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Terrestrial gravity noise, also known as Newtonian noise, produced by ambient seismic and infrasound
fields will pose one of the main sensitivity limitations in low-frequency, ground-based, gravitational-wave
(GW) detectors. It is estimated that this noise foreground needs to be suppressed by about 3–5 orders of
magnitude in the frequency band 10 mHz to 1 Hz, which will be extremely challenging. In this article, we
present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. The
method uses optimal combinations of tensor channels and environmental sensors such as seismometers and
microphones to reduce gravity noise. It makes explicit use of the direction of propagation of a GWand can,
therefore, either be implemented in directional searches for GWs or in observations of known sources. We
show that by using the extra strain channels in full-tensor GW detectors and a modest number of
environmental sensors, the Newtonian-noise foreground can be reduced by a few orders of magnitude
independent of the GW direction of propagation.
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I. INTRODUCTION

The advanced generation of large-scale, laser-
interferometric, gravitational-wave (GW) detectors LIGO
[1] and Virgo [2] are expected to make the first direct
detections of GWs within the next few years, which will
open a new observational window to the Universe. The
Japanese GW detector KAGRA is currently under con-
struction and will join the detector network near the
beginning of the next decade [3]. These kilometer-scale
detectors are designed to observe GWs in the frequency
band between 10 Hz and a few 1000 Hz. Upgrades of these
detectors can potentially extend the band to lower frequen-
cies by a few Hz [4,5], but today it seems infeasible to
continue developing the existing facilities into detectors
sensitive well below 10 Hz. Projecting the state-of-the-art
GW detector technology into the near future implemented
in a detector with 10 km arm lengths and assuming a new
detector site favorable in terms of ambient seismic noise
(and associated gravity noise), it seems feasible to extend
the detection band down to frequencies around 3 Hz, as
was the result of a design study for the European third-
generation detector Einstein Telescope [6]. Completely
new detector designs need to be considered to realize
ground-based GW detectors at even lower frequencies [7].
These include the atom-interferometric [8], the torsion-bar
[9], and the superconducting [10] GW detector concepts
targeting signals between 10 mHz and 1 Hz.
The low-frequency sensitivity goals set for any of the

potential future ground-based detectors is strongly influ-
enced by estimates of Newtonian noise (NN). If an ideal
site is selected, which means that seismic and infrasound

noise are near their global minima [11], then GW strain
sensitivities of a few times 10−24 Hz−1=2 can be reached
down to a few Hz without further gravity-noise mitigation
techniques. At less favorable sites, such as the existing
detector sites, or considering lower-frequency detectors,
gravity-noise mitigation is required. Proposed strategies
can be divided into two categories: passive and active noise
mitigation. Passive mitigation aims to suppress sources of
gravity perturbation close to a detector’s test masses. The
detector buildings hosting the test masses act as a shield
against environmental infrasound suppressing associated
NN [12]. The construction of moats has been proposed
reflecting incoming seismic surface waves as a means to
reduce NN at the LIGO sites [13]. Recess structures around
the test masses can also reduce seismically induced NN
[14]. However, as was explained in [14], these techniques
are effective only at higher frequencies around 10 Hz,
where the mitigating structures can have dimensions
similar to the lengths of infrasound or seismic surface
waves. Site selection is also considered a passive mitigation
strategy. Building a GW detector underground, such as the
KAGRA detector, greatly suppresses NN from seismic
surface waves above a few Hz [15].
Whenever the passive strategies are not an option or

resulting noise suppression is insufficient, active noise
mitigation needs to be considered. Common to all active
mitigation strategies is the usage of an array of environ-
mental sensors with the purpose to obtain information
about mass density perturbations in the vicinity of the test
masses. Implementations of these methods then differ in
how one makes use of these data. One could actively cancel
the density perturbations near test masses using optimal
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feedback control. For example, microphones can be con-
trolled to produce sound that cancels the ambient sound
field inside a chosen volume [16]. A similar scheme may be
possible for seismic fields. However, this approach cannot
be effective at very low frequencies where active cancella-
tion of density fluctuations must be exerted over large
volumes around test masses. Another idea is feed-forward
subtraction where an estimate of the NN obtained from
environmental data is used to cancel the gravity-induced
motion of a test mass, or similarly, the estimate can be
subtracted from the detector’s data in a postprocessing step.
This method was first investigated in detail for the case of
stationary NN using Wiener filters [17] and later also tested
in numerical simulations of nonstationary seismic fields
[18]. While in the last publication, suppression of NN
from seismic surface waves was achieved using a relatively
small array of about ten seismometers, it is to be expected
that especially the subtraction of infrasound NN at
frequencies where it is relevant (below a few Hz) requires
a large number of auxiliary sensors [7]. Suppression of
infrasound NN below 1 Hz by orders of magnitude is
considered an extreme challenge and potential show
stopper for low-frequency GW detectors.
In this paper, we present a method to optimally reduce

NN in full-tensor GW detectors. Full-tensor detectors
measure all five independent components of the gravity-
strain tensor as explained in Sec. II for the example of
superconducting GW detectors. The basic idea behind the
new cancellation scheme is that using data from a suitable
linear combination of some tensor channels should facili-
tate NN cancellation in the remaining tensor channels. This
problem is studied analytically in Sec. III. It will be shown
that tensor NN cancellation still requires auxiliary envi-
ronmental sensors, but the problem is greatly facilitated by
including tensor channels. The optimal combination of
tensor channels depends on the direction of propagation
of a GW, and, therefore, the method can be applied in
directional searches of GWs or observations of known GW
sources. The role of sensor noise is emphasized in Sec. IV,
where Wiener filters instead of the analytical expressions
are introduced to find optimal channel combinations. In
Sec. VI, we propose a practical implementation of the
method based on the simulated noise suppression using
Wiener filters.

