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We study strings between static quarks in QCD with nf adjoint fermions, including N ¼ 1

supersymmetric Yang-Mills (SYM), in the calculable regime on R3 × S1
L, which shares many features

with the XY-spin model. We find that they have many qualitatively new features not previously known. The
difference from other realizations of Abelian confinement is due to the composite nature of magnetic bions,
whose Dirac quantum with fundamental quarks is two, and to the unbroken part of the Weyl group.
In particular we show that strings are composed of two domain walls, that quarks are not confined on
domain walls, that strings can end on domain walls, and that “Y” or “Δ” baryons can form. By similar
argumentation, liberation of vortices on domain walls in the condensed matter counterparts may have
important implications in the physics of transport. In the gauge theory we briefly discuss the lightest modes
of strings and the decompactification limit.
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While ubiquitous in nature, color confinement is one of
the least-understood features of Yang-Mills (YM) theory.
Theoretically controlled approaches usually involve mod-
els that differ, in various ways, from real-world QCD.
Nonetheless, one’s hope is that their study will reveal
features of confinement that transcend the particular model.
A rare theoretical laboratory where confinement is under

theoretical control within field theory is offered by QCD
(adj): an SUðNcÞ YM theory with a strong scale Λ and nf
Weyl fermions in the adjoint representation, compactified
on R1;2 × S1

L with fermions periodic around the spatial S1
L

of size L. Ünsal showed [1] that for LNcΛ ≪ 1 confine-
ment is due to the proliferation of topological molecules—
the magnetic bions. These are non-self-dual correlated
tunneling events composed of various fundamental and
twisted [2,3] monopole-instantons. For small but finite
LNcΛ, magnetic bion confinement extends the three-
dimensional Polyakov mechanism of confinement [4] to
locally four-dimensional theories qualitatively different
from three-dimensional theories with fermions where con-
finement is lost [5]. In passing, we note that QCD(adj),
bions and their constituents are studied in connection with
deconfinement, resurgence, theta-dependence and volume
independence, e.g. [6–18].
The goal of this paper is to study confining strings in

QCD(adj)/supersymmetric YM (SYM) in the calculable
regime. We find that they have an interesting structure, to
the best of our knowledge not previously discussed in
confining strings studies. We shall see that, while still
Abelian in nature, QCD(adj) strings retain more features
expected in the non-Abelian theory compared to other
theories with Abelian confinement. In addition the entire
discussion relies only on the effective Lagrangians (1)

or (3) below. Since these have been related to the condensed
matter systems [6,19–21], most of our observations may
have direct important consequences in the physics of these
systems.
At distances ≫L massless QCD(adj) on R3 × S1

L
dynamically Abelianizes [1]. Ignoring fermions for the
moment, for the SUð2Þ gauge group the effective bosonic
(Euclidean) Lagrangian is

LB ¼ M

�
ð∂μσÞ2 þ ð∂μϕÞ2 þ

m2

2
ðcosh 2ϕ − cos 2σÞ

þ ðnf − 1ÞVpertðϕÞ
�
: ð1Þ

The scales and fields in (1) are as follows. The scaleM is of
order g2=L, where g2 is the weak four-dimensional gauge
coupling at the scale 1=L. The scale m ∼ expð−4π2=g2ÞM
is nonperturbative (4π2=g2 is the action of a monopole-
instanton) and exponentially small. With exponential-only
accuracy (for preexponential factors, see [8,22]) one can
think ofM as the cutoff scale of our effective theory and of
m as the mass scale of infrared physics.
The long-distance theory (1) has two bosonic fields.

The field ϕ describes the deviation of the trace of the
Wilson line around S1

L from its center symmetric value.
Equivalently, ϕ is the radial mode of the adjoint Higgs (the
Wilson line) breaking SUð2Þ → Uð1Þ. The field σ is dual to
the photon in the unbroken Cartan subalgebra (the τð3Þ

direction) of SUð2Þ. In Minkowski space M∂0σ ∼ Fð3Þ
12 is

the magnetic field, and Mϵij∂jσ ∼ Ei
ð3Þ is the electric field

(where ϵij ¼ −ϵji and i; j ¼ 1; 2).
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As is clear from the discussion of scales, the terms in (1)
proportional only to M are perturbative. We shall not need
the explicit expression [1,8] for the perturbative potential
VpertðϕÞ. This term is absent for SYM (nf ¼ 1). For nf > 1,
Vpert stabilizes ϕ at the center symmetric value and gives
it mass of order M; hence, ϕ can be integrated out. The
relative normalization between the potentials for ϕ and σ
given in (1) is for SYM.
Of most interest to us is the origin of the nonperturbative

