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In [Phys. Rev. D 90, 043006 (2014)], we proposed a new ghost-free massive spin-two model in flat
spacetime. Furthermore, as some extension, we coupled the new model with a nondynamical curved
background in [Phys. Rev. D 90, 123013 (2014)] and constructed new interaction terms without the
appearance of an extra mode. The characteristic property of the new model is the existence of nonlinear
potential terms which give the nontrivial vacua. The presence of the nontrivial vacua, however, does not
mean that the particle can be defined around all vacua. Therefore, in this paper, we discuss the conditions
for the new model to have stable vacua in flat spacetime and curved spacetime. Then, we couple this spin-
two theory with a dynamical background and obtain the solutions. Moreover, we investigate the effect of
this new spin-two model on the Einstein gravity by calculating the black hole entropy, since the gravity
coupled with massive spin-two theory admits a black hole solution in addition to the (anti-)de Sitter space

solution.
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I. INTRODUCTION

The consistent free massive spin-two theory was first
established by Fierz and Pauli [1]. The mass term for
spin-two particles generally leads to a ghost mode, but
they preserve the consistency of the theory by tuning
coefficients of the mass term. Since the Fierz-Pauli theory
does not have any gauge symmetry, it seems that
arbitrary interactions can be added to the theory.
Contrary to this naive expectation, Boulware and
Deser [2] showed that nonlinear terms generally lead
to another ghost called the Boulware-Deser (BD) ghost.
There was another problem—that is, the appearance of
the van Dam—Veltman—Zakharov (vDVZ) discontinuity
[3] in the massless limit, m — 0, although the disconti-
nuity can be screened by the Vainstein mechanism [4]
(see, for example, Ref. [5]).

After these indications, the study of massive spin-two
fields had not progressed until 2003. In 2003, Arkani-
Hamed, Georgi, and Schwartz [6], however, revealed a
cutoff scale of the theory by introducing the Stuckelberg
field. They considered a limit which focuses on the
cutoff, and they have shown that the special choice of the
coefficients in the potential terms makes the cutoff scale
larger. As the potential-tuned theory consists of infinite
terms, it was unclear whether the theory contains the
BD ghost or not. After that, de Rham, Gabadadze, and
Tolley [7,8] succeeded in the resummation of the poten-
tial terms, and Hassan and Rosen [9] proved that the
theory with the resummed potential terms does not
contain any ghost. This theory is called dRGT massive
gravity. The most important point in this theory is that
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special forms of the fully nonlinear potential terms
eliminate the extra mode. Although the massive gravity
models have a nondynamical background metric, they
have been extended to the models with a dynamical
metric [10-12], which are called bigravity models.

Hinterbichler [13] (see also Ref. [14]) pointed out the
possibility of new derivative interaction terms in dRGT
massive gravity. It was shown that new derivative inter-
actions can be added to the Fierz-Pauli theory by taking
specific linear combinations of interactions and conjectured
fully nonlinear counterparts of these interaction terms in
dRGT massive gravity. In this context, it was also shown
that the leading term of the dRGT potential term does not
generate the ghost in the Fierz-Pauli theory. Thus, we
constructed a new massive spin-two model in a flat
spacetime by adding the leading terms to Fierz-Pauli free
theory in Ref. [15]. Furthermore, we extend the theory to
the rigid curved background and show that the theory is
ghost-free on the Einstein manifold [16].

In this paper, we investigate the stability of the potential
extrema of the new model in flat spacetime and curved
spacetime. Furthermore, we consider the model where the
field of massive spin-two particles couples with gravity by
assuming, for simplicity, that the spin-two field is propor-
tional to the background metric. The other kind of solutions
has been found [17—-19] in the context of the Hassan-Rosen
bigravity model [10-12]. A reason why we consider this
model is an application to the cosmology and black hole
(BH) physics. We often consider the models of scalar fields
to explain the expanding Universe not violating the
isotropy, while the condensation of the vector field violates
the isotropy in general, except for the case in which the
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model has a non-Abelian gauge symmetry.1 The field of the
massive spin-two particle is given by a rank-2 symmetric
tensor. We should note that the condensation of the trace
part of the rank-2 symmetric tensor [or (¢, 7) component, or
the trace of the spacial part] does not violate the isotropy,
and therefore we can use the rank-2 symmetric tensor in
order to explain the expansion of the Universe. Such a
cosmology has been studied in the massive gravity models
[20] by considering the decoupling limit where the models
reduce to scalar-tensor theories. After that, there follow
several activities in the massive gravity models [21-24] and
in the bimetric gravity models [19,25-31].

As for black hole physics, the effect of massive spin-two
particles on the black hole entropy has already been
calculated in the Hassan-Rosen bigravity model [32,33].
Since the gravity coupled with the massive spin-two model
presented in this paper is essentially different from the
Hassan-Rosen bigravity model [10-12], it is quite interest-
ing to see how the results change depending on the model.

II. NEW MODEL OF MASSIVE SPIN-TWO
PARTICLES

The Lagrangian of the Fierz-Pauli theory is given by [1]
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Here m and u are parameters with the dimension of mass,
and A is a dimensionless parameter. We assume that u
always takes a positive value but cannot decide the sign
of A, because it is nontrivial to learn which sign for A
stabilizes this system.