II. FULL-TENSOR GW DETECTORS

According to general relativity, a gravitational field is
characterized by a curvature tensor. Terrestrial laser-
interferometer GW detectors measure only one off-
diagonal component by combining two orthogonal light
cavities. A full-tensor detector could be constructed by
measuring five degenerate quadrupole modes of a solid
sphere [19,20]. The bandwidth of the detector could be
widened by using a “split sphere,” in which six test masses
are suspended from a central mass [21], or a “dual sphere,”

in which a spherical shell encloses an inner sphere [22]. A
tensor detector is equally sensitive to GWs coming from
any direction with any polarization and is, thus, capable of
resolving the source direction and polarization.
One could construct a low-frequency (0.01 to 10 Hz)

tensor GW detector by using six “almost-free” test masses
[21]. Figure 1 shows the test mass configuration of such a
detector. Six superconducting test masses, each with 3
linear degrees of freedom, are levitated over three orthogo-
nal mounting tubes. The test masses are made of niobium
(Nb) in the shape of a rectangular shell. Superconducting
levitation/alignment coils and sensing capacitors (not
shown) are located in the gap between the test masses
and the mounting tubes, as well as on the outer surfaces of
the test masses. The along-axis motions of the two test
masses on each coordinate axis are differenced to measure a
diagonal component of the wave:

hiiðωÞ ¼
1

L
ðxþiiðωÞ − x−iiðωÞÞ; ð1Þ

where x�ijðωÞ is the displacement amplitude of the test
mass on the �i axis along the jth axis, and L is the
separation between the test masses on each axis. The cross-
axis (rotational) motions of the four test masses on each
coordinate plane are differenced to measure an off-diagonal
component of the wave:

hijðωÞ ¼
1

L
½ðxþijðωÞ − x−ijðωÞÞ − ðx−jiðωÞ − xþjiðωÞÞ�;

i ≠ j: ð2Þ

FIG. 1 (color online). Test mass configuration for the low-
frequency superconducting tensor GW detector. Motions of six
magnetically levitated test masses are combined to measure all
six components of the curvature tensor.
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In addition to measuring the six strain signals, the detector
will measure the three linear and three angular platform
acceleration (plus gravity) signals by summing the along-
axis and cross-axis test mass motions:

aiiðωÞ ¼ −
ω2

2
ðxþiiðωÞ þ x−iiðωÞÞ;

aijðωÞ ¼ −
ω2

2
½ðxþijðωÞ− x−ijðωÞÞ þ ðx−jiðωÞ− xþjiðωÞÞ�;

i ≠ j: ð3Þ

These common-mode (CM) acceleration signals are used to
remove the residual sensitivity of the GW detector to the
platform accelerations [10].
Since test mass motion is measured with respect to the

sensing circuit elements mounted on the platform, this
detector requires a rigid platform with mode frequencies
above the signal bandwidth. To reduce its thermal noise,
the platform itself may need to be cooled to 77 K or
lower. To alleviate excessive demand on cryogenics, the
platform must not be too heavy while it is rigid enough,
with all the resonance frequencies above 10 Hz. The
design details of this low-frequency tensor detector called
SOGRO (Superconducting Omni-directional Gravitational
Radiation Observatory), will be published elsewhere (Paik
et al. [23]).

III. NEWTONIAN NOISE FROM INFRASOUND
AND SEISMIC SURFACE FIELDS

In this section, we present the analytical relations
between NN contributions to different channels of the
full-tensor GW detector. We consider the two cases of NN
from seismic surface waves and infrasound, which are
considered the dominant contributions to terrestrial gravity
noise below 1 Hz. Rayleigh waves are the only surface
waves producing gravity perturbations. The perturbation of
the gravity potential above the surface produced by
Rayleigh waves is given by [7]

δϕRfð~ϱ; z;ωÞ ¼ −2π
γGρ0
k

ξðωÞe−zkei~k·~ϱ: ð4Þ

Here, ~ϱ ¼ ðx; yÞ, ~k ¼ kðcosðαÞ; sinðαÞÞ, G denotes the
gravitational constant, ρ0 the mean mass density of the
ground, ξðωÞ the amplitude of vertical surface displace-
ment, and γ ≈ 0.8 a numerical factor characteristic for
fundamental Rayleigh waves that depends on the ground’s
Poisson ratio. We will assume here that the horizontal wave
number k obeys the linear dispersion relation k ¼ ω=cRf ,
but this is not important for the method and only simplifies
the equations. While the perturbed gravity potential under-
ground has additional contributions, for example, from the
displacement of cavity walls, final results presented in this
section are independent of this as long as the depth of the

