (1986); T. Rothman and R. Matzner, Phys. Rev.
D 30, 1649 (1984); Phys. Rev. Lett. 48, 1565 (1982);
R. Juszkiewicz, S. Bajtlik, and K. Gorski, Mon. Not. R.
Astron. Soc. 204, 63P (1983); E. T. Vishniac, Mon. Not. R.
Astron. Soc. 205, 675 (1983).

[37] U. Feindt et al. (Nearby Supernovae Factory), Astron.
Astrophys. 560, A90 (2013).

[38] S. Appleby and A. Shafieloo, J. Cosmol. Astropart. Phys. 03
(2014) 007.

[39] S. Appleby, A. Shafieloo, and A. Johnson, Astrophys. J.
801, 76 (2015).

[40] R.Cai and Z. Tuo, J. Cosmol.Astropart. Phys. 02 (2012) 004.
[41] S. Appleby, R. Battye, and A. Moss, Phys. Rev. D 81,

081301 (2010).

PITROU, PEREIRA, AND UZAN PHYSICAL REVIEW D 92, 023501 (2015)

023501-46

http://dx.doi.org/10.1051/0004-6361/201323003
http://dx.doi.org/10.1051/0004-6361/201323003
http://dx.doi.org/10.1103/PhysRevD.64.083004
http://dx.doi.org/10.1103/PhysRevD.64.083004
http://dx.doi.org/10.1111/j.1365-2966.2012.21750.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21750.x
http://dx.doi.org/10.1103/PhysRevLett.111.091302
http://dx.doi.org/10.1103/PhysRevLett.111.091302
http://dx.doi.org/10.1103/PhysRevD.87.123526
http://dx.doi.org/10.1103/RevModPhys.75.403
http://dx.doi.org/10.1063/1.1835171
http://dx.doi.org/10.1063/1.1835171
http://dx.doi.org/10.1007/s11214-009-9503-z
http://dx.doi.org/10.12942/lrr-2011-2
http://dx.doi.org/10.12942/lrr-2011-2
http://dx.doi.org/10.1103/PhysRevD.52.1821
http://dx.doi.org/10.1103/PhysRevLett.100.191303
http://dx.doi.org/10.1103/PhysRevLett.100.191303
http://dx.doi.org/10.1103/PhysRevLett.100.191302
http://dx.doi.org/10.1103/PhysRevLett.100.191302
http://dx.doi.org/10.1007/s10509-010-0414-y
http://dx.doi.org/10.1007/s10509-010-0414-y
http://arXiv.org/abs/gr-qc/9712020
http://dx.doi.org/10.1103/PhysRevD.60.043505
http://dx.doi.org/10.1103/PhysRevD.60.043505
http://dx.doi.org/10.1088/1475-7516/2005/06/001
http://dx.doi.org/10.1088/1475-7516/2005/06/001
http://dx.doi.org/10.1103/PhysRevD.66.104025
http://dx.doi.org/10.1103/PhysRevD.66.104025
http://dx.doi.org/10.1088/1475-7516/2008/06/018
http://dx.doi.org/10.1088/1475-7516/2008/06/018
http://dx.doi.org/10.1088/1475-7516/2009/09/018
http://dx.doi.org/10.1088/1475-7516/2009/09/018
http://dx.doi.org/10.1103/PhysRevD.86.063528
http://dx.doi.org/10.1111/j.1365-2966.2007.12413.x
http://dx.doi.org/10.1086/587451
http://dx.doi.org/10.1088/1674-4527/13/2/002
http://dx.doi.org/10.1103/PhysRevD.87.023532
http://dx.doi.org/10.1103/PhysRevD.87.023532
http://dx.doi.org/10.1088/1475-7516/2007/09/006
http://dx.doi.org/10.1088/1475-7516/2007/09/006
http://dx.doi.org/10.1103/PhysRevD.43.3821
http://dx.doi.org/10.1088/1475-7516/2008/04/004
http://dx.doi.org/10.1088/1475-7516/2008/04/004
http://dx.doi.org/10.1088/1475-7516/2007/11/005
http://dx.doi.org/10.1088/1475-7516/2007/11/005
http://arXiv.org/abs/1001.2301
http://dx.doi.org/10.1088/1475-7516/2011/05/011
http://dx.doi.org/10.1088/1475-7516/2011/05/011
http://dx.doi.org/10.1103/PhysRevD.55.1901
http://dx.doi.org/10.1103/PhysRevD.55.1901
http://dx.doi.org/10.1086/163824
http://dx.doi.org/10.1103/PhysRevD.76.103529
http://dx.doi.org/10.1103/PhysRevD.76.103529
http://dx.doi.org/10.1088/1475-7516/2010/05/027
http://dx.doi.org/10.1088/1475-7516/2010/05/027
http://dx.doi.org/10.1103/PhysRevD.81.063528
http://dx.doi.org/10.1103/PhysRevD.81.063528
http://dx.doi.org/10.1103/PhysRevD.81.103532
http://dx.doi.org/10.1103/PhysRevD.81.103532
http://dx.doi.org/10.1088/1475-7516/2014/08/027
http://dx.doi.org/10.1088/1475-7516/2014/08/027
http://dx.doi.org/10.1103/PhysRevLett.102.031301
http://dx.doi.org/10.1103/PhysRevLett.102.031301
http://dx.doi.org/10.1093/mnras/175.2.359
http://dx.doi.org/10.1093/mnras/211.2.221
http://dx.doi.org/10.1093/mnras/211.2.221
http://dx.doi.org/10.1103/PhysRevD.84.123521
http://dx.doi.org/10.1103/PhysRevD.84.123521
http://dx.doi.org/10.1086/155838
http://dx.doi.org/10.1103/PhysRevD.34.2926
http://dx.doi.org/10.1103/PhysRevD.34.2926
http://dx.doi.org/10.1103/PhysRevD.30.1649
http://dx.doi.org/10.1103/PhysRevD.30.1649
http://dx.doi.org/10.1103/PhysRevLett.48.1565
http://dx.doi.org/10.1093/mnras/204.1.63P
http://dx.doi.org/10.1093/mnras/204.1.63P
http://dx.doi.org/10.1093/mnras/205.3.675
http://dx.doi.org/10.1093/mnras/205.3.675
http://dx.doi.org/10.1051/0004-6361/201321880
http://dx.doi.org/10.1051/0004-6361/201321880
http://dx.doi.org/10.1088/1475-7516/2014/03/007
http://dx.doi.org/10.1088/1475-7516/2014/03/007
http://dx.doi.org/10.1088/0004-637X/801/2/76
http://dx.doi.org/10.1088/0004-637X/801/2/76
http://dx.doi.org/10.1088/1475-7516/2012/02/004
http://dx.doi.org/10.1103/PhysRevD.81.081301
http://dx.doi.org/10.1103/PhysRevD.81.081301