terms in (1). The nonperturbative potential for ϕ,
∼ cosh 2ϕ, is due to neutral bions [8,23] and will not play
an important role here (except for being the only source
stabilizing ϕ at the center-symmetric value ϕ ¼ 0 in SYM).
The other term,∼ cos 2σ, is of utmost importance to us, as it
captures the effect of the magnetic bions—the leading
cause of confinement in QCD(adj). The factor of two in the
argument of the cosine reflects their composite nature: they
have magnetic charge two while fundamental monopole-
instantons have unit charge. This term is responsible for
the generation of mass gap for gauge fluctuations (mass m
for the dual photon σ) and for the confinement of electric
charges. The theory (1) has two vacua σ ¼ 0; π, both with
ϕ ¼ 0, corresponding to the spontaneous breaking of the
anomaly-free discrete chiral symmetry (the R-symmetry
in SYM).
Confinement is detected by the area law for the Wilson

loop in a representationR, taken along a closed contour C,
WðC;RÞ≡ TrRP expði HC AÞ. For an SUð2Þ fundamental
representation, we need to compute the expectation value
of WðC; 1

2
Þ ∼ expði

2

H
C A

ð3ÞÞ ¼ expði
2

R
S B

ð3ÞÞ. Here Að3Þ is
the (electric) gauge field in the Cartan direction, Bð3Þ ¼
dAð3Þ is its field strength, and S is a surface spanning C (the
omitted second contribution to the trace of the fundamental
Wilson loop gives an identical area law).
Insertion of the Wilson loop in the dual language of the σ

field (recalling that σ ∼ σ þ 2π) amounts to the following
instruction [4]: erase the contour from the space, and have σ
wind by 2π for any contour which has linking number one
with the Wilson loop—a 2π monodromy (see left panel of
Fig. 1). Take a rectangular contour in the y − x-plane (y is
Euclidean time) with span TðRÞ in the yðxÞ direction. For
infinite R and T, σ jumps by 2π upon crossing the y − x
plane. If the potential in (1) was—as in Polyakov’s original
three-dimensional SU(2) gauge theory with an adjoint
Higgs field—cos σ, the field configuration extremizing
the action (1) with the correct monodromy, which we
denote σ̄, would be equivalent [4] to a domain wall with
y − x plane world volume, where σ̄ would change by 2π as
z varies between �∞. We would have WðC; 1

2
Þ ∼ e−ΣstrRT ,

with string tension Σstr proportional to the domain wall
tension (for a recent review see [24]).
The physical difference between monopole-instanton

confinement in the three-dimensional Polyakov model
and QCD(adj) on R3 × S1

L—the fact that the magnetic

bions have magnetic charge two—is reflected in the
cos 2σ potential (1). Now, the σ̄-field configuration with
the right monodromy has to be more complicated than a
single domain wall. To study it, we keep the time (y)
extent of C infinite and consider a finite spatial (x) extent
R. As the σ̄ configuration has monodromy 2π across C, in
this simple one-field case it is clear that (since the
periodicity of the cos 2σ potential is π) the string has to
be composed of two domain walls. To get a picture of the
extremal configuration, consider Fig. 1, with parameters
R; d defined in the caption. A sketch of a two-domain wall
configuration is shown, with the second infinite world
volume direction (the time y) perpendicular to the page.
The action has two parts, excluding contributions from the
junctions (subleading at large R): the tension of the two
domain walls, proportional to twice their area (we take
TðRþ dÞ as the area) and the wall-wall long-distance
repulsion (∼e−md). Thus, S∼MmTðRþdÞþMmTRe−md,
up to numerical factors. Extremizing with respect to d,
we find md� ∼ logmR, a logarithmic growth of the
transverse size of the confining string configuration with
the separation between the probe charges.
Remarkably, the above simple model captures the behav-

ior of the actual extremum of (1), shown on Fig. 2, including
the logR growth of the transverse size. Our remarks so far
also hold for deformed-YM theory [25], where, for θ ¼ π
[26] the single monopole contribution vanishes.
The adjoint fermions were, so far, ignored. Their Cartan

components have an effective Lagrangian [1]