'Non-Abelian gauge always contains SU(2) or SO(3) as a
subgroup. The condensation of the vector field breaks both
the isotropy or rotational invariance and the gauge symmetry.
Because the rotational symmetry is SO(3), even in the vector
field condensate, there remains the diagonal symmetry in the
product of the rotational symmetry SO(3) and the gauge
symmetry SO(3), and we can regard the diagonal symmetry as
a new rotational symmetry.
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The relative sign of the mass term is tuned to
eliminate a ghost. Hinterbichler pointed out that new
interaction terms can be added to this model without
any ghost by taking the specific linear combination
[13,14]. In four dimensions, there are two kinds of
nonderivative interactions:

£3 ~ ,1/41V1ﬂ21/2/43”3h h h (2)

M1V TV TS
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Here npt*1#ntn is given by the product of nz, and
antisymmetrizing the indexes vy, v,, ..., and v,, for
example,
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+ ,714103;7/421/1,1#31/2 — ;7/41”3,]#202;7/431/1 . (4)

In Ref. [15], we proposed the new model of massive
spin-two particles by adding the two terms (2) and (3)
to the Fierz-Pauli Lagrangian:

h,,h
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Although the model (5) is power-counting renorma-
lizable, the model is not renormalizable, because the
propagator behaves as O(p?) for large momentum p
instead of the naive expectation O(p~2). In fact, the
propagator has the following form:

1 2
Dgﬁ,pa = 2(p2 T mz) {PglpPZty + Pglgpfjnp —gP;"ﬁPZZ},
(6)
PuP
= P 0

Then, when p? is large, the propagator behaves as

Dy, .~ O( p?) due to the projection operator Py, which
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makes the behavior for large p*> worse, and therefore the
model should not be renormalizable.

Since this theory has no symmetry and is already
nonrenormalizable, it seems that there is no reason why
we only consider the potential terms up to the quartic
order. However, introducing higher-order potential terms
breaks the consistency as quantum field theory in four
dimensions. The potential terms described above do not
generate any ghost due to the antisymmetric property.
Therefore, in four dimensions, we cannot construct similar
ghost-free potential terms. Needless to say, we can add
higher-order terms in five or higher dimensions.

oS
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III. CLASSICAL SOLUTION IN THE
NEW THEORY OF THE MASSIVE
SPIN-TWO FIELD

Because the potential of the new theory of the massive
spin-two field has a structure like the potential of the
Higgs field, it could be interesting to investigate the
classical solutions, which may correspond to the extrema
of the potential. The nonvanishing value of the potential
for the classical solution may give an energy of the
vacuum.

By the variations of h

s WE obtain the equations of
motion for &,

= Oy, — 0,0,h*, — 9,0,h*, + 9,,0,0,h* + 8,0,h — g,,Ih

W hpv)

ou + 1200, hy,

— 12, h, hyy, — 121, R, gy, + 120, (h7h,,)) = O. (8)

We assume the solution of equation (8) is given by
h/w = C’/I}ll/‘ (9)
Here C is a constant. Substituting (9) into equation (8) gives
(3m?C = 3uC? — AC%)y,, = 0. (10)

The solutions for (10) are given by

=3u+ /9 + 12m?2
2 ‘

Cc=0, (11)

Because the solution should be a real number, the param-
eters are constrained to be

_ 3
/1 Z 4m?
A<

= 4|m?|

for m? > 0

for m2 <0

Note that the parameter m> is not required to be positive

definite due to the presence of the potential terms. By
assuming (9), the Lagrangian (5) is reduced to

Lyo = V(C) = —6m2C% +4uC* +2C*. (12)

We may regard V(C) as a potential for C. Then Eq. (10) is
nothing but the condition V’/(C) = 0. We should note that
when u =1 =0, which corresponds to the Fierz-Pauli
model, the potential V(C) is not unbounded below,
and C = 0 corresponds to the local maximum instead of

|
the local minimum. As we know, however, the massive
spin-two field is stable on the local maximum. On the other
hand, on the local minimum of C, the fluctuation of the
massive spin-two field becomes tachyonic and unstable.

Such a contradiction to intuition occurs because C does
not correspond to the propagating mode and C should be a
constant. In fact, if we assume (9) and that C could not be a
constant, (8) tells us

0 =»*(20C + 3m?>C —3uC? — AC3) — 200" C. (13)
Then, when y # v in (13), it gives
B”BUC =0, (14)

which tells us that C is given by a sum of the functions of
each of coordinates C = Y_,CW(x*). Eq. (13) also gives
noLC = OXC. (15)

In Eq. (15), the indices y on the lhs and v on the rhs are not
summed up. Eq. (15) tells us that C takes the following
form: C =3, $n,+x" + 3 ,c,x" + Co. Here ¢, ¢,s,
and C,, are constants. By substituting this expression into
(13), we find ¢ = 0 and ¢, = 0, which means that C should
be surely a constant. This tells us that even if C is on the
local maximum of the potential (12), C does not roll down.
If V(C) does not vanish, the potential V(C) could be the
vacuum energy and might play the role of the cosmological
constant when we couple the model with gravity. Then it
could be interesting to investigate the signature of the
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potential and the (in)stability of the classical solution
corresponding to the extrema of the potential.