GW detector is not a significant fraction of the Rayleigh-
wave length. So the choice of considering a surface detector
for the Rayleigh NN calculation is just to simplify some
equations.
The gravity-gradient tensor is defined as

gð~r;ωÞ≡ −∇ ⊗ ∇δϕRfð~r;ωÞ: ð5Þ

The gravity-gradient tensor can be identified with the
second time derivative of gravity strain, g ¼ ḧ. This
equivalence holds at low frequencies and for ground-based
detectors where the effect of a GW can effectively be
described as a tidal force acting on test masses. The
response of low-frequency GW detectors to NN is
described by this tensor since the distance between test
masses is much smaller than the length scale of variations
in the gravity field. In other words, the expression for strain
NN in large-scale GW detectors, −∇δϕRf=L, with L being
the distance between test masses, is approximately given by
the second spatial derivative in Eq. (5). Consequently, NN
in low-frequency detectors is independent of L.
For Rayleigh waves, we have

gRfð~r ¼ ~0;ω; αÞ
¼ 2πγGρ0ξðωÞk

·

0
BB@

cos2ðαÞ cosðαÞ sinðαÞ −i cosðαÞ
cosðαÞ sinðαÞ sin2ðαÞ −i sinðαÞ
−i cosðαÞ −i sinðαÞ −1

1
CCA:

ð6Þ

An arbitrary Rayleigh-wave field can be written as a sum
over many individual waves. Parametrizing the direction of
propagation of a GW by angular spherical coordinates θ;ϕ,
we can define a rotation RðθÞ ·RðϕÞ that aligns the
coordinate system of the gravity-noise strain tensor hRf
with the propagation frame of the GW. In this case, the
contribution of the GW to the total strain tensor h assumes
the simple Cartesian form

h0
GW ¼

0
B@

hþ h× 0

h× −hþ 0

0 0 0

1
CA: ð7Þ

In the GW propagation frame, the z axis corresponds to the
direction of propagation. The two rotation matrices are
given by
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RðθÞ ¼

0
B@

cosðθÞ 0 − sinðθÞ
0 1 0

sinðθÞ 0 cosðθÞ

1
CA;

RðϕÞ ¼

0
B@

cosðϕÞ sinðϕÞ 0

− sinðϕÞ cosðϕÞ 0

0 0 1

1
CA; ð8Þ

and the transformation of the gravity-noise tensor reads

h0
Rf ¼ RðθÞ ·RðϕÞ · hRf ·Rð−ϕÞ ·Rð−θÞ: ð9Þ

Let us now take the sum h0 of a single GW h0
GW and

Rayleigh-wave NN
P

i h
0
Rfðαi; ξiÞ. It can be shown that the

following relations hold:

hþ ¼ h011 − 2 cotðθÞh013 þ cot2ðθÞh033
þ csc2ðθÞ2πγGρ0

k
ω2

X
i

ξiðωÞ;

h× ¼ h012 − cotðθÞh023
þ i cscðθÞ2πγGρ0

k
ω2

X
i

ξiðωÞ sinðαi − ϕÞ: ð10Þ

The sum over displacement amplitudes in the first equation
simply denotes the total amplitude of vertical seismic
surface displacement at the GW detector. Applying a
trigonometric addition theorem, the sum over Rayleigh
waves in the second equation can be rewritten in terms of
horizontal seismic displacement of the Rayleigh-wave field
along the two directions x; y. Therefore, a linear combi-
nation of tensor channels and one or two seismic channels
(CM accelerations) can be found that perfectly cancels NN
in the two target channels h11; h12. Since the linear
combination involves cscðθÞ and cotðθÞ functions that
can become very large, it should be intuitively clear that
the analytical relation cannot be used in practice when
channels are also contaminated by additional instrumental
noise. These noise contributions would be amplified by the
gravity-noise cancellation. A practical solution to this
problem is investigated in Sec. IV.
Next, we repeat the calculation for infrasound NN.

Here, we choose to calculate the gravity perturbation
underground. We simply want to avoid the technical
problem of placing the GW detector inside the fluctuating
density field (i.e., the infrasound field), which leads to
additional terms in the NN. Avoiding these terms does not
change the final results or applicability of the method.
Below surface, the perturbation of the gravity potential by a
plane infrasound wave reflected from the surface reads

δϕISð~ϱ; z;ωÞ ¼ −4π
Gρ0
γp0

δpðωÞ
k2

ezkhei~kh·~ϱ; ð11Þ

where δpðωÞ is the amplitude of pressure fluctuations, γ the
adiabatic coefficient of air, p0 the mean air pressure, ρ0 the
mean air mass density, and kh the horizontal wave number
of an infrasound wave. This leads to the gravity-gradient
tensor

gISð~r ¼ ~0;ω; α; βÞ

¼ −4π
Gρ0
γp0

δpðωÞsin2ðβÞ

·

0
B@

cos2ðαÞ cosðαÞ sinðαÞ −i cosðαÞ
cosðαÞ sinðαÞ sin2ðαÞ −i sinðαÞ
−i cosðαÞ −i sinðαÞ −1