[42] J. B. Jimenez, V. Salzano, and R. Lazkoz, Phys. Lett. B 741,
168 (2015).

[43] T. Schucker, A. Tilquin, and G. Valent, Mon. Not. R.
Astron. Soc. 444, 2820 (2014).

[44] T. S. Kolatt and O. Lahav, Mon. Not. R. Astron. Soc. 323,
859 (2001).

[45] J. Colin, R. Mohayaee, S. Sarkar, and A. Shafieloo, Mon.
Not. R. Astron. Soc. 414, 264 (2011).

[46] B. Kalus, D. J. Schwarz, M. Seikel, and A. Wiegand,
Astron. Astrophys. 553, A56 (2013).

[47] T. R. Dulaney and M. I. Gresham, arXiv:0805.1078.
[48] E. Dimastrogiovanni, S. Fischler, and S. Paban, J. High

Energy Phys. 07 (2008) 045.
[49] R. G. Cai, Y. Z. Ma, B. Tang, and Z. L. Tuo, Phys. Rev. D

87, 123522 (2013).
[50] D. J. Schwarz and B. Weinhorst, Astron. Astrophys. 474,

717 (2007).
[51] I. Antoniou and L. Perivolaropoulos, J. Cosmol. Astropart.

Phys. 12 (2010) 012.
[52] M. J. Longo, arXiv:1405.7621.
[53] S. Appleby and A. Shafieloo, J. Cosmol. Astropart. Phys. 10

(2014) 070.
[54] M. Yoon, D. Huterer, C. Gibelyou, A. Kovacs, and I.

Szapudi, Mon. Not. R. Astron. Soc. 445, L60 (2014).
[55] R. Battye and A. Moss, Phys. Rev. D 80, 023531 (2009).
[56] M. J. Axelsson, F. K. Hansen, T. Koivisto, and D. F. Mota,

Astron. Astrophys. 564, A113 (2014).
[57] J. D. McEwen, T. Josset, S. M. Feeney, H. V. Peiris, and

A. N. Lasenby, Mon. Not. R. Astron. Soc. 436, 3680 (2013).
[58] R. Sung and P. Coles, J. Cosmol. Astropart. Phys. 06 (2011)

036.
[59] C. Pitrou, J.-P. Uzan, and T. S. Pereira, Phys. Rev. D 87,

043003 (2013).
[60] Y. Mellier, Annu. Rev. Astron. Astrophys. 37, 127 (1999);

M. Bartelmann and P. Schneider, Phys. Rep. 340, 291
(2001); P. Schneider, J. Ehlers, and E. E. Falco, Gravita-
tional Lenses (Springer, New York, 1992); A. Stebbins,
arXiv:astro-ph/9609149.