We now assume the parameter y is positive, because the
signature of u can always be absorbed into the redefinition
of h,,. As the signs of 1 and m? are undetermined while u
takes a positive value, we consider the following cases:
(@) A >0 and m? > 0:

Besides the trivial solution C = 0, there are non-
trivial solutions for C, which are given by

=3u +\/9u® + 12m?2
= pt 2’2 +lem > 0,
—3u — /9 + 12m?2
= 7 <0. (16)

¢

G

We now consider which solution corresponds to the
positive- (negative-) energy solution under the
assumption u > 0, 1 > 0, and m? > 0. For this pur-
pose, we have to solve the inequalities

V(C) = — 6m>C? + 4uC® + AC* > 0,
V(C) = — 6m>C? + 4uC® + AC* < 0. (17)

The solutions are given by

C<C_ or C,<C forpositive energy, (18)

C_<C<(C, fornegative energy. (19)

Here C, and C_ are defined by

7—2/4+\/4/42+6/1m2>0
— : ,
—2u — /4u? + 6Am?
=V oM _y, (20)

c,

C_

In order for C. to be real numbers, A should be larger
than —2u2/3m?, but we assume the positivity of 1 and
m? here. C; and C, are both positive, and C, and C_
are both negative. Thus, what we should do is to
compare C; to C, and C, to C_:
(1) C, and C;.
We now consider the following quantity:

4 2
>ﬂ<—1+ 1+ﬂ> > 0. (21)

Thus, we obtain the relation C, > Cy. Since C,
is positive while C_ is negative, we find
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C_ < C, < C4, which means the solution C; cor-
responds to the negative energy.

(2) C, and C_.

(b)

Similarly, we investigate the difference between
C_ and C;:

U 3m?2 4m?2
=t a1 g 1
C_-G, 2/1< \/ + 20 + \/ + 3
L N U L (22)
22 22 '

This means C_ < C,. Since C, has a negative value,

C_ < (C, < Cy holds.
Therefore, we see that both of solutions satisfy the
condition for the negative-energy solution.
=3u*/4m* < 4 < 0 and m*> > 0:

We continue the similar analysis. However, C| , and
C. are given as follows in this case:

3u— /9 — 12m?|A| >0

C pu—
1 202]
3u+ /9 — 12m?|4
C, = 0,
: 20 -
c :2,u—\/4,uz—6m2|/1|>0
) 4] ’
c o 2u + \/4u? — 6m?|1|
o 4]
C2 > Cl’ C_< C+. (23)

Note that C_ and C, in (23) correspond to C, and C_
in (20), respectively. Since 4 is the coefficient of C*,
the solutions for the inequality also change:

C_< C<(C, for positive energy, (24)

C<C_ or C,<C fornegative energy. (25)

The condition for C. to be real is given by

—24%/3m* < A < 0. As we assume the reality of C

in this analysis, C. does not exist for the case

=3u?/4m?* < A < =2u*/3m?. Therefore, we divide

the parameter region —3m?/4u®> <A <0 into

=3u? /4m?* <A<—2u*/3m? and —2u*/3m* <1 <0.
(b1) —242/3m% < A < 0 and m? > 0,

Let us compare C,, with C.:
(1) C_ and C;.
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U 3m?|] 4m? ||
C_—-Ci=—|1-44/1- 34 /1 -
2 ( \/ 52 32

p 3m?|A|
A SR 0. 26
>2|/1|< Y (26)

Thus, we find C; < C_ < C,, and C| turns out to be the negative-energy solution.

(2) C_ and C,.
2 4 2
c.-c=[1-4 1_3’”2'_3 - m'f'
2|4 2u 3u
< (g iAo (27)
217 2 3) =

In the second line, we use the fact that 1/3 < /1 —4m?|A|/3u* < 1. From (27), we obtain the result C_ < C,.

3) C, and C,.
U 3m?|]| 4m?| 2|
C,—Cy=-—|[14+441- -3y /1-—24
A 2|/1|< +\/ 242 32

u 3m?| ]| 4m? ||
——<1+3 1- — /1= . 28
= 2|/1| { + (\/ 2'u2 3M2 ( )

The quantity /1 —3m?|A|/2u> — /1 —4m?|A| /344 is always negative if we assume case (b1). Thus, (28) is

rewritten as follows:
U 3m?[A| 4m?| 2|
c.-C —<1=34/1- — 1 ——— 5. 29
SRRV { ‘\/ 2u? 3u? @)
1

The maximum value of the second term is given by
<= (30)

1 3m?|]| ! 4m?|)|
2u? 3u? 3

in the assumed parameter region. Therefore, C_ is larger than C,.
According to these analyses, C, and C; correspond to the positive-energy solution and the negative-energy solution,
respectively.

(b2) —3u?/4m? < 1 < =24 /3m>.

As mentioned above, C. is no longer real in this case. Thus, V(C) takes negative values only, which means that C
and C, produce the negative-energy solution.