1
CA:

ð12Þ

The matrix is identical to the Rayleigh-wave matrix in
Eq. (6). As before, the angle α specifies the direction of
propagation of the wave along the horizontal direction. The
factor sin2ðβÞ is owed to the fact that the horizontal wave
number of an infrasound wave kh ¼ k sinðβÞ depends on
the angle of incidence β with respect to the surface normal.
The equations for the noise cancellation are given by

hþ ¼ h011 − 2 cotðθÞh013 þ cot2ðθÞh033
þ csc2ðθÞ 4π

ω2

Gρ0
γp0

X
i

δpiðωÞsin2ðβiÞ;

h× ¼ h012 − cotðθÞh023
þ i cscðθÞ 4π

ω2

Gρ0
γp0

X
i

δpiðωÞsin2ðβiÞ sinðαi − ϕÞ:
ð13Þ

Here, we can see that the case of infrasound cancellation
is more challenging. The sums over infrasound waves do
not correspond to easily observable quantities. For exam-
ple, a microphone collocated with the GW detector would
observe

P
i δpiðωÞ independent of the angles αi; βi.

Directional information could come from a gravimeter that
senses associated fluctuations of the gravity field. Still, the
sums cannot be rewritten in terms of gravimeter channels
(CM acceleration) due to additional factors sinðβiÞ.
Another problem of gravimeter channels is that they would
be dominated by seismic noise at frequencies above
10 mHz, which makes these channels useless for the
cancellation of infrasound NN.
In this section, we have presented analytical expressions

describing a new approach to cancel NN in full-tensor GW
detectors. Cancellation of Rayleigh NN as shown in
Eq. (10) can be achieved with tensor channels and an
additional three-axis seismometer. In the tensor detector
described in Sec. II, the CM acceleration channels of the
detector provide a three-axis linear and three-axis angular
seismometer with signal-to-noise ratio (SNR) in excess of
105 at 0.1–0.3 Hz. However, we have seen in Eq. (13) that

JAN HARMS AND HO JUNG PAIK PHYSICAL REVIEW D 92, 022001 (2015)

022001-4



cancellation of infrasound NN is more challenging. A term
remains that cannot be observed by a single microphone.
Nonetheless, it is shown in Sec. IV that tensor channels
greatly simplify the noise cancellation. Furthermore, while
the analytical expressions cannot be used when including
instrumental noise, it will be shown that efficient sub-
traction using only a small number of environmental
sensors is still possible for Rayleigh and infrasound NN.

IV. NEWTONIAN NOISE CANCELLATION
IN TENSOR GW DETECTORS

It was estimated that low-frequency GW detectors need
to achieve strain sensitivities of about 10−20 Hz−1=2 above
0.1 Hz in order to have good chances to observe GWs [7].
In Fig. 2, a sensitivity model is shown together with
estimates of the seismic (Rayleigh) and infrasound NN.
It can be seen that seismic NN needs to be suppressed by
about 3 orders of magnitude and infrasound NN by about 5
orders of magnitude. This is a truly daunting challenge and
is rightfully considered a potential show stopper for
ground-based low-frequency detectors. In order to achieve
this suppression, it was proposed that large arrays extend-
ing over square kilometers made of several tens to hundreds
of sensors are to be deployed around the GW detector. The
environmental sensors need to monitor their signals with
sufficient sensitivity to avoid significant sensor-noise con-
tributions in the cleaned strain channels.
Assuming array configurations designed with maxi-

mized efficiency (no sensor can be removed without
increasing noise residuals to an unacceptable level), the
sensor SNR needs to be at least as high as the inverse of the
suppression goal. For low-frequency detectors, this means
that seismometers need to sense seismic displacement with
SNR > 1000, and microphones need to sense pressure

fluctuations with SNR > 105 at 0.1 Hz. Requirements can
be far more demanding for microphones than suggested by
this rule of thumb. The additional challenge with infra-
sound NN cancellation is that the density perturbations are
described by a 3D infrasound field, but the array can only
be deployed at the surface. This greatly limits the ability to
extract the required information from the infrasound
measurements and affects the optimal array configuration.
Irrespective of the intrinsic sensitivity of microphones to
pressure fluctuations, wind noise poses a challenge for
high-sensitivity infrasound monitoring [26]. Consequently,
a solution of the infrasound NN problem requires new
methods and technology.
It is assumed that all noise is stationary and Gaussian,

which means that optimal noise cancellation is achieved
with Wiener filters [27]. In the frequency domain, the

Wiener filter is a vector that maps reference channels ~R to
an estimate n̂ of the NN according to

n̂ðωÞ ¼ ~wðωÞ · ~RðωÞ: ð14Þ

This form makes use of the fact that noise at different
frequencies is uncorrelated. If the Wiener filter is applied
in the time domain, then the last equation needs to be
substituted by a convolution between the filter and the
reference channels [28]. The estimated NN n̂ is sub-
sequently subtracted from the target channel.
A Wiener filter is calculated from the matrix CRR of

correlations between reference channels, which contains
the sensor-noise contributions on the diagonal and corre-

lations ~CRT between the reference channels and target
channel. In general, correlations between channels have to
be estimated from measurements, but here we assume that
the density fields are isotropic (in a 2D sense for the
Rayleigh field and for the half-sphere of incident infra-
sound waves), which allows us to calculate the correlations
precisely. Examples of calculated correlations between
seismometers and gravity data can be found in [15,18].
In the notation of the previous section, the target channels
of the noise cancellation are h011; h