LF ¼ M

�
iλ̄σ̄μ∂μλþ

m cos σ
2Mnf−1

½ðλλÞnf þ H:c:�
�
: ð2Þ

We omitted, for brevity, a summation over the nf flavor
indices in the kinetic term and a product over the flavor
indices in the interaction term (the ’t Hooft determinant in
the monopole-instanton background). The field ϕ is also
set to its vanishing vacuum expectation value (VEV). For
SYM, apart from omitting ϕ, (2) has correct normalization.
It is, in fact, the effect of the fermions on the confining

FIG. 1 (color online). Left: the Wilson loop and the mono-
dromy of σ. Right: Sketch of the confining string configuration σ̄
with the correct monodromy, composed of two domain walls.
The dot and cross represent probe quarks a distance R apart. The
maximum distance between the walls, of thickness 1=m, is d.
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string where the difference between SYM and QCD(adj)
with nf > 1 shows up most profoundly.
In SYM, the fermions are massive in the σ ¼ 0; π vacua.

They have exact zero modes in a single domain wall
background, with exponential fall off away from the wall.
Because of the gap m in the bulk, the fermion induced
wall-wall interaction is expected to be exponentially sup-
pressed, ∼m2e−cmd, c ≥ 1 (a calculation of the determinant,
requiring some mild background modeling even for parallel
walls, yields attraction with c > 1). The fermion-induced
exponential interaction at large d is further accompanied by
an “ℏ”∼ m

M loop suppression factor; hence, the classical
bosonic repulsion between the walls ∼Mme−md dominates.
Thus, in SYM the logarithmic growth of the transverse
string size is not affected by the fermions. The logR growth
of the string transverse size is reminiscent of the behavior of
magnetic strings (ANO vortices) which confine monopoles
on the Higgs branch of N ¼ 2 SQCD [27]. However, the
underlying semiclassical physics is different; in particular,
as opposed to [27], our strings obey the usual area law with
tension ∼Mm.
In contrast to SYM, in nonsupersymmetric QCD(adj) with

nf > 1 the Cartan components of the nf Weyl adjoints are
massless, due to the unbroken SUðnfÞ chiral symmetry.
Thus, despite the fact that their interaction with the wall in
(2) is highly suppressed, they induce a power-law force
competing with the exponential repulsion at large d. The
leading effect of the fermions occurs at 2nf − 1 loop order;
its calculation, of which we just give the result, is similar in
spirit to Casimir energy calculations. Fermion loops are
found to generate a wall-wall attraction at large d. Per unit
volume, it is ∼ −m2ðmMÞ4nfðmdÞ−4nfþ4, dominating the
bosonic repulsion ∼Mme−md at large d. The expression

for the action of our toy model, with fermion attraction
included, is S¼TðRþdÞMmþRTMme−md−RTm2ðmMÞ4nf=
ðmdÞ4nf−4. The extremum condition (to which the area
term does not contribute for large T) is now
e−md ∼ e−4π

2ð4nfþ1Þ=g2=ðmdÞ4nf−3. At small g2, we thus have
md� ≈ 4π2ð4nf þ 1Þ=g2, a stable wall-wall separation para-
metrically large compared to the single domain wall width.
Numerical confirmation of the stabilized transverse size d�
of the string is challenging, but our estimate of the size
stabilization is reliable at small g and large R.
As a consequence of the stabilized transverse size of

the confining string in nf > 1 QCD(adj), the second
translational Goldstone mode, the “breather” mode of
the two walls, is now gapped even at infinite R. The gap
for this mode, mbr, can be estimated by taking the second
derivative of the wall-wall interaction potential at d�,
mbr ∼me−4π

22nf=g2 . The breather mode mass mbr is a
new scale on the string world sheet, well below the
“glueball”—the bulk mass gap m for gauge fluctuations.
The fact that the strings are composed out of domain

walls (DW)—a situation opposite to what was suggested in
[28]—has drastic implications on how the fundamental
quarks interact with DWs. For SUð2Þ there are two types of
DWs, which we label BPS1 and BPS2, and their antiwalls.
The distinction is in the electric fluxes which they carry,
but they both satisfy the same BPS equation, e.g. [29]. The
fundamental string is made out of the BPS1 and an anti-
BPS2, where each carries 1=2 of the fundamental electric
flux. If a quark antiquark (qq̄) pair is in the vicinity of the
DW, however, the DW flux can cancel part of the flux of a
qq̄ pair, and absorb it into its world sheet; see Fig. 3. The qq̄
pair on the DWwould then be liberated, as all the tension of
the pair has been absorbed into the DW tension. This leads
to deconfinement in the DW world sheet. This is reminis-
cent of the DW localization, where a theory in the DW
world sheet is in Coulomb phase, so that quarks are

FIG. 2 (color online). The action density of the confining string
σ̄ obtained by numerically minimizing, via Gauss-Seidel relax-
ation, the action (1) with the correct monodromies. The lattice has
spacing 1=M, size 100 × 100, and M=m ¼ 20. The classical
logR growth of the transverse separation from the model of
Fig. 1 is also seen to hold upon studying different size strings.