() A <0 and m? <0:
In this parameter region, we have

_ 2 2 ) 2
3=V £ 12|m?||A] <0, c _ 3+ VO A+ 12|m?||A| -0,

c
1 214 ’ 214
2u — /4% + 6|m2||2| 24+ /4P + 6lm2||4]
c M+|m|I|<0’ c, =+ e+ Olmla o (31)

4] 4]

The conditions for the negative- and positive-energy solutions are given by
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C_< C< (C, for positive energy,

C<C_ or C,<C fornegative energy. (32)

We repeat the analysis similarly to that presented above. Thus, we will only give the results in the following sections:
(1) C, and C,. By taking the difference between C, and C,, we find

u 3|m212) 4|m?|4)
C,—Cy="—|1+4/1 —34/1
se=mtt \/ T Ry
2 4|m?||2|
Ly R 0. 33
S A R e (33)

This means that C, is a positive-energy solution, because C, takes a positive value.
(2) C_ and C;.
By taking the difference between C_ and C;, we find

H 3|m?||| 4m?14]
—Ci=—=|1-44/1 31+ ———
c_-¢C 207 l \/ =+ 202 + + 32

p 3|m? |||
— |1 —=4/1 0. 34
< 27 [ + W < (34)

Therefore, C is also a positive-energy solution, as C; < 0 is obviously smaller than C, > 0.
(d) 0 <2< 3u*/4|m? and m? < 0:
Cy, C,, and C. are given by

=3u+ /9 — 12|m?|A =3 — /9 — 12|m?|A
pu— pr— O7
Cl 7 <0, C2 2 <
24 — /% — 6m2 ]2 —2p 4+ /T = 6|ma
o — Z ko o, 2Tt f I, (35)

The energy conditions are

C_< C < (C, for negative energy,

C<C_ or C,<C forpositive energy. (36)

Since C are not real in the case of 2u?/3|m?| < A < 3u*/4|m?|, we divide the parameter region as in the previous

case:
(d1) 0 < 4 < 2% /3|m?|.
(1) C, and C;.
U 3|m?|A 4|m?|A
C.—C =1 |-1+4+44)1-5C-3/1-—=%
mhEy Tt \/ 242 3u?
H 3[m?||]
-1 1- 0. 37
<ot 2w | = (37)

This means that C; is a positive-energy solution.
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(2) C, and C,.

#

G-G=5

L
2

This is because 1/3 < /1 —4|m?|A/3u* < 1.

(3) C_ and C,.

~1+4

L=

As in the case of (30), the maximum value of the
second term is given by

| 3|m?|A | 4|m?| A
2u? 3u?

Hence, we find C_ < C,. (2) and (3) mean C, is a
negative-energy solution.
(d2) 2u2/3|m?| < A < 3u?/4|m?|.
C. are not real in this parameter region. Thus, both
solutions C , correspond to the positive energy.

These results are summarized in Tables I and II. The
former and the latter correspond to the cases of m”> > 0 and
m? < 0, respectively.

As we mentioned, the Fierz-Pauli theory is stable on
the local maximum. Therefore, it is plausible to assume that
the theory is stable on the local maximum even though the

< % (40)

PHYSICAL REVIEW D 92, 023011 (2015)

3|m?|A
—1+44/1 ————
+ \/ e +

2

3\/1 _4|m2|ﬂ]
3u

3m2d 1

- 3.=- 0. 38
2/'42 + 3 > ( )

2 2
Y P Oy
2u? 3

3jm2|A 4)m2|2
3y A (39)
2u 3u

parameters x and A take nonvanishing values. Under this
assumption, we check the stability of the solution C| ,. For
this purpose, we have to obtain the expression of the second
derivative of the potential:

V"(C) = =12m?* + 24uC + 121C*. (41)

We find the stability by substituting the solutions into
(41) for each parameter region.
(@) 2> 0 and m? > 0:
In this case, both solutions correspond to the
negative-energy solutions. Plugging in these solutions

yields
(1) C=c,.
" 3 2 2 2
% (c:cl)zz(@l — 2\ /% +12m/1>

+24m? > 0. (42)

TABLE 1. Relation between C| ,, the vacuum energy, and the stability of the solutions when m?* > 0.

Parameters

Energy A>0

—2u%/3m?> < A< 0 =3u?/4m? < A < =2u%/3m?

no solution
C, (unstable) and C, (unstable)

Positive energy
Negative energy

no solution
C, (unstable) and C, (stable)

C, (stable)
C, (unstable)

TABLE II. Relation between C| ,, the vacuum energy, and the stability of the solutions when m? < 0.

Parameters

Energy A<0

0 < A < 2u%/3|m?| 247 /3|m?| < A < 3> /4|m?|

C, (stable) and C, (stable)
no solution

Positive energy
Negative energy

C, (stable)
C, (unstable)

C, (stable) and C, (unstable)
no solution
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(2) C=C,.

V(€ =Gy)

3
= (6,ﬂ 2 /9 + 12m2/1)

+24m? > 0. (43)

Equation (41) is positive in both cases. Therefore, these
solutions are unstable.

(b1) —24>/3m* < 2 < 0 and m? > 0:

C, and C, are linked with the positive-energy and
negative-energy solutions, respectively. As in the above
case, we find (41) for each solution.