0
12. The reference

channels consist of all environmental sensors and the strain
channels h013; h

0
23; h

0
33. The components of the Wiener filter

are given by

~wðωÞ ¼ ~C⊤
RTðωÞ · ðCRRðωÞÞ−1: ð15Þ

In order to evaluate the performance of a Wiener filter, we
plot the residual spectrum of the target channel after NN
subtraction relative to the initial spectrum CTTðωÞ of the
target channel. The residual is given by [17,18]

rðωÞ ¼ 1 −
~C⊤
RTðωÞ · ðCRRðωÞÞ−1 · ~CRTðωÞ

CTTðωÞ
: ð16Þ
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FIG. 2 (color online). Sensitivity target for low-frequency GW
detectors as first derived for the MANGO detector concepts [7].
The two NN estimates are based on measured seismic [24] and
infrasound spectra [25].

NEWTONIAN-NOISE CANCELLATION IN FULL-TENSOR … PHYSICAL REVIEW D 92, 022001 (2015)

022001-5



The relative subtraction residuals rðωÞ have frequency
dependence since a distributed array of reference channels
has frequency-dependent correlations between channels
and also since sensor SNRs vary with frequency, as shown
in Fig. 3.
In the following subsections, we investigate Wiener

filtering of infrasound and Rayleigh NN in detail.
Results are presented only for the h011 target channel.
Noise residuals are similar for h012, but we point out that
since the Rayleigh NN cancellation ideally requires hori-
zontal seismometer channels, there may be additional noise
from surface shear waves (Love waves) that contribute to
horizontal surface motion without producing gravity noise.

A. Rayleigh Newtonian noise

In the following, we demonstrate the effect of strain
reference channels on residuals after subtraction of
Rayleigh NN. Figure 4 shows the residual noise in h011
using seven seismometers on a 5 km ring around the
detector, and the vertical CM channel of the detector. The
speed of Rayleigh waves is equal to 3.5 km=s assumed here
to be independent of frequency. For simplicity, we also
assume that the seismometers measure seismic displace-
ment with a frequency-independent SNR ¼ 1000 (the CM
channel with 1000 × higher SNR), and the strain channels
measure Rayleigh NN with frequency-independent
SNR ¼ 1000. Frequency-dependent SNRs require yet-to-
be-developed numerical tools to optimize sensor arrays
used for NN cancellation.
It is worth discussing in detail how this result compares

to the analytical expression in Eq. (10). First, if only the
seismic channel at the detector were used, then residuals

near θ ¼ 0; π would grow to values close to 1 independent
of frequency. This case is represented in Fig. 4 by the
residuals at frequencies > 0.3 Hz, where the seismometers
on the ring have vanishing impact on residual noise.
Residual noise close to 1 is already better than predicted
by Eq. (10), since the cotðθÞ; cscðθÞ factors mean that noise
in the reference channels is amplified to infinity at these
angles. The Wiener filter avoids excess noise as can be
understood from Fig. 5. It shows the nonzero Wiener-filter
coefficients with reference channels consisting of the strain
channels, the CM vertical channel, and seven seismometers
on a 5 km ring. Since the filter magnitude varies over
orders of magnitude, the log modulus transform fðxÞ≡
sgnðxÞ log10ð1þ jxjÞ was applied [30], where sgn is the
signum function. The dashed curves show noise residuals
for infinite sensitivity reference channels. As expected,
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FIG. 3 (color online). Estimated SNRs of reference channels.
The self-noise of the seismometer lies a factor 10 below
commercially available broadband instruments. The self-noise
of the microphone is already achieved in current instruments.
Wind noise is not included (see [29] for a recent review on wind-
noise reduction methods). SOGROs CM channels function as
seismometers with 1000 × higher SNRs.
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FIG. 4 (color online). Relative residuals of Rayleigh NN
subtraction in channel h011 using seven seismometers on a
5 km ring, and the vertical CM channel. Seismometers and
strain channels have SNR ¼ 1000. The CM channel is 1000 ×
more sensitive than the seismometers. Residuals are independent
of angle ϕ.
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FIG. 5 (color online). Filter coefficients of a noiseless Wiener
filter for Rayleigh NN subtraction at 0.1 Hz (dashed), and using
reference channels with SNR ¼ 1000 except for the CM vertical
channel, which has SNR ¼ 106 (solid). Coefficient wðh023Þ ¼ 0 in
both cases. Gray curves in the background are for the seven
seismometers on a 5 km ring.
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filter coefficients tend to infinity near θ ¼ 0; π. The curves
differ from the analytical expression in Eq. (10) due to
additional seismometers on the ring. If reference channels
have finite SNRs, then the Wiener filter has reduced
coefficients towards the boundaries. In this way, the
Wiener filter avoids injecting excess sensor noise into
the target channel at the price of vanishing NN cancellation.
The filter coefficients also explain why the noise residuals
in Fig. 4 are very small near θ ¼ π=2. For this value of θ,
the only reference used in the NN cancellation is the
vertical CM channel, which has a very high SNR. In
comparison, the impact of the CM channel on residuals
near θ ¼ 0; π is less pronounced since the residuals are
dominated by noise from the strain and seismometer
channels.
Figure 4 also shows that, if seismometers are added to