FIG. 3 (color online). A sketch of how a qq̄ pair can fuse into
the DW (from left to right). The shaded and white regions
represent distinct vacua of the theory. The solid black line
represents the BPS1 DW, while the dashed line represents the
anti-BPS2 DW, while the arrows represent their electric fluxes.
The black dots are the quark and the antiquark. The inlay in the
upper left corner shows a fundamental string ending on a DW.
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liberated [30]. We also note that in a certain Higgs vacuum
of four-dimensional theories, monopole-antimonopole
pairs have support on stable non-Abelian (magnetic) strings
[31,32]. In this work the strings are genuine electric strings.
Deconfinement of quarks on the DW also implies that

strings can end on DWs (see inlay of Fig. 3). In M-theory
QCD (MQCD), SYM strings have been argued to end on
DWs and a heuristic explanation by S.-J. Rey [33], using
the vacuum structure and ideas about confinement, is given
in [34]. The phenomenon was subsequently explored from
modeling the effective actions of the Polyakov loop and
gaugino condensates [35]. Here, we found—for the first
time, to the best of our knowledge—an explicit realization
of this phenomenon in a field theory setting where the
confining dynamics is understood [36].
Our discussion of confining strings in QCD(adj) general-

izes to the higher-rank case. We shall focus only on a few
salient points. All fields in (1) become Nc − 1 dimensional
vectors, describing the light degrees of freedom left
after SUðNcÞ → Uð1ÞNc−1 breaking. It suffices to study

the operator WðC; λÞ ¼ ei
~λ·
H
C
~Að3Þ

, with ~λ—a weight of R
(a vector of Uð1ÞNc−1 electric charges), as the trace of
the Wilson loop is obtained by summing over all weights of
R. As in (1), semiclassically hWðC; λÞi ∼ e−Sclass½σ̄ðCÞ�, with
the magnetic bion potential

Lbion ¼ −m2M
XNc

i¼1

cos ½ð~α�i − ~α�iþ1ðmodNcÞÞ · ~σ�; ð3Þ

replacing the one in (1). Here ~α�i label the simple (i < Nc),
affine (i ¼ Nc) coroots (j~α�i j2 ¼ 2); M and m are, up to

irrelevant factors, as in (1). The fields ~ϕ are set to their VEV
~ϕ ¼ 0; the full Eq. (3) is in [8] for nf > 1 and [21] for SYM
(to get back (1), use α�1 ¼ −α�2 ¼

ffiffiffi
2

p
, λ ¼ 1=

ffiffiffi
2

p
and

redefine m;M; σ). Clearly, a string between quarks with

charges ~λ should have 2π~λ monodromy of ~σ around C.
An important fact, with crucial consequences for the

string spectrum, is that, due to the existence of the twisted
(affine) monopole-instanton [2] and the preserved center
symmetry, a ZNc

subgroup of the Weyl group, cyclically
permuting the Nc roots in (3), is unbroken in QCD(adj).
Denoting by P the generator of the cyclic Weyl group,
using an Nc-dimensional basis for the roots (one linear
combination of the Nc σk’s decouples [8]), its action is:
Pσk ¼ σkþ1ðmodNcÞ, or P~αk ¼ ~αkþ1ðmodNcÞ. The P symmetry
ensures that strings confining quarks in R of SUðNcÞ have
equal tension for all weights of R that lie in the same orbit
of the cyclic Weyl subgroup. Since P permutes the Nc
weights of the fundamental representation, strings confin-
ing any component of the fundamental quarks have equal
tension. This is different from Seiberg-Witten theory where
the Weyl group is completely broken [38]. Still, the
multiplicity of meson Regge trajectories in the calculable
regime of QCD(adj) is different from that expected in the

full non-Abelian theory with unbroken Weyl group.
Further, for higher N-ality representations, there are differ-
ent “P orbits” of “k strings” (both previous statements hold
without accounting for screening by heavy W bosons).
We leave a full taxonomy of “k strings” in QCD(adj) for