1) C=C,.
3
VI(C=C,) = \/1|< 64> + 2ur /9> — 122 |,1|)
+24m? > 0. (44)
2) C=C..
3
VI(C=C,) = \/1|< 642 — 27 /92 — 12m2 |/1|)
+24m? < 0. (45)

This result means that C;, corresponding to the negative-
energy solution, is unstable; while C,, corresponding to the
positive-energy solution, is stable.

(b2) =3u?/4m? < 1 < —2u*/3m* and m* > O:

The negative-energy solution is realized for both sol-
utions C; and C,.

(1) C=C,.
VIC =) = ( 6% + 2\ /92 — 12m? |,1|)
4]
+24m2 > 0. (46)
2) C=0C,.
VI(C=C,) = \ﬂl( 642 — 21/ 92 — 12m2 |,1|)
4 24m? <0, (47)

Although both solutions lead to the negative-energy sol-
ution, C; is unstable and the other solution is stable.

PHYSICAL REVIEW D 92, 023011 (2015)

() A <0 and m?> <0:
Both solutions correspond to the positive energy.
(1) C=¢C.

VI(C=C,) = IAI( 642 + 2 /942 +12|m2||/1|)

—24m?| < 0. (48)
2) C=0C,.
" 3 2
VI(C=C,) = Iﬂl( 6% — 2u\ /9 + 12|m ||/1|)
—24{m?| < 0. (49)

Both the positive-energy solutions are stable.

(d1) 0 < A < 24?/3|m?| and m* < 0:

C, is a positive-energy solution, and C, is a negative-
energy solution.

1) C=C,.
vie=c=p; (6,u — 2 /9% — 12|m? |,1)
_24m?| < 0. (50)
2) C=C.
VI(C=C) =1 (6;: +2ur /9 — 12|m? |,1)
—24m?| > 0. (51)

The positive-energy solution is stable, while the negative-
energy solution is unstable.

(d2) 2% /3|m?| < A < 3u?/4|m?| and m?* < 0:

In this parameter region, both solutions correspond to the
positive energy. The stability analysis is the same as the
previous case, because the expressions of C; and C, do not
change from case (d1). Thus, we find that C| is stable and
C, is unstable.

The above discussion tells us that in the solutions C| , for
both cases (a) and (c), the values of the potential have the
same signature, but the stability is different. Both of the
solutions are unstable in the case (a), while there exist
stable solutions in the case (c). The cases (b1) and (d1)
have one stable positive-energy solution and one unstable
negative-energy solution. These results are summarized in
Table I.
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We also comment on the global structure of the potential
and the global stability for the massive spin-two field. The
special feature in the model of massive spin-two particles is
that the vacuum where the potential is convex upward is
stable, but the vacuum where the potential is convex
downward is unstable. In the case where both C; and
C, correspond to the stable vacua, however, the system also
has the “trivial” vacuum C = 0, which realizes the lowest
energy in the system, although the massive spin-two
particle becomes tachyonic around the vacuum. We may
think that the system could be ultimately rendered unstable
by the quantum tunneling from the stable “false” vacua to
the unstable “true” vacuum. In the case of scalar field
theory, this speculation could be true. In the case of the
massive spin-two field, however, it is not clear if the system

PHYSICAL REVIEW D 92, 023011 (2015)

is unstable or not, because the potential does not corre-
spond to the propagating modes, which is not the scalar
mode but the massive spin-two mode. If we consider the
tunneling for the massive spin-two mode by, say, the WKB
approximation, we need to consider inhomogeneous and
anisotropic intermediate states, which makes the situation
very complex. Therefore, at least at present, we do not
know how we should discuss the global stability, and we
only concentrate on the arguments about the local stability.

IV. NEW MODEL OF THE MASSIVE SPIN-TWO
PARTICLE IN A CURVED SPACETIME

The naive extension to the theory in a curved spacetime
is given by the minimal coupling model:

1 1 2
S = / dx, /_—g{—ivﬂhw,vﬂh’“/’ + Vi VPR =V, R+ 2V, m? G hogh,s

— %gﬂl”]llzywsl{zh h

M1V ol T3S

A
_ E ghvaabsstata B B h } (52)

M1V T oV T3S T Ty

Unfortunately, this minimal coupling model is not ghost free even in case of the free theory according to Refs. [34,35].
Therefore, we constructed a new ghost-free massive spin-two model coupled with gravity by adding nonminimal coupling

terms [16]. Instead of (52), the action of the ghost-free model in arbitrary dimensions D is given by

!

1 m?
S = / dPx, /_—g{— SV VI 4V VO =V TR D+

¢ 1-2¢ )2 A
+ BRhﬂvhﬂy + Tha - igﬂlymzvzmh hllll/l hﬂzvzhmvz - ZgﬂIDIMZDZMySMMhMMhﬂz”zhﬂzlf3hﬂ4”4 : (53)

In addition to two nonminimal coupling terms, we also found the following nonderivative interaction terms in four

dimensions [16].