form a ring around the detector, then subtraction perfor-
mance is increased substantially for all values of θ,
especially within a certain frequency band. This frequency
band can be chosen by adjusting the radius of the ring. The
optimal radius for a certain target band depends on the
Rayleigh-wave speed and on the SNR of the reference
channels. The higher the SNR or the lower the speed, the
smaller the optimal ring radius.
A direct comparison between the case with and without

tensor channels is shown in Fig. 6. As before, the
configuration of the seismic array consists of seven
seismometers on a ring with a 5 km radius, the vertical
CM, and strain channels. It can be seen that in the case of
Rayleigh NN subtraction, strain reference channels help
but do not lead to a large decrease of residuals compared to
the conventional scheme based on seismometers alone.

However, one should keep in mind that the residuals based
on only local reference channels is competitive with the
residuals of the full Wiener filter for 0.5 < θ < 2.6. Using
exclusively local channels not only simplifies the exper-
imental setup but also potentially results in an increased
robustness of the subtraction performance with respect to
wave scattering and contributions from local seismic
sources. These claims need to be tested in more detailed
simulations.

B. Infrasound Newtonian noise

Next, we present analogous results for infrasound NN
subtraction. Noise residuals using seven microphones on a
1 km ring around the detector, another seven microphones
on a 600 m ring, one microphone located at the detector,
and strain channels are shown in Fig. 7. The strain channels
measure infrasound NN with frequency-independent
SNR ¼ 105, and we assume that microphones measure
pressure fluctuations with frequency-independent SNR ¼
104. With these parameter settings, noise residuals lie above
the required 10−5 level. Increasing the microphone SNR
and correspondingly decreasing the radii of the rings (see
Sec. V) would further lower residuals, but developing such
microphones will not be straightforward. The combined
effect of the two microphone rings is good broadband
performance of the noise cancellation. Adding another
smaller microphone ring would lower residuals at higher
frequencies. While increased residuals were to be expected
from Eq. (13) near θ ¼ 0; π, the microphones ensure that
residuals only weakly depend on θ. Subtraction residuals at
0.1 Hz would be greater by almost an order of magnitude if
only a single microphone ring were deployed.
Subtraction performance is generally worse compared to

the Rayleigh NN case since infrasound NN is caused by a
3D wave field that is monitored by a microphone array
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FIG. 6 (color online). Relative residuals of Rayleigh NN
subtraction at 0.1 Hz in channel h011 using vertical CM and
strain channels, and seven seismometers on a 5 km ring. The solid
curve shows the residuals including all reference channels, the
dashed curve using only the eight seismic channels, and the
dotted-dashed curve using only local channels, which means
the vertical CM and strain channels. Strain and seismometer
channels have SNR ¼ 1000; the CM channel SNR ¼ 106.
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FIG. 7 (color online). Relative residuals of infrasound NN
subtraction in channel h011 using 15 microphones. Microphones
have SNR ¼ 104, and the strain channels SNR ¼ 105. Residuals
are independent of angle ϕ.
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constrained to Earth’s surface. Being composed of evan-
escent waves, the Rayleigh seismic field also displaces the
ground below the surface, but since Rayleigh waves are
genuinely surface waves, a seismic array deployed at the
surface can extract all information about associated density
fluctuations.
The Wiener-filter coefficients in Fig. 8 confirm that the

infrasound NN subtraction is more challenging. First, the
plotted filter coefficients are far off the analytical expres-
sion in Eq. (13). This was to be expected since Eq. (13)
states that no simple combination of local reference
channels can provide an accurate estimate of NN. In
contrast to the Rayleigh NN case, where good subtraction
can also be achieved with local channels only, at least for a
range of values of θ, deployment of a microphone array is
essential to achieve good subtraction performance. The
dashed curves show the filter coefficients with a single
microphone located at the detector, while the solid curves
are calculated for a Wiener filter that includes seven
additional microphones on a 600 m ring. Microphones
measure pressure fluctuations with SNR ¼ 104, and strain
channels measure infrasound NN with SNR ¼ 105.
Comparison between the two sets of curves in Fig. 8 shows
that the microphones on the ring contribute substantially
to the noise cancellation, since the coefficients are greatly
modified when including the extra microphones. Among all
local channels, only h033 contributes to a NN estimate near
θ ¼ 0; π in both cases. Note that for Rayleigh NN, the filter
coefficient of h033 was zero at these angles to avoid excess
sensor noise. The situation for infrasound NN is different
since the analytical expression in Eq. (13) does not
represent a noiseless Wiener filter (the last term is not
directly observed by any channel). The noiseless Wiener

filter for infrasound NN cancellation does not have coef-
ficients diverging at θ ¼ 0; π.
Coefficients of the Wiener filter for infrasound NN

subtraction generally depend weakly on the SNR of
reference channels. The coefficients in Fig. 8 would look
the same for any SNR values greater than 10. In order to
achieve the low residuals in Fig. 7, it was necessary to
deploy two rings of microphones, with a total of 15
microphones being used for the noise cancellation. At this
point, one may wonder if the strain reference channels still
contribute significantly to the subtraction performance.
Figure 9 shows that, in contrast to Rayleigh NN, reference
strain channels play a very important role in infrasound
NN subtraction. The dotted-dashed curve shows the noise
residuals if only local channels are used (i.e., strain
channels and one microphone). Subtraction performance
is very poor. The dashed curve shows subtraction residuals
if only microphones are used. In this case, subtraction can
be excellent, but only for values of θ close to 0; π=2; π. If all
channels are included, then excellent subtraction perfor-
mance is achieved for all values of θ (solid curve). This
means that microphone array and strain channels both play
an important role.