[61] F. Bernardeau, C. Bonvin, and F. Vernizzi, Phys. Rev. D 81,
083002 (2010).

[62] R. G. Crittenden, P. Natarajan, U. L. Pen, and T. Theuns,
Astrophys. J. 559, 552 (2001); 568, 20 (2002).

[63] S. Hilbert, J. Hartlap, S. D. M. White, and P. Schneider,
Astron. Astrophys. 499, 31 (2009); A. Cooray and W. Hu,
Astrophys. J. 574, 19 (2002).

[64] P. Schneider, L. van Waerbeke, and Y. Mellier, Astron.
Astrophys. 389, 729 (2002).

[65] P. T. Saunders, Mon. Not. R. Astron. Soc. 141, 427 (1968);
142, 213 (1969); K. Tomita, Prog. Theor. Phys. 40, 264
(1968).

[66] D. L. Caceres, L. Castaneda, and J. M. Tejeiro, J. Phys.
Conf. Ser. 229, 012076 (2010).

[67] P. Fleury, C. Pitrou, and J. P. Uzan, Phys. Rev. D 91, 043511
(2015).

[68] G. Fanizza, M. Gasperini, G. Marozzi, and G. Veneziano,
J. Cosmol. Astropart. Phys. 11 (2013) 019.

[69] T. Pereira, C. Pitrou, and J.-P. Uzan (to be published).
[70] R. Laureijs et al., arXiv:1110.3193.
[71] M. A. Garrett et al., PoS ISKAF2010, 018 (2010),

arXiv:1008.2871;P. Schneider, arXiv:astro-ph/9907146.
[72] G. F. R. Ellis, Gen. Relativ. Gravit. 38, 1003 (2006).
[73] A. Krasiński, C. G. Behr, E. Schücking, F. B. Estabrook,

H. D. Wahlquist, G. F. R. Ellis, R. Jantzen, and W. Kundt,
Gen. Relativ. Gravit. 35, 475 (2003).

[74] G. F. R. Ellis and H. van Elst, NATO Sci.Ser.C 541, 1–116
(1999).

[75] M. P. Ryan and L. C. Shepley, Homogeneous Relativistic
Cosmologies, Princeton Series in Physics (Princeton
University, Princeton, NJ, 1975).

[76] A. Pontzen and A. Challinor, J. Cosmol. Astropart. Phys.
09 (2007) 006; Mon. Not. R. Astron. Soc. 380, 1387–1398
(2007).

[77] A. Lewis and A. Challinor, Phys. Rep. 429, 1 (2006).
[78] R. K. Sachs, Proc. R. Soc. A 264, 309 (1961).
[79] C. F. Sopuerta, M. Bruni, and L. Gualtieri, Phys. Rev. D 70,

064002 (2004).
[80] A. Pontzen and A. Challinor, Classical Quantum Gravity 28,

185007 (2011).
[81] L. R. Abramo and T. S. Pereira, Adv. Astron. 2010, 378203

(2010).
[82] M. LoVerde and N. Afshordi, Phys. Rev. D 78, 123506

(2008).
[83] D. Yamauchi, T. Namikawa, and A. Taruya, J. Cosmol.

Astropart. Phys. 08 (2013) 051.
[84] W. Hu, Phys. Rev. D 62, 043007 (2000).
[85] A. Challinor and A. Lewis, Phys. Rev. D 71, 103010 (2005).
[86] L. G. Book, M. Kamionkowski, and T. Souradeep, Phys.

Rev. D 85, 023010 (2012).
[87] C. Pitrou, X. Roy, and O. Umeh, Classical Quantum Gravity

30, 165002 (2013).
[88] J. N. Goldberg, A. J.MacFarlane, E. T. Newman, F. Rohrlich,

and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 8, 2155 (1967).
[89] A. R. Edmonds, Angular Momentum in Quantum Mechan-

ics (Princeton University, Princeton, NJ, 1996).