WiV V2
c hﬂl”lhﬂzllz’
1 Ha M3 LN
bwﬂl 2 p35 o1 o0,

5ﬂ1p Ho M3 M4 §V1

Lopopy oy, O

%2 03 g,

Here C

HUPC

is the Weyl tensor defined by

1
C;u//)(r = Ruv/)o’ - 5 (gW)Rzz(r + gl/()’Rﬂ/) - g/msz/) - gpr;m')

1
+ ER(gupgua - gﬂo'gbp)' (55)

Note that the interaction terms containing the scalar

1 n a1V H2V2 33
curvature like R"g My, My, Ny, can be added

because R is constant on the Einstein manifold, but we
ignore such a redundant term here.

b3 Cﬂl/’25152g.0353h h h
o3

L R TS R T

vy Uz Uy CP1P201529/7353P404h h h h (54)

[a3 L R T Ry L Ry T L2 i

V. CLASSICAL SOLUTIONS
AND STABILITY

In the previous section, we revealed the parameter
region which allows the system to have stable solutions.
Although the result is also important, the analysis is not
enough because of the appearance of the nonminimal
coupling term.

In this analysis, we assume the four-dimensional (anti-)
de Sitter spacetime as a background metric where the
nonminimal coupling terms containing the Weyl tensor (54)
vanish. Therefore, we consider the action (53) in four
dimensions:
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S = /d4x\/—g{ 5 ullup
+ thWh/“’ + _Tzéha — %gﬂl”l/‘z”zllﬂ/}h

As in the case of the flat spacetime, vacuum
solutions have to be invariant under the isometry of
the spacetime:

hy = Cgy, Leg,, = 0. (57)
Here C is a constant and ¢ is the Killing vector for the

(anti-)de Sitter spacetime. Substituting the ansatz (57) into
the equations of motion gives

=2{6m? + (2 =3E)R}C + 12uC* + 42C3 = 0. (58)

This is the equation determining the extrema of the
potential for the system. The solutions are given as
follows:

M1V oV T3S

PHYSICAL REVIEW D 92, 023011 (2015)
2

5 Vi V0 N, VPR — N0,V v hV#h + 7 GOh,shs

— %gﬂl”llh%%%ﬂﬂ%h h h h } . (56)

[ L R Ry T L R T Y

—6p & /3647 + 48m?A + 8A(2 — 3E)R

C=0, C=
42

(59)
The condition for the existence of the nontrivial solutions is
9u® + 12m22 + 24(2 = 38)R > 0. (60)

In order to investigate the stability around the vacuum
solution, we consider the fluctuation

hpw = Cg;w + f;w (61)

and rewrite the action in terms of f,:

S = / d4x\/—_g{—%vﬂfwvﬂf”” +V, f, VP = VEf, NV + %Vﬂfvf‘f - V(C)}. (62)

Here V(C) takes the following form:

= Z V,(C)

V(C)

Vo(C) = ={6m? + (2 = 3E)R}C? + 4uC? + ACH,

Vi(C) = =3m2Cf + 3uC*f + AC3 f — <1 - %é)RCf =

2

m A
V,(C) = <—7 +uC+ ) C2> G f opf s — ZRfa/;f“ﬁ -

V'y(C)
4

5

f

: 1-2%,

(63)

Here V,,(C) expresses the term including n—the power of f,,. We should note that V,(C) is proportional to the Fierz-Pauli

mass term in (1) due to the following identity:

gﬂll/l"'ﬂn—]yn—lﬂn

u = (D —n+ l)gﬂll’l"‘ﬂn—lvn—l . (64)

Here D denotes the dimensions of the spacetime. We should also note that V3(C) and V,4(C) are also given by the

pseudolinear terms in (2) and (3).

We now define an effective mass M of f,, by M?* = m? — 2uC — AC?. As the vacuum solutions satisfy the equation

V's(C) = 0, the linear term in f,, vanishes:

1 1
S = /d“x\/—_g{——vﬂfypvf‘fup + V, f, VP =NEf NV EV,,fV"f

M?
+—= a//’yﬁf aﬂf 70 +- 5

: SRl + 1

-2
8

Rf> = Vo(C) + 0<f3,f4>}. (65)
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Because the purpose is to investigate the stability around
the vacua, we need to keep the terms including the second
power of f,,. In a curved spacetime, the stability of the free
massive spin-two field is determined by the Higuchi bound
[36]. In the case where A=y =0 and & =1, it is well
known that by assuming M? = m? > 0, if R > 6m?, the
vacuum is unstable and if R < 6m?, it is stable [36,37]. On
the boundary R = 6m?, the theory is invariant under the
gauge transformation

1
8fw =V, VI + Ele“,

where I is a gauge parameter. For this reason, the theory
satisfying the condition R = 6m? with A = y = 0 and & = 1
is called partially massless. The stability has not been
investigated when & # 1, but as we see below, the deviation
is not very important when the curvature of the spacetime is
constant. Let us see the quadratic term in the potential of (56):

’ ¢

m 1-2¢
—— (pHv _ ;2 2
2(h hy, h)+4

Rhogh +~—=RI%. (66)

To address the deviation from the £ = 1 case, we express
the £ parameter in terms of &:

E=1+406. (67)
Then, we rewrite (66) as follows:

m? 1 1
—— (W*h, — K> —Rh*h, ——Rh?
) ( uv ) +4 w g
)

"2

R(h*h,, — h?). (68)
This means that the deviation from £ = 1 is equivalent to the
shift in the mass parameter since R is constant, and we can
set £ = 1 without loss of generality. (We should note that this
is just a mathematical equivalence. Because the mass
parameter is strongly related with the stability of the system,
the deviation from £ = 1 is physically important.) Hence, we
impose the following conditions for the stability:

M? >0, R < 6M>. (69)
Therefore, the stable, nontrivial solutions have to satisfy

both of the conditions (60) and (69). For example, let us
|

PHYSICAL REVIEW D 92, 023011 (2015)
R

Stable region

Unstable region

FIG. 1 (color online).
curvature spacetime.