V. COMPARISON WITH NN CANCELLATION
IN CONVENTIONAL GW DETECTORS

In this section, we compare the tensor NN cancellation
with NN cancellation in conventional GW detectors, by
which we mean any of the low-frequency concepts that
observe only a single component of the gravity-strain
tensor or a single combination of components. This case
was investigated in [7]. It should be noted that the following
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FIG. 8 (color online). Wiener-filter coefficients using micro-
phones with SNR ¼ 104 and strain channels with SNR ¼ 105 for
infrasound NN subtraction. Coefficient wðh023Þ ¼ 0 in all cases.
Dashed: Single microphone located at the detector. Solid: Seven
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subtraction at 0.1 Hz in channel h011 using strain channels and 15
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discussion also applies to sensor arrays used for cancella-
tion in full-tensor GW detectors. The only difference is that
the additional strain channels of a full-tensor detector need
to be included to achieve the same reduction.
First, we point out that the noise residuals plotted in

Figs. 6 and 9 labeled “environmental,” i.e., using only
environmental sensors, do not represent the case of conven-
tional GW detectors. This is because the GW channel is
obtained as a combination of strain channels depending
on the GW’s direction of propagation. Nonetheless, the
residual at θ ¼ 0 can be compared with residuals in
conventional detectors since it represents the case where
no frame rotation is applied. What this means is that we can
expect residuals of close to 10−3 at 0.1 Hz for Rayleigh and
infrasound NN in conventional detectors.
Figure 10 shows the Rayleigh NN residuals in conven-

tional GW detectors for circular seismic arrays with an
additional seismometer located at the GW detector. All
seismometers have a frequency-independent SNR ¼ 1000.
For this SNR, the configuration with eight sensors is the
most efficient for NN cancellation at 0.1 Hz. Removing
only one sensor significantly increases the residual at
0.1 Hz, while adding many more sensors does not signifi-
cantly lower residuals at 0.1 Hz. The curves obey different
limitations. Only the result with N ¼ 14 sensors comes
close to the sensor-noise limit 1=SNR=

ffiffiffiffi
N

p
. The residuals

are partially determined by the geometrical limitation of the
seismometer array to disentangle waves of the Rayleigh
field. This is generally the case for all curves below some
frequency, e.g., below 0.2 Hz for N ¼ 14 sensors.
The low-frequency limitation is related to the ability of

the array to measure differential displacement between
seismometers, which depends on the sensor SNR, but also
on the size of the array relative to the length of Rayleigh

waves. Increasing the SNR by a factor 10 lowers the
residuals at these low frequencies by a factor 10. At higher
frequencies, e.g., above 0.1 Hz for the eight-sensor array,
the noise residuals are independent of SNR unless residuals
are close to the sensor-noise limit as for the 14-sensor array.
Noise residuals at these frequencies are determined by the
density of sensors in the array (or the sensor-noise limit),
and the inability to resolve short Rayleigh waves cannot be
compensated by increasing the SNR.
The curve with N ¼ 8 sensors can be compared with the

results in Figs. 4 and 6. As to be expected from the previous
discussion, residuals of Rayleigh NN in conventional GW
detectors are similar to residuals in full-tensor GW detec-
tors. Only the high-SNR CM channel in the full-tensor GW
detector gives a significant advantage for Rayleigh NN
cancellation if GWs are incident from angles θ ≈ π=2.
Next, we repeat the previous analysis for infrasound NN.

The noise residuals for a conventional GW detector are
shown in Fig. 11. First, it can be observed that the sensor-
noise limit is not reached by any of the curves. In fact,
the residuals withN ¼ 81microphones do not significantly
differ from residuals with even higher numbers of micro-
phones. This is caused by using a two-dimensional micro-
phone array to subtract gravity perturbations from a
three-dimensional field of density fluctuations, which poses
strong limitations on the cancellation performance.
However, reduction of residuals at lower frequencies,
e.g., below 0.1 Hz for the N ¼ 81 case and below
40 mHz for the N ¼ 11 case, can be achieved by increasing
the SNR.
In principle, significant reduction of noise residuals