the future and briefly study strings between fundamental
quarks. From the P symmetry, it suffices to take ~σ
monodromy 2π ~w1, appropriate to the highest weight of
the fundamental (the Nc − 1 fundamental weights ~wk obey
~α�p · ~wk ¼ δkp, p ¼ 1;…; Nc − 1). We shall argue that
these strings are also composed of two domain walls. To
this end, recall [8] that SUðNcÞ QCD(adj)/SYM has Nc

vacua, h~σi ¼ 2πk
Nc

~ρ, k ¼ 1;…Nc, related by the broken

ZNc
ð⊂ Z2NcnfÞ chiral symmetry. Here, ~ρ ¼ PNc−1

k¼1 ~wk is
the Weyl vector and the dual photons’ periodicity is
~σ ≃ ~σ þ 2π ~wk. An “elementary” domain wall between
the kth and (kþ 1)th vacua then has monodromy 2π

Nc
~ρ.

To construct a configuration of 2π ~w1 monodromy, we
notice the identity 2π ~w1 ¼ 2π

Nc
~ρ − 2π

Nc
P~ρ. A ~σ monodromy

2π ~w1 can now be engineered from an elementary domain
wall and a P-transformed antidomain wall, as in Fig. 1. A
numerical minimization of (3) confirms that, indeed, this is
the string configuration in nonsupersymmetric QCD(adj)
with Nc ¼ 3; 4 (the action density plot is similar to Fig. 2).
We also note that, contrary to Seiberg-Witten theory

where only linear baryons exist [39], in QCD(adj) baryons
in “Y” or “Δ” configurations arise naturally. The affine
monopole-instanton and the unbroken part of the Weyl
symmetry are, again, crucial for this. The combinatorics of
such a construction follows from the above string picture.
We shall not discuss the energetics determining the
preferred configuration here.
For Nc > 2 SYM, the challenge is to include the now

relevant ~ϕ-~σ coupling (ϕ and σ decouple only in SUð2Þ at
g ≪ 1 [21]); for now, we note that candidate string
configurations with the right monodromies can be engi-
neered from appropriate BPS and anti-BPS walls.
Similar observations to the ones in gauge theories are

still true for domain walls in XY models with the p-clock
deformation which are dual to thermal gauge theories [6].
There, vortices would be liberated on the domain wall,
which might have important consequences for the physics
of transport as well as thermodynamics of these walls (e.g.
heat capacity, magnetic permeability and conductivity).
Avery interesting question is how our QCD(adj) strings

behave upon decompactification to R4. In SYM, no phase
transition occurs and the transition to R4 should be
smooth. For nf > 1, the SUðnfÞ chiral symmetry is
expected to break, at least for sufficiently small nf [40]
(since fermions play crucial role in both magnetic bion
formation and in stabilizing the string size, one might
expect interesting interplay between chiral symmetry
breaking and confinement).
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OnR4, not much is known about strings in SYM or QCD
(adj) from field theory alone. An exception is softly broken
Seiberg-Witten theory [38] (not pure SYM). In MQCD,
the transition from softly broken Seiberg-Witten theory to
pure SYM was studied in [39]. It was found that pure SYM
strings on R4 conform, at least in the MQCD regime, to the
behavior expected from non-Abelian strings, with fully
unbrokenWeyl group and N-ality-only dependent tensions.
The transition from the different Abelian behaviors, found
here and in [38], to the non-Abelian one should clearly
involve the W bosons (as they become light upon increas-
ing L). Their inclusion can modify both the vacuum
configurations and the confining strings themselves (a pure
YM theory scenario, relating monopoles, W bosons, and
center vortices is in Chap. 8 of [41]). The difficulty in
pursuing this transition is, not surprisingly, the loss of
theoretical control upon de-Abelianization.
It is, however, tempting to speculate, at least in SYM

where continuity is guaranteed, that the gapped modes due
to the double string will be responsible for the truly non-
Abelian structure of the string in the decompactification
limit. In the Abelian regime the “non-Abelian” excitation
spectrum would correspond to the exponentially small
breather mode mbr, and a tower of W bosons. Then, upon

decompactification, it is reasonable to expect the Abelian
string spectrum to go into the non-Abelian spectrum
(see Fig. 4). Needless to say, all of these questions can,
in principle, be addressed in lattice simulations.
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