The parameter region for the constant

consider the simple case where u = 0. The nontrivial
solution is simplified as follows:

6m> — R
C==+——. 70
57 (70)
The condition for the existence of (70) is A <0 and
R > 6m?, or 2> 0 and R < 6m?2. On the other hand, the
effective mass M around the vacuum is given by

R
M=m2—/1C2:—2m2—|—§. (71)

From (69) and (71), we have the stability condition around
the vacuum expectation value (VEV) as follows:

R > 4m?, R > 6m?. (72)
The stable region is shown in Fig. 1. Hence, the solution
satisfying the stability condition exists when A <0
and R > 6m>.

VI. NEW BIGRAVITY

The bigravity model can be regarded as a model where a
massive spin-two field couples with gravity. Then we may
consider the model where h,, couples with gravity, which
can be regarded as a new bigravity model because there

appear two symmetric tensor fields g, and £,,, as follows:

1 1 m?2
S = / d4xw/—g{— Ev,,hwv”hw + Vﬂhwv/’h’“ﬂ — V"hWV”h + Ev,,hwh + Tfﬁyﬁhaﬂhy(s

'3 1-2& ., u
SRh W 4= o pp2 I qunmepsy
RS 317

M1V "oy T T3S

A
— 47 gﬂ]vlﬂzbzﬂsvsﬂwahmyl hl’zl/z hll3l/3 hy4L/4 } + Sgg. (73)
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Here h,, is not the perturbation in g,,, but &, is a field
independent of g,,, and Sgy is given by the Einstein-Hilbert
action without the cosmological constant. We have to note
that the action is constructed up to the dimension-4
operators, and it is not obvious whether or not this system
has a ghost, since the matter part of the Lagrangian is
constructed for the field 4, to be ghost free only on the
Einstein manifold. We show, however, that there are
classical solutions which realize the spacetime which has
constant curvature.

We also stress that the £ parameter is not redundant here,
unlike the rigid curved background. In Sec. V, we see that
the deviation from £ =1 means the appearance of the
Fierz-Pauli tuned term (68) proportional to the constant
curvature R. Thus, we concluded such a term is redundant
and can be ignored without loss of generality. On the other
hand, in (73), as R is not constant but a dynamical variable,
we cannot regard the £ as a redundant parameter.

Finally, we note that the mass parameter m, the cubic
coupling u, and the quartic coupling A take an arbitrary
real value.

VII. COSMOLOGICAL AND BLACK HOLE
SOLUTIONS

In this section, we obtain the cosmological solution and
the black hole solutions. We now assume, for simplicity,
that the solution has the following form as in Sec. V:

hy, = Cgy,. (74)

Here C is a constant. The equations of motion for A, are
given by

=2{6m? + (2 =3E)R}C + 12uC* + 42C* = 0. (75)

Furthermore, we obtain the following action by substituting
(74) into (73):

S= —/d“x\/—_gVO(C) —l—%}(z/d“x\/—_gR
~{-300 55} [ervEarR-200) (9

Here we assume (2 — 3¢)C? + ﬁ # 0; otherwise the grav-

ity completely decouples. The effective cosmological con-
stant A is defined by

K2 (—6m>C? + 4uC3 + 2C*)

Agr =
off 22C% (2= 38) + 1

(77)

Thus, the Einstein equation given by the variation of the
action with respect to g, has the following form:

PHYSICAL REVIEW D 92, 023011 (2015)

1
R/w - ERg;w + Aeffgﬂy =0. (78)

Since (78) admits the Einstein manifolds as solutions, we
can consider the fluctuation around the solution of (75)
without any ghost as long as the fluctuation is small
enough. By multiplying (78) with ¢**, we obtain

R - 4Aeff‘ (79)
By substituting (79) into the expression of (75), we find
4C{=2uLC? + (A + 6{m?)C* + 3uC —3m>} = 0.  (80)

Here ¢ =x?(2—3¢). Then the solutions, except for
the trivial solution C = 0, should satisfy the following
condition:

=2ulC3 + (A4 6m?)C* +3uC —3m> =0.  (81)

Dividing (81) by —2u and changing the variable C by

C=x+ A6Im (e can rewrite (81) as follows:

6ug
1 A4+6im*\2 9
3 :O = —— R — -
X+ px—+gq , p 3{< e > +2C ,
2 (A4 6Lm*\3 A
— - . 82
K 27( 2t ) e (®2)

Then, by putting o = e>*/3

expressed as

, the solutions of (82) are

Now the determinant is given by

D=-274—4p> = —22. 33{ (g)z + @)3} (84)

Except for the case that ¢ = p = 0, there are the following
three cases:

(1) D > 0. There are three different real solutions.