over the entire band can be obtained by decreasing the
diameter of the array and then using much more sensitive
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FIG. 10 (color online). Rayleigh Newtonian-noise residuals in
conventional GW detectors using N seismometers. The array
configuration has N − 1 seismometers equally spaced on a 5 km
ring and one seismometer collocated with the detector. All
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microphones, but SNRs of 104 are already pushing the
horizon of what can possibly be achieved in the foresee-
able future. Disregarding the SNR challenge, this method
works (also for the case of Rayleigh NN) since smaller
arrays have a higher-frequency turnover between limita-
tions from the low-frequency differential sensitivity of the
array and the high-frequency short-wavelength resolution.
More explicitly, the decrease in ring radii shifts the
residuals towards higher frequencies without changing
the shape and values of the curve, and subsequently
increasing SNRs reduces the low-frequency part of noise
residuals. For example, for an N ¼ 15 microphone array,
decreasing the radii of the rings by a factor 2 and
increasing the SNRs by a factor 30, residuals at 0.1 Hz
are lowered by an order of magnitude. The more sensors
form the array, the smaller needs to be the increase in the
SNR to achieve the same reduction in residuals. This is
because the slope of the curves in Fig. 11 above 0.1 Hz,
where the residuals are independent of SNR, is steeper for
arrays with larger numbers of sensors, and, therefore, this
part of the curve extends more steeply towards lower
frequencies when increasing the SNR.
The NN residuals at 0.1 Hz shown in Figs. 10 and 11 are

the same as the residuals shown in Figs. 4 and 7 at θ ¼ 0.
For angles closer to θ ¼ π=2, the full-tensor detector
achieves better NN cancellation. This is generally true
for all full-tensor detectors due to properties of the two
specific NN sources investigated in this paper. In addition,
if the full-tensor detector, such as the SOGRO concept
presented in Sec. II, provides very sensitive local accel-
eration sensors, then additional suppression is achieved for
Rayleigh NN, again near θ ¼ π=2.

VI. DISCUSSION

Combining Figs. 6 and 9, we come to a clear conclusion
towards an efficient scheme of NN cancellation in full-
tensor GW detectors. Since Wiener-filter coefficients of the
strain channels for Rayleigh and infrasound NN are differ-
ent, it is impossible to cancel both simultaneously.
However, we have seen that Rayleigh NN can be canceled
efficiently without including strain channels, whereas
subtraction of infrasound NN profits greatly from strain
channels. Consequently, we propose the following strategy.
As a first step, Rayleigh NN needs to be canceled in all five
independent strain channels. Good broadband subtraction
performance can be achieved with spiral seismometer
arrays consisting of a few tens of seismometers with
SNR ¼ 1000 at the microseismic peak [7]. The required
sensitivity of the seismometers is also near the sensitivity of
available commercial instruments [31].
When the strain channels are cleaned from Rayleigh NN,

the next step is to subtract infrasound NN using micro-
phones and the strain channels. We have seen that noise
residuals are greatly reduced compared to subtraction with
microphones only. Information about the 3D infrasound

field, which cannot be retrieved with a 2D microphone
array, is partially provided by the strain channels.
Subtraction residuals still do not reach the sensor-noise
limit, but compared to the scheme with microphones only,
residuals are lowered by orders of magnitude depending on
the direction of propagation of the GW. Therefore, we
conclude that the problem of NN mitigation in full-tensor
GW detectors is greatly facilitated by using its additional
strain channels.
Certain aspects of low-frequency NN cancellation

demand or deserve a deeper analysis. First of all, SNRs
of the sensors are frequency dependent although we used
frequency-independent SNRs to simplify our calculation.
In a real experiment, the NN would be removed using
Wiener filters with sensor arrays optimized for the actual
measured SNRs. Numerical tools for array optimization
need to be developed. Second, it is conceivable that
mitigation schemes relying on local channels rather than
on data from large distributed arrays are more robust
against wave scattering and disturbance from local sources,
which both influence the spatial correlation of seismic or
infrasound fields. Clearly, it is always easier to optimize a
noise cancellation based on local channels, but there may
be additional advantages of using strain channels with
respect to robustness of the performance. Robustness can
play a very important role since gravity perturbations need
to be understood at a level 1=1000 for Rayleigh NN or
1=105 for infrasound NN. Especially for the infrasound
microphones, it is unclear whether such level of accuracy in
the monitoring itself can be achieved. Here, we do not refer
to the intrinsic read-out noise of the sensors but environ-
mental noise, for example, from wind [26].
Also, it is not yet understood if a change of spatial

correlation due to scattering or local sources poses a
limitation to the subtraction performance, which can only
be overcome by deploying additional environmental sen-
sors, or if it leads to modification of NN and density fields
in such a way that a simple rearrangement of senors can
compensate the loss in subtraction performance without
increasing the number of sensors. These considerations
play an important role for high subtraction goals and at low
frequencies since it is highly unlikely that a location can be
identified where heterogeneities of the ground and surface
profile are negligible over the relevant volumes [32].
Nonetheless, all these challenges exist for any type of
NN mitigation at low frequencies, and one may expect that
they impact coherent noise mitigation more strongly in
schemes based on large sensor arrays than on schemes
partially relying on strain channels and a smaller number of
environmental sensors.
Finally, given the fact that infrasound NN needs to be

understood at a level 1=105 for a complete cancellation of
the noise, approximations in our gravity models such as the
negligible size of the GW detector or placing the detector at
the surface despite the fact that it may be a few hundred
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meters underground potentially lead to significant model-
ing errors. More accurate models need to be investigated to
find out if the mitigation scheme proposed in this article
needs to be modified for the most ambitious noise-
suppression goals.
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