WEAK LENSING BY THE LARGE SCALE STRUCTURE IN … PHYSICAL REVIEW D 92, 023501 (2015)

023501-47

http://dx.doi.org/10.1016/j.physletb.2014.12.031
http://dx.doi.org/10.1016/j.physletb.2014.12.031
http://dx.doi.org/10.1093/mnras/stu1656
http://dx.doi.org/10.1093/mnras/stu1656
http://dx.doi.org/10.1046/j.1365-8711.2001.04262.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04262.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18402.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18402.x
http://dx.doi.org/10.1051/0004-6361/201220928
http://arXiv.org/abs/0805.1078
http://dx.doi.org/10.1088/1126-6708/2008/07/045
http://dx.doi.org/10.1088/1126-6708/2008/07/045
http://dx.doi.org/10.1103/PhysRevD.87.123522
http://dx.doi.org/10.1103/PhysRevD.87.123522
http://dx.doi.org/10.1051/0004-6361:20077998
http://dx.doi.org/10.1051/0004-6361:20077998
http://dx.doi.org/10.1088/1475-7516/2010/12/012
http://dx.doi.org/10.1088/1475-7516/2010/12/012
http://arXiv.org/abs/1405.7621
http://dx.doi.org/10.1088/1475-7516/2014/10/070
http://dx.doi.org/10.1088/1475-7516/2014/10/070
http://dx.doi.org/10.1093/mnrasl/slu133
http://dx.doi.org/10.1103/PhysRevD.80.023531
http://dx.doi.org/10.1051/0004-6361/201322051
http://dx.doi.org/10.1093/mnras/stt1855
http://dx.doi.org/10.1088/1475-7516/2011/06/036
http://dx.doi.org/10.1088/1475-7516/2011/06/036
http://dx.doi.org/10.1103/PhysRevD.87.043003
http://dx.doi.org/10.1103/PhysRevD.87.043003
http://dx.doi.org/10.1146/annurev.astro.37.1.127
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://arXiv.org/abs/astro-ph/9609149
http://dx.doi.org/10.1103/PhysRevD.81.083002
http://dx.doi.org/10.1103/PhysRevD.81.083002
http://dx.doi.org/10.1086/322370
http://dx.doi.org/10.1086/338838
http://dx.doi.org/10.1051/0004-6361/200811054
http://dx.doi.org/10.1086/340892
http://dx.doi.org/10.1051/0004-6361:20020626
http://dx.doi.org/10.1051/0004-6361:20020626
http://dx.doi.org/10.1093/mnras/141.4.427
http://dx.doi.org/10.1093/mnras/142.2.213
http://dx.doi.org/10.1143/PTP.40.264
http://dx.doi.org/10.1143/PTP.40.264
http://dx.doi.org/10.1088/1742-6596/229/1/012076
http://dx.doi.org/10.1088/1742-6596/229/1/012076
http://dx.doi.org/10.1103/PhysRevD.91.043511
http://dx.doi.org/10.1103/PhysRevD.91.043511
http://dx.doi.org/10.1088/1475-7516/2013/11/019
http://arXiv.org/abs/1110.3193
http://arXiv.org/abs/1008.2871
http://arXiv.org/abs/astro-ph/9907146
http://dx.doi.org/10.1007/s10714-006-0283-4
http://dx.doi.org/10.1023/A:1022382202778
http://dx.doi.org/10.1088/1475-7516/2007/09/006
http://dx.doi.org/10.1088/1475-7516/2007/09/006
http://dx.doi.org/10.1111/j.1365-2966.2007.12221.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12221.x
http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://dx.doi.org/10.1098/rspa.1961.0202
http://dx.doi.org/10.1103/PhysRevD.70.064002
http://dx.doi.org/10.1103/PhysRevD.70.064002
http://dx.doi.org/10.1088/0264-9381/28/18/185007
http://dx.doi.org/10.1088/0264-9381/28/18/185007
http://dx.doi.org/10.1155/2010/378203
http://dx.doi.org/10.1155/2010/378203
http://dx.doi.org/10.1103/PhysRevD.78.123506
http://dx.doi.org/10.1103/PhysRevD.78.123506
http://dx.doi.org/10.1088/1475-7516/2013/08/051
http://dx.doi.org/10.1088/1475-7516/2013/08/051
http://dx.doi.org/10.1103/PhysRevD.62.043007
http://dx.doi.org/10.1103/PhysRevD.71.103010
http://dx.doi.org/10.1103/PhysRevD.85.023010
http://dx.doi.org/10.1103/PhysRevD.85.023010
http://dx.doi.org/10.1088/0264-9381/30/16/165002
http://dx.doi.org/10.1088/0264-9381/30/16/165002
http://dx.doi.org/10.1063/1.1705135