(2) D < 0. There is only one real solution.

(3) D =0. There are three real solutions, but two of

them are degenerate with each other.

Let us consider a little bit the simple case y = 0 in the
following. The equation of motion (81) is reduced to be

(A+6{m?)C? —3m* = 0. (85)
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Then the solutions are given by

c_ 3m? 3m?
PV 2 eem? A+ 6Cm?

The solutions become real and nontrivial (C # 0) when

m?> >0, A+6lm*>>0
{ ¢ . (87)
m?> <0, A+6{m*><0
Furthermore, by substituting C;, into the effective cos-
mological constant (77), we obtain
Aeit(Cr2) = =k2(Cyp)°m?. (88)
If the conditions in Eq. (87) are satisfied, C;, are real
numbers. Therefore, we find

250, A+6(m?>0 anti-de Sitter
{m m i (89)

m* <0, A+6{m*><0 de Sitter

As we have obtained the solutions of this new
bigravity theory, we have to investigate the stability of
the obtained solutions as in the case of the rigid back-
ground. For this purpose, we need to consider both of the
fluctuations in h,, and g,, simultaneously, but this leads
to very complicated equations. Thus, we will analyze the
stability in future work.

VIII. BLACK HOLE ENTROPY

Since the action (73) admits the Schwarzschild—anti-de
Sitter black hole solution under the assumption £, = Cg,,,
we can calculate the black hole entropy. Let us use the Wald
formula to calculate the entropy for the system, which is
also applicable for the spacetime having the asymptotically
anti—de Sitter spacetime.

(We could also have the Schwarzschild—de Sitter sol-
ution, but there are several subtleties due to the presence of
the two event horizons.) Note that the Wald formula is
applicable for the asymptotically anti—de Sitter spacetime
because the mass can be defined based on the asymptotic
Killing vector.

The Wald formula is given by

5L
S = —ZﬂﬁdAé—eﬂyepg. (90)

HUpC

Here € is a binormal tensor, and H denotes the horizon of
the black hole. The term contributing to the functional
derivative is

1 & 1—2¢
L =~ R+>Rh, " + ——Rh>. 91
rel 21('2 + 4 Hv + 8 ( )

PHYSICAL REVIEW D 92, 023011 (2015)

Therefore, we obtain

5L & ~2%
SRups (4 a1 L 8 tt 262 >
1
'3 (g — ¢ g"). (92)

The substitution of the classical solution C,, and the
Schwarzschild—anti-de Sitter or Kerr—anti-de Sitter metric
yields

A 127AQ-39)m’
T 4G 1+ 487G (2 = 3&)m?

(93)

The last term corresponds to the contribution from the
condensation of the massive spin-two particle. The area of
the event horizon for the Schwarzschild-type metric is
given by

1
A= | A67r| sinh? —smh (BM /| Aett|) (94)
eff

Here M denotes the black hole mass.

These results can be compared with those [32,33] in the
Hassan-Rosen bigravity model [10-12], where the entropy
is given by the sum of the contributions from two metric
sectors.

IX. SUMMARY

In this paper, we have investigated the classical solutions
for the theories of massive spin-two particles in flat
spacetime and curved spacetime, which were proposed
in Refs. [15,16] by coupling the model with gravity.

In conflict with intuition, the massive spin-two particle
becomes tachyonic on the local minimum of the potential,
and the particle is stable on the local maximum—that is, the
local minimum induces the instability, although the local
maximum corresponds to the stability. Based on this
analysis, we classified the stable or unstable parameter
region for the massive spin-two particle with potential
terms in a flat spacetime. Although the model is very
similar to a scalar field theory with quartic and quadratic
potential terms, it is remarkable that the relation between
the stability and the vacuum energy is opposite to the model
of the scalar field having similar potential.

We extend the stability analysis to the case of the rigid
background. In this case, the vacuum solutions are invariant
under the transformation induced by the Killing vector for
(anti-)de Sitter spacetime. Since the stability condition
called the Higuchi bound for the free massive spin-two
particle is given by Higuchi [36], we apply the analysis to
our model.

Finally, we consider the case where the background
metric is dynamical due to the presence of the
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Einstein-Hilbert term. Then we obtained solutions describ-
ing the (anti-)de Sitter spacetime. The obtained de Sitter
spacetime might correspond to the inflation in the early
Universe or the accelerating expansion in the present
Universe. These solutions correspond to the extrema of the
potential for the trace of the symmetric tensor field. As
mentioned in the text, we do not carry out the stability analysis
for this gravity coupled system. This could be a future work.

In addition to the solutions describing the (anti-)de Sitter
spacetime, we find the solutions describing the black
hole, which could be the (anti-)de Sitter—Schwarzschild or
the (anti-)de Sitter—Kerr spacetime. By calculating the black
hole entropy, furthermore, we find that the entropy contains

PHYSICAL REVIEW D 92, 023011 (2015)

the explicit contribution from the condensation of the massive
spin-two particle. In the case of the Hassan-Rosen bigravity
model [10-12], the entropy is given by the sum of the
contributions from two metric sectors. On the other hand, the
black hole entropy for the model in this paper is not unique
because of arbitrary parameters appearing in the entropy.
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